High Dimensional *M*-Estimation & Inference from Observational Data with Incomplete Responses A Semi-Parametric Doubly Robust Framework

Abhishek Chakrabortty¹

Department of Statistics University of Pennsylvania

> Group Meeting April 24, 2019

¹Joint work with Jiarui Lu, T. Tony Cai and Hongzhe Li.

Big Data Era: The Challenges of Incomplete Information

- Current era of 'big data' and data science ~>> rapid influx of large and high dimensional data (easily available and computationally tractable).
- Rich information on multitudes of variables at the same place \rightsquigarrow many interesting scientific questions and also unique statistical challenges!

Big Data Era: The Challenges of Incomplete Information

- Current era of 'big data' and data science ~>> rapid influx of large and high dimensional data (easily available and computationally tractable).
- Rich information on multitudes of variables at the same place \rightsquigarrow many interesting scientific questions and also unique statistical challenges!
- One frequently encountered challenge: incompleteness of the data and in particular, (partial) missingness of the response of interest.
 - Reasons could be 'circumstantial' (e.g. practical constraints such as logistics, time, cost issues etc.), or it could be 'by design' (e.g. due to the 'treatment' assignment/non-assignment mechanism).
 - The response corresponding to a 'treatment' of interest could not be observed for a person who is not 'treated' (and vice versa).

Big Data Era: The Challenges of Incomplete Information

- Current era of 'big data' and data science ~>> rapid influx of large and high dimensional data (easily available and computationally tractable).
- Rich information on multitudes of variables at the same place \rightsquigarrow many interesting scientific questions and also unique statistical challenges!
- One frequently encountered challenge: incompleteness of the data and in particular, (partial) missingness of the response of interest.
 - Reasons could be 'circumstantial' (e.g. practical constraints such as logistics, time, cost issues etc.), or it could be 'by design' (e.g. due to the 'treatment' assignment/non-assignment mechanism).
 - The response corresponding to a 'treatment' of interest could not be observed for a person who is not 'treated' (and vice versa).
- Another complication in both cases: observational nature of the data. The missingness mechanism could be informative (not randomized)!

- Observational data ~> typically informative missingness (or treatment assignment) mechanism. Could depend on the person's covariates.
- Often termed selection bias or treatment by indication or confounding (in causal inference) in observational studies. **Has** to be factored in!
- Need to account for the missingness in a proper principled way under minimal conditions to ensure valid, unbiased (and robust) inference.

- Observational data \rightsquigarrow typically informative missingness (or treatment assignment) mechanism. Could **depend** on the person's covariates.
- Often termed selection bias or treatment by indication or confounding (in causal inference) in observational studies. **Has** to be factored in!
- Need to account for the missingness in a proper principled way under minimal conditions to ensure valid, unbiased (and robust) inference.
- Relevance: these issues occur in virtually **any** modern day large scale observational study arising in various scientific disciplines, including:
- Biomedical studies (e.g. electronic health records (EHR) data); and Integrative genomics (e.g. gene expression data and eQTL studies).
- Also econometrics (policy evaluation), computer science, finance etc.

- Variables of interest: outcome Y ∈ 𝒴 ⊆ ℝ and covariates X ∈ 𝒯
 ⊆ ℝ^p (possibly high dimensional, compared to the sample size).
 - The supports \mathcal{Y} and \mathcal{X} of Y and **X** need **not** be continuous.
- Main issue: Y may not always be observed. Let T ∈ {0,1} denote the indicator of the true Y being observed.
- The (partly) unobserved random vector (*T*, *Y*, X) is assumed to be jointly defined on a common probability space with measure P(·).

- Variables of interest: outcome Y ∈ 𝒴 ⊆ ℝ and covariates X ∈ 𝒯
 ⊆ ℝ^p (possibly high dimensional, compared to the sample size).
 - The supports \mathcal{Y} and \mathcal{X} of Y and **X** need **not** be continuous.
- Main issue: Y may not always be observed. Let T ∈ {0,1} denote the indicator of the true Y being observed.
- The (partly) unobserved random vector (*T*, *Y*, X) is assumed to be jointly defined on a common probability space with measure P(·).
- Observable data: D_n := {Z_i := (T_i, T_iY_i, X_i) : i = 1,..., n} nd ∼ Z, where Z := (T, TY, X) whose distribution is defined via P(·).
- High dimensional setting: p can diverge with n (including $p \gg n$).

Applicability of the Framework

- Generally applicable to **any** missing data setting with missing outcomes Y and (possibly) high dimensional covariates **X**.
- Causal inference problems (via 'potential' outcomes framework).

- Generally applicable to **any** missing data setting with missing outcomes Y and (possibly) high dimensional covariates **X**.
- Causal inference problems (via 'potential' outcomes framework).
 - Here, **X** is often called 'confounders' (for observational studies) or 'adjustment' variables/features (for randomized trials).
 - Usual set-up: binary 'treatment' (a.k.a. exposure/intervention) assignment: $T \in \{0, 1\}$, and potential outcomes: $\{Y_{(0)}, Y_{(1)}\}$.
 - Observed outcome: $\mathbb{Y} := Y_{(0)}1(\mathcal{T} = 0) + Y_{(1)}1(\mathcal{T} = 1)$, i.e. depending on \mathcal{T} , we observe only one of $\{Y_{(0)}, Y_{(1)}\}$.

- Generally applicable to **any** missing data setting with missing outcomes Y and (possibly) high dimensional covariates **X**.
- Causal inference problems (via 'potential' outcomes framework).
 - Here, **X** is often called 'confounders' (for observational studies) or 'adjustment' variables/features (for randomized trials).
 - Usual set-up: binary 'treatment' (a.k.a. exposure/intervention) assignment: T ∈ {0,1}, and potential outcomes: {Y₍₀₎, Y₍₁₎}.
 - Observed outcome: $\mathbb{Y} := Y_{(0)}1(\mathcal{T} = 0) + Y_{(1)}1(\mathcal{T} = 1)$, i.e. depending on \mathcal{T} , we observe only one of $\{Y_{(0)}, Y_{(1)}\}$.
 - For each $j \in \{0, 1\}$, this set-up is included based on the 'map': $(\mathcal{T}, Y, \mathbf{X}) \leftarrow (\mathcal{T}_i, Y_{(i)}, \mathbf{X})$ with $\mathcal{T}_i := \mathbf{1}(\mathcal{T} = i) \quad \forall i \in \{0, 1\}.$

- Generally applicable to **any** missing data setting with missing outcomes Y and (possibly) high dimensional covariates **X**.
- Causal inference problems (via 'potential' outcomes framework).
 - Here, **X** is often called 'confounders' (for observational studies) or 'adjustment' variables/features (for randomized trials).
 - Usual set-up: binary 'treatment' (a.k.a. exposure/intervention) assignment: $T \in \{0, 1\}$, and potential outcomes: $\{Y_{(0)}, Y_{(1)}\}$.
 - Observed outcome: $\mathbb{Y} := Y_{(0)}1(\mathcal{T} = 0) + Y_{(1)}1(\mathcal{T} = 1)$, i.e. depending on \mathcal{T} , we observe only one of $\{Y_{(0)}, Y_{(1)}\}$.
 - For each $j \in \{0, 1\}$, this set-up is included based on the 'map':

 $(T, Y, \mathbf{X}) \leftarrow (\mathcal{T}_j, Y_{(j)}, \mathbf{X}) \text{ with } \mathcal{T}_j := 1(\mathcal{T} = j) \ \forall j \in \{0, 1\}.$

The case of any multi-category treatment also similarly included.

The Two Standard (Fundamental) Assumptions

1 Ignorability assumption: $T \perp Y \mid X$.

- A.k.a. 'missing at random' (MAR) in the missing data literature.
- A.k.a. 'no unmeasured confounding' (NUC) in causal inference.
- Special case: T ⊥⊥ (Y, X). A.k.a. missing completely at random (MCAR) in missing data literature, and complete randomization (e.g. randomized trials) in causal inference (CI) literature.

1 Ignorability assumption: $T \perp Y \mid X$.

- A.k.a. 'missing at random' (MAR) in the missing data literature.
- A.k.a. 'no unmeasured confounding' (NUC) in causal inference.
- Special case: T ⊥⊥ (Y, X). A.k.a. missing completely at random (MCAR) in missing data literature, and complete randomization (e.g. randomized trials) in causal inference (CI) literature.
- **Positivity assumption** (a.k.a. 'sufficient overlap' in CI literature):
 - Let $\pi(\mathbf{X}) := \mathbb{P}(T = 1 | \mathbf{X})$ be the propensity score (PS), and let $\pi_0 := \mathbb{P}(T = 1)$. Then, $\pi(\cdot)$ is uniformly bounded away from 0:

 $1 \ge \pi(\mathbf{x}) \ge \delta_{\pi} > 0 \quad \forall \ \mathbf{x} \in \mathcal{X}, \text{ for some constant } \delta_{\pi} > 0.$

Relevance in Biomedical Studies: EHR Data

• Rich resources of data for discovery research; fast growing literature.

REVIEWS GENETICS

Review Article | Published: 18 May 2011

Using electronic health records to drive discovery in disease genomics

Isaac S. Kohani

Nature Reviews Genetics 12, 417-428 (2011)

REVIEWS GENETICS

Review Article | Published: 02 May 2012

Mining electronic health records: towards better research applications and clinical

care

Peter B. Jensen, Lars J. Jensen & Søren Brunak

Nature Reviews Genetics 13, 395-405 (2012)

Relevance in Biomedical Studies: EHR Data

• Rich resources of data for discovery research; fast growing literature.

• **Detailed** clinical and phenotypic data collected electronically for large patient cohorts, as part of routine health care delivery.

Relevance in Biomedical Studies: EHR Data

• Rich resources of data for discovery research; fast growing literature.

- **Detailed** clinical and phenotypic data collected electronically for large patient cohorts, as part of routine health care delivery.
- Structured data: ICD codes, medications, lab tests, demographics etc.
- Unstructured text data (extracted from clinician notes via NLP): signs and symptoms, family history, social history, radiology reports etc.

EHR Data: The Promises and the Challenges

- Information on a variety of phenotypes (unlike usual cohort studies).
- Opens up unique opportunities for novel integrative analyses.

EHR Data: The Promises and the Challenges

- Information on a variety of phenotypes (unlike usual cohort studies).
- Opens up unique opportunities for novel integrative analyses.

• EHR + Bio-repositories \rightsquigarrow genome-phenome association networks, PheWAS studies and genomic risk prediction of diseases.

EHR Data: The Promises and the Challenges

- Information on a **variety** of phenotypes (unlike usual cohort studies).
- Opens up unique opportunities for novel integrative analyses.

- The key challenges and bottlenecks for EHR driven research:
 - Logistic difficulty in obtaining validated phenotype (Y) information.
 - Often time/labor/cost intensive (and the ICD codes are imprecise).

• Some examples of missing Y in EHRs and the reason for missingness:

- Some examples of missing Y in EHRs and the reason for missingness:
 - Y ~> some (binary) disease phenotype (e.g. Rheumatoid Arthritis). Requires manual chart review by physicians (logistic constraints).
 - ② Y →→ some biomarker (e.g. anti-CCP, an important RA biomarker). Requires lab tests (cost constraints). Similarly, any Y requiring genomic measurements may also have cost/logistics constraints.

- Some examples of missing Y in EHRs and the reason for missingness:
 - Y ~> some (binary) disease phenotype (e.g. Rheumatoid Arthritis). Requires manual chart review by physicians (logistic constraints).
 - ② Y →→ some biomarker (e.g. anti-CCP, an important RA biomarker). Requires lab tests (cost constraints). Similarly, any Y requiring genomic measurements may also have cost/logistics constraints.
- Verified phenotypes/treatment response/biomarkers/genomic vars (Y) available **only** for a subset. Clinical features (X) available for **all**.
- Further issues: selection bias/treatment by indication/preferential labeling (e.g. sicker patients get labeled/treated/tested more often).

- Some examples of missing Y in EHRs and the reason for missingness:
 - Y ~> some (binary) disease phenotype (e.g. Rheumatoid Arthritis). Requires manual chart review by physicians (logistic constraints).
 - ② Y →→ some biomarker (e.g. anti-CCP, an important RA biomarker). Requires lab tests (cost constraints). Similarly, any Y requiring genomic measurements may also have cost/logistics constraints.
- Verified phenotypes/treatment response/biomarkers/genomic vars (Y) available **only** for a subset. Clinical features (X) available for **all**.
- Further issues: selection bias/treatment by indication/preferential labeling (e.g. sicker patients get labeled/treated/tested more often).
- Causal inference problems (treatment effects estimation): EHRs also facilitate comparative effectiveness research on a large scale.
 - Many treatments/medications (and responses) being observed. All other clinical features (X) serve as potential confounders.

• Association studies for gene expression (Y) vs. genetic variants (X).

• Association studies for gene expression (Y) vs. genetic variants (X).

 Popular tools in integrative genomics (genetic association studies + gene expression profiling) for understanding gene regulatory networks.

• Association studies for gene expression (Y) vs. genetic variants (X).

- Popular tools in integrative genomics (genetic association studies + gene expression profiling) for understanding gene regulatory networks.
- Missing data issue: gene expression data often missing (loss of power), while genetic variants data often available for a much larger group.

• Association studies for gene expression (Y) vs. genetic variants (X).

- Popular tools in integrative genomics (genetic association studies + gene expression profiling) for understanding gene regulatory networks.
- Missing data issue: gene expression data often missing (loss of power), while genetic variants data often available for a much larger group.
- Causal inference: estimate the causal effect of any one variant (the 'treatment') on Y while all other variants are potential confounders.

High Dimensional M-Estimation: The Parameter(s) of Interest

• **Goal for** *M*-estimation: estimation and inference, based on \mathcal{D}_n , of $\theta_0 \in \mathbb{R}^d$ (possibly high dimensional), defined as the risk minimizer:

 $\theta_0 \equiv \theta_0(\mathbb{P}) := \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} R(\theta), \text{ where } R(\theta) := \mathbb{E}\{L(Y, \mathbf{X}, \theta)\} \text{ and }$

 $L(\cdot) \in \mathbb{R}^+$ is any 'loss' function that is convex and differentiable in θ . Existence of θ_0 implicitly assumed (guaranteed for most usual probs).

 d can diverge with n (including d ≫ n). Also, θ₀(ℙ) is 'model free' (no restrictions on ℙ). In particular, no model assumptions on Y | X.

High Dimensional M-Estimation: The Parameter(s) of Interest

• **Goal for** *M*-estimation: estimation and inference, based on \mathcal{D}_n , of $\theta_0 \in \mathbb{R}^d$ (possibly high dimensional), defined as the risk minimizer:

 $\theta_0 \equiv \theta_0(\mathbb{P}) := \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} R(\theta), \text{ where } R(\theta) := \mathbb{E}\{L(Y, \mathbf{X}, \theta)\} \text{ and }$

 $L(\cdot) \in \mathbb{R}^+$ is any 'loss' function that is convex and differentiable in θ . Existence of θ_0 implicitly assumed (guaranteed for most usual probs).

- d can diverge with n (including d ≫ n). Also, θ₀(ℙ) is 'model free' (no restrictions on ℙ). In particular, no model assumptions on Y | X.
- The key challenges: the missingness via T (if not accounted for, the estimator will be inconsistent!) and the high dimensional setting.
- Need suitable methods involves estimation of nuisance functions and careful analyses (due to error terms with complex dependencies).

High Dimensional M-Estimation: The Parameter(s) of Interest

• **Goal for** *M*-estimation: estimation and inference, based on \mathcal{D}_n , of $\theta_0 \in \mathbb{R}^d$ (possibly high dimensional), defined as the risk minimizer:

 $\theta_0 \equiv \theta_0(\mathbb{P}) := \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} R(\theta), \text{ where } R(\theta) := \mathbb{E}\{L(Y, \mathbf{X}, \theta)\} \text{ and }$

 $L(\cdot) \in \mathbb{R}^+$ is any 'loss' function that is convex and differentiable in θ . Existence of θ_0 implicitly assumed (guaranteed for most usual probs).

- d can diverge with n (including d ≫ n). Also, θ₀(ℙ) is 'model free' (no restrictions on ℙ). In particular, no model assumptions on Y | X.
- The key challenges: the missingness via *T* (if not accounted for, the estimator will be inconsistent!) and the high dimensional setting.
- Need suitable methods involves estimation of nuisance functions and careful analyses (due to error terms with complex dependencies).
- Special (but low-d) case: $\theta_0 = \mathbb{E}(Y)$ and $L(Y, \mathbf{X}, \theta) = (Y \theta)^2$. Leads to the average treatment effect (ATE) estimation prob in CI.

M-Estimation and Missing Data/Causal Inference Problems: A Review

- The framework includes a broad class of M/Z-estimation problems.
- *M*-estimation for fully observed data: well studied with rich literature. Classical settings: Van der Vaart (2000); High dimensional settings: Negahban et al. (2012), Loh and Wainwright (2012, 2015) etc.

M-Estimation and Missing Data/Causal Inference Problems: A Review

- The framework includes a broad class of M/Z-estimation problems.
- *M*-estimation for fully observed data: well studied with rich literature. Classical settings: Van der Vaart (2000); High dimensional settings: Negahban et al. (2012), Loh and Wainwright (2012, 2015) etc.
- Missing data/causal inference problems: semi-parametric inference.
 - Classical settings: vast literature (typically for mean estimation). Tsiatis (2007); Bang and Robins (2005); Robins et al. (1994) etc.

- The framework includes a broad class of M/Z-estimation problems.
- *M*-estimation for fully observed data: well studied with rich literature. Classical settings: Van der Vaart (2000); High dimensional settings: Negahban et al. (2012), Loh and Wainwright (2012, 2015) etc.
- Missing data/causal inference problems: semi-parametric inference.
 - Classical settings: vast literature (typically for mean estimation). Tsiatis (2007); Bang and Robins (2005); Robins et al. (1994) etc.
 - High dimensional settings (but low dimensional parameters): lot of attention in recent times on mean (or ATE) estimation. Belloni et al. (2014, 2017); Farrell (2015); Chernozhukov et al. (2018).

- The framework includes a broad class of M/Z-estimation problems.
- *M*-estimation for fully observed data: well studied with rich literature. Classical settings: Van der Vaart (2000); High dimensional settings: Negahban et al. (2012), Loh and Wainwright (2012, 2015) etc.
- Missing data/causal inference problems: semi-parametric inference.
 - Classical settings: vast literature (typically for mean estimation). Tsiatis (2007); Bang and Robins (2005); Robins et al. (1994) etc.
 - High dimensional settings (but low dimensional parameters): lot of attention in recent times on mean (or ATE) estimation. Belloni et al. (2014, 2017); Farrell (2015); Chernozhukov et al. (2018).
- Much less attention when the parameter **itself** is high dimensional.

- The framework includes a broad class of M/Z-estimation problems.
- *M*-estimation for fully observed data: well studied with rich literature. Classical settings: Van der Vaart (2000); High dimensional settings: Negahban et al. (2012), Loh and Wainwright (2012, 2015) etc.
- Missing data/causal inference problems: semi-parametric inference.
 - Classical settings: vast literature (typically for mean estimation). Tsiatis (2007); Bang and Robins (2005); Robins et al. (1994) etc.
 - High dimensional settings (but low dimensional parameters): lot of attention in recent times on mean (or ATE) estimation. Belloni et al. (2014, 2017); Farrell (2015); Chernozhukov et al. (2018).
- Much less attention when the parameter **itself** is high dimensional.
- This work contributes to **both** literature above: *M*-estimation + missing data + high dimensional setting **and** parameter. (Also has applications in heterogeneous treatment effects estimation in CI).
HD M-Estimation: A Few (Class of) Applications

 All standard high dimensional (HD) regression problems with: (a) missing outcomes and (b) potentially misspecified (working) models.

HD M-Estimation: A Few (Class of) Applications

- All standard high dimensional (HD) regression problems with: (a) missing outcomes and (b) potentially misspecified (working) models.
 - E.g. squared loss: L(Y, X, θ) := (Y X'θ)² → linear regression; logistic loss: L(Y, X, θ) := log{1 + exp(X'θ)} – Y(X'θ) → logistic regression (for binary Y), exponential loss (Poisson reg.) so on
 - Note: throughout, regardless of any motivating 'working model' being true or not, the definition of θ₀ is completely 'model free'.

HD M-Estimation: A Few (Class of) Applications

- All standard high dimensional (HD) regression problems with: (a) missing outcomes and (b) potentially misspecified (working) models.
 - E.g. squared loss: L(Y, X, θ) := (Y X'θ)² → linear regression; logistic loss: L(Y, X, θ) := log{1 + exp(X'θ)} – Y(X'θ) → logistic regression (for binary Y), exponential loss (Poisson reg.) so on
 - Note: throughout, regardless of any motivating 'working model' being true or not, the definition of θ₀ is completely 'model free'.
- Series estimation problems (model free) with missing Y and HD basis functions (instead of X in Example 1 above). E.g. spline bases.
 - Use the same choices of L(·) as in Example 1 above with X replaced by any set of d (possibly HD) basis functions Ψ(X) := {ψ_j(X)}^d_{j=1}.
 - E.g. polynomial bases: Ψ(X) := {1, x_j^k : 1 ≤ j ≤ p, 1 ≤ k ≤ d₀}. (d₀ = 1 → linear bases as in Example 1; d₀ = 3 → cubic splines).

Another Application: HD Single Index Models (SIMs)

- Signal recovery in high dimensional single index models (SIMs) with elliptically symmetric design distribution (e.g. **X** is Gaussian).
- Let $Y = f(\beta'_0 X, \epsilon)$ with $f : \mathbb{R}^2 \to \mathcal{Y}$ unknown (i.e. β_0 identifiable only upto scalar multiples) and $\epsilon \perp\!\!\perp X$ (i.e., $Y \perp\!\!\perp X \mid \beta'_0 X$).

Another Application: HD Single Index Models (SIMs)

- Signal recovery in high dimensional single index models (SIMs) with elliptically symmetric design distribution (e.g. **X** is Gaussian).
- Let $Y = f(\beta'_0 X, \epsilon)$ with $f : \mathbb{R}^2 \to \mathcal{Y}$ unknown (i.e. β_0 identifiable only upto scalar multiples) and $\epsilon \perp \perp X$ (i.e., $Y \perp \perp X \mid \beta'_0 X$).
- Consider **any** of the regression problems introduced in Example 1.
 - Let $\theta_0 := \arg \min_{\theta \in \mathbb{R}^p} \mathbb{E}\{L(Y, X'\theta)\}$ for any convex loss function $L(\cdot) : \mathbb{R}^2 \to \mathbb{R}$ (convex in the second argument). Then, $\theta_0 \propto \beta_0!$
 - A remarkable result due to Li and Duan (1989).

Another Application: HD Single Index Models (SIMs)

- Signal recovery in high dimensional single index models (SIMs) with elliptically symmetric design distribution (e.g. **X** is Gaussian).
- Let $Y = f(\beta'_0 X, \epsilon)$ with $f : \mathbb{R}^2 \to \mathcal{Y}$ unknown (i.e. β_0 identifiable only upto scalar multiples) and $\epsilon \perp \perp X$ (i.e., $Y \perp \perp X \mid \beta'_0 X$).
- Consider **any** of the regression problems introduced in Example 1.
 - Let $\theta_0 := \arg \min_{\theta \in \mathbb{R}^p} \mathbb{E}\{L(Y, X'\theta)\}$ for any convex loss function $L(\cdot) : \mathbb{R}^2 \to \mathbb{R}$ (convex in the second argument). Then, $\theta_0 \propto \beta_0!$
 - A remarkable result due to Li and Duan (1989).
- Classic example of a misspecified parametric model defining θ_0 , yet θ_0 directly relates to an actual (interpretable) semi-parametric model!
 - The proportionality result also preserves any sparsity assumptions.

• Applications of all these problems in causal inference (estimation of treatment effects with useful applications in precision medicine):

- Applications of all these problems in causal inference (estimation of treatment effects with useful applications in precision medicine):
 - Linear heterogeneous treatment effects estimation: application of the linear regression example (twice). Write $\{Y_{(0)}, Y_{(1)}\}$ linearly as:

$$\begin{split} Y_{(j)} &= \mathbf{X}' \boldsymbol{\beta}_{(j)} + \epsilon_{(j)}, \quad \mathbb{E}(\epsilon_{(j)} \mathbf{X}) = \mathbf{0} \quad \forall \ j = 0, 1, \text{ so that} \\ Y_{(1)} - Y_{(0)} &= \mathbf{X}' \boldsymbol{\beta}^* + \epsilon^*, \quad \boldsymbol{\beta}^* := \boldsymbol{\beta}_{(1)} - \boldsymbol{\beta}_{(0)}, \quad \epsilon^* := \epsilon_{(1)} - \epsilon_{(0)}. \end{split}$$

- Applications of all these problems in causal inference (estimation of treatment effects with useful applications in precision medicine):
 - Linear heterogeneous treatment effects estimation: application of the linear regression example (twice). Write {Y₍₀₎, Y₍₁₎} linearly as:

$$\begin{split} \mathbf{Y}_{(j)} &= \mathbf{X}' \boldsymbol{\beta}_{(j)} + \epsilon_{(j)}, \quad \mathbb{E}(\epsilon_{(j)} \mathbf{X}) = \mathbf{0} \quad \forall \ j = 0, 1, \text{ so that} \\ \mathbf{Y}_{(1)} - \mathbf{Y}_{(0)} &= \mathbf{X}' \boldsymbol{\beta}^* + \epsilon^*, \quad \boldsymbol{\beta}^* := \boldsymbol{\beta}_{(1)} - \boldsymbol{\beta}_{(0)}, \quad \epsilon^* := \epsilon_{(1)} - \epsilon_{(0)}. \end{split}$$

 β^* denotes the (model free) linear projection of $Y_{(1)} - Y_{(0)} | \mathbf{X}$. Of interest in HD settings when $\mathbb{E}\{Y_{(1)} - Y_{(0)} | \mathbf{X}\}$ is difficult to model (Chernozhukov et al., 2017; Chernozhukov and Semenova, 2017).

- Applications of all these problems in causal inference (estimation of treatment effects with useful applications in precision medicine):
 - Linear heterogeneous treatment effects estimation: application of the linear regression example (twice). Write $\{Y_{(0)}, Y_{(1)}\}$ linearly as:

 $\begin{aligned} Y_{(j)} &= \mathbf{X}' \boldsymbol{\beta}_{(j)} + \epsilon_{(j)}, \quad \mathbb{E}(\epsilon_{(j)} \mathbf{X}) = \mathbf{0} \quad \forall \ j = 0, 1, \text{ so that} \\ Y_{(1)} - Y_{(0)} &= \mathbf{X}' \boldsymbol{\beta}^* + \epsilon^*, \quad \boldsymbol{\beta}^* := \boldsymbol{\beta}_{(1)} - \boldsymbol{\beta}_{(0)}, \quad \epsilon^* := \epsilon_{(1)} - \epsilon_{(0)}. \end{aligned}$

 β^* denotes the (model free) linear projection of $Y_{(1)} - Y_{(0)} | \mathbf{X}$. Of interest in HD settings when $\mathbb{E}\{Y_{(1)} - Y_{(0)} | \mathbf{X}\}$ is difficult to model (Chernozhukov et al., 2017; Chernozhukov and Semenova, 2017).

- Average conditional treatment effects (ACTE) estimation via series estimators: application of the series estimation example (twice).
- Causal inference via SIMs (signal recovery, ACTE estimation and ATE estimation): application of the SIM example (twice).

Before Getting Started: A Few Facts and Considerations

• Some notations: $m(\mathbf{X}) := \mathbb{E}(Y|\mathbf{X})$ and $\phi(\mathbf{X}, \theta) := \mathbb{E}\{L(Y, \mathbf{X}, \theta)|\mathbf{X}\}.$

Before Getting Started: A Few Facts and Considerations

- Some notations: $m(\mathbf{X}) := \mathbb{E}(Y|\mathbf{X})$ and $\phi(\mathbf{X}, \theta) := \mathbb{E}\{L(Y, \mathbf{X}, \theta)|\mathbf{X}\}.$
- It is generally necessary to 'account' for the missingness in Y. The 'complete case' estimator of θ_0 in general will be **inconsistent**!

Before Getting Started: A Few Facts and Considerations

- Some notations: $m(\mathbf{X}) := \mathbb{E}(Y|\mathbf{X})$ and $\phi(\mathbf{X}, \theta) := \mathbb{E}\{L(Y, \mathbf{X}, \theta) | \mathbf{X}\}.$
- It is generally necessary to 'account' for the missingness in Y. The 'complete case' estimator of θ_0 in general will be **inconsistent**!
 - That estimator may be consistent only if: (1) ∇φ(X, θ₀) = 0 a.s. for every X (for regression problems, this indicates the 'correct model' case), and/or (2) T ⊥⊥ (Y, X) (i.e. the MCAR case).
 - Illustration of (1) for sq. loss: $\nabla \phi(\mathbf{X}, \theta_0) = \mathbb{E}\{\mathbf{X}(Y \mathbf{X}'\theta_0) | \mathbf{X}\} = \mathbf{0}$. Hence, $\mathbb{E}(Y|\mathbf{X}) = \mathbf{X}'\theta_0$ (i.e. a 'linear model' holds for $Y|\mathbf{X}$).

- Some notations: $m(\mathbf{X}) := \mathbb{E}(Y|\mathbf{X})$ and $\phi(\mathbf{X}, \theta) := \mathbb{E}\{L(Y, \mathbf{X}, \theta)|\mathbf{X}\}.$
- It is generally necessary to 'account' for the missingness in Y. The 'complete case' estimator of θ_0 in general will be **inconsistent**!
 - That estimator may be consistent only if: (1) ∇φ(X, θ₀) = 0 a.s. for every X (for regression problems, this indicates the 'correct model' case), and/or (2) T ⊥⊥ (Y, X) (i.e. the MCAR case).
 - Illustration of (1) for sq. loss: $\nabla \phi(\mathbf{X}, \theta_0) = \mathbb{E}\{\mathbf{X}(Y \mathbf{X}'\theta_0) | \mathbf{X}\} = \mathbf{0}$. Hence, $\mathbb{E}(Y | \mathbf{X}) = \mathbf{X}'\theta_0$ (i.e. a 'linear model' holds for $Y | \mathbf{X}$).
- With θ₀ (and X) being high dimensional (compared to n), we need some further structural constraints on θ₀ to estimate it using D_n.
 - We assume that θ_0 is *s*-sparse: $\|\theta_0\|_0 := s$ and $s \leq \min(n, d)$.
 - Note: the sparsity requirement has attractive (and fairly intuitive) geometric justification for all the examples we have given here.

 Under MAR assmpn., R(θ) := E{L(Y, X, θ)} ≡ E_X{φ(X, θ)} admits the following debiased and doubly robust (DDR) representation:

 Under MAR assmpn., R(θ) := E{L(Y, X, θ)} ≡ E_X{φ(X, θ)} admits the following debiased and doubly robust (DDR) representation:

$$R(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{X}}\{\phi(\mathbf{X}, \boldsymbol{\theta})\} + \mathbb{E}\left[\frac{T}{\pi(\mathbf{X})}\left\{L(Y, \mathbf{X}, \boldsymbol{\theta}) - \phi(\mathbf{X}, \boldsymbol{\theta})\right\}\right].$$
(1)

Purely non-parametric identification based on the observable Z and the nuisance functions: $\pi(X)$ and $\phi(X, \theta)$ (unknown but estimable).

 Under MAR assmpn., R(θ) := E{L(Y, X, θ)} ≡ E_X{φ(X, θ)} admits the following debiased and doubly robust (DDR) representation:

$$R(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{X}}\{\phi(\mathbf{X}, \boldsymbol{\theta})\} + \mathbb{E}\left[\frac{T}{\pi(\mathbf{X})}\left\{L(Y, \mathbf{X}, \boldsymbol{\theta}) - \phi(\mathbf{X}, \boldsymbol{\theta})\right\}\right].$$
(1)

Purely non-parametric identification based on the observable Z and the nuisance functions: $\pi(X)$ and $\phi(X, \theta)$ (unknown but estimable).

- 2nd term is simply 0, can be seen as a 'debiasing' term (of sorts).
 - Plays a crucial role in analyzing the empirical version of (1). Ensures first order insensitivity to any estimation errors of π(·) and φ(·).

 Under MAR assmpn., R(θ) := E{L(Y, X, θ)} ≡ E_X{φ(X, θ)} admits the following debiased and doubly robust (DDR) representation:

$$R(\boldsymbol{\theta}) = \mathbb{E}_{\mathbf{X}}\{\phi(\mathbf{X}, \boldsymbol{\theta})\} + \mathbb{E}\left[\frac{T}{\pi(\mathbf{X})}\left\{L(Y, \mathbf{X}, \boldsymbol{\theta}) - \phi(\mathbf{X}, \boldsymbol{\theta})\right\}\right].$$
(1)

Purely non-parametric identification based on the observable Z and the nuisance functions: $\pi(X)$ and $\phi(X, \theta)$ (unknown but estimable).

- 2nd term is simply 0, can be seen as a 'debiasing' term (of sorts).
 - Plays a crucial role in analyzing the empirical version of (1). Ensures first order insensitivity to any estimation errors of π(·) and φ(·).
- Double robustness (DR) aspect: replace $\{\phi(\mathbf{X}, \theta), \pi(\mathbf{X})\}$ by any $\{\phi^*(\mathbf{X}, \theta), \pi^*(\mathbf{X})\}$ and (1) continues to hold as long as one but not necessarily both of $\phi^*(\cdot) = \phi(\cdot)$ or $\pi^*(\cdot) = \pi(\cdot)$ hold.

The DDR Estimator of θ_0

• Given any estimators $\{\widehat{\pi}(\cdot), \widehat{\phi}(\cdot)\}$ be of the nuisance fns. $\{\pi(\cdot), \phi(\cdot)\}$, we define our L_1 -penalized DDR estimator $\widehat{\theta}_{\text{DDR}}$ of θ_0 as:

$$\widehat{\boldsymbol{\theta}}_{\text{DDR}} \equiv \widehat{\boldsymbol{\theta}}_{\text{DDR}}(\lambda_n) := \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \left\{ \mathcal{L}_n^{\text{DDR}}(\boldsymbol{\theta}) + \lambda_n \|\boldsymbol{\theta}\|_1 \right\}, \text{ where} \\ \mathcal{L}_n^{\text{DDR}}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^n \widehat{\phi}(\mathbf{X}_i, \boldsymbol{\theta}) + \frac{T_i}{\widehat{\pi}(\mathbf{X}_i)} \left\{ L(Y_i, \mathbf{X}_i, \boldsymbol{\theta}) - \widehat{\phi}(\mathbf{X}_i, \boldsymbol{\theta}) \right\},$$

 $\lambda_n \geq 0$ is the tuning parameter and $\{\widehat{\pi}(\cdot), \widehat{\phi}(\cdot)\}$ are arbitrary except for satisfying two **basic conditions** regarding their construction:

The DDR Estimator of θ_0

• Given any estimators $\{\widehat{\pi}(\cdot), \widehat{\phi}(\cdot)\}$ be of the nuisance fns. $\{\pi(\cdot), \phi(\cdot)\}$, we define our L_1 -penalized DDR estimator $\widehat{\theta}_{\text{DDR}}$ of θ_0 as:

$$\widehat{\boldsymbol{\theta}}_{\text{DDR}} \equiv \widehat{\boldsymbol{\theta}}_{\text{DDR}}(\lambda_n) := \arg\min_{\boldsymbol{\theta} \in \mathbb{R}^d} \left\{ \mathcal{L}_n^{\text{DDR}}(\boldsymbol{\theta}) + \lambda_n \|\boldsymbol{\theta}\|_1 \right\}, \text{ where}$$
$$\mathcal{L}_n^{\text{DDR}}(\boldsymbol{\theta}) := \frac{1}{n} \sum_{i=1}^n \widehat{\phi}(\mathbf{X}_i, \boldsymbol{\theta}) + \frac{T_i}{\widehat{\pi}(\mathbf{X}_i)} \left\{ L(Y_i, \mathbf{X}_i, \boldsymbol{\theta}) - \widehat{\phi}(\mathbf{X}_i, \boldsymbol{\theta}) \right\},$$

 $\lambda_n \geq 0$ is the tuning parameter and $\{\widehat{\pi}(\cdot), \widehat{\phi}(\cdot)\}$ are arbitrary except for satisfying two **basic conditions** regarding their construction:

π(·) obtained from the data *T_n* := {*T_i*, **X**_i}ⁿ_{i=1} only; {*φ*(**X**_i, *θ*)}ⁿ_{i=1}

 obtained in a 'cross-fitted' manner (via sample splitting).

18/50

• Assume (temporarily) $\{\widehat{\pi}(\cdot), \widehat{\phi}(\cdot)\}$ are **both** 'correct'. DR properties (consistency) of $\widehat{\theta}_{\text{DDR}}$ under their misspecifications discussed later.

Simplifying Assumptions and User Friendly Implementation Algorithm

• For simplicity, assume that the gradient $\nabla L(Y, \mathbf{X}, \theta)$ of $L(\cdot)$ satisfies a 'separable form' as follows: for some $\mathbf{h}(\mathbf{X}) \in \mathbb{R}^d$ and $g(\mathbf{X}, \theta) \in \mathbb{R}$,

Simplifying Assumptions and User Friendly Implementation Algorithm

• For simplicity, assume that the gradient $\nabla L(Y, \mathbf{X}, \theta)$ of $L(\cdot)$ satisfies a 'separable form' as follows: for some $\mathbf{h}(\mathbf{X}) \in \mathbb{R}^d$ and $g(\mathbf{X}, \theta) \in \mathbb{R}$,

> $\nabla L(Y, \mathbf{X}, \theta) = \mathbf{h}(\mathbf{X}) \{ Y - g(\mathbf{X}, \theta) \}, \text{ and hence,}$ $\nabla \widehat{\phi}(\mathbf{X}, \theta) = \mathbf{h}(\mathbf{X}) \{ \widehat{m}(\mathbf{X}) - g(\mathbf{X}, \theta) \}, \text{ where}$

 $\widehat{m}(\mathbf{X})$ denotes the corresponding (cross-fitted) estimator of $m(\mathbf{X})$. This simplifying assumption **holds** for **all** examples given before.

• Assumed form \Rightarrow only need to obtain $\widehat{m}(\mathbf{X}_i)$ and not $\widehat{\phi}(\mathbf{X}_i, \theta)$.

Simplifying Assumptions and User Friendly Implementation Algorithm

• For simplicity, assume that the gradient $\nabla L(Y, \mathbf{X}, \theta)$ of $L(\cdot)$ satisfies a 'separable form' as follows: for some $\mathbf{h}(\mathbf{X}) \in \mathbb{R}^d$ and $g(\mathbf{X}, \theta) \in \mathbb{R}$,

> $\nabla L(Y, \mathbf{X}, \theta) = \mathbf{h}(\mathbf{X})\{Y - g(\mathbf{X}, \theta)\}, \text{ and hence,}$ $\nabla \widehat{\phi}(\mathbf{X}, \theta) = \mathbf{h}(\mathbf{X})\{\widehat{m}(\mathbf{X}) - g(\mathbf{X}, \theta)\}, \text{ where}$

 $\widehat{m}(\mathbf{X})$ denotes the corresponding (cross-fitted) estimator of $m(\mathbf{X})$. This simplifying assumption **holds** for **all** examples given before.

- Assumed form \Rightarrow only need to obtain $\widehat{m}(\mathbf{X}_i)$ and not $\widehat{\phi}(\mathbf{X}_i, \boldsymbol{\theta})$.
- Implementation algorithm. $\hat{\theta}_{\text{DDR}}$ can be obtained simply as:

$$\widehat{\boldsymbol{\theta}}_{\text{DDR}} \equiv \widehat{\boldsymbol{\theta}}_{\text{DDR}}(\lambda_n) := \arg \min_{\boldsymbol{\theta} \in \mathbb{R}^d} \left\{ \frac{1}{n} \sum_{i=1}^n L(\widetilde{Y}_i, \mathbf{X}_i, \boldsymbol{\theta}) + \lambda_n \left\| \boldsymbol{\theta} \right\|_1 \right\},$$

where $\widetilde{Y}_i := \widehat{m}(\mathbf{X}_i) + \frac{T_i}{\widehat{\pi}(\mathbf{X}_i)} \{Y_i - \widehat{m}(\mathbf{X}_i)\}, \forall i, \text{ is a 'pseudo' outcome.}$ Can use 'glmnet' in R. Pretend to have a 'full' data: $\{\widetilde{Y}_i, \mathbf{X}_i\}_{i=1}^n$. Properties of $\widehat{\theta}_{DDR}$: Deterministic Deviation Bounds

Assume L(·) is convex and differentiable in θ and L^{DDR}_n(θ) satisfies the Restricted Strong Convexity (RSC) condition (Negahban et al., 2012) at θ = θ₀. Then, for any choice of λ_n ≥ 2 ||∇L^{DDR}_n(θ₀)||_∞,

Properties of $\widehat{\theta}_{DDR}$: Deterministic Deviation Bounds

Assume L(·) is convex and differentiable in θ and L^{DDR}_n(θ) satisfies the Restricted Strong Convexity (RSC) condition (Negahban et al., 2012) at θ = θ₀. Then, for any choice of λ_n ≥ 2 ||∇L^{DDR}_n(θ₀)||_∞,

$$\left\|\widehat{\boldsymbol{ heta}}_{ ext{DDR}}(\lambda_n) - \boldsymbol{ heta}_0
ight\|_2 \lesssim \lambda_n \sqrt{s}, ext{ and } \left\|\widehat{\boldsymbol{ heta}}_{ ext{DDR}}(\lambda_n) - \boldsymbol{ heta}_0
ight\|_1 \lesssim \lambda_n s.$$

where $s := \|\theta_0\|_0$. This is a **deterministic** deviation bound. Holds for any choices of $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ and for any realization of \mathcal{D}_n .

Properties of $\widehat{\theta}_{DDR}$: Deterministic Deviation Bounds

Assume L(·) is convex and differentiable in θ and L^{DDR}_n(θ) satisfies the Restricted Strong Convexity (RSC) condition (Negahban et al., 2012) at θ = θ₀. Then, for any choice of λ_n ≥ 2 ||∇L^{DDR}_n(θ₀)||_∞,

$$\left\|\widehat{\boldsymbol{ heta}}_{ ext{DDR}}(\lambda_n) - \boldsymbol{ heta}_0
ight\|_2 \lesssim \lambda_n \sqrt{s}, ext{ and } \left\|\widehat{\boldsymbol{ heta}}_{ ext{DDR}}(\lambda_n) - \boldsymbol{ heta}_0
ight\|_1 \lesssim \lambda_n s.$$

where $s := \|\theta_0\|_0$. This is a **deterministic** deviation bound. Holds for any choices of $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ and for any realization of \mathcal{D}_n .

• The RSC (or 'cone') condition for $\mathcal{L}_n^{\text{DDR}}(\theta)$ is exactly the same as the usual RSC condition required under a fully observed data! The fully observed data RSC condition's validity is well studied.

Properties of $\hat{\theta}_{DDR}$: Deterministic Deviation Bounds

Assume L(·) is convex and differentiable in θ and L^{DDR}_n(θ) satisfies the Restricted Strong Convexity (RSC) condition (Negahban et al., 2012) at θ = θ₀. Then, for any choice of λ_n ≥ 2 ||∇L^{DDR}_n(θ₀)||_∞,

$$\left\|\widehat{\boldsymbol{ heta}}_{ ext{DDR}}(\lambda_n) - \boldsymbol{ heta}_0
ight\|_2 \lesssim \lambda_n \sqrt{s}, ext{ and } \left\|\widehat{\boldsymbol{ heta}}_{ ext{DDR}}(\lambda_n) - \boldsymbol{ heta}_0
ight\|_1 \lesssim \lambda_n s.$$

where $s := \|\theta_0\|_0$. This is a **deterministic** deviation bound. Holds for any choices of $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ and for any realization of \mathcal{D}_n .

- The RSC (or 'cone') condition for $\mathcal{L}_n^{\text{DDR}}(\theta)$ is exactly the same as the usual RSC condition required under a fully observed data! The fully observed data RSC condition's validity is well studied.
- Key quantity of interest: the random lower bound $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$ for λ_n . Need probabilistic bounds to determine convergence rate of $\hat{\theta}_{\text{DDR}}$.

The Main Goal from Hereon: Probabilistic Bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$

- Bounds on $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$ determines the rate of choice of λ_n and hence the convergence rate of $\hat{\theta}_{\text{DDR}}$ (using the deviation bound).
- **Probabilistic** bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\boldsymbol{\theta}_0)\|_{\infty}$: the basic decomposition

 $\left\|\boldsymbol{\nabla}\mathcal{L}_{n}^{\text{DDR}}(\boldsymbol{\theta}_{0})\right\|_{\infty} \leq \left\|\mathbf{T}_{0,n}\right\|_{\infty} + \left\|\mathbf{T}_{\pi,n}\right\|_{\infty} + \left\|\mathbf{T}_{m,n}\right\|_{\infty} + \left\|\mathbf{R}_{\pi,m,n}\right\|_{\infty},$

The Main Goal from Hereon: Probabilistic Bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$

- Bounds on $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$ determines the rate of choice of λ_n and hence the convergence rate of $\widehat{\theta}_{\text{DDR}}$ (using the deviation bound).
- **Probabilistic** bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$: the basic decomposition

 $\left\|\boldsymbol{\nabla}\mathcal{L}_{n}^{\text{DDR}}(\boldsymbol{\theta}_{0})\right\|_{\infty} \leq \left\|\boldsymbol{\mathsf{T}}_{0,n}\right\|_{\infty} + \left\|\boldsymbol{\mathsf{T}}_{\pi,n}\right\|_{\infty} + \left\|\boldsymbol{\mathsf{T}}_{m,n}\right\|_{\infty} + \left\|\boldsymbol{\mathsf{R}}_{\pi,m,n}\right\|_{\infty},$

where $\mathbf{T}_{0,n}$ is the 'main' term (a centered iid average), $\mathbf{T}_{\pi,n}$ is the ' π -error' term involving $\hat{\pi}(\cdot) - \pi(\cdot)$ and $\mathbf{T}_{m,n}$ is the 'm-error' term involving $\hat{m}(\cdot) - m(\cdot)$, while $\mathbf{R}_{\pi,m,n}$ is the ' (π, m) -error' term (usually lower order) involving the product of $\hat{\pi}(\cdot) - \pi(\cdot)$ and $\hat{m}(\cdot) - m(\cdot)$.

 Control each term separately. The analyses are all non-asymptotic and nuanced, especially in order to get sharp rates for T_{π,n} and T_{m,n}.

The Main Goal from Hereon: Probabilistic Bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$

- Bounds on $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$ determines the rate of choice of λ_n and hence the convergence rate of $\hat{\theta}_{\text{DDR}}$ (using the deviation bound).
- **Probabilistic** bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$: the basic decomposition

 $\left\|\boldsymbol{\nabla}\mathcal{L}_{n}^{\text{DDR}}(\boldsymbol{\theta}_{0})\right\|_{\infty} \leq \left\|\boldsymbol{\mathsf{T}}_{0,n}\right\|_{\infty} + \left\|\boldsymbol{\mathsf{T}}_{\pi,n}\right\|_{\infty} + \left\|\boldsymbol{\mathsf{T}}_{m,n}\right\|_{\infty} + \left\|\boldsymbol{\mathsf{R}}_{\pi,m,n}\right\|_{\infty},$

where $\mathbf{T}_{0,n}$ is the 'main' term (a centered iid average), $\mathbf{T}_{\pi,n}$ is the ' π -error' term involving $\hat{\pi}(\cdot) - \pi(\cdot)$ and $\mathbf{T}_{m,n}$ is the 'm-error' term involving $\hat{m}(\cdot) - m(\cdot)$, while $\mathbf{R}_{\pi,m,n}$ is the ' (π, m) -error' term (usually lower order) involving the product of $\hat{\pi}(\cdot) - \pi(\cdot)$ and $\hat{m}(\cdot) - m(\cdot)$.

- Control each term separately. The analyses are all non-asymptotic and nuanced, especially in order to get sharp rates for T_{π,n} and T_{m,n}.
- We show: $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty} \lesssim \sqrt{(\log d)/n}$ with high probability, and hence $\|\widehat{\theta}_{\text{DDR}} \theta_0\|_2 \lesssim \sqrt{s(\log d)/n}$. So, clearly it is rate optimal.

Convergence Rates and Bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$ (and $\widehat{\theta}_{\text{DDR}}$)

• Basic (high level) consistency conditions on $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$. Let $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$ be any general and 'correct' estimators of $\{\pi(\cdot), m(\cdot)\}$, and assume they satisfy the following **pointwise** convergence rates:

Convergence Rates and Bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$ (and $\widehat{\theta}_{\text{DDR}}$)

• Basic (high level) consistency conditions on $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$. Let $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$ be any general and 'correct' estimators of $\{\pi(\cdot), m(\cdot)\}$, and assume they satisfy the following **pointwise** convergence rates:

 $|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim_{\mathbb{P}} \delta_{n,\pi} \text{ and } |\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \lesssim_{\mathbb{P}} \xi_{n,m} \,\forall \, \mathbf{x} \in \mathcal{X},$ (2)

for **some** sequences $\delta_{n,\pi}, \xi_{n,m} \ge 0$ such that $(\delta_{n,\pi} + \xi_{n,m})\sqrt{\log(nd)} = o(1)$ and the product $\delta_{n,\pi}\xi_{n,m}(\log n) = o(\sqrt{(\log d)/n})$.

Convergence Rates and Bounds for $\| \nabla \mathcal{L}_n^{\text{DDR}}(\theta_0) \|_{\infty}$ (and $\widehat{\theta}_{\text{DDR}}$)

• Basic (high level) consistency conditions on $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$. Let $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$ be any general and 'correct' estimators of $\{\pi(\cdot), m(\cdot)\}$, and assume they satisfy the following **pointwise** convergence rates:

 $|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim_{\mathbb{P}} \delta_{n,\pi} \text{ and } |\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \lesssim_{\mathbb{P}} \xi_{n,m} \,\forall \, \mathbf{x} \in \mathcal{X},$ (2)

for **some** sequences $\delta_{n,\pi}, \xi_{n,m} \ge 0$ such that $(\delta_{n,\pi} + \xi_{n,m})\sqrt{\log(nd)} = o(1)$ and the product $\delta_{n,\pi}\xi_{n,m}(\log n) = o(\sqrt{(\log d)/n})$.

• Under condition (2), along with some more 'suitable' tail assumptions (sub-Gaussian tails etc.), we have: with high probability,

$$\|\mathbf{T}_{0,n}\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}}, \quad \|\mathbf{T}_{\pi,n}\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}} \left\{ \delta_{n,\pi} \sqrt{\log(nd)} \right\}, \quad \text{ and}$$

Convergence Rates and Bounds for $\| \nabla \mathcal{L}_n^{\text{DDR}}(\theta_0) \|_{\infty}$ (and $\widehat{\theta}_{\text{DDR}}$)

• Basic (high level) consistency conditions on $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$. Let $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$ be any general and 'correct' estimators of $\{\pi(\cdot), m(\cdot)\}$, and assume they satisfy the following **pointwise** convergence rates:

 $|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim_{\mathbb{P}} \delta_{n,\pi} \text{ and } |\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \lesssim_{\mathbb{P}} \xi_{n,m} \,\forall \, \mathbf{x} \in \mathcal{X},$ (2)

for **some** sequences $\delta_{n,\pi}, \xi_{n,m} \ge 0$ such that $(\delta_{n,\pi} + \xi_{n,m})\sqrt{\log(nd)} = o(1)$ and the product $\delta_{n,\pi}\xi_{n,m}(\log n) = o(\sqrt{(\log d)/n})$.

• Under condition (2), along with some more 'suitable' tail assumptions (sub-Gaussian tails etc.), we have: with high probability,

$$\begin{aligned} \|\mathbf{T}_{0,n}\|_{\infty} &\lesssim \sqrt{\frac{\log d}{n}}, \quad \|\mathbf{T}_{\pi,n}\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}} \left\{ \delta_{n,\pi} \sqrt{\log(nd)} \right\}, \quad \text{and} \\ \|\mathbf{T}_{m,n}\|_{\infty} &\lesssim \sqrt{\frac{\log d}{n}} \left\{ \xi_{n,m} \sqrt{\log(nd)} \right\}, \quad \|\mathbf{R}_{\pi,m,n}\|_{\infty} \lesssim \delta_{n,\pi} \xi_{n,m} (\log n). \end{aligned}$$

Convergence Rates and Bounds for $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty}$ (and $\widehat{\theta}_{\text{DDR}}$)

• Basic (high level) consistency conditions on $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$. Let $\{\hat{\pi}(\cdot), \hat{m}(\cdot)\}$ be any general and 'correct' estimators of $\{\pi(\cdot), m(\cdot)\}$, and assume they satisfy the following **pointwise** convergence rates:

 $|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim_{\mathbb{P}} \delta_{n,\pi} \text{ and } |\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \lesssim_{\mathbb{P}} \xi_{n,m} \,\forall \, \mathbf{x} \in \mathcal{X},$ (2)

for **some** sequences $\delta_{n,\pi}, \xi_{n,m} \ge 0$ such that $(\delta_{n,\pi} + \xi_{n,m})\sqrt{\log(nd)} = o(1)$ and the product $\delta_{n,\pi}\xi_{n,m}(\log n) = o(\sqrt{(\log d)/n})$.

• Under condition (2), along with some more 'suitable' tail assumptions (sub-Gaussian tails etc.), we have: with high probability,

$$\|\mathbf{T}_{0,n}\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}}, \quad \|\mathbf{T}_{\pi,n}\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}} \left\{ \delta_{n,\pi} \sqrt{\log(nd)} \right\}, \quad \text{and}$$
$$\|\mathbf{T}_{m,n}\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}} \left\{ \xi_{n,m} \sqrt{\log(nd)} \right\}, \quad \|\mathbf{R}_{\pi,m,n}\|_{\infty} \lesssim \delta_{n,\pi} \xi_{n,m}(\log n).$$

• Hence, $\|\nabla \mathcal{L}_n^{\text{DDR}}(\theta_0)\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}} \{1 + o(1)\}$ with high probability.

HD Inference for $\widehat{\theta}_{\text{DDR}}$: Desparsification and Asymptotic Linear Expansion

- Consider $\hat{\theta}_{DDR}$ for the squared loss: $L(Y, \mathbf{X}, \theta) := \{Y \Psi(\mathbf{X})'\theta\}^2$, where $\Psi(\mathbf{X}) \in \mathbb{R}^d$ denotes any HD vector of basis functions of \mathbf{X} .
- Define Σ := ℝ{Ψ(X)Ψ(X)'}, Ω := Σ⁻¹, and let Ω̂ be any reasonable estimator of Ω (and assume Ω is sparse if required).
- We then define the **desparsified** DDR estimator $\tilde{\theta}_{\text{DDR}}$ as follows.
HD Inference for $\widehat{\theta}_{\text{DDR}}$: Desparsification and Asymptotic Linear Expansion

- Consider $\hat{\theta}_{DDR}$ for the squared loss: $L(Y, \mathbf{X}, \theta) := \{Y \Psi(\mathbf{X})'\theta\}^2$, where $\Psi(\mathbf{X}) \in \mathbb{R}^d$ denotes any HD vector of basis functions of \mathbf{X} .
- Define Σ := E{Ψ(X)Ψ(X)'}, Ω := Σ⁻¹, and let Ω be any reasonable estimator of Ω (and assume Ω is sparse if required).
- We then define the **desparsified** DDR estimator $\hat{\theta}_{\text{DDR}}$ as follows.

$$\widetilde{\boldsymbol{\theta}}_{\text{DDR}} := \widehat{\boldsymbol{\theta}}_{\text{DDR}} + \widehat{\boldsymbol{\Omega}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \{ \widetilde{Y}_{i} - \boldsymbol{\Psi}(\mathbf{X}_{i})' \widehat{\boldsymbol{\theta}}_{\text{DDR}} \} \boldsymbol{\Psi}(\mathbf{X}_{i}), \text{ where } }_{\text{Desparsification/Debiasing term}} \\ \widetilde{Y}_{i} := \widehat{m}(\mathbf{X}_{i}) + \frac{T_{i}}{\widehat{\pi}(\mathbf{X}_{i})} \{ Y_{i} - \widehat{m}(\mathbf{X}_{i}) \} \text{ are the pseudo outcomes}$$

HD Inference for $\widehat{m{ heta}}_{\text{DDR}}$: Desparsification and Asymptotic Linear Expansion

- Consider $\hat{\theta}_{\text{DDR}}$ for the squared loss: $L(Y, \mathbf{X}, \theta) := \{Y \Psi(\mathbf{X})'\theta\}^2$, where $\Psi(\mathbf{X}) \in \mathbb{R}^d$ denotes any HD vector of basis functions of \mathbf{X} .
- Define Σ := ℝ{Ψ(X)Ψ(X)'}, Ω := Σ⁻¹, and let Ω̂ be any reasonable estimator of Ω (and assume Ω is sparse if required).
- We then define the **desparsified** DDR estimator $\tilde{\theta}_{\text{DDR}}$ as follows.

$$\widetilde{\boldsymbol{\theta}}_{\text{DDR}} := \widehat{\boldsymbol{\theta}}_{\text{DDR}} + \widehat{\boldsymbol{\Omega}} \underbrace{\frac{1}{n} \sum_{i=1}^{n} \{ \widetilde{Y}_{i} - \boldsymbol{\Psi}(\mathbf{X}_{i})' \widehat{\boldsymbol{\theta}}_{\text{DDR}} \} \boldsymbol{\Psi}(\mathbf{X}_{i}), \text{ where } }_{\text{Desparsification/Debiasing term}}$$
$$\widetilde{Y}_{i} := \widehat{m}(\mathbf{X}_{i}) + \frac{T_{i}}{\widehat{\pi}(\mathbf{X}_{i})} \{ Y_{i} - \widehat{m}(\mathbf{X}_{i}) \} \text{ are the pseudo outcomes.}$$

Debiasing similar (in spirit) to van de Geer et al. (2014), except its the 'right' one for this problem (using pseudo outcomes in the full data).

23/50

The Desparisfied DDR Estimator: Asymptotic Linear Expansion

- Assume: the basic convergence conditions (2) for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$, ΩX is sub-Gaussian and that $\|\widehat{\Omega} \Omega\|_1 = O_{\mathbb{P}}(a_n)$, $\|I \widehat{\Omega}\widehat{\Sigma}\|_{\max} = O_{\mathbb{P}}(b_n)$, with $a_n \sqrt{\log d} = o(1)$ and $b_n s \sqrt{\log d} = o(1)$, where $s := \|\theta_0\|_0$.
- Then, $\tilde{\theta}_{\text{DDR}}$ satisfies the asymptotic linear expansion (ALE):

The Desparisfied DDR Estimator: Asymptotic Linear Expansion

- Assume: the basic convergence conditions (2) for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$, ΩX is sub-Gaussian and that $\|\widehat{\Omega} \Omega\|_1 = O_{\mathbb{P}}(a_n)$, $\|I \widehat{\Omega}\widehat{\Sigma}\|_{\max} = O_{\mathbb{P}}(b_n)$, with $a_n \sqrt{\log d} = o(1)$ and $b_n s \sqrt{\log d} = o(1)$, where $s := \|\theta_0\|_0$.
- Then, $\tilde{\theta}_{\text{DDR}}$ satisfies the asymptotic linear expansion (ALE):

$$\begin{aligned} & (\widetilde{\boldsymbol{\theta}}_{\text{DDR}} - \boldsymbol{\theta}_0) = \frac{1}{n} \sum_{i=1}^n \Omega\{\psi_0(\mathbf{Z}_i)\} + \boldsymbol{\Delta}_n, \text{ where } \|\boldsymbol{\Delta}_n\|_{\infty} = o_{\mathbb{P}}(n^{-\frac{1}{2}}) \\ & \text{and } \psi_0(\mathbf{Z}) := \left[\{m(\mathbf{X}) - \boldsymbol{\Psi}(\mathbf{X})'\boldsymbol{\theta}_0\} + \frac{T}{\pi(\mathbf{X})}\{Y - m(\mathbf{X})\}\right] \boldsymbol{\Psi}(\mathbf{X}) \end{aligned}$$

with $\mathbb{E}\{\psi_0(\mathbf{Z})\} = \mathbf{0}$. The ALE facilitates inference (e.g. confidence intervals etc.) for any low-d component of θ_0 via Gaussian approx.

The Desparisfied DDR Estimator: Asymptotic Linear Expansion

- Assume: the basic convergence conditions (2) for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$, ΩX is sub-Gaussian and that $\|\widehat{\Omega} \Omega\|_1 = O_{\mathbb{P}}(a_n)$, $\|I \widehat{\Omega}\widehat{\Sigma}\|_{\max} = O_{\mathbb{P}}(b_n)$, with $a_n \sqrt{\log d} = o(1)$ and $b_n s \sqrt{\log d} = o(1)$, where $s := \|\theta_0\|_0$.
- Then, $\tilde{\theta}_{\text{DDR}}$ satisfies the asymptotic linear expansion (ALE):

$$\begin{aligned} & (\widetilde{\boldsymbol{\theta}}_{\text{DDR}} - \boldsymbol{\theta}_0) \ = \ \frac{1}{n} \sum_{i=1}^n \Omega\{\psi_0(\mathsf{Z}_i)\} + \boldsymbol{\Delta}_n, \text{ where } \|\boldsymbol{\Delta}_n\|_{\infty} = o_{\mathbb{P}}(n^{-\frac{1}{2}}) \\ & \text{and } \ \psi_0(\mathsf{Z}) := \left[\{m(\mathsf{X}) - \boldsymbol{\Psi}(\mathsf{X})'\boldsymbol{\theta}_0\} + \frac{T}{\pi(\mathsf{X})}\{Y - m(\mathsf{X})\}\right] \boldsymbol{\Psi}(\mathsf{X}) \end{aligned}$$

with $\mathbb{E}\{\psi_0(\mathbf{Z})\} = \mathbf{0}$. The ALE facilitates inference (e.g. confidence intervals etc.) for any low-d component of θ_0 via Gaussian approx.

• Further, the ALE is also 'optimal'. The function $\Omega \psi_0(\mathbf{Z}) =: \Psi_{\text{eff}}(\mathbf{Z})$ is the 'efficient' influence function for θ_0 (Robins et al., 1994). Thus, in classical settings, $\tilde{\theta}_{\text{DDR}}$ achieves the semi-parametric efficiency bound.

• Coordinate-wise asymptotic normality of $\tilde{\theta}_{\text{DDR}}$: $\forall 1 \leq j \leq d$,

$$\sqrt{n}(\widetilde{\boldsymbol{\theta}}_{\text{DDR}} - \boldsymbol{\theta}_0)_j \stackrel{d}{\to} \mathcal{N}(\boldsymbol{0}, \sigma_{0,j}^2), \text{ where } \sigma_{0,j}^2 := \text{Var}\{\boldsymbol{\Omega}_j', \boldsymbol{\psi}_0(\boldsymbol{\mathsf{Z}})\}.$$

Further, $\max_{1 \le j \le d} |\widehat{\sigma}_{0,j} - \sigma_{0,j}| = o_{\mathbb{P}}(1)$, where $\widehat{\sigma}_{0,j}$ is the plug-in estimator obtained by plugging in $\widehat{\Omega}$, $\widehat{\pi}(\cdot)$ and $\widehat{m}(\cdot)$ in $\operatorname{Var}\{\Omega'_{j}, \psi_{0}(\mathsf{Z})\}$.

• Can choose $\widehat{\Omega}$ to be **any** standard (sparse) precision matrix estimator, e.g. the node-wise Lasso estimator. Here, $a_n = s_{\Omega} \sqrt{(\log d)/n}$ and $b_n = \sqrt{(\log d)/n}$ under suitable conditions, with $s_{\Omega} := \max_{1 \le j \le d} \|\Omega_{j\cdot}\|_0$. • Coordinate-wise asymptotic normality of $\tilde{\theta}_{\text{DDR}}$: $\forall 1 \leq j \leq d$,

$$\sqrt{n}(\widetilde{\boldsymbol{\theta}}_{\text{DDR}} - \boldsymbol{\theta}_0)_j \stackrel{d}{\to} \mathcal{N}(\mathbf{0}, \sigma_{0,j}^2), \text{ where } \sigma_{0,j}^2 := \text{Var}\{\boldsymbol{\Omega}_j', \boldsymbol{\psi}_0(\mathbf{Z})\}.$$

Further, $\max_{1 \le j \le d} |\widehat{\sigma}_{0,j} - \sigma_{0,j}| = o_{\mathbb{P}}(1)$, where $\widehat{\sigma}_{0,j}$ is the plug-in estimator obtained by plugging in $\widehat{\Omega}$, $\widehat{\pi}(\cdot)$ and $\widehat{m}(\cdot)$ in $\operatorname{Var}\{\Omega'_{j}, \psi_{0}(\mathsf{Z})\}$.

- Can choose $\widehat{\Omega}$ to be **any** standard (sparse) precision matrix estimator, e.g. the node-wise Lasso estimator. Here, $a_n = s_{\Omega} \sqrt{(\log d)/n}$ and $b_n = \sqrt{(\log d)/n}$ under suitable conditions, with $s_{\Omega} := \max_{1 \le j \le d} \|\Omega_{j\cdot}\|_0$.
- The error Δ_n can be decomposed as: $\Delta_n = \Delta_{n,1} + \Delta_{n,2} + \Delta_{n,3}$, where $\Delta_{n,1} := \frac{1}{n} (\widehat{\Omega} - \Omega) \sum_{i=1}^n \psi_0(\mathsf{Z}_i), \Delta_{n,2} := (I_d - \widehat{\Omega}\widehat{\Sigma}) (\widehat{\theta}_{\mathsf{DDR}} - \theta_0)$ and $\Delta_{n,3} := \widehat{\Omega}(\mathsf{T}_{\pi,n} + \mathsf{T}_{m,n} + \mathsf{R}_{\pi,m,n})$, with $\|\Delta_{n,3}\|_{\infty} \lesssim_{\mathbb{P}} n^{-\frac{1}{2}}$ and

$$\|\mathbf{\Delta}_{n,1}\|_{\infty} \lesssim a_n \sqrt{\frac{\log d}{n}}$$
 and $\|\mathbf{\Delta}_{n,2}\|_{\infty} \lesssim b_n s \sqrt{\frac{\log d}{n}}.$

25/50

- Finally, let $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\} \rightarrow \{\pi^*(\cdot), m^*(\cdot)\}$, with either $\pi^*(\cdot) = \pi(\cdot)$ or $m^*(\cdot) = m(\cdot)$ but not necessarily both. Assume the same pointwise convergence conditions and rates $(\delta_{n,\pi}, \xi_{n,m})$ for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ as in (2), but now with $\{\pi(\cdot), m(\cdot)\}$ therein replaced by $\{\pi^*(\cdot), m^*(\cdot)\}$.
- Under some 'suitable' assumptions, we have: with high probability,

- Finally, let $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\} \rightarrow \{\pi^*(\cdot), m^*(\cdot)\}$, with either $\pi^*(\cdot) = \pi(\cdot)$ or $m^*(\cdot) = m(\cdot)$ but not necessarily both. Assume the same pointwise convergence conditions and rates $(\delta_{n,\pi}, \xi_{n,m})$ for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ as in (2), but now with $\{\pi(\cdot), m(\cdot)\}$ therein replaced by $\{\pi^*(\cdot), m^*(\cdot)\}$.
- Under some 'suitable' assumptions, we have: with high probability,

$$\|\mathbf{T}_{0,n}\|_{\infty} + \|\mathbf{T}_{\pi,n}\|_{\infty} + \|\mathbf{T}_{m,n}\|_{\infty} \lesssim \sqrt{\frac{\log d}{n}} \left\{ 1 + 1_{(\pi^*,m^*) \neq (\pi,m)} \right\}$$

- Finally, let $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\} \rightarrow \{\pi^*(\cdot), m^*(\cdot)\}$, with either $\pi^*(\cdot) = \pi(\cdot)$ or $m^*(\cdot) = m(\cdot)$ but not necessarily both. Assume the same pointwise convergence conditions and rates $(\delta_{n,\pi}, \xi_{n,m})$ for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ as in (2), but now with $\{\pi(\cdot), m(\cdot)\}$ therein replaced by $\{\pi^*(\cdot), m^*(\cdot)\}$.
- Under some 'suitable' assumptions, we have: with high probability,

$$\begin{aligned} \|\mathbf{T}_{0,n}\|_{\infty} + \|\mathbf{T}_{\pi,n}\|_{\infty} + \|\mathbf{T}_{m,n}\|_{\infty} &\lesssim \sqrt{\frac{\log d}{n}} \left\{ 1 + \mathbf{1}_{(\pi^*,m^*)\neq(\pi,m)} \right\} \\ \text{and} \ \|\mathbf{R}_{\pi,m,n}\|_{\infty} &\lesssim \left\{ \delta_{n,\pi} \mathbf{1}_{(m^*\neq m)} + \xi_{n,m} \mathbf{1}_{(\pi^*\neq\pi)} + \delta_{n,\pi} \xi_{n,m} \right\} (\log n). \end{aligned}$$

- Finally, let $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\} \rightarrow \{\pi^*(\cdot), m^*(\cdot)\}$, with either $\pi^*(\cdot) = \pi(\cdot)$ or $m^*(\cdot) = m(\cdot)$ but not necessarily both. Assume the same pointwise convergence conditions and rates $(\delta_{n,\pi}, \xi_{n,m})$ for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ as in (2), but now with $\{\pi(\cdot), m(\cdot)\}$ therein replaced by $\{\pi^*(\cdot), m^*(\cdot)\}$.
- Under some 'suitable' assumptions, we have: with high probability,

 $\begin{aligned} \|\mathbf{T}_{0,n}\|_{\infty} + \|\mathbf{T}_{\pi,n}\|_{\infty} + \|\mathbf{T}_{m,n}\|_{\infty} &\lesssim \sqrt{\frac{\log d}{n}} \left\{ 1 + \mathbf{1}_{(\pi^*,m^*)\neq(\pi,m)} \right\} \\ \text{and} \ \|\mathbf{R}_{\pi,m,n}\|_{\infty} &\lesssim \left\{ \delta_{n,\pi} \mathbf{1}_{(m^*\neq m)} + \xi_{n,m} \mathbf{1}_{(\pi^*\neq\pi)} + \delta_{n,\pi} \xi_{n,m} \right\} (\log n). \end{aligned}$

The 2^{nd} and/or 3^{rd} terms also contribute now to the rate $\sqrt{(\log d)/n}$. The 4^{th} term is o(1) but **no longer ignorable** (and may be slower).

- Finally, let $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\} \rightarrow \{\pi^*(\cdot), m^*(\cdot)\}$, with either $\pi^*(\cdot) = \pi(\cdot)$ or $m^*(\cdot) = m(\cdot)$ but not necessarily both. Assume the same pointwise convergence conditions and rates $(\delta_{n,\pi}, \xi_{n,m})$ for $\{\widehat{\pi}(\cdot), \widehat{m}(\cdot)\}$ as in (2), but now with $\{\pi(\cdot), m(\cdot)\}$ therein replaced by $\{\pi^*(\cdot), m^*(\cdot)\}$.
- Under some 'suitable' assumptions, we have: with high probability,

$$\begin{aligned} \|\mathbf{T}_{0,n}\|_{\infty} + \|\mathbf{T}_{\pi,n}\|_{\infty} + \|\mathbf{T}_{m,n}\|_{\infty} &\lesssim \sqrt{\frac{\log d}{n}} \left\{ 1 + \mathbf{1}_{(\pi^*,m^*)\neq(\pi,m)} \right\} \\ \text{and} \ \|\mathbf{R}_{\pi,m,n}\|_{\infty} &\lesssim \left\{ \delta_{n,\pi} \mathbf{1}_{(m^*\neq m)} + \xi_{n,m} \mathbf{1}_{(\pi^*\neq\pi)} + \delta_{n,\pi} \xi_{n,m} \right\} (\log n). \end{aligned}$$

The 2^{nd} and/or 3^{rd} terms also contribute now to the rate $\sqrt{(\log d)/n}$. The 4^{th} term is o(1) but **no longer ignorable** (and may be slower).

Regardless, this establishes general convergence rates and the DR property of θ_{DDR} under possible misspecification of {π(·), m(·)}. For the 4th term, sharper rates need a case-by-case analysis.

Choices of the Nuisance Component Estimators $\widehat{\pi}(\cdot)$ and $\widehat{m}(\cdot)$

- Note: our theory holds generally for any choices of *π̂*(·) and *m̂*(·) under mild conditions (provided they are both 'correct' estimators).
 - Under misspecifications, consistency & general non-sharp rates are also established. Sharp rates **need** case-by-case analyses.
 - Even for mean (or ATE) estimation problem, this can be quite tricky in HD settings. See Smucler et al. (2019) for a detailed analysis.

Choices of the Nuisance Component Estimators $\widehat{\pi}(\cdot)$ and $\widehat{m}(\cdot)$

- Note: our theory holds generally for any choices of \$\hat{\alpha}(\cdot)\$ and \$\hat{m}(\cdot)\$ under mild conditions (provided they are both 'correct' estimators).
 - Under misspecifications, consistency & general non-sharp rates are also established. Sharp rates **need** case-by-case analyses.
 - Even for mean (or ATE) estimation problem, this can be quite tricky in HD settings. See Smucler et al. (2019) for a detailed analysis.
- Below we provide only some choices of $\hat{\pi}(\cdot)$ and $\hat{m}(\cdot)$ that may be used to implement our theory & methods for $\hat{\theta}_{DDR}$. In general, one can use any reasonable method (including black box ML methods).
- Choices of $\hat{\pi}(\cdot)$ and $\hat{m}(\cdot)$: we consider estimators from two families.

Choices of the Nuisance Component Estimators $\widehat{\pi}(\cdot)$ and $\widehat{m}(\cdot)$

- Note: our theory holds generally for any choices of *π̂*(·) and *m̂*(·) under mild conditions (provided they are both 'correct' estimators).
 - Under misspecifications, consistency & general non-sharp rates are also established. Sharp rates **need** case-by-case analyses.
 - Even for mean (or ATE) estimation problem, this can be quite tricky in HD settings. See Smucler et al. (2019) for a detailed analysis.
- Below we provide only some choices of $\hat{\pi}(\cdot)$ and $\hat{m}(\cdot)$ that may be used to implement our theory & methods for $\hat{\theta}_{DDR}$. In general, one can use any reasonable method (including black box ML methods).
- Choices of $\hat{\pi}(\cdot)$ and $\hat{m}(\cdot)$: we consider estimators from two families.
 - Parametric and 'extended' parametric families (series estimators).
 - Semi-parametric single index families.

Choices of $\hat{\pi}(\cdot)$: 'Extended' Parametric Families (Series Estimators)

If π(·) is known, we set π̂(·) := π(·). Otherwise, we estimate π(·) via two (class of) choices of π̂(·) (each assumed to be 'correct').

Choices of $\hat{\pi}(\cdot)$: 'Extended' Parametric Families (Series Estimators)

- If π(·) is known, we set π̂(·) := π(·). Otherwise, we estimate π(·) via two (class of) choices of π̂(·) (each assumed to be 'correct').
 - 'Extended' parametric family: π(x) = g{α'Ψ(X)}, where g(·) ∈
 [0,1] is a known function [e.g. g_{expit}(u) := exp(u)/{1 + exp(u)}],
 Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and α ∈ ℝ^K is an unknown (sparse) parameter vector.

- If π(·) is known, we set π̂(·) := π(·). Otherwise, we estimate π(·) via two (class of) choices of π̂(·) (each assumed to be 'correct').
 - 'Extended' parametric family: π(x) = g{α'Ψ(X)}, where g(·) ∈
 [0,1] is a known function [e.g. g_{expit}(u) := exp(u)/{1 + exp(u)}],
 Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and α ∈ ℝ^K is an unknown (sparse) parameter vector.
 - Example: $\Psi(X)$ may correspond to the **polynomial bases** of X upto any fixed degree k. Note: the special case of linear bases (k = 1)**includes** all standard parametric regression models. Further, the case of $\pi(\cdot) = \text{constant}$ (but unknown) i.e. MCAR is **also included**.

- If π(·) is known, we set π̂(·) := π(·). Otherwise, we estimate π(·) via two (class of) choices of π̂(·) (each assumed to be 'correct').
 - 'Extended' parametric family: π(x) = g{α'Ψ(X)}, where g(·) ∈
 [0,1] is a known function [e.g. g_{expit}(u) := exp(u)/{1 + exp(u)}],
 Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and α ∈ ℝ^K is an unknown (sparse) parameter vector.
 - Example: $\Psi(X)$ may correspond to the **polynomial bases** of X upto any fixed degree k. Note: the special case of linear bases (k = 1)**includes** all standard parametric regression models. Further, the case of $\pi(\cdot) = \text{constant}$ (but unknown) i.e. MCAR is **also included**.
 - Estimator: we set π̂(X) = g{α̂'Ψ(X)}, where α̂ denotes any suitable estimator (possibly penalized) of α based on T_n := {T_i, X_i}ⁿ_{i=1}.

28/50

- If π(·) is known, we set π̂(·) := π(·). Otherwise, we estimate π(·) via two (class of) choices of π̂(·) (each assumed to be 'correct').
 - 'Extended' parametric family: π(x) = g{α'Ψ(X)}, where g(·) ∈
 [0,1] is a known function [e.g. g_{expit}(u) := exp(u)/{1 + exp(u)}],
 Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and α ∈ ℝ^K is an unknown (sparse) parameter vector.
 - Example: $\Psi(X)$ may correspond to the **polynomial bases** of X upto any fixed degree k. Note: the special case of linear bases (k = 1)**includes** all standard parametric regression models. Further, the case of $\pi(\cdot) = \text{constant}$ (but unknown) i.e. MCAR is **also included**.
 - Estimator: we set π̂(X) = g{α̂'Ψ(X)}, where α̂ denotes any suitable estimator (possibly penalized) of α based on T_n := {T_i, X_i}ⁿ_{i=1}.
 - Example of α̂: when g(·) = g_{expit}(·), α̂ may be obtained based on a standard L₁-penalized logistic regression of {T_i vs. Ψ(X_i)}ⁿ_{i=1}.

Choices of $\hat{\pi}(\cdot)$: Semi-Parametric Single Index Families

Semi-parametric single index family: π(X) = g(α'X), where g(·) ∈
 (0,1) is unknown and α ∈ ℝ^p is a (sparse) unknown parameter
 (identifiable only upto scalar multiples, hence set ||α||₂ = 1 wlog).

Choices of $\hat{\pi}(\cdot)$: Semi-Parametric Single Index Families

- Semi-parametric single index family: π(X) = g(α'X), where g(·) ∈
 (0,1) is unknown and α ∈ ℝ^p is a (sparse) unknown parameter
 (identifiable only upto scalar multiples, hence set ||α||₂ = 1 wlog).
 - Given an estimator $\widehat{\alpha}$ of α , we estimate $\pi(X) \equiv \mathbb{E}(T \mid \alpha' X)$ as:

$$\widehat{\pi}(\mathbf{x}) \equiv \widehat{\pi}(\widehat{\alpha}, \mathbf{x}) := \frac{\frac{1}{nh} \sum_{i=1}^{n} T_i K\left\{\widehat{\alpha}'(\mathbf{X}_i - \mathbf{x})/h\right\}}{\frac{1}{nh} \sum_{i=1}^{n} K\left\{\widehat{\alpha}'(\mathbf{X}_i - \mathbf{x})/h\right\}},$$

where $K(\cdot)$ denotes any standard (2^{*nd*} order) kernel function and $h = h_n > 0$ denotes the bandwidth sequence with h = o(1).

Choices of $\hat{\pi}(\cdot)$: Semi-Parametric Single Index Families

- Semi-parametric single index family: π(X) = g(α'X), where g(·) ∈
 (0,1) is unknown and α ∈ ℝ^p is a (sparse) unknown parameter
 (identifiable only upto scalar multiples, hence set ||α||₂ = 1 wlog).
 - Given an estimator $\widehat{\alpha}$ of α , we estimate $\pi(X) \equiv \mathbb{E}(T \mid \alpha' X)$ as:

$$\widehat{\pi}(\mathbf{x}) \equiv \widehat{\pi}(\widehat{\alpha}, \mathbf{x}) := \frac{\frac{1}{nh} \sum_{i=1}^{n} T_i K\left\{\widehat{\alpha}'(\mathbf{X}_i - \mathbf{x})/h\right\}}{\frac{1}{nh} \sum_{i=1}^{n} K\left\{\widehat{\alpha}'(\mathbf{X}_i - \mathbf{x})/h\right\}},$$

where $K(\cdot)$ denotes any standard (2^{*nd*} order) kernel function and $h = h_n > 0$ denotes the bandwidth sequence with h = o(1).

Obtaining α̂: In general, any approach (if available) from (high dimensional) single index model literature can be used. But if X is elliptically symmetric, then α̂ may be obtained as simply as a standard L₁-penalized logistic regression of {T_i vs. X_i}ⁿ_{i=1}.

'Extended' parametric family: m(x) = g{γ'Ψ(X)}, where g(·) is a known 'link' function [e.g. 'canonical' links: identity, expit or exp], Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and γ ∈ ℝ^K is an unknown (sparse) parameter vector.

- 'Extended' parametric family: m(x) = g{γ'Ψ(X)}, where g(·) is a known 'link' function [e.g. 'canonical' links: identity, expit or exp], Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and γ ∈ ℝ^K is an unknown (sparse) parameter vector.
 - Example: Ψ(X) may correspond to the polynomial bases of X upto any fixed degree k. Note: the special case of linear bases (k = 1) includes all standard parametric regression models.

- 'Extended' parametric family: m(x) = g{γ'Ψ(X)}, where g(·) is a known 'link' function [e.g. 'canonical' links: identity, expit or exp], Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and γ ∈ ℝ^K is an unknown (sparse) parameter vector.
 - Example: Ψ(X) may correspond to the polynomial bases of X upto any fixed degree k. Note: the special case of linear bases (k = 1) includes all standard parametric regression models.
 - Estimator: we set m̂(X) = g{γ̂[']Ψ(X)}, where γ̂ denotes any suitable estimator (possibly penalized) of γ based on the data subset of 'complete cases': D_n^(c) := {(Y_i, X_i) | T_i = 1}ⁿ_{i=1}.

30/50

- 'Extended' parametric family: m(x) = g{γ'Ψ(X)}, where g(·) is a known 'link' function [e.g. 'canonical' links: identity, expit or exp], Ψ(X) := {ψ_k(X)}^K_{k=1} is any set of K basis functions (with K ≫ n possibly), and γ ∈ ℝ^K is an unknown (sparse) parameter vector.
 - Example: Ψ(X) may correspond to the polynomial bases of X upto any fixed degree k. Note: the special case of linear bases (k = 1) includes all standard parametric regression models.
 - Estimator: we set m̂(X) = g{γ̂[']Ψ(X)}, where γ̂ denotes any suitable estimator (possibly penalized) of γ based on the data subset of 'complete cases': D_n^(c) := {(Y_i, X_i) | T_i = 1}ⁿ_{i=1}.
 - Example of γ̂: when g(·) := any 'canonical' link function, γ̂ may be simply obtained based on the respective usual L₁-penalized 'canonical' link based regression (e.g. linear, logistic or poisson) of {(Y_i vs. X_i) | T_i = 1}ⁿ_{i=1} from the 'complete case' data D_n^(c).

Choices of $\widehat{m}(\cdot)$: Semi-Parametric Single Index Families

 Semi-parametric single index family: m(X) = g(γ'X), where g(·) is an unknown 'link' and γ ∈ ℝ^p is a (sparse) unknown parameter (identifiable only upto scalar multiples, hence set ||γ||₂ = 1 wlog).

Choices of $\widehat{m}(\cdot)$: Semi-Parametric Single Index Families

- Semi-parametric single index family: m(X) = g(γ'X), where g(·) is an unknown 'link' and γ ∈ ℝ^p is a (sparse) unknown parameter (identifiable only upto scalar multiples, hence set ||γ||₂ = 1 wlog).
- Given an estimator $\widehat{\gamma}$ of γ , we estimate $m(\mathbf{X}) \equiv \mathbb{E}(Y \mid \gamma' \mathbf{X}, T)$ as:

$$\widehat{m}(\mathbf{x}) \equiv \widehat{m}(\widehat{\gamma}, \mathbf{x}) := \frac{\frac{1}{nh} \sum_{i=1}^{n} T_i Y_i K \{ \widehat{\gamma}'(\mathbf{X}_i - \mathbf{x})/h \}}{\frac{1}{nh} \sum_{i=1}^{n} T_i K \{ \widehat{\gamma}'(\mathbf{X}_i - \mathbf{x})/h \}},$$

where $K(\cdot)$ denotes any standard (2nd order) kernel function, and $h = h_n > 0$ denotes the bandwidth sequence with h = o(1).

Choices of $\widehat{m}(\cdot)$: Semi-Parametric Single Index Families

- Semi-parametric single index family: m(X) = g(γ'X), where g(·) is an unknown 'link' and γ ∈ ℝ^p is a (sparse) unknown parameter (identifiable only upto scalar multiples, hence set ||γ||₂ = 1 wlog).
- Given an estimator $\widehat{\gamma}$ of γ , we estimate $m(\mathbf{X}) \equiv \mathbb{E}(Y \mid \gamma' \mathbf{X}, T)$ as:

$$\widehat{m}(\mathbf{x}) \equiv \widehat{m}(\widehat{\gamma}, \mathbf{x}) := \frac{\frac{1}{nh} \sum_{i=1}^{n} T_i Y_i K \{\widehat{\gamma}'(\mathbf{X}_i - \mathbf{x})/h\}}{\frac{1}{nh} \sum_{i=1}^{n} T_i K \{\widehat{\gamma}'(\mathbf{X}_i - \mathbf{x})/h\}},$$

where $K(\cdot)$ denotes any standard (2^{*nd*} order) kernel function, and $h = h_n > 0$ denotes the bandwidth sequence with h = o(1).

- Obtaining γ
 ²: In general, any approach (if available) from HD SIM literature can be used on the complete case data subset D_n^(c).
 - If **X** is elliptically symmetric and $Y = f(\gamma' \mathbf{X}; \epsilon)$ with f unknown and $\epsilon \perp (T, \mathbf{X})$, then $\hat{\gamma}$ may be obtained as L_1 -penalized IPW estimator $\hat{\theta}_{\text{IPW}}$ for any 'canonical' link based regression problem.

31/50

For either choices of π̂(·), assume that the ingredient estimator α̂ satisfies: ||α̂ - α||₁ ≤_P a_n for some a_n = o(1). Then, under suitable smoothness and tail assumptions, with high probability (w.h.p.),

For either choices of π̂(·), assume that the ingredient estimator α̂ satisfies: ||α̂ - α||₁ ≤_P a_n for some a_n = o(1). Then, under suitable smoothness and tail assumptions, with high probability (w.h.p.),

 $|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim a_n = o(1), ext{ for any fixed } \mathbf{x} \in \mathcal{X}, ext{ (for method 1)}.$

For either choices of π̂(·), assume that the ingredient estimator α̂ satisfies: ||α̂ - α||₁ ≤_P a_n for some a_n = o(1). Then, under suitable smoothness and tail assumptions, with high probability (w.h.p.),

 $|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim a_n = o(1), ext{ for any fixed } \mathbf{x} \in \mathcal{X}, ext{ (for method 1)}.$

• For method 2 (SIM), assume that $h = o(1), \log(np)/(nh) = o(1)$ and $(a_n/h)\sqrt{\log p} = o(1)$. Then, under some suitable smoothness and tail assumptions, we have: with high probability, for any fixed $\mathbf{x} \in \mathcal{X}$,

$$|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim \left(h^2 + rac{1}{\sqrt{nh}}
ight) + \left(a_n + rac{\log(np)}{nh} + rac{a_n^2}{h^2}
ight) = o(1).$$

32/50

For either choices of π̂(·), assume that the ingredient estimator α̂ satisfies: ||α̂ - α||₁ ≲_P a_n for some a_n = o(1). Then, under suitable smoothness and tail assumptions, with high probability (w.h.p.),

 $|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim a_n = o(1), ext{ for any fixed } \mathbf{x} \in \mathcal{X}, ext{ (for method 1)}.$

• For method 2 (SIM), assume that $h = o(1), \log(np)/(nh) = o(1)$ and $(a_n/h)\sqrt{\log p} = o(1)$. Then, under some suitable smoothness and tail assumptions, we have: with high probability, for any fixed $\mathbf{x} \in \mathcal{X}$,

$$|\widehat{\pi}(\mathbf{x}) - \pi(\mathbf{x})| \lesssim \left(h^2 + \frac{1}{\sqrt{nh}}\right) + \left(a_n + \frac{\log(np)}{nh} + \frac{a_n^2}{h^2}\right) = o(1).$$

32/50

• Usually, we expect the L_1 error rate of $\hat{\alpha}$ to be $a_n = s_{\alpha} \sqrt{(\log d_*)/n}$ where $s_{\alpha} := \|\alpha\|_0$ and $d_* = K$ or p (depending on the method).

For either choices of m̂(·), assume that the ingredient estimator γ̂ satisfies: ||γ̂ - γ||₁ ≤_P b_n for some b_n = o(1). Then, under suitable smoothness and tail assumptions, we have: with high probability,

For either choices of m̂(·), assume that the ingredient estimator γ̂ satisfies: ||γ̂ − γ||₁ ≤_P b_n for some b_n = o(1). Then, under suitable smoothness and tail assumptions, we have: with high probability,

 $|\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \leq b_n = o(1)$ for any fixed $\mathbf{x} \in \mathcal{X}$ (for method 1).
For either choices of m̂(·), assume that the ingredient estimator γ̂ satisfies: ||γ̂ − γ||₁ ≤_P b_n for some b_n = o(1). Then, under suitable smoothness and tail assumptions, we have: with high probability,

 $|\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \leq b_n = o(1)$ for any fixed $\mathbf{x} \in \mathcal{X}$ (for method 1).

• For method 2 (SIM), assume that $h = o(1), \log(np)/(nh) = o(1)$ and $(a_n/h)\sqrt{\log p} = o(1)$. Then, under some suitable smoothness and tail assumptions, we have: with high probability, for any fixed $\mathbf{x} \in \mathcal{X}$,

$$|\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \lesssim \left(h^2 + \frac{1}{\sqrt{nh}}\right) + \left(b_n + \frac{\log(np)}{nh} + \frac{b_n^2}{h^2}\right) = o(1).$$

For either choices of m̂(·), assume that the ingredient estimator γ̂ satisfies: ||γ̂ − γ||₁ ≲_P b_n for some b_n = o(1). Then, under suitable smoothness and tail assumptions, we have: with high probability,

 $|\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \leq b_n = o(1)$ for any fixed $\mathbf{x} \in \mathcal{X}$ (for method 1).

• For method 2 (SIM), assume that $h = o(1), \log(np)/(nh) = o(1)$ and $(a_n/h)\sqrt{\log p} = o(1)$. Then, under some suitable smoothness and tail assumptions, we have: with high probability, for any fixed $\mathbf{x} \in \mathcal{X}$,

$$|\widehat{m}(\mathbf{x}) - m(\mathbf{x})| \lesssim \left(h^2 + \frac{1}{\sqrt{nh}}\right) + \left(b_n + \frac{\log(np)}{nh} + \frac{b_n^2}{h^2}\right) = o(1).$$

• We typically expect the L_1 error rate of $\widehat{\gamma}$ to be $b_n = s_{\gamma} \sqrt{(\log d_*)/n}$ where $s_{\gamma} := \|\alpha\|_0$ and $d_* = K$ or p (depending on the method).

- Basic parameters: n = 1000, p = 50 or 500 and $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_p)$.
- Three data generating processes (DGPs) for Y | X and T | X as follows:

- Basic parameters: n = 1000, p = 50 or 500 and $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_p)$.
- Three data generating processes (DGPs) for Y | X and T | X as follows:
 - ① "Linear-Linear" DGP:

$$\begin{split} Y &= \gamma_0 + \gamma' \mathbf{X} + \varepsilon, \quad \varepsilon | \mathbf{X} \sim \mathcal{N}(0, 1). \\ \text{logit}\{\pi(\mathbf{X})\} &\equiv \text{logit}\{\mathbb{E}(T | \mathbf{X})\} = \alpha_0 + \alpha' \mathbf{X}. \end{split}$$

- Basic parameters: n = 1000, p = 50 or 500 and $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_p)$.
- Three data generating processes (DGPs) for Y | X and T | X as follows:
 - ① "Linear-Linear" DGP:

$$Y = \gamma_0 + \gamma' \mathbf{X} + \varepsilon, \quad \varepsilon | \mathbf{X} \sim \mathcal{N}(0, 1).$$

logit{ $\pi(\mathbf{X})$ } = logit{ $\mathbb{E}(T|\mathbf{X})$ } = $\alpha_0 + \alpha' \mathbf{X}.$

② "Quad-Quad" DGP:

$$egin{array}{ll} Y &=& \gamma_0 + m{\gamma}' m{X} + \sum_{j=1}^p m{\gamma}_j^* m{X}_j^2 + arepsilon, & arepsilon \mid m{X} \sim \mathcal{N}(0,1). \end{array}$$

$$\operatorname{logit}\{\pi(\mathbf{X})\} \equiv \operatorname{logit}\{\mathbb{E}(\mathcal{T}|\mathbf{X})\} = \alpha_0 + \alpha' \mathbf{X}_i + \sum_{j=1}^{\nu} \alpha_j^* \mathbf{X}_{ij}^2.$$

- Basic parameters: n = 1000, p = 50 or 500 and $\mathbf{X} \sim \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_p)$.
- Three data generating processes (DGPs) for Y | X and T | X as follows:
 - ① "Linear-Linear" DGP:

$$\begin{split} Y &= \gamma_0 + \boldsymbol{\gamma}' \mathbf{X} + \varepsilon, \quad \varepsilon | \mathbf{X} \sim \mathcal{N}(0, 1). \\ \text{logit}\{\pi(\mathbf{X})\} &\equiv \text{logit}\{\mathbb{E}(\mathcal{T} | \mathbf{X})\} = \alpha_0 + \boldsymbol{\alpha}' \mathbf{X}. \end{split}$$

② "Quad-Quad" DGP:

$$egin{aligned} Y &=& \gamma_0 + oldsymbol{\gamma}' \mathbf{X} + \sum_{j=1}^p oldsymbol{\gamma}_j^* \mathbf{X}_j^2 + arepsilon, \quad arepsilon \mid \mathbf{X} \sim \mathcal{N}(0,1). \end{aligned}$$

$$\operatorname{logit}\{\pi(\mathbf{X})\} \equiv \operatorname{logit}\{\mathbb{E}(\mathcal{T}|\mathbf{X})\} = \alpha_0 + \boldsymbol{\alpha}'\mathbf{X}_i + \sum_{j=1}^{p} \alpha_j^*\mathbf{X}_{ij}^2.$$

SIM-SIM" DGP:

$$Y = \gamma_0 + \gamma' \mathbf{X} + c_Y (\gamma' \mathbf{X})^2 + \varepsilon, \quad \varepsilon | \mathbf{X} \sim \mathcal{N}(0, 1).$$

$$\operatorname{logit} \{\pi(\mathbf{X})\} \equiv \operatorname{logit} \{\mathbb{E}(\mathcal{T} | \mathbf{X})\} = \alpha_0 + \alpha' \mathbf{X} + c_T (\alpha' \mathbf{X})^2.$$

• Choices of the parameters:

() Covariance matrix Σ_p (for today): $\Sigma_p = I_p$ (identity matrix).

2 We set
$$c_T = 0.2$$
, $c_Y = 0.3$ and $\gamma_0 = 1$, $\alpha_0 = 0.5$.

3 When
$$p = 50$$
, $\alpha = 1/\sqrt{5}(1, -1, 0.5, -0.5, 0.5, 0, \dots, 0)$ with $\|\alpha\|_0 = 5$,
 $\gamma = (1, 1, 1, -1, -1, 0.5, 0.5, -0.5, -0.5, 0, \dots, 0)$ with $\|\gamma\|_0 = 10$,
 $\alpha^* = (0.25, -0.25, 0, \dots, 0)$ and $\gamma^* = (1, -1, 0.5, 0.5, -0.5, 0, \dots, 0)$.

• Choices of the parameters:

() Covariance matrix Σ_p (for today): $\Sigma_p = I_p$ (identity matrix).

2 We set $c_T = 0.2$, $c_Y = 0.3$ and $\gamma_0 = 1$, $\alpha_0 = 0.5$.

- **3** When p = 50, $\alpha = 1/\sqrt{5}(1, -1, 0.5, -0.5, 0.5, 0, \dots, 0)$ with $\|\alpha\|_0 = 5$, $\gamma = (1, 1, 1, -1, -1, 0.5, 0.5, -0.5, -0.5, 0, \dots, 0)$ with $\|\gamma\|_0 = 10$, $\alpha^* = (0.25, -0.25, 0, \dots, 0)$ and $\gamma^* = (1, -1, 0.5, 0.5, -0.5, 0, \dots, 0)$.
- When p = 500, $\|\alpha\|_0 = 10$ and α consists of three 1s, two -1s, two 0.5s and three -0.5s normalized by $1/\sqrt{10}$, while $\|\gamma\|_0 = 15$ and γ consists of three 1s, two -1s, five 0.5s, five -0.5s, two 0.25s and three -0.25s. Further, we set $\alpha^* = (0.25, 0.25, -0.25, -0.25, 0, \cdots, 0)$ and $\gamma^* = (1, -1, 0.5, 0.5, -0.5, 0, \cdots, 0)$.

• Choices of the parameters:

() Covariance matrix Σ_p (for today): $\Sigma_p = I_p$ (identity matrix).

2 We set $c_T = 0.2$, $c_Y = 0.3$ and $\gamma_0 = 1$, $\alpha_0 = 0.5$.

- **3** When p = 50, $\alpha = 1/\sqrt{5}(1, -1, 0.5, -0.5, 0.5, 0, \dots, 0)$ with $\|\alpha\|_0 = 5$, $\gamma = (1, 1, 1, -1, -1, 0.5, 0.5, -0.5, -0.5, 0, \dots, 0)$ with $\|\gamma\|_0 = 10$, $\alpha^* = (0.25, -0.25, 0, \dots, 0)$ and $\gamma^* = (1, -1, 0.5, 0.5, -0.5, 0, \dots, 0)$.
- When p = 500, $\|\alpha\|_0 = 10$ and α consists of three 1s, two -1s, two 0.5s and three -0.5s normalized by $1/\sqrt{10}$, while $\|\gamma\|_0 = 15$ and γ consists of three 1s, two -1s, five 0.5s, five -0.5s, two 0.25s and three -0.25s. Further, we set $\alpha^* = (0.25, 0.25, -0.25, -0.25, 0, \cdots, 0)$ and $\gamma^* = (1, -1, 0.5, 0.5, -0.5, 0, \cdots, 0)$.

• $\mathbb{K} = 2$ fold cross-fitting used; all simulation settings replicated 500 times.

• $\widehat{\Omega}$ obtained as $\widehat{\Sigma}^{-1}$ for p = 50 and using the nodewise Lasso for p = 500.

• Obtain the DDR estimator $\hat{\theta}_{DDR}$ for linear regression: $\theta_0 = \Sigma^{-1} \mathbb{E}(XY)$.

Simulation Settings: Estimators Implemented

- Obtain the DDR estimator $\hat{\theta}_{DDR}$ for linear regression: $\theta_0 = \Sigma^{-1} \mathbb{E}(XY)$.
- Two choices of the working nuisance models for $\pi(X)$ to obtain $\widehat{\pi}(X)$:
 - Linear: L₁ penalized logistic-linear regression.
 - **Q** Quad: L_1 penalized logistic-linear regression with quadratic terms.

Simulation Settings: Estimators Implemented

- Obtain the DDR estimator $\hat{\theta}_{DDR}$ for linear regression: $\theta_0 = \Sigma^{-1} \mathbb{E}(XY)$.
- Two choices of the working nuisance models for $\pi(X)$ to obtain $\hat{\pi}(X)$:

Linear: L₁ penalized logistic-linear regression.

- **Q** Quad: L_1 penalized logistic-linear regression with quadratic terms.
- Three choices of the working nuisance models for m(X) to obtain $\widehat{m}(X)$:
 - Linear: L₁ penalized linear regression.
 - **Quad:** L_1 penalized linear regression with quadratic terms.
 - SIM: Single index model (with index parameter estimated via IPW Lasso)

Simulation Settings: Estimators Implemented

- Obtain the DDR estimator $\hat{\theta}_{DDR}$ for linear regression: $\theta_0 = \Sigma^{-1} \mathbb{E}(XY)$.
- Two choices of the working nuisance models for $\pi(X)$ to obtain $\hat{\pi}(X)$:
 - Linear: L₁ penalized logistic-linear regression.
 - **Q** Quad: L_1 penalized logistic-linear regression with quadratic terms.
- Three choices of the working nuisance models for m(X) to obtain $\widehat{m}(X)$:
 - **1** Linear: L_1 penalized linear regression.
 - **Quad:** L_1 penalized linear regression with quadratic terms.
 - SIM: Single index model (with index parameter estimated via IPW Lasso)
- Estimators used for comparison:
 - **(**) $\hat{\theta}_{orac}$ (Oracle): obtained assuming both $\pi(\cdot)$ and $m(\cdot)$ are known.
 - 2 $\hat{\theta}_{full}$ (Super oracle): obtained assuming a full dataset is observed.
- Criteria: L₂ errors for estimation and coverage probability for inference.

Simulation Results: L_2 Error Comparison (p = 50) - I

p = 50, DGP: Linear-Linear.

Simulation Results: L_2 Error Comparison (p = 50) - II

p = 50, DGP: Quad-Quad.

Simulation Results: L_2 Error Comparison (p = 50) - III

p = 50, DGP: SIM-SIM.

p = 500, DGP: Linear-Linear.

Simulation Results: L_2 Error Comparison (p = 500) - II

p = 500, DGP: Quad-Quad.

Simulation Results: L_2 Error Comparison (p = 500) - III

p = 500, DGP: SIM-SIM.

Coverage probability (covg. prob.) of the DDR estimator: DGP: Linear-Linear.

Coverage probability (covg. prob.) of the DDR estimator: DGP: Linear-Linear.

	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> : SIM		\widehat{m} : quad	<i>m</i> : SIM	
	Average C	ovg. Prob. (ze	ero coeffs.)	Average Covg. Prob. (non-zero coeffs.)			
$\widehat{\pi}$: logit	0.94 (0.01)	0.94 (0.01)	0.95 (0.01)	0.94 (0.01)	0.94 (0.01)	0.93 (0.01)	
$\widehat{\pi}$: quad	0.94 (0.01)	0.95 (0.01)	0.95 (0.01)	0.94 (0.01)	0.94 (0.01)	0.94 (0.01)	

When *p* = 500:

	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> : SIM	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> : SIM	
	Average Covg. Prob. (zero coeffs.)				Average Covg. Prob. (non-zero coeffs.)		
$\widehat{\pi}$: logit	0.94 (0.01)	0.94 (0.01)	0.94 (0.01)	0.92 (0.01)	0.91 (0.02)	0.92 (0.01)	
$\widehat{\pi}$: quad	0.94 (0.01)	0.94 (0.01)	0.94 (0.01)	0.91 (0.02)	0.91 (0.02)	0.92 (0.01)	

Coverage probability (covg. prob.) of the DDR estimator: DGP: Quad-Quad.

Coverage probability (covg. prob.) of the DDR estimator: DGP: Quad-Quad.

	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> : SIM	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> : SIM	
	Average C	ovg. Prob. (z	ero coeffs.)	Average Covg. Prob. (non-zero coeffs.)			
$\widehat{\pi}$: logit	0.94 (0.01)	0.94 (0.01)	0.95 (0.01)	0.88 (0.16)	0.94 (0.01)	0.88 (0.16)	
$\widehat{\pi}$: quad	0.95 (0.01)	0.94 (0.01)	0.95 (0.01)	0.89 (0.12)	0.94 (0.01)	0.89 (0.12)	

When *p* = 500:

-	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> ̂: SIM	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> : SIM
	Average C	ovg. Prob. (z	ero coeffs.)	Average Cov	rg. Prob. (non	-zero coeffs.)
$\widehat{\pi}$: logit	0.95 (0.01)	0.94 (0.01)	0.95 (0.01)	0.91 (0.03)	0.92 (0.01)	0.91 (0.05)
$\widehat{\pi}$: quad	0.95 (0.01)	0.94 (0.01)	0.95 (0.01)	0.91 (0.03)	0.92 (0.01)	0.91 (0.04)

Coverage probability (covg. prob.) of the DDR estimator: DGP: SIM-SIM.

Coverage probability (covg. prob.) of the DDR estimator: DGP: SIM-SIM.

	\widehat{m} : linear	\widehat{m} : quad	<i>m</i> : SIM		\widehat{m} : quad	<i>m</i> : SIM	
	Average C	ovg. Prob. (ze	ero coeffs.)	Average Covg. Prob. (non-zero coeffs.)			
$\widehat{\pi}$: logit	0.94 (0.01)	0.95 (0.01)	0.95 (0.01)	0.94 (0.01)	0.94 (0.01)	0.94 (0.01)	
$\widehat{\pi}$: quad	0.94 (0.01)	0.95 (0.01)	0.95 (0.01)	0.94 (0.01)	0.94 (0.01)	0.94 (0.01)	

When *p* = 500:

	\widehat{m} : linear	\widehat{m} :quad	<i>m</i> : SIM	\widehat{m} : linear	\widehat{m} :quad	<i>m</i> : SIM
Average Covg. Prob. (zero coeffs.)				Average Covg. Prob. (non-zero coeffs.)		
$\widehat{\pi}$: logit	0.94 (0.01)	0.95 (0.01)	0.95 (0.01)	0.87 (0.05)	0.88 (0.04)	0.93 (0.02)
$\widehat{\pi}$: quad	0.94 (0.01)	0.95 (0.01)	0.95 (0.01)	0.87 (0.05)	0.87 (0.05)	0.93 (0.02)

Consider n = 50000 and p = 50. In addition, also consider the complete case estimator $\hat{\theta}_{cc}$ (obtained by using only the data with $T_i = 1$).

DGP: Quad-Quad (p = 50)

Consider n = 50000 and p = 50. In addition, also consider the complete case estimator $\hat{\theta}_{cc}$ (obtained by using only the data with $T_i = 1$).

DGP: Quad-Quad (p = 50)

L ₂ Error Comparisor	1:
---------------------------------	----

model		$\widehat{oldsymbol{ heta}}_{DDR}$	$\widehat{oldsymbol{ heta}}_{orac}$	$\widehat{oldsymbol{ heta}}_{\mathit{full}}$	$\widehat{oldsymbol{ heta}}_{cc}$
ŵ. linear	$\widehat{\pi}$: logit	0.460 (0.026)	0.072 (0.011)	0.069 (0.01)	0.528 (0.021)
III. IIIIear	$\widehat{\pi}$: quad	0.204 (0.137)	0.072 (0.011)	0.069 (0.01)	0.528 (0.021)
ŵ. avad	$\widehat{\pi}$: logit	0.071 (0.010)	0.072 (0.011)	0.069 (0.01)	0.528 (0.021)
m: quad	$\widehat{\pi}$: quad	0.072 (0.011)	0.072 (0.011)	0.069 (0.01)	0.528 (0.021)
ŵ. CIM	$\widehat{\pi}$: logit	0.323 (0.019)	0.072 (0.011)	0.069 (0.01)	0.528 (0.021)
<i>III.</i> 311VI	$\widehat{\pi}$: quad	0.172 (0.078)	0.072 (0.011)	0.069 (0.01)	0.528 (0.021)

Inference:

	\widehat{m} : linear	\widehat{m} :quad	<i>m</i> : SIM	\widehat{m} : linear	\widehat{m} :quad	<i>m</i> ̂∶ SIM
	Average C	ovg. Prob. (ze	ero coeffs.)	Average Cov	g. Prob. (noi	n-zero coeffs.)
$\widehat{\pi}$: logit	0.94 (0.03)	0.94 (0.03)	0.94 (0.03)	0.68 (0.39)	0.93 (0.03)	0.80 (0.19)
$\widehat{\pi}$: quad	0.96 (0.02)	0.94 (0.03)	0.95 (0.02)	0.96 (0.02)	0.94 (0.02)	0.95 (0.02)

Consider n = 50000 and p = 500. In addition, also consider the complete case estimator $\hat{\theta}_{cc}$ (obtained by using only the data with $T_i = 1$).

DGP: Quad-Quad (p = 500)

Consider n = 50000 and p = 500. In addition, also consider the complete case estimator $\hat{\theta}_{cc}$ (obtained by using only the data with $T_i = 1$).

DGP: Quad-Quad (p = 500)

L₂ Error Comparison:

model		$\widehat{oldsymbol{ heta}}_{DDR}$	$\widehat{oldsymbol{ heta}}_{orac}$	$\widehat{oldsymbol{ heta}}_{full}$	$\widehat{\boldsymbol{\theta}}_{cc}$
ŵ. linear	$\widehat{\pi}$: logit	0.297 (0.017)	0.178 (0.009)	0.173 (0.007)	0.325 (0.018)
m. mear	$\widehat{\pi}$: quad	0.282 (0.113)	0.178 (0.009)	0.173 (0.007)	0.325 (0.018)
me avad	$\widehat{\pi}$: logit	0.177 (0.008)	0.178 (0.009)	0.173 (0.007)	0.325 (0.018)
m. quau	$\widehat{\pi}$: quad	0.180 (0.010)	0.178 (0.009)	0.173 (0.007)	0.325 (0.018)
ŵ. SIM	$\widehat{\pi}$: logit	0.407 (0.022)	0.178 (0.009)	0.173 (0.007)	0.325 (0.018)
<i>III.</i> 3IIVI	$\widehat{\pi}$: quad	0.294 (0.045)	0.178 (0.009)	0.173 (0.007)	0.325 (0.018)

Inference:

	\widehat{m} : linear	\widehat{m} :quad	<i>m</i> : SIM	\widehat{m} : linear	\widehat{m} :quad	<i>m</i> : SIM
	Average C	ovg. Prob. (ze	ero coeffs.)	Average Covg. Prob. (non-zero coeffs.)		
$\widehat{\pi}$: logit	0.95 (0.02)	0.95 (0.02)	0.95 (0.02)	0.78 (0.32)	0.94 (0.02)	0.75 (0.38)
$\widehat{\pi}$: quad	0.95 (0.02)	0.95 (0.02)	0.95 (0.02)	0.94 (0.04)	0.94 (0.02)	0.88 (0.12)

References I

- Bang, H. and Robins, J. M. (2005). Doubly robust estimation in missing data and causal inference models. *Biometrics*, 61(4):962–973.
- Belloni, A., Chernozhukov, V., Fernández-Val, I., and Hansen, C. (2017). Program evaluation and causal inference with high-dimensional data. *Econometrica*, 85(1):233–298.
- Belloni, A., Chernozhukov, V., and Hansen, C. (2014). Inference on treatment effects after selection among high-dimensional controls. *The Review of Economic Studies*, 81(2):608–650.
- Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E., Hansen, C., Newey, W., and Robins, J. (2018). Double/debiased machine learning for treatment and structural parameters. *The Econometrics Journal*, 21(1):C1–C68.
- Chernozhukov, V., Demirer, M., Duflo, E., and Fernandez-Val, I. (2017). Generic machine learning inference on heterogenous treatment effects in randomized experiments. *ArXiv preprint arXiv:1712.04802*.
- Chernozhukov, V. and Semenova, V. (2017). Simultaneous inference for best linear predictor of the conditional average treatment effect and other structural functions. *ArXiv preprint arXiv:1702.06240v2*.
- Farrell, M. H. (2015). Robust inference on average treatment effects with possibly more covariates than observations. *Journal of Econometrics*, 189(1):1–23.
- Li, K.-C. and Duan, N. (1989). Regression analysis under link violation. *The Annals of Statistics*, 17(3):1009–1052.

- Loh, P.-L. and Wainwright, M. J. (2012). High-dimensional regression with noisy and missing data: Provable guarantees with nonconvexity. *The Annals of Statistics*, 40(3):1637.
- Loh, P.-L. and Wainwright, M. J. (2015). Regularized *M*-estimators with nonconvexity: Statistical and algorithmic theory for local optima. *Journal of Machine Learning Research*, 16:559–616.
- Negahban, S. N., Ravikumar, P., Wainwright, M. J., and Yu, B. (2012). A unified framework for high-dimensional analysis of *M*-estimators with decomposable regularizers. *Statistical Science*, 27(4):538–557.
- Robins, J. M., Rotnitzky, A., and Zhao, L. P. (1994). Estimation of regression coefficients when some regressors are not always observed. *Journal of the American statistical Association*, 89(427):846–866.
- Smucler, E., Rotnitzky, A., and Robins, J. M. (2019). A unifying approach for doubly-robust l₁ regularized estimation of causal contrasts. ArXiv preprint arXiv:1904.03737v1.
- Tsiatis, A. (2007). Semiparametric Theory and Missing Data. Springer Science & Business Media.
- van de Geer, S., Bühlmann, P., Ritov, Y., and Dezeure, R. (2014). On asymptotically optimal cnfidence regions and tests for high-dimensional models. *The Annals of Statistics*, 42(3):1166–1202.

Van der Vaart, A. W. (2000). Asymptotic Statistics, volume 3. Cambridge University Press.

Thank You!