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Big Data Era: The Challenges of Incomplete Information

Current era of ‘big data’ and data science  rapid influx of large and
high dimensional data (easily available and computationally tractable).

Rich information on multitudes of variables at the same place many
interesting scientific questions and also unique statistical challenges!

One frequently encountered challenge: incompleteness of the data
and in particular, (partial) missingness of the response of interest.

Reasons could be ‘circumstantial’ (e.g. practical constraints such
as logistics, time, cost issues etc.), or it could be ‘by design’ (e.g.
due to the ‘treatment’ assignment/non-assignment mechanism).

The response corresponding to a ‘treatment’ of interest could not
be observed for a person who is not ‘treated’ (and vice versa).

Another complication in both cases: observational nature of the data.
The missingness mechanism could be informative (not randomized)!
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Challenges of Incompleteness Contd. and Relevance in Modern Studies

Observational data  typically informative missingness (or treatment
assignment) mechanism. Could depend on the person’s covariates.

Often termed selection bias or treatment by indication or confounding
(in causal inference) in observational studies. Has to be factored in!

Need to account for the missingness in a proper principled way under
minimal conditions to ensure valid, unbiased (and robust) inference.

Relevance: these issues occur in virtually any modern day large scale
observational study arising in various scientific disciplines, including:

Biomedical studies (e.g. electronic health records (EHR) data); and
Integrative genomics (e.g. gene expression data and eQTL studies).

Also econometrics (policy evaluation), computer science, finance etc.
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The Basic Framework and Set-Up

Variables of interest: outcome Y ∈ Y ⊆ R and covariates X ∈ X
⊆ Rp (possibly high dimensional, compared to the sample size).

The supports Y and X of Y and X need not be continuous.

Main issue: Y may not always be observed. Let T ∈ {0, 1} denote
the indicator of the true Y being observed.

The (partly) unobserved random vector (T ,Y ,X) is assumed to be
jointly defined on a common probability space with measure P(·).

Observable data: Dn := {Zi := (Ti ,TiYi ,Xi ) : i = 1, . . . , n} iid∼ Z,
where Z := (T ,TY ,X) whose distribution is defined via P(·).

High dimensional setting: p can diverge with n (including p � n).
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Applicability of the Framework

Generally applicable to any missing data setting - with missing
outcomes Y and (possibly) high dimensional covariates X.

Causal inference problems (via ‘potential’ outcomes framework).

Here, X is often called ‘confounders’ (for observational studies) or
‘adjustment’ variables/features (for randomized trials).

Usual set-up: binary ‘treatment’ (a.k.a. exposure/intervention)
assignment: T ∈ {0, 1}, and potential outcomes: {Y(0),Y(1)}.

Observed outcome: Y := Y(0)1(T = 0) + Y(1)1(T = 1), i.e.
depending on T , we observe only one of {Y(0),Y(1)}.

For each j ∈ {0, 1}, this set-up is included based on the ‘map’:

(T ,Y ,X)← (Tj ,Y(j),X) with Tj := 1(T = j) ∀ j ∈ {0, 1}.

The case of any multi-category treatment also similarly included.

Abhishek Chakrabortty High-Dim. M-Estimation with Missing Responses: A Semi-Parametric Framework 5/50



Applicability of the Framework

Generally applicable to any missing data setting - with missing
outcomes Y and (possibly) high dimensional covariates X.

Causal inference problems (via ‘potential’ outcomes framework).

Here, X is often called ‘confounders’ (for observational studies) or
‘adjustment’ variables/features (for randomized trials).

Usual set-up: binary ‘treatment’ (a.k.a. exposure/intervention)
assignment: T ∈ {0, 1}, and potential outcomes: {Y(0),Y(1)}.

Observed outcome: Y := Y(0)1(T = 0) + Y(1)1(T = 1), i.e.
depending on T , we observe only one of {Y(0),Y(1)}.

For each j ∈ {0, 1}, this set-up is included based on the ‘map’:

(T ,Y ,X)← (Tj ,Y(j),X) with Tj := 1(T = j) ∀ j ∈ {0, 1}.

The case of any multi-category treatment also similarly included.

Abhishek Chakrabortty High-Dim. M-Estimation with Missing Responses: A Semi-Parametric Framework 5/50



Applicability of the Framework

Generally applicable to any missing data setting - with missing
outcomes Y and (possibly) high dimensional covariates X.

Causal inference problems (via ‘potential’ outcomes framework).

Here, X is often called ‘confounders’ (for observational studies) or
‘adjustment’ variables/features (for randomized trials).

Usual set-up: binary ‘treatment’ (a.k.a. exposure/intervention)
assignment: T ∈ {0, 1}, and potential outcomes: {Y(0),Y(1)}.

Observed outcome: Y := Y(0)1(T = 0) + Y(1)1(T = 1), i.e.
depending on T , we observe only one of {Y(0),Y(1)}.

For each j ∈ {0, 1}, this set-up is included based on the ‘map’:

(T ,Y ,X)← (Tj ,Y(j),X) with Tj := 1(T = j) ∀ j ∈ {0, 1}.

The case of any multi-category treatment also similarly included.

Abhishek Chakrabortty High-Dim. M-Estimation with Missing Responses: A Semi-Parametric Framework 5/50



Applicability of the Framework

Generally applicable to any missing data setting - with missing
outcomes Y and (possibly) high dimensional covariates X.

Causal inference problems (via ‘potential’ outcomes framework).

Here, X is often called ‘confounders’ (for observational studies) or
‘adjustment’ variables/features (for randomized trials).

Usual set-up: binary ‘treatment’ (a.k.a. exposure/intervention)
assignment: T ∈ {0, 1}, and potential outcomes: {Y(0),Y(1)}.

Observed outcome: Y := Y(0)1(T = 0) + Y(1)1(T = 1), i.e.
depending on T , we observe only one of {Y(0),Y(1)}.

For each j ∈ {0, 1}, this set-up is included based on the ‘map’:

(T ,Y ,X)← (Tj ,Y(j),X) with Tj := 1(T = j) ∀ j ∈ {0, 1}.

The case of any multi-category treatment also similarly included.

Abhishek Chakrabortty High-Dim. M-Estimation with Missing Responses: A Semi-Parametric Framework 5/50



The Two Standard (Fundamental) Assumptions

1 Ignorability assumption: T ⊥⊥ Y | X.

A.k.a. ‘missing at random’ (MAR) in the missing data literature.

A.k.a. ‘no unmeasured confounding’ (NUC) in causal inference.

Special case: T ⊥⊥ (Y ,X). A.k.a. missing completely at random
(MCAR) in missing data literature, and complete randomization
(e.g. randomized trials) in causal inference (CI) literature.

2 Positivity assumption (a.k.a. ‘sufficient overlap’ in CI literature):

Let π(X) := P(T = 1 | X) be the propensity score (PS), and let
π0 := P(T = 1). Then, π(·) is uniformly bounded away from 0:

1 ≥ π(x) ≥ δπ > 0 ∀ x ∈ X , for some constant δπ > 0.
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Relevance in Biomedical Studies: EHR Data

Rich resources of data for discovery research; fast growing literature.

Detailed clinical and phenotypic data collected electronically for large
patient cohorts, as part of routine health care delivery.

Structured data: ICD codes, medications, lab tests, demographics etc.

Unstructured text data (extracted from clinician notes via NLP): signs
and symptoms, family history, social history, radiology reports etc.
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EHR Data: The Promises and the Challenges

Information on a variety of phenotypes (unlike usual cohort studies).

Opens up unique opportunities for novel integrative analyses.

EHR + Bio-repositories  genome-phenome
association networks, PheWAS studies and
genomic risk prediction of diseases.

The key challenges and bottlenecks for EHR driven research:

Logistic difficulty in obtaining validated phenotype (Y) information.

Often time/labor/cost intensive (and the ICD codes are imprecise).
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EHR Data and Incompleteness: Various Examples

Some examples of missing Y in EHRs and the reason for missingness:

1 Y  some (binary) disease phenotype (e.g. Rheumatoid Arthritis).
Requires manual chart review by physicians (logistic constraints).

2 Y  some biomarker (e.g. anti-CCP, an important RA biomarker).
Requires lab tests (cost constraints). Similarly, any Y requiring
genomic measurements may also have cost/logistics constraints.

Verified phenotypes/treatment response/biomarkers/genomic vars (Y)
available only for a subset. Clinical features (X) available for all.

Further issues: selection bias/treatment by indication/preferential
labeling (e.g. sicker patients get labeled/treated/tested more often).

Causal inference problems (treatment effects estimation): EHRs also
facilitate comparative effectiveness research on a large scale.

Many treatments/medications (and responses) being observed. All
other clinical features (X) serve as potential confounders.
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Another Example: eQTL Studies (Integrative Genomics)

Association studies for gene expression (Y ) vs. genetic variants (X).

Popular tools in integrative genomics (genetic association studies +
gene expression profiling) for understanding gene regulatory networks.

Missing data issue: gene expression data often missing (loss of power),
while genetic variants data often available for a much larger group.

Causal inference: estimate the causal effect of any one variant (the
‘treatment’) on Y while all other variants are potential confounders.
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High Dimensional M-Estimation: The Parameter(s) of Interest

Goal for M-estimation: estimation and inference, based on Dn, of
θ0 ∈ Rd (possibly high dimensional), defined as the risk minimizer:

θ0 ≡ θ0(P) := arg min
θ∈Rd

R(θ), where R(θ) := E{L(Y ,X,θ)} and

L(·) ∈ R+ is any ‘loss’ function that is convex and differentiable in θ.
Existence of θ0 implicitly assumed (guaranteed for most usual probs).

d can diverge with n (including d � n). Also, θ0(P) is ‘model free’
(no restrictions on P). In particular, no model assumptions on Y |X.

The key challenges: the missingness via T (if not accounted for, the
estimator will be inconsistent!) and the high dimensional setting.

Need suitable methods - involves estimation of nuisance functions and
careful analyses (due to error terms with complex dependencies).

Special (but low-d) case: θ0 = E(Y ) and L(Y ,X,θ) = (Y − θ)2.
Leads to the average treatment effect (ATE) estimation prob in CI.
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M-Estimation and Missing Data/Causal Inference Problems: A Review

The framework includes a broad class of M/Z -estimation problems.

M-estimation for fully observed data: well studied with rich literature.
Classical settings: Van der Vaart (2000); High dimensional settings:
Negahban et al. (2012), Loh and Wainwright (2012, 2015) etc.

Missing data/causal inference problems: semi-parametric inference.

Classical settings: vast literature (typically for mean estimation).
Tsiatis (2007); Bang and Robins (2005); Robins et al. (1994) etc.

High dimensional settings (but low dimensional parameters): lot of
attention in recent times on mean (or ATE) estimation. Belloni
et al. (2014, 2017); Farrell (2015); Chernozhukov et al. (2018).

Much less attention when the parameter itself is high dimensional.

This work contributes to both literature above: M-estimation +
missing data + high dimensional setting and parameter. (Also has
applications in heterogeneous treatment effects estimation in CI).
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HD M-Estimation: A Few (Class of) Applications

1 All standard high dimensional (HD) regression problems with: (a)
missing outcomes and (b) potentially misspecified (working) models.

E.g. squared loss: L(Y ,X,θ) := (Y − X′θ)2  linear regression;
logistic loss: L(Y ,X,θ) := log{1 + exp(X′θ)} − Y (X′θ) logistic
regression (for binary Y ), exponential loss (Poisson reg.) so on . . ..

Note: throughout, regardless of any motivating ‘working model’
being true or not, the definition of θ0 is completely ‘model free’.

2 Series estimation problems (model free) with missing Y and HD basis
functions (instead of X in Example 1 above). E.g. spline bases.

Use the same choices of L(·) as in Example 1 above with X replaced
by any set of d (possibly HD) basis functions Ψ(X) := {ψj(X)}dj=1.

E.g. polynomial bases: Ψ(X) := {1, xkj : 1 ≤ j ≤ p, 1 ≤ k ≤ d0}.
(d0 = 1 linear bases as in Example 1; d0 = 3 cubic splines).
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Another Application: HD Single Index Models (SIMs)

Signal recovery in high dimensional single index models (SIMs) with
elliptically symmetric design distribution (e.g. X is Gaussian).

Let Y = f (β′0X, ε) with f : R2 → Y unknown (i.e. β0 identifiable
only upto scalar multiples) and ε ⊥⊥ X (i.e., Y ⊥⊥ X | β′0X).

Consider any of the regression problems introduced in Example 1.

Let θ0 := arg minθ∈Rp E{L(Y ,X′θ)} for any convex loss function
L(·) : R2 → R (convex in the second argument). Then, θ0 ∝ β0!

A remarkable result due to Li and Duan (1989).

Classic example of a misspecified parametric model defining θ0, yet
θ0 directly relates to an actual (interpretable) semi-parametric model!

The proportionality result also preserves any sparsity assumptions.
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Applications in Causal Inference (Treatment Effects Estimation)

Applications of all these problems in causal inference (estimation of
treatment effects with useful applications in precision medicine):

1 Linear heterogeneous treatment effects estimation: application of
the linear regression example (twice). Write {Y(0),Y(1)} linearly as:

Y(j) = X′β(j) + ε(j), E(ε(j)X) = 0 ∀ j = 0, 1, so that

Y(1) − Y(0) = X′β∗ + ε∗, β∗ := β(1) − β(0), ε
∗ := ε(1) − ε(0).

β∗ denotes the (model free) linear projection of Y(1) − Y(0) |X. Of
interest in HD settings when E{Y(1) − Y(0) |X} is difficult to model
(Chernozhukov et al., 2017; Chernozhukov and Semenova, 2017).

2 Average conditional treatment effects (ACTE) estimation via series
estimators: application of the series estimation example (twice).

3 Causal inference via SIMs (signal recovery, ACTE estimation and
ATE estimation): application of the SIM example (twice).
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Before Getting Started: A Few Facts and Considerations

Some notations: m(X) := E(Y |X) and φ(X,θ) := E{L(Y ,X,θ)|X}.

It is generally necessary to ‘account’ for the missingness in Y . The
‘complete case’ estimator of θ0 in general will be inconsistent!

That estimator may be consistent only if: (1) ∇φ(X,θ0) = 0 a.s.
for every X (for regression problems, this indicates the ‘correct
model’ case), and/or (2) T ⊥⊥ (Y ,X ) (i.e. the MCAR case).

Illustration of (1) for sq. loss: ∇φ(X,θ0) = E{X(Y − X′θ0)|X}
= 0. Hence, E(Y |X) = X′θ0 (i.e. a ‘linear model’ holds for Y |X).

With θ0 (and X) being high dimensional (compared to n), we need
some further structural constraints on θ0 to estimate it using Dn.

We assume that θ0 is s-sparse: ‖θ0‖0 := s and s ≤ min(n, d).

Note: the sparsity requirement has attractive (and fairly intuitive)
geometric justification for all the examples we have given here.
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Estimation of θ0: Getting Identifiable Representation(s) of R(θ)

Under MAR assmpn., R(θ) := E{L(Y ,X,θ)} ≡ EX{φ(X,θ)} admits
the following debiased and doubly robust (DDR) representation:

R(θ) = EX{φ(X,θ)}+ E
[

T

π(X)
{L(Y ,X,θ)− φ(X,θ)}

]
. (1)

Purely non-parametric identification based on the observable Z and
the nuisance functions: π(X) and φ(X,θ) (unknown but estimable).

2nd term is simply 0, can be seen as a ‘debiasing’ term (of sorts).

Plays a crucial role in analyzing the empirical version of (1). Ensures
first order insensitivity to any estimation errors of π(·) and φ(·).

Double robustness (DR) aspect: replace {φ(X,θ), π(X)} by any
{φ∗(X,θ), π∗(X)} and (1) continues to hold as long as one but
not necessarily both of φ∗(·) = φ(·) or π∗(·) = π(·) hold.
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The DDR Estimator of θ0

Given any estimators {π̂(·), φ̂(·)} be of the nuisance fns. {π(·), φ(·)},
we define our L1-penalized DDR estimator θ̂DDR of θ0 as:

θ̂DDR ≡ θ̂DDR(λn) := arg min
θ∈Rd

{
LDDR
n (θ) + λn ‖θ‖1

}
, where

LDDR
n (θ) :=

1

n

n∑
i=1

φ̂(Xi ,θ) +
Ti

π̂(Xi )

{
L(Yi ,Xi ,θ)− φ̂(Xi ,θ)

}
,

λn ≥ 0 is the tuning parameter and {π̂(·), φ̂(·)} are arbitrary except
for satisfying two basic conditions regarding their construction:

π̂(·) obtained from the data Tn := {Ti ,Xi}ni=1 only; {φ̂(Xi ,θ)}ni=1

obtained in a ‘cross-fitted’ manner (via sample splitting).

Assume (temporarily) {π̂(·), φ̂(·)} are both ‘correct’. DR properties

(consistency) of θ̂DDR under their misspecfications discussed later.
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Simplifying Assumptions and User Friendly Implementation Algorithm

For simplicity, assume that the gradient ∇L(Y ,X,θ) of L(·) satisfies
a ‘separable form’ as follows: for some h(X) ∈ Rd and g(X,θ) ∈ R,

∇L(Y ,X,θ) = h(X){Y − g(X,θ)}, and hence,

∇φ̂(X,θ) = h(X){m̂(X)− g(X,θ)}, where

m̂(X) denotes the corresponding (cross-fitted) estimator of m(X).
This simplifying assumption holds for all examples given before.

Assumed form ⇒ only need to obtain m̂(Xi ) and not φ̂(Xi ,θ).

Implementation algorithm. θ̂DDR can be obtained simply as:

θ̂DDR ≡ θ̂DDR(λn) := arg min
θ∈Rd

{
1

n

n∑
i=1

L(Ỹi ,Xi ,θ) + λn ‖θ‖1

}
,

where Ỹi := m̂(Xi ) + Ti

π̂(Xi )
{Yi − m̂(Xi )}, ∀ i , is a ‘pseudo’ outcome.

Can use ‘glmnet’ in R. Pretend to have a ‘full’ data: {Ỹi ,Xi}ni=1.
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θ̂DDR ≡ θ̂DDR(λn) := arg min
θ∈Rd

{
1

n

n∑
i=1

L(Ỹi ,Xi ,θ) + λn ‖θ‖1

}
,

where Ỹi := m̂(Xi ) + Ti

π̂(Xi )
{Yi − m̂(Xi )}, ∀ i , is a ‘pseudo’ outcome.

Can use ‘glmnet’ in R. Pretend to have a ‘full’ data: {Ỹi ,Xi}ni=1.
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Properties of θ̂DDR: Deterministic Deviation Bounds

Assume L(·) is convex and differentiable in θ and LDDR
n (θ) satisfies

the Restricted Strong Convexity (RSC) condition (Negahban et al.,
2012) at θ = θ0. Then, for any choice of λn ≥ 2 ‖∇LDDR

n (θ0)‖∞,

∥∥∥θ̂DDR(λn)− θ0

∥∥∥
2
. λn

√
s, and

∥∥∥θ̂DDR(λn)− θ0

∥∥∥
1
. λns.

where s := ‖θ0‖0. This is a deterministic deviation bound. Holds for
any choices of {π̂(·), m̂(·)} and for any realization of Dn.

The RSC (or ‘cone’) condition for LDDR
n (θ) is exactly the same as

the usual RSC condition required under a fully observed data! The
fully observed data RSC condition’s validity is well studied.

Key quantity of interest: the random lower bound ‖∇LDDR
n (θ0)‖∞ for

λn. Need probabilistic bounds to determine convergence rate of θ̂DDR.
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The Main Goal from Hereon: Probabilistic Bounds for ‖∇LDDR
n (θ0)‖∞

Bounds on ‖∇LDDR
n (θ0)‖∞ determines the rate of choice of λn and

hence the convergence rate of θ̂DDR (using the deviation bound).

Probabilistic bounds for ‖∇LDDR
n (θ0)‖∞: the basic decomposition∥∥∇LDDR

n (θ0)
∥∥
∞ ≤ ‖T0,n‖∞ + ‖Tπ,n‖∞ + ‖Tm,n‖∞ + ‖Rπ,m,n‖∞ ,

where T0,n is the ‘main’ term (a centered iid average), Tπ,n is the
‘π-error’ term involving π̂(·)− π(·) and Tm,n is the ‘m-error’ term
involving m̂(·)−m(·), while Rπ,m,n is the ‘(π,m)-error’ term (usually
lower order) involving the product of π̂(·)− π(·) and m̂(·)−m(·).

Control each term separately. The analyses are all non-asymptotic
and nuanced, especially in order to get sharp rates for Tπ,n and Tm,n.

We show: ‖∇LDDR
n (θ0)‖∞ .

√
(log d)/n with high probability, and

hence ‖θ̂DDR − θ0‖2 .
√
s(log d)/n. So, clearly it is rate optimal.
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Convergence Rates and Bounds for ‖∇LDDR
n (θ0)‖∞ (and θ̂DDR)

Basic (high level) consistency conditions on {π̂(·), m̂(·)}. Let {π̂(·),
m̂(·)} be any general and ‘correct’ estimators of {π(·),m(·)}, and
assume they satisfy the following pointwise convergence rates:

|π̂(x)− π(x)| .P δn,π and |m̂(x)−m(x)| .P ξn,m ∀ x ∈ X , (2)

for some sequences δn,π, ξn,m ≥ 0 such that (δn,π + ξn,m)
√

log(nd)

= o(1) and the product δn,πξn,m(log n) = o(
√

(log d)/n).

Under condition (2), along with some more ‘suitable’ tail assumptions
(sub-Gaussian tails etc.), we have: with high probability,

‖T0,n‖∞ .
√

log d
n , ‖Tπ,n‖∞ .

√
log d
n

{
δn,π

√
log(nd)

}
, and

‖Tm,n‖∞ .
√

log d
n

{
ξn,m

√
log(nd)

}
, ‖Rπ,m,n‖∞ . δn,πξn,m(log n).

Hence, ‖∇LDDR
n (θ0)‖∞ .

√
log d
n {1 + o(1)} with high probability.
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HD Inference for θ̂DDR: Desparsification and Asymptotic Linear Expansion

Consider θ̂DDR for the squared loss: L(Y ,X,θ) := {Y −Ψ(X)′θ}2,
where Ψ(X) ∈ Rd denotes any HD vector of basis functions of X.

Define Σ := E{Ψ(X)Ψ(X)′}, Ω := Σ−1, and let Ω̂ be any reasonable
estimator of Ω (and assume Ω is sparse if required).

We then define the desparsified DDR estimator θ̃DDR as follows.

θ̃DDR := θ̂DDR + Ω̂
1

n

n∑
i=1

{Ỹi −Ψ(Xi )
′θ̂DDR}Ψ(Xi )︸ ︷︷ ︸

Desparsification/Debiasing term

, where

Ỹi := m̂(Xi ) +
Ti

π̂(Xi )
{Yi − m̂(Xi )} are the pseudo outcomes.

Debiasing similar (in spirit) to van de Geer et al. (2014), except its the
‘right’ one for this problem (using pseudo outcomes in the full data).
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The Desparisfied DDR Estimator: Asymptotic Linear Expansion

Assume: the basic convergence conditions (2) for {π̂(·), m̂(·)}, ΩX is

sub-Gaussian and that ‖Ω̂−Ω‖1 = OP(an), ‖I − Ω̂Σ̂‖max = OP(bn),
with an

√
log d = o(1) and bns

√
log d = o(1), where s := ‖θ0‖0.

Then, θ̃DDR satisfies the asymptotic linear expansion (ALE):

(θ̃DDR − θ0) =
1

n

n∑
i=1

Ω{ψ0(Zi )}+ ∆n, where ‖∆n‖∞ = oP(n−
1
2 )

and ψ0(Z) :=

[
{m(X)−Ψ(X)′θ0}+

T

π(X)
{Y −m(X)}

]
Ψ(X)

with E{ψ0(Z)} = 0. The ALE facilitates inference (e.g. confidence
intervals etc.) for any low-d component of θ0 via Gaussian approx.

Further, the ALE is also ‘optimal’. The function Ωψ0(Z) =: Ψeff(Z) is
the ‘efficient’ influence function for θ0 (Robins et al., 1994). Thus, in

classical settings, θ̃DDR achieves the semi-parametric efficiency bound.
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The Desparsified Estimator: Asymptotic Normality and Some Final Remarks

Coordinate-wise asymptotic normality of θ̃DDR: ∀1 ≤ j ≤ d ,

√
n(θ̃DDR − θ0)j

d→ N (0, σ2
0,j), where σ2

0,j := Var{Ω′j·ψ0(Z)}.

Further, max1≤j≤d |σ̂0,j − σ0,j | = oP(1), where σ̂0,j is the plug-in

estimator obtained by plugging in Ω̂, π̂(·) and m̂(·) in Var{Ω′j·ψ0(Z)}.

Can choose Ω̂ to be any standard (sparse) precision matrix estimator,
e.g. the node-wise Lasso estimator. Here, an = sΩ

√
(log d)/n and

bn =
√

(log d)/n under suitable conditions, with sΩ := max
1≤j≤d

‖Ωj·‖0.

The error ∆n can be decomposed as: ∆n = ∆n,1 + ∆n,2 + ∆n,3,

where ∆n,1 := 1
n (Ω̂−Ω)

∑n
i=1ψ0(Zi ),∆n,2 := (Id − Ω̂Σ̂)(θ̂DDR− θ0)

and ∆n,3 := Ω̂(Tπ,n + Tm,n + Rπ,m,n), with ‖∆n,3‖∞ .P n−
1
2 and

‖∆n,1‖∞ . an

√
log d

n
and ‖∆n,2‖∞ . bns

√
log d

n
.
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The Desparsified Estimator: Asymptotic Normality and Some Final Remarks

Coordinate-wise asymptotic normality of θ̃DDR: ∀1 ≤ j ≤ d ,

√
n(θ̃DDR − θ0)j

d→ N (0, σ2
0,j), where σ2
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√
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bn =
√
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The DR Aspect: General Convergence Rates (under Misspecification)

Finally, let {π̂(·), m̂(·)} → {π∗(·),m∗(·)}, with either π∗(·) = π(·) or
m∗(·) = m(·) but not necessarily both. Assume the same pointwise
convergence conditions and rates (δn,π, ξn,m) for {π̂(·), m̂(·)} as in
(2), but now with {π(·),m(·)} therein replaced by {π∗(·),m∗(·)}.

Under some ‘suitable’ assumptions, we have: with high probability,

‖T0,n‖∞+‖Tπ,n‖∞ + ‖Tm,n‖∞ .
√

log d
n

{
1 + 1(π∗,m∗) 6=(π,m)

}
and ‖Rπ,m,n‖∞ .

{
δn,π1(m∗ 6=m) + ξn,m1(π∗ 6=π) + δn,πξn,m

}
(log n).

The 2nd and/or 3rd terms also contribute now to the rate
√

(log d)/n.
The 4th term is o(1) but no longer ignorable (and may be slower).

Regardless, this establishes general convergence rates and the DR
property of θ̂DDR under possible misspecification of {π̂(·), m̂(·)}.
For the 4th term, sharper rates need a case-by-case analysis.
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Choices of the Nuisance Component Estimators π̂(·) and m̂(·)

Note: our theory holds generally for any choices of π̂(·) and m̂(·)
under mild conditions (provided they are both ‘correct’ estimators).

Under misspecifications, consistency & general non-sharp rates are
also established. Sharp rates need case-by-case analyses.

Even for mean (or ATE) estimation problem, this can be quite tricky
in HD settings. See Smucler et al. (2019) for a detailed analysis.

Below we provide only some choices of π̂(·) and m̂(·) that may be

used to implement our theory & methods for θ̂DDR. In general, one
can use any reasonable method (including black box ML methods).

Choices of π̂(·) and m̂(·): we consider estimators from two families.

Parametric and ‘extended’ parametric families (series estimators).

Semi-parametric single index families.
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Choices of π̂(·): ‘Extended’ Parametric Families (Series Estimators)

If π(·) is known, we set π̂(·) := π(·). Otherwise, we estimate π(·) via
two (class of) choices of π̂(·) (each assumed to be ‘correct’).

‘Extended’ parametric family: π(x) = g{α′Ψ(X)}, where g(·) ∈
[0, 1] is a known function [e.g. gexpit(u) := exp(u)/{1 + exp(u)}],
Ψ(X) := {ψk(X)}Kk=1 is any set of K basis functions (with K � n
possibly), and α ∈ RK is an unknown (sparse) parameter vector.

Example: Ψ(X) may correspond to the polynomial bases of X upto
any fixed degree k. Note: the special case of linear bases (k = 1)
includes all standard parametric regression models. Further, the case
of π(·) = constant (but unknown) i.e. MCAR is also included.

Estimator: we set π̂(X) = g{α̂′Ψ(X)}, where α̂ denotes any suitable
estimator (possibly penalized) of α based on Tn := {Ti ,Xi}ni=1.

Example of α̂: when g(·) = gexpit(·), α̂ may be obtained based on a
standard L1-penalized logistic regression of {Ti vs. Ψ(Xi )}ni=1.
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Choices of π̂(·): Semi-Parametric Single Index Families

Semi-parametric single index family: π(X) = g(α′X), where g(·) ∈
(0, 1) is unknown and α ∈ Rp is a (sparse) unknown parameter
(identifiable only upto scalar multiples, hence set ‖α‖2 = 1 wlog).

Given an estimator α̂ of α, we estimate π(X) ≡ E(T |α′X) as:

π̂(x) ≡ π̂(α̂, x) :=
1
nh

∑n
i=1 TiK

{
α̂′(Xi − x)/h

}
1
nh

∑n
i=1 K

{
α̂′(Xi − x)/h

} ,

where K (·) denotes any standard (2nd order) kernel function and
h = hn > 0 denotes the bandwidth sequence with h = o(1).

Obtaining α̂: In general, any approach (if available) from (high
dimensional) single index model literature can be used. But if X is
elliptically symmetric, then α̂ may be obtained as simply as a
standard L1-penalized logistic regression of {Ti vs. Xi}ni=1.
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Choices of m̂(·): ‘Extended’ Parametric Families (Series Estimators)

‘Extended’ parametric family: m(x) = g{γ′Ψ(X)}, where g(·) is a
known ‘link’ function [e.g. ‘canonical’ links: identity, expit or exp],
Ψ(X) := {ψk(X)}Kk=1 is any set of K basis functions (with K � n
possibly), and γ ∈ RK is an unknown (sparse) parameter vector.

Example: Ψ(X) may correspond to the polynomial bases of X
upto any fixed degree k. Note: the special case of linear bases
(k = 1) includes all standard parametric regression models.

Estimator: we set m̂(X) = g{γ̂′Ψ(X)}, where γ̂ denotes any
suitable estimator (possibly penalized) of γ based on the data

subset of ‘complete cases’: D(c)
n := {(Yi ,Xi ) | Ti = 1}ni=1.

Example of γ̂: when g(·) := any ‘canonical’ link function, γ̂ may
be simply obtained based on the respective usual L1-penalized
‘canonical’ link based regression (e.g. linear, logistic or poisson) of

{(Yi vs. Xi ) | Ti = 1}ni=1 from the ‘complete case’ data D(c)
n .
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Estimator: we set m̂(X) = g{γ̂′Ψ(X)}, where γ̂ denotes any
suitable estimator (possibly penalized) of γ based on the data

subset of ‘complete cases’: D(c)
n := {(Yi ,Xi ) | Ti = 1}ni=1.

Example of γ̂: when g(·) := any ‘canonical’ link function, γ̂ may
be simply obtained based on the respective usual L1-penalized
‘canonical’ link based regression (e.g. linear, logistic or poisson) of

{(Yi vs. Xi ) | Ti = 1}ni=1 from the ‘complete case’ data D(c)
n .
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Choices of m̂(·): Semi-Parametric Single Index Families

Semi-parametric single index family: m(X) = g(γ′X), where g(·) is
an unknown ‘link’ and γ ∈ Rp is a (sparse) unknown parameter
(identifiable only upto scalar multiples, hence set ‖γ‖2 = 1 wlog).

Given an estimator γ̂ of γ, we estimate m(X) ≡ E(Y | γ′X,T ) as:

m̂(x) ≡ m̂(γ̂, x) :=
1
nh

∑n
i=1 TiYi K

{
γ̂′(Xi − x)/h

}
1
nh

∑n
i=1 Ti K

{
γ̂′(Xi − x)/h

} ,

where K (·) denotes any standard (2nd order) kernel function, and
h = hn > 0 denotes the bandwidth sequence with h = o(1).

Obtaining γ̂: In general, any approach (if available) from HD SIM

literature can be used on the complete case data subset D(c)
n .

If X is elliptically symmetric and Y = f (γ′X; ε) with f unknown
and ε ⊥⊥ (T ,X), then γ̂ may be obtained as L1-penalized IPW

estimator θ̂IPW for any ‘canonical’ link based regression problem.
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Convergence Rates Regarding The Choices of π̂(·)

For either choices of π̂(·), assume that the ingredient estimator α̂
satisfies: ‖α̂−α‖1 .P an for some an = o(1). Then, under suitable
smoothness and tail assumptions, with high probability (w.h.p.),

|π̂(x)− π(x)| . an = o(1), for any fixed x ∈ X , (for method 1).

For method 2 (SIM), assume that h = o(1), log(np)/(nh) = o(1) and
(an/h)

√
log p = o(1). Then, under some suitable smoothness and tail

assumptions, we have: with high probability, for any fixed x ∈ X ,

|π̂(x)− π(x)| .
(
h2 +

1√
nh

)
+

(
an +

log(np)

nh
+

a2
n

h2

)
= o(1).

Usually, we expect the L1 error rate of α̂ to be an = sα
√

(log d∗)/n
where sα := ‖α‖0 and d∗ = K or p (depending on the method).
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Simulation Studies: The Setup

Basic parameters: n = 1000, p = 50 or 500 and X ∼ N (0,Σp).

Three data generating processes (DGPs) for Y |X and T |X as follows:

1 “Linear-Linear” DGP:

Y = γ0 + γ′X + ε, ε|X ∼ N (0, 1).

logit{π(X)} ≡ logit{E(T |X)} = α0 + α′X.

2 “Quad-Quad” DGP:

Y = γ0 + γ′X +

p∑
j=1

γ∗j X2
j + ε, ε|X ∼ N (0, 1).

logit{π(X)} ≡ logit{E(T |X)} = α0 + α′Xi +

p∑
j=1

α∗j X2
ij .

3 “SIM-SIM” DGP:

Y = γ0 + γ′X + cY (γ′X)2 + ε, ε|X ∼ N (0, 1).

logit{π(X)} ≡ logit{E(T |X)} = α0 + α′X + cT (α′X)2.
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Simulation Settings: Choice of Parameters

Choices of the parameters:

1 Covariance matrix Σp (for today): Σp = Ip (identity matrix).

2 We set cT = 0.2, cY = 0.3 and γ0 = 1, α0 = 0.5.

3 When p = 50, α = 1/
√

5(1,−1, 0.5,−0.5, 0.5, 0, · · · , 0) with ‖α‖0 = 5,
γ = (1, 1, 1,−1,−1, 0.5, 0.5,−0.5,−0.5,−0.5, 0, · · · , 0) with ‖γ‖0 = 10,
α∗ = (0.25,−0.25, 0, · · · , 0) and γ∗ = (1,−1, 0.5, 0.5,−0.5, 0, · · · , 0).

4 When p = 500, ‖α‖0 = 10 and α consists of three 1s, two −1s, two
0.5s and three −0.5s normalized by 1/

√
10, while ‖γ‖0 = 15 and γ

consists of three 1s, two −1s, five 0.5s, five −0.5s, two 0.25s and three
−0.25s. Further, we set α∗ = (0.25, 0.25,−0.25,−0.25, 0, · · · , 0) and
γ∗ = (1,−1, 0.5, 0.5,−0.5, 0, · · · , 0).

K = 2 fold cross-fitting used; all simulation settings replicated 500 times.

Ω̂ obtained as Σ̂
−1

for p = 50 and using the nodewise Lasso for p = 500.
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Simulation Settings: Estimators Implemented

Obtain the DDR estimator θ̂DDR for linear regression: θ0 = Σ−1E(XY ).

Two choices of the working nuisance models for π(X) to obtain π̂(X):

1 Linear: L1 penalized logistic-linear regression.

2 Quad: L1 penalized logistic-linear regression with quadratic terms.

Three choices of the working nuisance models for m(X) to obtain m̂(X):

1 Linear: L1 penalized linear regression.

2 Quad: L1 penalized linear regression with quadratic terms.

3 SIM: Single index model (with index parameter estimated via IPW Lasso)

Estimators used for comparison:

1 θ̂orac (Oracle): obtained assuming both π(·) and m(·) are known.

2 θ̂full (Super oracle): obtained assuming a full dataset is observed.

Criteria: L2 errors for estimation and coverage probability for inference.
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Criteria: L2 errors for estimation and coverage probability for inference.
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Simulation Results: L2 Error Comparison (p = 50) - I

p = 50, DGP: Linear-Linear.
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Simulation Results: L2 Error Comparison (p = 50) - II

p = 50, DGP: Quad-Quad.
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Simulation Results: L2 Error Comparison (p = 50) - III

p = 50, DGP: SIM-SIM.
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Simulation Results: L2 Error Comparison (p = 500) - I

p = 500, DGP: Linear-Linear.
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Simulation Results: L2 Error Comparison (p = 500) - II

p = 500, DGP: Quad-Quad.
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Simulation Results: L2 Error Comparison (p = 500) - III

p = 500, DGP: SIM-SIM.
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Simulation Results: Coverage Probabilities for HD Inference - I

Coverage probability (covg. prob.) of the DDR estimator:

DGP: Linear-Linear.

1 When p = 50:

m̂: linear m̂: quad m̂: SIM m̂: linear m̂: quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.94 (0.01) 0.94 (0.01) 0.95 (0.01) 0.94 (0.01) 0.94 (0.01) 0.93 (0.01)
π̂: quad 0.94 (0.01) 0.95 (0.01) 0.95 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

2 When p = 500:

m̂: linear m̂: quad m̂: SIM m̂: linear m̂: quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.92 (0.01) 0.91 (0.02) 0.92 (0.01)
π̂: quad 0.94 (0.01) 0.94 (0.01) 0.94 (0.01) 0.91 (0.02) 0.91 (0.02) 0.92 (0.01)
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Simulation Results: Coverage Probabilities for HD Inference - II

Coverage probability (covg. prob.) of the DDR estimator:

DGP: Quad-Quad.

1 When p = 50:

m̂: linear m̂: quad m̂: SIM m̂: linear m̂: quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.94 (0.01) 0.94 (0.01) 0.95 (0.01) 0.88 (0.16) 0.94 (0.01) 0.88 (0.16)
π̂: quad 0.95 (0.01) 0.94 (0.01) 0.95 (0.01) 0.89 (0.12) 0.94 (0.01) 0.89 (0.12)

2 When p = 500:

m̂: linear m̂: quad m̂: SIM m̂: linear m̂: quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂ : logit 0.95 (0.01) 0.94 (0.01) 0.95 (0.01) 0.91 (0.03) 0.92 (0.01) 0.91 (0.05)
π̂ : quad 0.95 (0.01) 0.94 (0.01) 0.95 (0.01) 0.91 (0.03) 0.92 (0.01) 0.91 (0.04)
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Simulation Results: Coverage Probabilities for HD Inference - II

Coverage probability (covg. prob.) of the DDR estimator:

DGP: Quad-Quad.

1 When p = 50:

m̂: linear m̂: quad m̂: SIM m̂: linear m̂: quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.94 (0.01) 0.94 (0.01) 0.95 (0.01) 0.88 (0.16) 0.94 (0.01) 0.88 (0.16)
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Simulation Results: Coverage Probabilities for HD Inference - III

Coverage probability (covg. prob.) of the DDR estimator:

DGP: SIM-SIM.

1 When p = 50:

m̂: linear m̂: quad m̂: SIM m̂: linear m̂: quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.94 (0.01) 0.95 (0.01) 0.95 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)
π̂: quad 0.94 (0.01) 0.95 (0.01) 0.95 (0.01) 0.94 (0.01) 0.94 (0.01) 0.94 (0.01)

2 When p = 500:

m̂: linear m̂:quad m̂: SIM m̂: linear m̂:quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.94 (0.01) 0.95 (0.01) 0.95 (0.01) 0.87 (0.05) 0.88 (0.04) 0.93 (0.02)
π̂: quad 0.94 (0.01) 0.95 (0.01) 0.95 (0.01) 0.87 (0.05) 0.87 (0.05) 0.93 (0.02)

Abhishek Chakrabortty High-Dim. M-Estimation with Missing Responses: A Semi-Parametric Framework 45/50



Simulation Results: Coverage Probabilities for HD Inference - III

Coverage probability (covg. prob.) of the DDR estimator:

DGP: SIM-SIM.

1 When p = 50:

m̂: linear m̂: quad m̂: SIM m̂: linear m̂: quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)
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Investigating Double Robustness via Large Sample Results (p = 50)

Consider n = 50000 and p = 50. In addition, also consider the complete
case estimator θ̂cc (obtained by using only the data with Ti = 1).

DGP: Quad-Quad (p = 50)

L2 Error Comparison:

model θ̂DDR θ̂orac θ̂full θ̂cc

m̂: linear
π̂: logit 0.460 (0.026) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.204 (0.137) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

m̂: quad
π̂: logit 0.071 (0.010) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.072 (0.011) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

m̂: SIM
π̂: logit 0.323 (0.019) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.172 (0.078) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

Inference:

m̂: linear m̂:quad m̂: SIM m̂: linear m̂:quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.94 (0.03) 0.94 (0.03) 0.94 (0.03) 0.68 (0.39) 0.93 (0.03) 0.80 (0.19)
π̂: quad 0.96 (0.02) 0.94 (0.03) 0.95 (0.02) 0.96 (0.02) 0.94 (0.02) 0.95 (0.02)
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Investigating Double Robustness via Large Sample Results (p = 500)

Consider n = 50000 and p = 500. In addition, also consider the complete
case estimator θ̂cc (obtained by using only the data with Ti = 1).

DGP: Quad-Quad (p = 500)

L2 Error Comparison:

model θ̂DDR θ̂orac θ̂full θ̂cc

m̂: linear
π̂: logit 0.297 (0.017) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)
π̂: quad 0.282 (0.113) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)

m̂: quad
π̂: logit 0.177 (0.008) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)
π̂: quad 0.180 (0.010) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)

m̂: SIM
π̂: logit 0.407 (0.022) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)
π̂: quad 0.294 (0.045) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)

Inference:

m̂: linear m̂:quad m̂: SIM m̂: linear m̂:quad m̂: SIM
Average Covg. Prob. (zero coeffs.) Average Covg. Prob. (non-zero coeffs.)

π̂: logit 0.95 (0.02) 0.95 (0.02) 0.95 (0.02) 0.78 (0.32) 0.94 (0.02) 0.75 (0.38)
π̂: quad 0.95 (0.02) 0.95 (0.02) 0.95 (0.02) 0.94 (0.04) 0.94 (0.02) 0.88 (0.12)
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