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In this paper, we consider high dimensional M -estimation prob-
lems in settings where the response Y is possibly missing at random
and the covariates X ∈ Rp can be high dimensional compared to the
sample size n (including p� n), settings that are of great relevance
in a variety of modern studies. The parameter of interest θ0 ∈ Rd is
defined simply as the minimizer of the risk of a convex loss, under a
fully non-parametric model, and θ0 itself is high dimensional which
is a key distinction from existing works in the relevant literature (e.g.
estimation of means or average treatment effects in high dimensional
settings). As special cases, our framework includes all standard high
dimensional regression and series estimation problems with possibly
misspecified models and missing Y . Under an equivalent formulation
of this setting based on ‘potential’ outcomes in causal inference, these
parameters also have important applications in heterogeneous treat-
ment effects estimation that are of interest in precision medicine.

Assuming θ0 is s-sparse (s� n), we propose to estimate θ0 via an
L1-regularized debiased and doubly robust (DDR) estimator based on
a high dimensional adaptation of traditional double robust (DR) es-
timators’ construction along with careful use of debiasing and sample
splitting. Under mild tail assumptions and arbitrarily chosen (work-
ing) models for the propensity score (PS) and the outcome regression
(OR) estimators, satisfying only some high-level consistency condi-
tions, we establish finite sample performance bounds for the DDR
estimator showing its (optimal) L2 error rate to be

√
s(log d)/n when

both working models are correct, and its consistency and DR proper-
ties when only one of them is correct. Further, when both models are
correct, we propose a desparsified version of our DDR estimator that
satisfies an asymptotic linear expansion and facilitates inference on
low dimensional components of θ0. Finally, we discuss various choices
of high dimensional parametric and semi-parametric working models
for the PS and OR estimators and establish their properties needed
for our main results. All results are validated via detailed simulations.
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1. Introduction. Large and complex observational data are common-
place in the modern ‘big data’ era. Statistical analyses of such datasets often
poses unique challenges that has led to a plethora of work in recent times. In
particular, two such frequently encountered challenges include: (a) high di-
mensional settings, wherein the dimension of the observed covariates is often
comparable to or far exceeds the available sample size, and (b) potential in-
completeness in the data, especially in the outcome (or response) variable of
interest. Both these issues arise naturally (and often concurrently) whenever
observations are easily available for several covariates but the corresponding
response is difficult and/or expensive to obtain. The latter could be due to
practical constraints (e.g. logistics, time, cost etc.) or simply by ‘design’ (e.g.
any treatment-response data setting in causal inference, where the response
is automatically unobserved for any untreated individual). All these scenar-
ios are routinely encountered in a variety of modern studies involving large
databases, including biomedical data like electronic health records, or eQTL
mapping studies in integrative genomics involving gene expression data, as
well as in econometrics (e.g. policy evaluation). Further, owing to the very
observational nature of the data, the underlying missingness (or ‘treatment’
assignment) mechanism is often informative (i.e. not randomized) and de-
pends on the covariates which leads to further complexities of selection bias
and confounding issues. Appropriate accounting of such biases is essential
to ensure the validity of any subsequent statistical analyses and inference.

For issue (a) above, both estimation and inference under high dimensional
settings, but with complete data, are by now quite well studied and equipped
with a vast and growing literature centered around regularized methods and
sparsity; see Bühlmann and Van De Geer (2011) and Wainwright (2019) for
an overview. For issue (b) as well, under classical (low dimensional) settings,
there has been substantial work leading to a rich body of literature on semi-
parametric inference for incomplete response data. We refer to Tsiatis (2007)
and Bang and Robins (2005) for a review, as well as the fundamental works of
Robins, Rotnitzky and Zhao (1994) and Robins and Rotnitzky (1995). Even
under high dimensional settings, there has been a recent surge of work aimed
at an analogous treatment of these problems but mostly in cases where the
parameter of interest is still low dimensional (typically, the mean response)
(Farrell, 2015; Belloni et al., 2017; Chernozhukov et al., 2018a). In this paper,
we consider a more challenging and unique setting that essentially represents
a confluence of all the issues highlighted above, combined with the fact the
parameter of interest itself is high dimensional, something that has received
relatively limited attention as of now. We first formalize our basic setup and
the problem of interest, followed by an overview of our contributions.
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1.1. Problem Setup, Available Data and the Basic Assumptions. Let Y ∈
R and X ∈ Rp denote an outcome variable and a covariate vector of interest
respectively, with supports Y ⊆ R and X ⊆ Rp neither of which necessarily
need to be continuous. In practice, however, Y may not always be observed
and let T ∈ {0, 1} denotes the indicator of Y being observed. Z := (T, Y,X)
is assumed to be defined jointly under some probability measure P(·), while
the observable random vector is: Z := (T, TY,X). The observed data Dn :=
{Zi ≡ (Ti, TiYi,Xi) : i = 1, . . . , n} consists of n independent and identically
distributed (i.i.d.) realizations of Z with joint distribution defined via P(·).
We emphasize here that our focus is on high dimensional settings, where the
covariate dimension p is allowed to diverge with n (possibly, faster than n).

Assumption 1.1 (Basic assumptions). We assume throughout two basic
conditions which are both fairly standard in the literature (Imbens, 2004).

(a) Ignorability: T ⊥⊥ Y |X, so that the missingness mechanism may depend
on X, but is conditionally independent of Y given X. This is also referred
to often as the missing at random (MAR) assumption in the literature.

(b) Positivity/overlap: let π(X) := P(T = 1|X) denote the propensity score
(Rosenbaum and Rubin, 1983), and let π := P(T = 1). Then, we assume:

(1.1) π(x) ≥ δπ > 0 ∀ x ∈ X , for some constant δπ ∈ (0, 1].

Hence, the probability of observing Y given X is always strictly positive.

The MAR assumption in 1.1 (a) also includes the special case T ⊥⊥ (Y,X),
commonly known as missing completely at random (MCAR). In such cases,
π(·) simply equals the constant π from part (b). In general, π(·) is allowed to
depend on X and may be unknown in practice when it needs to be estimated.

The framework and notations above are in accordance with the standard
treatment in the missing data literature (Tsiatis, 2007). However, the setting
also encompasses problems in causal inference under the ‘potential’ outcome
framework. These may be equivalently formulated as missing data problems,
a fact well known in the literature. We briefly discuss this equivalence below.

Causal inference under ‘potential’ outcomes framework. In this setting, the
observable vector is Z := (T,Y,X), where T ∈ {0, 1} denotes a binary ‘treat-
ment’ assignment indicator (can be any kind of assignment or intervention)
and Y := TY (1)+(1−T )Y (0) denotes the observed outcome with (Y (1), Y (0))
being the true ‘potential’ outcomes (Rubin, 1974; Imbens and Rubin, 2015)
for T = 1 and T = 0 respectively. Thus, for each potential outcome, this cor-
responds to our setting if we set (Y, T ) ≡ (Y (1), T ) or (Y, T ) ≡ (Y (0), 1−T ).
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It is also worth noting that in the causal inference (CI) literature, X is often
referred to as ‘confounders’ (in observational studies) or ‘adjustment’ vari-
ables (in randomized trials), while the MAR assumption is often known as
no unmeasured confounding (NUC) and MCAR as complete randomization.

1.2. High Dimensional M-Estimation. We next introduce our main prob-
lem of interest under this setting. Let L(Y,X,θ) : R×Rp ×Rd → R be any
‘loss’ function that is convex and differentiable in θ, and we assume that
[E{L(Y,X,θ)}2] <∞ ∀ θ ∈ Rd. Then, the M -estimation problem considers
the estimation of the minimizer θ0 ∈ Rd of the risk function defined by L(·).
Specifically, we aim to estimate the functional θ0 ≡ θ0(P) ∈ Rd defined as:

(1.2) θ0 ≡ θ0(L,P) := arg
θ∈Rd

min L(θ), where L(θ) := E {L(Y,X,θ)} .

Here, d is allowed to be high dimensional, i.e. d can diverge with n (possibly
faster). We assume without loss of generality (w.l.o.g.) that d ≥ 2. The exis-
tence and uniqueness of θ0 is implicitly assumed given the generality of the
framework considered. For most standard examples, this is fairly straight-
forward to establish with L(·) being convex and sufficiently smooth in θ. For
convenience of further discussion, let us define: ∀ y ∈ Y, x ∈ X and θ ∈ Rd,

φ(x,θ) := E{L(Y,X,θ) |X = x} and ∇L(y,x,θ) :=
∂

∂θ
L(y,x,θ) ∈ Rd.

Remark 1.1. It is important to note that θ0 in (1.2) is defined under a
fully non-parametric family of P without any restrictions (upto Assumption
1.1 and basic moment conditions). Hence, the framework is semi-parametric
and model free in this sense with θ0(P) well-defined for every P without any
model assumptions for Y |X (even though θ0 may sometimes be ‘motivated’
by such ‘working’ models for Y |X, as in the case of regression problems).

Further, the framework also highlights the necessity of accounting for the
incompleteness of Dn. If one simply ignores it and chooses to estimate θ0 via
risk minimization in the complete part of the data (i.e. observations with T =
1), then the corresponding ‘complete case’ (CC) estimator will, in general,
be inconsistent for θ0 since the target parameter for this estimator is simply
the minimizer of E{L(Y,X,θ)|T = 1} which bears no direct relation to the
unconditional minimizer θ0 in (1.2). The only cases when the CC estimator
will just so happen to be consistent for θ0 is if either T ⊥⊥ (Y,X), i.e. MCAR
holds (hence, there is no selection bias), or if E{∇L(Y,X,θ0)|X} = 0 almost
surely (a.s.) [PX]. In case of regression problems, the latter implies a correctly
specified parametric model holds for E(Y |X) with the ‘true’ parameter being
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θ0. Both these cases, however, correspond to additional restrictions on P. In
general, for consistent estimation of θ0 over the entire large family of P where
it is defined, appropriate accounting of the missingness is thus necessary.

Finally, it is worth mentioning that a special low dimensional case of (1.2)
is the mean estimation problem where θ0 = E(Y ) with L(Y,X,θ) = (Y −θ)2

and d = 1. In causal inference under the ‘potential’ outcome framework, this
also corresponds to the average treatment effect (ATE) estimation problem.
Both versions of this problem have by now been extensively studied in classi-
cal as well as high dimensional settings, especially the latter in recent times.
We defer a detailed literature review to Section 1.4 and only point out here
that the key distinction between this literature and our setting is that our
parameter of interest θ0 in (1.2) is itself high dimensional (apart from X).

1.3. Some Applications. The framework (1.2) encompasses a broad range
of important problems. We enlist below a few useful examples for illustration.

1. High dimensional regression with possibly misspecified models and missing
outcomes. (1.2) includes all standard high dimensional regression problems,
where we further allow for: (i) potentially misspecified (working) models and
(ii) Y to be partly unobserved. For instance, set θ = (a,b) and L(Y,X,θ) :=
l(Y, a+b′X) in (1.2), with a ∈ R, b ∈ Rp and l(u, v) : R×R→ R being some
loss function convex and differentiable in v. Typical choices of l(·, ·) include
the ‘canonical’ losses leading to standard regression problems as follows.

(a) The squared loss: l(u, v) ≡ lsq(u, v) := (u− v)2 (for linear regression).
(b) The logistic loss: l(u, v) ≡ llog(u, v) := −uv+log{1+exp(v)} (for logistic

regression) and exponential loss: l(u, v) ≡ lexp(u, v) := −uv+exp(v) (for
Poisson regression), used often for binary or count valued Y respectively.

In all examples, θ0 is model free and is well defined regardless of the validity
of any motivating parametric (working) model for Y |X. In general, it simply
corresponds to the ‘projection’ of E(Y |X) onto that working model space.

As an extension, one may also consider any (model free) series estimation
problem by replacing X above with Ψ(X) := {ψj(X)}dj=1, a vector (possibly
high dimensional) of d basis functions comprising transformations (possibly
non-linear) of X. We may analogously set L(Y,X,θ) := l{Y,Ψ(X)′θ} with
the same choices of l(·, ·) as above. A frequently used choice of Ψ(·) includes
the polynomial bases: Ψ(X) := {1,xkj : 1 ≤ j ≤ p, 1 ≤ k ≤ d0}, for any fixed
degree d0 ≥ 1 whereby d = pd0 + 1. The special case of d0 = 1 (linear bases)
leads to all the earlier examples, while d0 = 3 leads to the cubic spline bases.

2. High dimensional single index models (SIMs) with elliptically symmetric
designs. Another interesting application of (1.2) lies in signal recovery in
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SIMs with elliptically symmetric designs that satisfy a certain ‘linearity con-
dition’. To this end, consider the SIM Y = f(β′0X, ε), where f(·) : R2 → Y is
an unknown link function, ε ⊥⊥ X is a random noise (so that Y ⊥⊥ X|β′0X)
and β0 denotes the unknown index parameter (identifiable only upto scalar
multiples). Now, consider any of the regression problems introduced in Ex-
ample 1 and assume further that X has an elliptically symmetric distribution
(e.g. Gaussian). Then, θ0 ≡ (a0,b0) defined therein satisfies: b0 ∝ β0. This
result, first noted by Li and Duan (1989), provides an ‘easy’ route to signal
recovery in SIMs, especially in high dimensional settings and with missing
outcomes. This also serves as a classic example where the parameter θ0 is
defined based on a misspecified parametric model and yet, it has direct inter-
pretability relating it to a parameter characterizing a larger semi-parametric
model and allows one to still simply use (1.2) for signal recovery in a SIM.

3. Applications in causal inference (heterogeneous treatment effects). All the
problems in Examples 1 and 2 also have equivalent counterparts in causal
inference under the ‘potential’ outcome framework discussed in Section 1.1.
In this setting, these problems have important applications in the estimation
of heterogeneous treatment effects which is of great interest in personalized
medicine. Fundamentally, this problem relates to estimation of the average
conditional treatment effect (ACTE): ∆(X) := E{Y(1)−Y(0) |X}. In classical
settings, estimation of ∆(X) via non-parametric machine learning methods
has received considerable attention in recent times, including use of random
forests or neural networks (Wager and Athey, 2017; Farrell, Liang and Misra,
2018). However, in a ‘truly’ high dimensional setting, wherein p diverges with
n (possibly, at a comparable or faster rate), fully non-parametric approaches
may not be feasible and/or efficient. In such cases, it is often more reasonable
to focus on (model free) projections of ∆(X) on finite (but high) dimensional
function spaces. For the space of linear functions of X, this leads to the
linear heterogeneous treatment effects estimation problem. Such ideas and
problems have indeed been advocated and considered in the recent works of
Chernozhukov et al. (2017a) and Chernozhukov and Semenova (2017).

In our framework, this simply corresponds to the linear regression problem
discussed in Example 1 (when adapted to the CI setup). Furthermore, under
our setting, one can consider even more general problems by focussing on
non-linear basis function spaces (e.g. series estimation) and/or other loss
functions (e.g. logistic regression). These problems precisely correspond to
the other illustrations in Example 1. On the other hand, using the illustration
in Example 2, one may also consider ACTE estimation based on SIMs which
provide clear generalizations over standard parametric models and yet, to the
best of our knowledge, has received relatively less attention in the literature.
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1.4. Overview of Related Literature and Summary of Our Contributions.
Our work contributes to two distinct lines of literature: (i) high dimensional
M -estimation and inference, and (ii) semi-parametric ‘doubly robust’ infer-
ence for incomplete (and high dimensional) data. As regards the first line of
work, for a complete data, M -estimation problems are quite well studied in
both classical and high dimensional settings; see Van der Vaart (2000) for an
overview of the vast classical literature and Negahban et al. (2012); Loh and
Wainwright (2012, 2015); Loh (2017) for some of the more recent advances in
high dimensional settings. Relatively little work, however, has been done for
the case of incomplete (in the response) data, especially in high dimensional
settings. In classical low dimensional settings, inference with incomplete data
has a rich literature on semi-parametric methods and so called ‘doubly ro-
bust’ inference. We refer to Bang and Robins (2005); Tsiatis (2007); Kang
and Schafer (2007) and Graham (2011) for a review. Some of the pioneering
works in this area were by Robins, Rotnitzky and Zhao (1994); Robins and
Rotnitzky (1995) and some of their ensuing works on other related problems
which we skip here for brevity. In recent times, there has also been substan-
tial interest in the extension of these approaches to high dimensional settings
leading to a flurry of papers, including Belloni, Chernozhukov and Hansen
(2014), Farrell (2015), Belloni et al. (2017), Chernozhukov et al. (2018a) and
Athey, Imbens and Wager (2016), among many other notable ones which we
don’t attempt to enlist here. However, their focus has still mostly been on
simple low dimensional parameters like the mean (or the ATE) and less on
cases where the parameter itself is high dimensional. This is one of the key
distinctions of our framework. To our best knowledge, only Chernozhukov
and Semenova (2017) and Chernozhukov et al. (2018b) have recently con-
sidered settings of a similar sort. While the former considers only the special
case of linear regression and that too under a moderate dimensional setting
(with d�

√
n), the latter certainly allows for a more general framework but

their approach is also somewhat abstract. Our approach is more detailed and
targeted specifically towards the missing data setting, where we provide a
complete hands-on solution to the problem (1.2). Further, another key con-
tribution of our work is to provide inferential tools for our estimator which
hasn’t been considered therein or any other existing work for that matter.

Our main contributions can be summarized in three different facets: (i) es-
timation, (ii) inference and (iii) estimation of the nuisance functions. Adopt-
ing a semi-perspective (as in Remark 1.1) and assuming θ0 is s-sparse (with
s� n), we propose to estimate θ0 via an L1-regularized debiased and doubly
robust (DDR) estimator based on a high dimensional adaptation of the tra-
ditional double robust (DR) estimator’s construction, along with careful use
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of debiasing and sample splitting techniques. The DDR estimator serves as
the appropriate generalization of standard (low dimensional) DR estimators
(Bang and Robins, 2005; Chernozhukov et al., 2018a) for high dimensional
parameters. We also present a simple user friendly implementation algorithm
for these estimators which can be achieved with standard software packages.
The ambient high dimensionality (of both X and θ0) coupled with the miss-
ingness of Y and the unavoidable presence of other nuisance function esti-
mators (possibly also high dimensional) makes the analyses challenging and
substantially nuanced compared to the low dimensional case. Under mild tail
assumptions and arbitrarily chosen (working) models for estimating the two
nuisance functions, the propensity score (PS) and the outcome regression
(OR) function, satisfying only some high-level (pointwise) consistency condi-
tions, we establish finite sample performance bounds for the DDR estimator
showing its (optimal) L2 error rate to be

√
s(log d)/n when both working

models are correct, and its consistency and DR properties when only one
of them is correct. Further, the estimators are first order insensitive to any
estimation errors or knowledge of construction of the PS and OR estima-
tors, thus allowing the use of non-smooth high dimensional and/or adhoc
non/semi-parametric estimators with unclear first order properties. Further,
when both models are correct, we propose a desparsified version of our DDR
estimator that satisfies an asymptotic linear expansion (ALE) and facilitates
inference on low dimensional components of θ0. The desparsified DDR esti-
mator is similar (in spirit) to a Debiased Lasso type approach (van de Geer
et al., 2014; Javanmard and Montanari, 2014) and serves as its appropriate
generalization in the missing data setting. Furthermore, the ALE it achieves
is semi-parametric optimal and matches the ‘efficient’ influence function for
this problem. Finally, we also discuss various novel and flexible choices of the
nuisance function estimators, including common high dimensional paramet-
ric models, as well as more general semi-parametric models based on series
estimators and single index models. We also establish general results for all
these estimators under high dimensional settings that verify their properties
needed for our main results and may also be of independent interest. All our
results regarding estimation, inference and the DR properties are validated
via extensive simulation studies over various data settings, nuisance function
(working) models and comparisons with other (optimal) oracle estimators.

Organization. The rest of this paper is organized as follows. In Section 2,
we detail our estimation strategy, including preliminaries on DR estimation,
followed by construction and implementation of the DDR estimator as well
as deterministic deviation bounds on its performance. Section 3 contains our
main results (Theorems 3.1-3.4), and the associated high-level assumptions,
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regarding convergence rates of the DDR estimator via non-asymptotic prob-
abilistic bounds for various error terms. In Section 4, we discuss inference via
the deparsified DDR estimator and establish all its properties in Theorem
4.1. In Section 5, we discuss various choices of the nuisance function estima-
tors and also establish their properties through Theorems 5.1-5.3. Finally,
the simulation results are presented in Section 6, followed by a concluding
discussion in Section 7. In the Supplementary Material (Appendices A-K),
we collect several important materials that could not be accommodated in
the main manuscript, including discussions on DR properties of the estima-
tor, additional numerical results and all technical materials and discussions,
including proofs for all the main results and associated supporting lemmas.

2. Estimation Strategy: A General Approach Based on L1- Reg-
ularized Debiased and Doubly Robust (DDR) Loss Minimization.

Notations. We use the following general notations throughout. For any v ∈
Rd, ‖v‖r denotes the Lr vector norm of v for any r ≥ 0, −→v denotes (1,v′)′ ∈
Rd+1, v[j] denotes the jth coordinate of v ∀ 1 ≤ j ≤ d, A(v) := {j : v[j] 6= 0}
denotes the support of v and sv := |A(v)| denotes the cardinality of A(v).
For any J ⊆ {1, . . . , d} and v ∈ Rd, we let ΠJ (v) := [v[j]1{j ∈ J }]dj=1 ∈ Rd,
MJ := {v ∈ Rd : A(v) ⊆ J} and M⊥J := {v ∈ Rd : A(v) ⊆ J c}, where
J c := {1, . . . , d}\J denotes the complement of J . We use the shorthand
Πv(·) and Πc

v(·) to denote ΠA(v)(·) and ΠAc(v)(·) respectively. Further, for
any measurable (and possibly random) function f(·) of X, we let ‖f(·)‖r :=
[EX{|f(X)|r}]1/r denote the Lr norm of f(·) with respect to (w.r.t.) PX for
any r ≥ 1 and ‖f(·)‖∞ := supx∈X |f(x)| denote the L∞ norm w.r.t. PX. For
any sequences an, bn ≥ 0, we use an . bn to denote an ≤ Cbn and an � bn to
denote cbn ≤ an ≤ Cbn for all n ≥ 1 and some constants c, C > 0. Finally,
an � bn denotes an = o(bn) and an � bn denotes bn = o(an) as n→∞.

2.1. Identification and Alternative Representations of the Expected Loss.
We next provide three alternative representations of L(·) in terms of the ob-
servables (T, TY,X) and some nuisance functions identifiable through them.
These representations also underlie three fundamental estimation strategies
typically adopted in the literature for these problems, namely inverse proba-
bility weighting (IPW) involving the propensity score π(·), regression based
imputation (REG) involving the conditional mean φ(·, ·), and ‘doubly robust’
(DR) methods that use both IPW as well as regression based imputation and
provide the benefits of (double) robustness against model misspecification
in the estimation of either one of the two nuisance functions π(·) and φ(·, ·).
DR estimators are also known to be (locally) semi-parametric optimal when
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both nuisance function estimation models are correctly specified. We refer to
Robins, Rotnitzky and Zhao (1994); Robins and Rotnitzky (1995); Imbens
(2004); Bang and Robins (2005); Kang and Schafer (2007); Tsiatis (2007)
and Graham (2011) for a detailed review of the related classical literature.

IPW and regression based representations of L(·). For any θ ∈ Rd, we have:

L(θ) ≡ E{L(Y,X,θ)} = EX{φ(X,θ)} =: LREG(θ) (say), and

L(θ) ≡ E{L(Y,X,θ)} = E
{

T

π(X)
L(Y,X,θ)

}
=: LIPW(θ) (say).

Debiased and doubly robust (DDR) representation of L(·). It also holds that:

L(θ) = EX{φ(X,θ)}+ E
[

T

π(X)
{L(Y,X,θ)− φ(X,θ)}

]
(2.1)

=: LDDR(θ) (say) ∀ θ ∈ Rd.

Further, for any functions φ∗(X,θ) and π∗(X) such that φ∗(·, ·) = φ(·, ·) or
π∗(·) = π(·) holds, but not necessarily both, it continues to hold that:

(2.2) LDDR(θ) = EX{φ∗(X,θ)}+ E
[

T

π∗(X)
{L(Y,X,θ)− φ∗(X,θ)}

]
.

LDDR(·), unlike LIPW(·) and LREG(·), is thus DR as it is ‘protected’ against
misspecification of either π(·) or φ(·, ·), as in (2.2). Further, even when both
are correctly specified, it has a naturally ‘debiased’ form owing to the second
term in (2.1). While this term is simply 0 in the population version, it leads
to crucial first order benefits in the empirical version of the loss involving
the nuisance function estimators, where it has a debiasing effect making the
loss first order insensitive to any estimation errors of the nuisance functions.
Approaches based on other representations don’t enjoy these benefits which
can be especially crucial in high dimensional settings. Further discussions on
these nuances in a more general context can be found in the recent works of
Chernozhukov et al. (2016, 2017b, 2018a,b) and Chernozhukov, Newey and
Robins (2018) on the use of Neyman orthogonal scores for semi-parametric
inference in the presence of (unknown) high dimensional nuisance functions.

Finally, note that all three identifications above are fully non-parametric.
They follow from simple uses of Assumption 1.1 (and iterated expectations)
and require no further assumptions on P. The nuisance functions π(X) and
φ(X,θ) are both estimable from the observed data. π(X) is estimable from
the data on (T,X), while under MAR, φ(X,θ) = E{L(Y,X,θ)|X, T = 1) is
estimable from the ‘complete case’ data. Note that in some cases, φ(X,θ)



HIGH-DIMENSIONAL M-ESTIMATION WITH MISSING OUTCOMES 11

may itself involve E(Y |X). While the latter may sometimes also ‘motivate’
the definition of θ0 in (1.2), as in regression problems based on parametric
(working) models for E(Y |X), this should not be confused in any way with
its role as a nuisance function in the identifications of L(·) above. In fact, it
plays the same role as a nuisance function here as it does for the special case
of the mean/ATE estimation problem, where this role (and its importance)
is very well understood and it is common practice to estimate these nuisance
functions and use them to implement the DR type estimators. We emphasize
that the same principle (and practice) continue to apply here for the general
problem (1.2) and it should not be confused with the other (unrelated) issue.

2.2. Simplifying Structural Assumptions. For simplicity, we shall assume
henceforth a structure on the derivative of L(Y,X,θ) w.r.t. θ as follows. For
some functions h(X) ∈ Rd and g(X,θ) ∈ R, we assume it takes the form:

(2.3) ∇L(Y,X,θ) ≡ ∂

∂θ
L(Y,X,θ) = h(X){Y − g(X,θ)}.

The structural assumption in (2.3) is mostly for simplicity in the theoretical
analyses of our proposed estimator. This form is satisfied by most standard
loss functions used in practice, including the examples given in Section 1.2.
Extensions of our results to loss functions with more general structures may
also be obtained easily albeit at the cost of less tractable technical conditions.

Under (2.3), the loss function L(Y,X,θ) therefore takes the form:

(2.4) L(Y,X,θ) = {h(X)′θ}Y − f(X,θ) + C(Y,X), where

f(X,θ) is the anti-derivative of h(X)g(X,θ) w.r.t. θ and C(Y,X) is some
function independent of θ, e.g. C(Y,X) := Y 2 for the squared loss. Hence,
φ(X,θ) = {h(X)′θ}E(Y |X)−f(X,θ)+mC(X) is convex and differentiable,
where mC(X) := E{C(Y,X)|X}, and ∇φ(X,θ) := ∂

∂θφ(X,θ) is given by:

(2.5) ∇φ(X,θ) = h(X){m(X)− g(X,θ)}, where m(X) := E(Y |X).

Thus, given any estimates {m̂(X), m̂C(X)} of {m(X),mC(X)}, one can
estimate φ(X,θ) as: φ̂(X,θ) := {h(X)′θ}m̂(X)−f(X,θ)+m̂C(X). Further,
φ̂(X,θ) is also convex and differentiable in θ and we have:

(2.6) ∇φ̂(X,θ) :=
∂

∂θ
φ̂(X,θ) = h(X){m̂(X)− g(X,θ)}.

Note that to compute φ̂(X,θ) explicitly, one needs both the estimates m̂(·)
and m̂C(·). However, the part of φ̂(X,θ) involving m̂C(·) is free of θ. Our pro-
posed estimator of θ in Section 2.3 is constructed based on an L1-regularized
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minimization (w.r.t. θ) of an objective function involving φ̂(·), whereby only
its gradient ∇φ̂(X,θ) is of interest and that depends only on m̂(X) due to
(2.6). Thus, the part of φ̂(·) involving m̂C(·) may be ignored for all practical
implementation purposes wherein we only require an estimator m̂(·) of m(·)
and an arbitrary choice of m̂C(·) to plug in and obtain the estimator φ̂(·).

2.3. The L1-Regularized DDR Estimator. Let {π̂(·), m̂(·)} be any rea-
sonable estimators of {π(·),m(·)}, and we assume that π̂(·) is obtained solely
from the data {(Ti,Xi)}ni=1 (see Appendix F for more discussions). Let φ̂(·, ·)
be the corresponding estimator of φ(·, ·) based on m̂(·). We use sample split-
ting to further construct ‘cross-fitted’ versions of m̂(·) and φ̂(·, ·) as follows.

Cross-fitted versions of m̂(·) and φ̂(·, ·) based on sample splitting. Let {D(1)
n ,

D(2)
n } denote a random partition (or split) of the original data Dn into K = 2

equal parts of size n̄ := n/2, where we assume w.l.o.g. that n is even. Further,

let I1 and I2 respectively denote the index sets for the observations in D(1)
n

and D(2)
n . Hence, we have

⋃K
k=1 Ik = I := {1, . . . , n} and

⋃K
k=1D

(k)
n = Dn.

Given any general procedure for obtaining m̂(·) and φ̂(·, ·) based on the
full observed data Dn, let {m̂(1)(·), φ̂(1)(·, ·)} and {m̂(2)(·), φ̂(2)(·, ·)} denote

the corresponding versions of these estimators based on D(1)
n and D(2)

n re-
spectively. Then, we define the cross-fitted estimates {m̃(Xi), φ̃(Xi,θ)}ni=1

of {m(Xi), φ(Xi,θ)}ni=1 at the n training points in Dn as follows:

{m̃(Xi), φ̃(Xi,θ)} =

{
{m̂(2)(Xi), φ̂

(2)(Xi,θ)} ∀ i ∈ I1, and

{m̂(1)(Xi), φ̂
(1)(Xi,θ)} ∀ i ∈ I2.

(2.7)

A detailed discussion regarding the benefits (and virtual necessity) of consid-
ering these cross-fitted estimators is given in Appendix F. Further insights
regarding the benefits of cross-fitting for general semi-parametric estimation
problems in the presence of nuisance components can also be found in Cher-
nozhukov et al. (2016, 2018a,b) and Newey and Robins (2018). However, note
also that we do not require sample splitting for constructing the estimates
{π̂(Xi)}ni=1 as long as π̂(·) is obtained only from the data on {(Ti,Xi)}ni=1.

Remark 2.1. While we focus here on the simple case of sample splitting
with K = 2, our notations and analyses are designed to easily accommodate
the general case of K-fold cross fitting for any fixed K ≥ 2. We stick to K = 2
for simplicity and brevity of our arguments. Finally, note that the estimator
θ̂DDR obtained via this cross-fitting procedure can also be replicated several
times over different splittings of Dn, and then suitably combined over these
replications to average out the (minor) randomness due to sample splitting.
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The estimator. Recall the DDR representation of the expected loss L(θ):

LDDR(θ) = EX{φ(X;θ)}+ E
[

T

π(X)
{L(Y,X,θ)− φ(X;θ)}

]
,

and define its empirical version, based on the estimates {φ̃(X,θ), π̂(Xi)}ni=1

plugged in, as follows. For any θ ∈ Rd, let us define the empirical DDR loss

LDDR
n (θ) :=

1

n

n∑
i=1

φ̃(Xi,θ) +
1

n

n∑
i=1

Ti
π̂(Xi)

{
L(Yi,Xi,θi)− φ̃(Xi,θ)

}
.(2.8)

With θ0 (and X) possibly high dimensional, we shall need to assume that
θ0 is sparse with sparsity much smaller than d when d� n. In general, we
denote the sparsity of θ0 as s := ‖θ0‖0 with 1 ≤ s ≤ d. We now propose to
estimate θ0 using the L1-regularized DDR estimator, θ̂DDR, given by:

(2.9) θ̂DDR ≡ θ̂DDR(λn) = arg min
θ∈Rd

{LDDR
n (θ) + λn‖θ‖1} ,

where LDDR
n (·) is as in (2.8) and λn ≥ 0 denotes the regularization (or tuning)

parameter. (For a classical setting with d� n, λn may be set to 0 if desired).

2.4. Simple Algorithm for Implementation. The estimator θ̂DDR in (2.9)
can be implemented using a simple user-friendly imputation type algorithm.

Given the observed data Dn and the estimates {π̂(Xi), m̃(Xi)}ni=1, define

a set of pseudo outcomes {Ỹi}ni=1 and the pseudo loss L̃DDR
n (θ) as follows:

(2.10)

Ỹi := m̃(Xi) +
Ti

π̂(Xi)
{Yi − m̃(Xi)} and L̃DDR

n (θ) :=
1

n

n∑
i=1

L(Ỹi,Xi,θ).

Clearly L̃DDR
n (·) is convex and differentiable, and under (2.3)-(2.6), it is easy

to see that ∇L̃DDR
n (θ) = ∇LDDR

n (θ), where for any f(·), ∇f(θ) := ∂
∂θf(θ).

Further, observe that the solution for the minimization in (2.9) is uniquely
determined by the underlying normal equations (the KKT conditions) which
only depend on the gradient of LDDR

n (·) and the subgradient of ‖ · ‖1. Hence,
the solution stays unchanged if LDDR

n (θ) in (2.9) is replaced by L̃DDR
n (θ) which

has the same gradient. Consequently, θ̂DDR in (2.9) may also be defined as:

(2.11) θ̂DDR ≡ θ̂DDR(λn) := arg min
θ∈Rd

{L̃DDR
n (θ) + λn‖θ‖1}.

Thus, if one ‘pretends’ to have a fully observed data D̃n := {(Ỹi,Xi)}ni=1

in terms of the pseudo outcomes Ỹi, then θ̂DDR can be simply obtained by a
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L1-penalized minimization of the corresponding empirical risk for L(·) based
on D̃n. This minimization is quite straightforward to implement and can be
done so using standard statistical software packages (e.g. ‘glmnet’ in R).

Note also that (2.11) confirms our earlier claim that although the estima-
tor φ̃(X,θ) involved in the definition (2.8) of LDDR

n (θ) may require estimation
of other nuisance functions (independent of θ) apart from m(X), the imple-
mentation of θ̂DDR via the minimization in (2.9), or equivalently the one in
(2.11), requires only an estimator of m(X), along with that of π(X).

2.5. Performance Guarantees: Deviation Bounds. We next provide a de-
terministic deviation bound regarding the finite sample performance of θ̂DDR

that serves as the backbone for most of our main theoretical analyses. We
begin with an assumption. Recall the notations introduced in Section 2.

Assumption 2.1 (Restricted strong convexity). We assume that the
loss function LDDR

n (θ) satisfies a restricted strong convexity (RSC) property
at θ = θ0, as follows: ∃ a (non-random) constant κDDR > 0 such that

δLDDR
n (θ0; v) ≥ κDDR‖v‖22 ∀ v ∈ C(θ0), where ∀ θ,v ∈ Rd,(2.12)

δLDDR
n (θ; v) := LDDR

n (θ + v)− LDDR
n (θ)− v′{∇LDDR

n (θ)}
and C(θ0) := {v ∈ Rd : ‖Πc

θ0
(v)‖1 ≤ 3‖Πθ0(v)‖1} ⊆ Rd.

Assumption 2.1, largely adopted from Negahban et al. (2012), is one of the
several restricted eigenvalue type assumptions that are standard in the high
dimensional statistics literature. While we assume (2.12) deterministically
for any realization of Dn, it can be relaxed with appropriate modifications to
only hold with high probability (w.h.p.). It is important to note that owing
to the very structure of LDDR

n (·) in (2.8) and the assumed structures in (2.3)-
(2.6) for L(·) and φ̃(·), the RSC condition (2.12) is completely independent
of the quantities depending on the missingness aspect of the problem, i.e.
δLDDR

n (θ0; v) in (2.12) is independent of {Ti, Yi}ni=1 as well as the nuisance
function estimates {π̂(Xi), m̃(Xi)}ni=1. In fact, it is the same as the corre-
sponding version one would obtain in the case of a fully observed data. This
fact also follows from the alternative definition of θ̂DDR in (2.11) based on the
pseudo outcomes and the pseudo loss L̃DDR

n (·) in (2.10). Thus, verifying (2.12)
is equivalent to verifying the same for a fully observed data which is quite
well studied (Negahban et al., 2012; Rudelson and Zhou, 2013; Lecué and
Mendelson, 2014; Kuchibhotla and Chakrabortty, 2018; Vershynin, 2018) for
several standard problems under fairly mild conditions. This thereby pro-
vides an easy route to verifying the RSC condition (2.12) under our setting.
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Lemma 2.1 (Deterministic deviation bounds for θ̂DDR). Assume L(·) is
convex and differentiable in θ and satisfies the form (2.3). Let Assumption
2.1 hold, with κDDR > 0 as defined therein, and recall that s := ‖θ0‖0. Then,
for any realization of Dn and for any choice of λ ≡ λn ≥ 2 ‖∇LDDR

n (θ0)‖∞,

(2.13) ‖θ̂DDR − θ0‖2 ≤ 3
√
s
λn
κDDR

and ‖θ̂DDR − θ0‖1 ≤ 12s
λn
κDDR

.

Convergence rates (informal statement). We establish via Theorems 3.1-3.4
later that under suitable assumptions (given in Section 3.2), ‖∇LDDR

n (θ0)‖∞
.
√

(log d)/n w.h.p. Hence, choosing λ ≡ λn �
√

(log d)/n, it follows that

‖θ̂DDR − θ0‖2 .

√
s log d

n
and ‖θ̂DDR − θ0‖1 . s

√
log d

n
w.h.p.

The deviation bounds (2.13), essentially an easy consequence of the results
of Negahban et al. (2012), deterministically relate the L2 and L1 error rates
of the estimator to the chosen λn and provides an easy recipe for establishing
its convergence rates by studying the same for the (random) lower bound of
λn given in Lemma 2.1. This is the main goal of Section 3, where we obtain
sharp non-asymptotic upper bounds for ‖∇LDDR

n (θ0)‖∞ converging to 0 at
satisfactory rates w.h.p. A choice of λn of the order of this bound guarantees
the requirement of λn ≥ 2 ‖∇LDDR

n (θ0)‖∞ in Lemma 2.1 to hold w.h.p. and
establishes the convergence rates, defined by the λn, for the bounds in (2.13).

Finally, note also that the (informal) bounds in the second part of Lemma
2.1 establish the obvious rate optimality of the estimator since it matches
the (well known) optimal estimation error rate for a fully observed data.

3. The Main Results for the DDR Estimator: Convergence Rate
and Probabilistic Bounds for

∥∥∇LDDR
n (θ0)

∥∥
∞. For most of our the-

oretical analyses of ‖∇LDDR
n (θ0)‖∞, we will assume that {π̂(·), m̂(·)} are

both correctly specified estimators of {π(·),m(·)}. The analysis even for this
case is involved (and necessarily non-asymptotic) due to the presence of the
nuisance function estimators and the inherent high dimensional setting.

Under possible misspecification of one of the estimators, the DR property
(in terms of consistency) of ‖∇LDDR

n (θ0)‖∞ and that of θ̂DDR(λn), for a
suitably chosen λn under Lemma 2.1, indeed follows due to the very nature
of construction of LDDR

n (·) and its population version LDDR(·) outlined in
(2.1)-(2.2). This DR property is well known in classical settings (Robins,
Rotnitzky and Zhao, 1994; Robins and Rotnitzky, 1995; Bang and Robins,
2005) and should also be expected to hold in high-dimensional settings under
suitable conditions. We discuss these DR properties further in Appendix A.
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One of the reasons behind considering the DDR representations LDDR(θ)
and LDDR

n (θ) is that apart from the obvious benefits of double robustness,
the DDR loss has a naturally ‘debiased’ form that provides crucial technical
benefits in controlling the associated error terms which are naturally ‘cen-
tered’ (in a certain sense) when both π̂(·) and m̂(·) are correctly specified, a
setting where other approaches such as IPW and REG type estimators are
also applicable in principle, but they don’t enjoy such technical benefits. The
advantages of such debiased representations, especially in high dimensional
settings, have also been studied in a more general context under the name of
Neyman orthogonalization in the recent works of Chernozhukov et al. (2016,
2017b, 2018a,b) and Chernozhukov, Newey and Robins (2018). The DDR
representation indeed (naturally) satisfies such an ‘orthogonal’ structure.

3.1. The Basic Decomposition. Let Tn := ∇LDDR
n (θ0) ∈ Rd with ‖Tn‖∞

being our quantity of interest. We first note a decomposition of Tn as follows.

Tn = T0,n + Tπ,n −Tm,n −Rπ,m,n

:=
1

n

n∑
i=1

T0(Zi) +
1

n

n∑
i=1

Tπ(Zi)−
1

n

n∑
i=1

Tm(Zi)−
1

n

n∑
i=1

Rπ,m(Zi),(3.1)

where T0(Z), Tπ(Z), Tm(Z) and Rπ,m(Z) with Z = (T,Y,X) are given by:

T0(Z) := {m(X)− g(X,θ0)}h(X) +
T

π(X)
{Y −m(X)}h(X)(3.2)

Tπ(Z) :=

{
T

π̂(X)
− T

π(X)

}
{Y −m(X)}h(X),(3.3)

Tm(Z) :=

{
T

π(X)
− 1

}
{m̃(X)−m(X)}h(X), and(3.4)

Rπ,m(Z) :=

{
T

π̂(X)
− T

π(X)

}
{m̃(X)−m(X)}h(X).(3.5)

In the decomposition (3.1), T0,n denotes the leading (first order) term, while
Tπ,n and Tm,n denote the main error terms accounting for the estimation
errors of π̂(·) and m̂(·) respectively, and Rπ,m,n is a second order bias term
involving the product of the estimation errors of π̂(·) and m̂(·).

Summary of results. We control ‖Tn‖∞ by separately controlling ‖T0,n‖∞,
‖Tπ,n‖∞, ‖Tm,n‖∞ and ‖Rπ,m,n‖∞ through Theorems 3.1-3.4. The results
show that the convergence rate of ‖Tn‖∞ is determined primarily by that of
the leading term ‖T0,n‖∞ while the rates of the other three terms are of a
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(faster) lower order. In particular, we show that under suitable assumptions,

‖T0,n‖∞ .

√
log d

n
and ‖Tπ,n‖∞ + ‖Tm,n‖∞ + ‖Rπ,m,n‖∞ .

√
log d

n
o(1)

w.h.p. The results (proved in Appendices E-I) are all non-asymptotic (with
precise constants) and involve careful analyses via concentration inequalities
to account for the nuisance function estimators and the high dimensionality.

Remark 3.1 (Generality of the results). It is important to note that our
results here are completely free in terms of choice of the nuisance function
estimators. The analysis and the convergence rates are first order insensitive
to any estimation errors of the nuisance functions and hold regardless of any
knowledge of the construction and/or first order properties of the estimators,
as long as they satisfy some basic high-level conditions on their convergence
rates. This is also largely an artifact of the debiased form of the DDR loss.

3.2. The Assumptions Required. We first summarize the main assump-
tions required for controlling the various terms in (3.1). We begin with a few
standard assumptions on the tail behaviors of some key random variables.

Assumption 3.1 (Sub-Gaussian tail behaviors). (a) We assume that
ε(Z) := Y −m(X), ψ(X) := m(X) − g(X,θ0) and h(X) are sub-Gaussian
(as per Definition C.1 with α = 2 therein) with ‖ε‖ψ2 ≤ σε, ‖ψ(X)‖ψ2 ≤ σψ
and ‖h(X)‖ψ2 ≤ σh for some constants σε, σψ, σh ≥ 0.

(b) For controlling Tπ,n, we additionally assume that {ε(Z)|X} is (condi-
tionally) sub-Gaussian with ‖ε(Z)|X‖ψ2 ≤ σε(X) for some function σε(·) ≥ 0
such that ‖σε(·)‖∞ ≤ σε <∞ with σε being as in part (a) above.

Next, we discuss the basic high-level conditions we require regarding the
behavior and convergence rates of the nuisance function estimators π̂(·) and
m̂(·). Further discussions on the assumptions are given in Remarks 3.2-3.4.

Assumption 3.2 (Tail bounds on the pointwise behavior of π̂(·)− π(·)).
We assume that π̂(·) is obtained solely from the data Xn := {(Ti,Xi)}ni=1 ⊆
Dn, and for some sequences vn,π ≥ 0 with vn,π = o(1) and qn,π ∈ [0, 1] with
qn,π = o(1), π̂(·) − π(·) satisfies a (pointwise) tail bound at the n training
points {Xi}ni=1 as follows: for any t ≥ 0 and for some constant C ≥ 0,

(3.6) P{|π̂(Xi)− π(Xi)| > tvn,π} ≤ C exp(−t2) + qn,π ∀ 1 ≤ i ≤ n,

and we further assume that vn,π
√

log(nd) = o(1) and qn,π = o(n−1d−1).
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Assumption 3.3 (Pointwise tail bounds on m̂(·)−m(·)). For a generic
version of m̂(·) obtained from a data of size n (e.g. Dn), we assume that for
some sequences vn,m ≥ 0 with vn,m = o(1) and qn,m ∈ [0, 1] with qn,m = o(1),
m̂(·)−m(·) satisfies a (pointwise) tail bound at any fixed x ∈ X as follows:
for any t ≥ 0 and for some constant C > 0,

P{|m̂(x)−m(x)| > tvn,m} ≤ C exp(−t2) + qn,m, so that(3.7)

P{|m̂(k)(Xi)−m(Xi)| > tvn̄,m} ≤ C exp(−t2) + qn̄,m, ∀ k = 1, 2(3.8)

and Xi ∈ D(k′)
n ⊥⊥ D(k)

n with k′ 6= k ∈ {1, 2}, where n̄ := n/2 and m̂(k)(·)
denotes the version of m̂(·) obtained from D(k)

n with size n̄ ≡ n/2. Further,
we assume that vn̄,m

√
log(nd) = o(1) and qn̄,m = o(n−1d−1).

Remark 3.2. Assumptions 3.2 and 3.3 are both fairly mild and general
(high-level) conditions that should be expected to hold for most reasonable
estimators {π̂(·), m̂(·)} of {π(·),m(·)}. Note that (3.6), (3.7) and (3.8) are all
conditions on the pointwise behaviors of π̂(·)−π(·) and m̂(·)−m(·), and do
not require any uniform tail bounds over all x ∈ X , such as bounds on the
L∞ or L2 errors of {π̂(·), m̂(·)}. Such conditions are much stronger and also
generally harder to verify in high dimensional settings. We simply require
pointwise tail bounds for the errors π̂(Xi)−π(Xi) and m̂(x)−m(x), ensuring
that they have well-behaved tails. The sequences {vn,π, vn,m} indicate the
convergence rates of the estimators, while {qn,π, qn,m} in the probability
bounds allow to rigourously account for potential lower order terms.

Remark 3.3 (Sufficient conditions for Assumptions 3.2 and 3.3). In
general, for any estimator π̂(·) satisfying a high probability guarantee of the
form: |π̂(Xi)−π(Xi)| ≤ vn with probability at least 1− qn, the bound (3.6)
can be shown to hold with {vn,π, qn,π} ∝ {vn, qn}, through a simple use
of Hoeffding’s inequality (see Lemma C.7 in this regard). Similarly, for any
estimator m̂(·) satisfying a high probability bound: |m̂(x)−m(x)| ≤ vn with
probability at least 1− qn, the bounds (3.7)-(3.8) can be shown to hold with
{vn,m, qn,m} ∝ {vn, qn}. These high probability bounds are expected to be
satisfied by most reasonable estimators and hence, so are our assumptions.

Remark 3.4 (Examples). In Section 5, we discuss several choices of the
estimators π̂(·) and m̂(·) based on parametric families, ‘extended’ parametric
families (series estimators) and semi-parametric single index families. For all
these estimators, we establish precise tail bounds (see Theorems 5.1, 5.2 and
5.3) that are generally useful and should be of independent interest. Among
other implications, they also verify the bounds in Assumptions 3.2 and 3.3.



HIGH-DIMENSIONAL M-ESTIMATION WITH MISSING OUTCOMES 19

3.3. Controlling the Leading Order Term. The following result quantifies
the behavior and convergence rate of the first order term ‖T0,n‖∞ in (3.1).

Theorem 3.1 (Control of ‖T0,n‖∞). Under Assumptions 1.1 and 3.1 (a),

P
(
‖T0,n‖∞ >

√
2σ0ε+K0ε

2
)
≤ 4 exp

(
−nε2 + log d

)
for any ε ≥ 0,

where σ0 := 2
√

2σh(σψ+σεδ
−1
π ), K0 := 2σh(σψ+σεδ

−1
π ) and (δπ, σε, σh, σψ)

are as defined in the assumptions. In particular, setting ε = c
√

(log d)/n for

any constant c > 1, we have: with probability at least 1− 4d−(c2−1),

‖T0,n‖∞ ≤ c

√
log d

n

√
2σ0 + c2 log d

n
K0 .

√
log d

n
.

3.4. Controlling the Error Term from the Propensity Score’s Estimation.
Next, we propose the following result to control the error term Tπ,n in (3.1).

Theorem 3.2 (Control of ‖Tπ,n‖∞). Let Assumptions 1.1, 3.1 and 3.2
hold with (vn,π, qn,π) and (δπ, σε, σh, C) as defined therein. Then, for any
constants c, c1, c2, c3 > 1, where we assume c2vn,π

√
log(nd) ≤ δπ/2 < δπ and

c3

√
(log d)/n < 1 w.l.o.g., we have: with probability at least 1− 2d−(c2−1) −

4d−(c23−1) − 2C(nd)−(c21−1) − 2C(nd)−(c22−1) − 4qn,π(nd),

‖Tπ,n‖∞ ≤ c

√
log d

n
{vn,π

√
log(nd)}C1

(
‖µ(2)

h ‖∞
δπ

+ C2

√
log d

n

) 1
2

,

where ‖µ(2)
h ‖∞ := max1≤j≤d E{h2

[j](X)}, C1 := c1(4
√

2σε/δπ) and C2 :=

c3(
√

2σπ +Kπ) with σπ := 2
√

2σ2
hδ
−2
π and Kπ := 2σ2

hδ
−2
π being constants.

Remark 3.5. Theorem 3.2 therefore shows that ‖Tπ,n‖∞ .
√

(log d)/n
{vn,π

√
log(nd)} = o{

√
(log d)/n} w.h.p. In the proof of Theorem 3.2, we

also provide a general result (Theorem G.1) on tail bounds for Tπ,n.

3.5. Controlling the Error Term from the Conditional Mean’s Estimation.
We now control the error term Tm,n in (3.1) involving the cross-fitted esti-
mates {m̃(Xi)}ni=1 obtained via sample splitting, through the result below.

Theorem 3.3 (Control of ‖Tm,n‖∞). Let Assumptions 1.1, 3.1 (a) and
3.3 hold, with (vn̄,m, qn̄,m), n̄ ≡ n/2 and (δπ, σh, C) as defined therein. Then,
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for any constants c, c1, c2 > 1, where we assume c2

√
(log d)/n̄ < 1 w.l.o.g.,

with probability at least 1−4d−(c2−1)−8d−(c22−1)−4C(n̄d)−(c21−1)−4qn̄,m(n̄d),

‖Tm,n‖∞ ≤ c

√
log d

n
{vn̄,m

√
log(nd)}C∗1

(
‖µ(2)

h ‖∞ + C∗2

√
log d

n

) 1
2

,

where ‖µ(2)
h ‖∞ is as in Theorem 3.2, C∗1 := 4c1δ̄π and C∗2 :=

√
2c2(
√

2σm +
Km), with σm := 2

√
2σ2

h, Km := 2σ2
h and δ̄π ≤ δ−1

π being constants.

Remark 3.6. Theorem 3.3 therefore shows that ‖Tm,n‖∞ .
√

(log d)/n
{vn̄,m

√
log(nd)} = o{

√
(log d)/n} w.h.p. In the proof of Theorem 3.3, we

also provide a general result (Theorem H.1) on tail bounds for Tm,n.

3.6. Controlling The Lower Order Term. Finally, we control the second
order error (or bias) term Rπ,m,n in (3.1) through the following result.

Theorem 3.4 (Control of ‖Rπ,m,n‖∞). Let Assumptions 1.1, 3.1, 3.2
and 3.3 hold with (vn,π, qn,π), (vn̄,m, qn̄,m, n̄) and (δπ, C) as defined therein,
and assume that vn,πvn̄,m(log n) = o{

√
(log d)/n}. Then, for any constants

c1, c2, c3, c4 > 1 with c2vn,π
√

log n ≤ δπ/2 < δπ and c4

√
(log d)/n < 1, we

have: with probability at least 1−
∑3

j=1Cn
−(c2j−1)−2d−(c24−1)−2nqn,π−nqn̄,m,

‖Rπ,m,n‖∞ ≤ c1c3C̄1{vn,πvn̄,m(log n)}

(
‖µ|h|‖∞ + c4C̄2

√
log d

n

)
, where

‖µ|h|‖∞ := max1≤j≤d E{|h[j](X)|} and C̄1 := 2/δπ, C̄2 :=
√

2σπ,m + Kπ,m

are constants with σπ,m := 4σhδ
−1
π and Kπ,m := 2

√
2σhδ

−1
π .

Remark 3.7. Thus, Theorem 3.4 shows ‖Rπ,m,n‖∞ . vn,πvn̄,m(log n) =
o{
√

(log d)/n} w.h.p. where the last step is by assumption, a sufficient con-
dition for which is max{vn,π, vn̄,m}(log n)1/2 . {(log d)/n}1/4. Conditions of
this flavor are well known and standard in the mean (or ATE) estimation
literature, where they are routinely adopted to control these kind of second
order (product-type) bias terms (Farrell, 2015; Chernozhukov et al., 2018a).
In Theorem I.1, we provide a more general result on tail bounds for Rπ,m,n.

4. High Dimensional Inference via the DDR Estimator: Despar-
sification and Asymptotic Linear Expansion. We next discuss a debi-
asing/desparsification approach for the DDR estimator θ̂DDR which is useful
for establishing an estimator with an asymptotic linear expansion (ALE), a
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property not possessed by the L1-regularized shrinkage type estimator θ̂DDR.
Such expansions form the fundamental ingredients for high dimensional in-
ference as they automatically lead to asymptotic normality (and hence con-
fidence intervals, p-values, tests etc.) for low dimensional components of θ0,
thus paving the way for inference on θ0 among many other implications. For
a fully observed data (much unlike the setting we have here), such problems
have received substantial attention in recent times (van de Geer et al., 2014;
Javanmard and Montanari, 2014, 2018; Cai and Guo, 2017).

For simplicity, we restrict our discussion here to the case of the squared
loss: L(Y,X,θ) = {Y −Ψ(X)′θ}2 where Ψ(X) ≡ {Ψ[j](X)}dj=1 ∈ Rd denotes
some basis functions (possibly high dimensional) of X. While more general
loss functions can also be handled similarly, the corresponding results and
conditions can be technically more involved. We choose to skip such analyses
here given the scope and content of the current work. Note that L(·) satisfies
(2.3) with h(x) = −2Ψ(x) and g(x,θ) = Ψ(x)′θ. The case Ψ(X) = (1,X′)′

corresponds to standard linear regression. For convenience, let us also define:

Σ := E{Ψ(X)Ψ(X)′}, Σ̂ :=
1

n

n∑
i=1

Ψ(Xi)Ψ(Xi)
′ and Ω := Σ−1,

where we assume that E{‖Ψ(X)‖22} <∞ and Σ is positive definite, so that Σ
and the precision matrix Ω are both well-defined and well-conditioned. With
L(·) as above, note that we have: E{∇2L(Y,X,θ)} = 2Σ and its inverse is
1
2Ω for any θ, where for any function f(θ), ∇2f(θ) denotes its Hessian

matrix w.r.t. θ. Further, we also have: ∇2LDDR
n (θ) = ∇2L̃DDR

n (θ) = 2Σ̂.

4.1. The Desparsified DDR Estimator. Let Ω̂ be any reasonable estima-
tor of the precision matrix Ω based on the observed data Dn. Then, given
the original L1-regularized DDR estimator θ̂DDR in (2.9) or equivalently in
(2.11), we define the corresponding desparsified DDR estimator θ̃DDR as fol-
lows.

θ̃DDR := θ̂DDR −
1

2
Ω̂∇LDDR

n (θ̂DDR) ≡ θ̂DDR −
1

2
Ω̂∇L̃DDR

n (θ̂DDR)(4.1)

= θ̂DDR + Ω̂
1

n

n∑
i=1

{Ỹi −Ψ(Xi)
′θ̂DDR}Ψ(Xi), where

Ỹi ≡ m̃(Xi)+{Ti/π̂(Xi)}{Yi−m̃(Xi)} are the pseudo outcomes as in (2.10).
The desparsification step in (4.1) is similar in spirit to that of van de Geer

et al. (2014), while accounting for a more general and complex setting here
involving missing responses. It serves as the appropriate generalization of
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their approach when adapted to this setting. As seen from the representation
in the final step, the debiasing step still uses the full data but with the pseudo
outcomes Ỹi instead of the true Yi. For a fully observed data with Ỹi = Yi,
this indeed reduces to the usual Debiased Lasso estimator of Javanmard and
Montanari (2014). In addition, we also allow for misspecified models, non-
Gaussian settings and covariate transformations, unlike most of the relevant
existing literature (with the exception of Bühlmann and van de Geer (2015)).

It should be noted that the principle of debiasing has also been used exten-
sively in the classical semi-parametric inference literature, where it is often
called one-step update (Van der Vaart, 2000) and is used to obtain efficient
estimators starting from an initial (inefficient) estimator. In our setting, the
‘update’ is used more as a bias correction to obtain an estimator with an ALE
starting from a shrinkage estimator that has no such desirable properties.
In classical settings, such ALEs are also known as Bahadur representations.

Choice of Ω̂. Since the debiasing still involves the full data (with the pseudo
outcomes), the estimator Ω̂ is exactly the same as that used for a standard
fully observed data. This is again largely due to the structure of the DDR
loss (and the debiasing term therein). Consequently, one pays no price for the
missing outcomes as far as the estimation of Ω and the associated conditions
are concerned, and can borrow any standard precision matrix estimator from
the literature. Several such examples exist depending on the setting (low or
high dimensional). In the former case, one can simply choose Σ̂−1, while for
the latter, under sparsity assumptions on Ω, one can use the Nodewise Lasso
estimator of van de Geer et al. (2014), among other choices. For our results
on θ̃DDR, we only assume some high-level conditions on {Ω̂,Ω} and one is
free to use any estimator of Ω as long as those conditions are satisfied. We
next discuss these conditions (and some notations) followed by our results.

For any matrix Md×d, let M[i·] ∈ Rd denote its ith row and M[ij] denote

its (i, j)th entry. Let ‖M‖1 := max1≤i≤d
∑d

j=1 |M[ij]|, ‖M‖2 = λ
1/2
max(M′M)

and ‖M‖max := max1≤i,j≤d |M[ij]| denote the maximum rowwise L1 norm,
the spectral norm and the elementwise maximum norm of M respectively,
where λmax(·) denotes the maximum eigenvalue. Finally, recall the notations
T0,n,Tπ,n,Tm,n and Rπ,m,n defined in the decomposition (3.1) of Tn ≡
∇LDDR

n (θ0) and for convenience of further discussion, define:

Rn,1 := −1

2
(Ω̂−Ω)∇LDDR

n (θ0), Rn,2 := −Ω

2
(Tπ,n −Tm,n −Rπ,m,n)

Rn,3 := (Id − Ω̂Σ̂)(θ̂DDR − θ0) and let ∆n := (Rn,1 + Rn,2 + Rn,3).(4.2)
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Assumption 4.1 (High-level conditions on Ω and Ω̂}). We assume that:
(a) ‖Ω̂ − Ω‖1 = OP(rn) and ‖Id − Ω̂Σ̂‖max = OP (ωn) for some sequences
{rn, ωn} ≡ {rn,Ω, ωn,Ω} ≥ 0 with rn

√
log d = oP(1) and ωn(s

√
log d) = oP(1),

where s = ‖θ0‖0 and Id denotes the d× d identity matrix.

(b) Υ(X) := ΩΨ(X) is sub-Gaussian (as per Definition C.1 with α = 2) with
‖Υ(X)‖ψ2 ≤ σΥ < ∞, for some constant σΥ ≥ 0. Further, we assume that

v∗n = oP(1), where v∗n := (vn,π + vn̄,m)
√

(log d) log(nd) + n
1
2 vn,πvn̄,m(log n)

and {vn,π, vn̄,m} are the rates of {π̂(·), m̂(·)} defined in Assumptions 3.2-3.3.

Assumption 4.1 (a) imposes some general rate conditions on Ω̂. For most
common choices of Ω̂, including those discussed earlier, these lead to fairly
standard conditions. Under a low dimensional setting with Ω̂ = Σ̂−1, ωn = 0
trivially and rn = d/

√
n under suitable assumptions; see Vershynin (2018)

for relevant results. Under high dimensional settings, with Ω assumed to be
sparse and Ω̂ chosen to be the Nodewise Lasso estimator, ωn =

√
(log d)/n

and rn = sΩ
√

(log d)/n; see van de Geer et al. (2014) for relevant results. In
this case, the conditions read as: sΩ(log d) = o(

√
n) and s(log d) = o(

√
n).

These are all familiar (often unavoidable) conditions in the high dimensional
inference literature (Cai and Guo, 2017; Javanmard and Montanari, 2018).

The sub-Gaussianity condition on Υ(X) in Assumption 4.1 (b) is needed
to control the term Rn,2 in (4.2). Conditions of a similar flavor have also been
adopted implicitly or explicitly in van de Geer et al. (2014) and Javanmard
and Montanari (2014). The condition holds with σΥ to be a constant if either
‖Ω‖2 = O(1) and Ψ(X) is (vector) sub-Gaussian in the sense of Vershynin
(2018) with a O(1) norm, or if ‖Ω‖1 = O(1) and Ψ(X) is sub-Gaussian in the
(weaker) sense of Definition C.1 with a O(1) norm. Finally, the condition on
v∗n is the same (upto a

√
log d factor) as those needed for Theorems 3.2-3.4.

Theorem 4.1 (ALE and entrywise asymptotic normality of θ̃DDR). Un-
der Assumptions 1.1, 2.1, 3.1-3.3 and 4.1, and with ∆n as defined in (4.2),
L(·) assumed to be the squared loss and θ̂DDR constructed using a choice of
λn �

√
(log d)/n, the desparsified DDR estimator θ̃DDR satisfies the ALE:

(4.3) (θ̃DDR − θ0) =
1

n

n∑
i=1

Ω{ψ0(Zi)}+ ∆n, where E{ψ0(Z)} = 0 with

ψ0(Z) = {m(X)−Ψ(X)′θ0}Ψ(X) +
T

π(X)
{Y −m(X)}Ψ(X), and

‖∆n‖∞ = OP

(
rn

√
log d

n
+ v∗nn

− 1
2 + ωns

√
log d

n

)
= oP

(
n−

1
2

)
.
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Consequently, letting Γ0(Z) := Ωψ0(Z), σ2
0,j := E{Γ2

0[j](Z)} and assuming
that σ0,j > c0 ∀ j, for some constant c0 > 0, we have: for each 1 ≤ j ≤ d,

√
nσ−1

0,j (θ̃DDR[j] − θ0[j])
d→ N (0, 1) and

√
nσ̂−1

0,j (θ̃DDR[j] − θ0[j])
d→ N (0, 1),

where σ̂2
0,j :=

1

n

n∑
i=1

Γ̂2
0[j](Zi) satisfying max

1≤j≤d
|σ̂2

0,j − σ2
0,j | = oP(1).

Here Γ̂0[j](Zi) := Ω̂′[j·]ψ̂0(Zi), where ψ̂0(Zi) denotes the estimated version of

ψ0(Z) in (4.3) with {π(Xi),m(Xi),θ0} plugged in as {π̂(Xi), m̃(Xi), θ̂DDR}.

Theorem 4.1 therefore provides all the necessary inferential tools for θ̃DDR.
The ALE (4.3) is also optimal in a certain sense since the function Γ0(Z) ≡
Ωψ0(Z) defining the i.i.d. summand (also known as the influence function)
in the ALE is known to be the efficient influence function for estimating θ0

in a classical setting (d fixed) under a fully non-parametric (i.e. unrestricted,
upto Assumption 1.1) family of P and its variance equals the semi-parametric
optimal variance (Robins, Rotnitzky and Zhao, 1994; Robins and Rotnitzky,
1995; Graham, 2011). The same conclusions continue to hold in high dimen-
sional settings for low-dimensional components (e.g. each coordinate) of θ0.
Thus, θ̃DDR achieves the (coordinatewise) semi-parametric efficiency bound
and is optimal among all achievable estimators of θ0 admitting ALEs under
a non-parametric family of P. Furthermore, the asymptotic normality results
allow one to construct asymptotically valid (1−α) level confidence intervals:
CIj := θ̃DDR[j] ± zα/2σ̂0,j for each coordinate θ0[j] of θ0, where zα/2 denotes

the (1− α/2)th quantile of the N (0, 1) distribution with α ∈ (0, 1).

5. Estimation of the Nuisance Functions. In Sections 5.1-5.2, we
discuss various choices for the nuisance function estimators {π̂(·), m̂(·)} re-
quired for implementing our proposed methods. Our entire approach so far
does not require any specific knowledge of the construction or properties
of these estimators as long as they satisfy the high-level conditions in As-
sumption 3.2-3.3. Hence, one is free to use any choice of these estimators
based on high dimensional parametric or semi-parametric models, or even
non-parametric machine learning based estimators, as has been advocated
in many recent works for other related problems in similar settings (Farrell,
2015; Chernozhukov et al., 2018a; Farrell, Liang and Misra, 2018). However,
a fully non-parametric and/or machine learning based approach may not be
feasible or efficient in ‘truly’ high dimensional settings where p diverges with
n. In this section, we discuss a few novel, principled, and yet, flexible families
of choices for π̂(·) and m̂(·), including common parametric models, as well as
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series estimators and single index models. In Sections 5.3-5.4, we establish
general results for all these estimators under high dimensional settings that
verify our basic assumptions and may also be of independent interest.

5.1. Propensity Score Estimation: A Few Choices and Their Properties.
In some cases, π(·) may be known whereby π̂(·) ≡ π(·) trivially. When π(·)
is unknown, we consider the following (class of) choices for estimating π(·).

‘Extended’ parametric families (or high dimensional series estimators). We
assume that π(·) belongs to the family: π(x) ≡ E(T |X = x) = g{α′Ψ(x)},
where g(·) ∈ [0, 1] is a known ‘link’ function, Ψ(x) := {ψk(x)}Kk=1 is any set
of K (known) basis functions, possibly high dimensional with K allowed to
depend on n (including K � n), and α ∈ RK is an unknown parameter
vector that is further assumed to be sparse (if required).

Estimator. π(x) is then estimated as: π̂(x) = g{α̂′Ψ(x)}, where α̂ denotes
some given estimator of α obtained via any suitable estimation procedure
based on the observed data for (T,X) that satisfies a basic high-level re-
quirement that ‖α̂−α‖1 ≤ an w.h.p. for some sequence an = o(1).

Examples. The models above include, as a special case, any logistic regres-
sion model for T |X given by: π(x) = g{α′Ψ(x)}, where g(u) = gexpit(a) :=
exp(a)/{1 + exp(a)}. The estimator α̂ in this case maybe obtained using a
simple L1-penalized logistic regression of T vs. Ψ(X) based on the observed
data {Ti,Ψ(Xi)}ni=1. Using standard results from high dimensional regres-
sion theory (Bühlmann and Van De Geer, 2011; Negahban et al., 2012; Wain-
wright, 2019), it can be shown that under suitable assumptions (RSC and
exponential tail conditions), ‖α̂−α‖1 . an ≡ an(sα,K) := sα

√
(logK)/n

w.h.p., where sα := ‖α‖0 denotes the sparsity of α.
As for the basis functions Ψ(x), some reasonable choices include the poly-

nomial bases given by: Ψ(x) := {1,xkj : 1 ≤ j ≤ p, 1 ≤ k ≤ d0} for any
degree d0 ≥ 1. The special case d0 = 1 corresponds to the linear bases which
leads to all standard parametric models that are commonly used in practice.

The case when π(·) is constant. Note that the extended parametric frame-
work above also includes the special case where π(·) is unknown but constant
(i.e. the case of MCAR or complete randomization), in which case g(α′X)
simply equals the constant π and α is just an unknown parameter in R that
can be estimated at the rate of O(n−1/2) via the usual sample mean of T .

5.2. Estimation of the Conditional Mean: Choices and Their Properties.
We consider the following two (class of) choices for estimating m(·).
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1. ‘Extended’ parametric families (high dimensional series estimators). We
assume that m(·) belongs to the family: g{γ ′Ψ(X)} where g(·) is a (known)
‘link’ function (e.g. ‘canonical’ links functions), Ψ(X) := {ψk(X)}Kk=1 is any
set of K (known) basis functions, with K possibly high dimensional and
allowed to depend on n (including K � n), and γ ∈ RK is an unknown
parameter vector that is further assumed to be sparse (if required).

Estimator. We estimate m(x) ≡ E(Y |X) ≡ E(Y |X, T = 1) = g{γ ′Ψ(X)}
as: m̂(x) = g{γ̂ ′Ψ(X)}, where γ̂ denotes some given estimator of γ obtained
via any suitable estimation procedure based on the ‘complete case’ data

D(c)
n := {(Yi,Xi) | Ti = 1}ni=1 that satisfies a basic high-level requirement

that ‖γ̂ − γ‖1 ≤ an w.h.p. for some sequence an = o(1).

Examples. These models include, as special cases, all standard parametric
regression models with ‘canonical’ link functions, through suitable choices of
g(·) depending on the nature of Y (continuous, binary or discrete). Specif-
ically, g(u) ≡ gid = u (identity link), g(u) ≡ gexpit = exp(u)/{1 + exp(u)}
(expit/logit link) and g(u) ≡ gexp = exp(u) (exponential/log link) corre-
spond to the linear, logistic and Poisson regression models respectively.

As for the basis functions Ψ(x), some reasonable choices include the poly-
nomial bases given by: Ψ(x) := {1,xkj : 1 ≤ j ≤ p, 1 ≤ k ≤ d0} for any
degree d0 ≥ 1. The special case d0 = 1 corresponds to the linear bases which
leads to all standard parametric models, while d0 = 3 leads to cubic splines.

Examples of γ̂. For all the examples above, with g(·) being any ‘canonical’
link function, the estimator γ̂ of γ may be simply obtained through a corre-
sponding L1 penalized ‘canonical’ link based regression (e.g. linear, logistic

or Poisson regression) of Y vs. X in the ‘complete case’ data D(c)
n under

Assumption 1.1 (a). Using standard results from high dimensional regres-
sion (Bühlmann and Van De Geer, 2011; Negahban et al., 2012; Wainwright,
2019), it can be shown that under suitable assumptions (e.g. RSC and expo-
nential tail conditions) and Assumption 1.1, ‖γ̂ − γ‖1 . an ≡ an(sγ ,K) :=
sγ
√

(logK)/n w.h.p., where sγ := ‖γ‖0 denotes the sparsity of γ.

2. Semi-parametric single index models. We assume that m(·) satisfies the
SIM: m(X) ≡ E(Y |X) ≡ E(Y |X, T = 1) = g(γ ′X), where g(·) ∈ R is some
unknown ‘link’ function and γ ∈ Rp is an unknown parameter (identifiable
only upto scalar multiples) that is further assumed to be sparse (if required).

Estimator. Given any reasonable estimator γ̂ of the γ ‘direction’ obtained
fromDn, we estimatem(X) ≡ E(Y |γ ′X) ≡ E(Y |γ ′X, T = 1) = g(γ ′X) via a
one-dimensional kernel smoothing (KS) over the estimated scores {γ̂ ′Xi}ni=1,
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under appropriate smoothness and regularity assumptions, as follows.

m̂(x) ≡ m̂(γ̂ ′x) ≡ m̂(γ̂,x) :=

1
nh

∑n
i=1 TiYiK

(
γ̂′Xi−γ̂′x

h

)
1
nh

∑n
i=1 TiK

(
γ̂′Xi−γ̂′x

h

) ∀ x ∈ X ,

where K(·) : R → R is some suitable ‘kernel’ function and h ≡ hn > 0
denotes a bandwidth sequence with hn = o(1). Here, we only assume that γ̂
is some reasonable estimator of the γ direction satisfying a basic high-level
condition: ‖γ̂ − γ0‖1 ≤ an w.h.p. for some γ0 ∝ γ and an = o(1).

Estimation of γ̂. Under Assumption 1.1 (a) and the SIM framework we
have adopted here, E(Y |X) ≡ E(Y |X, T = 1) = g(γ ′X). Hence, in general,
one may use any standard method available in the literature for signal recov-
ery in SIMs (Horowitz, 2009; Alquier and Biau, 2013; Radchenko, 2015) and

apply it to the ‘complete case’ data D(c)
n to obtain a reasonable estimator

γ̂ of γ. Under some additional design restrictions and model assumptions,
however, one may also estimate γ by even simpler approaches, as follows.

(a) Suppose Y satisfies the (slightly) stronger SIM formulation: (Y |X) ≡
(Y |X, T = 1) = f(γ ′X; ε) for some unknown function f : R2 → Y and some
noise ε ⊥⊥ (T,X), and assume further that the distribution of (X|T = 1)
is elliptically symmetric. Then, owing to the results of Li and Duan (1989),
one can still estimate γ with a rate guarantee of an = sγ

√
(log p)/n using a

simple L1 penalized ‘canonical’ link based regression (e.g. linear, logistic or

Poisson regression) of Y vs. X in the ‘complete case’ data D(c)
n , as discussed

in the previous example. Similar approaches have been used extensively in
recent years for sparse signal recovery in high dimensional SIMs with fully
observed data and elliptically symmetric designs (Plan and Vershynin, 2013,
2016; Goldstein, Minsker and Wei, 2016; Genzel, 2017; Wei, 2018)

(b) Suppose Y satisfies the same SIM as in part (a) above, and assume now
that the distribution of X is elliptically symmetric. Then, combining the
results of Li and Duan (1989) along with those in Section 2.1 regarding IPW
representations, it follows that one can estimate γ using an L1-penalized
weighted regression based on any ‘canonical’ link (e.g. linear, logistic or

Poisson regression) of Y vs. X in the ‘complete case’ data D(c)
n . The weights

are given by π−1(X), if π(·) is known, or π̂−1(X) if π(·) is unknown and
estimated via π̂(·) (assumed to be correctly specified) through any of the
choices discussed in Section 5.2. Using the results of Negahban et al. (2012)
along with the techniques used in our proofs of Lemma 2.1 and Theorems
3.1 and 3.4, it can be shown that the resulting IPW estimator γ̂ satisfies an



28 A. CHAKRABORTTY, J. LU, T. T. CAI AND H. LI

L1 norm bound |γ̂ − γ‖1 . an ≡ sγ
√

(log p)/n w.h.p. in the case when π(·)
is known, and |γ̂ − γ‖1 . an ≡ sγ max{

√
(log p)/n, vn,π

√
log n} when π(·)

is unknown, where vn,π = o(1) denotes the (pointwise) convergence rate of
π̂(·) as given in Assumption 3.2. Given the main goals of this paper, we skip
the technical details and proofs of these claims for the sake of brevity.

5.3. Convergence Rates for the ‘Extended’ Parametric Families. We es-
tablish here tail bounds and convergence rates for estimators based on the
‘extended’ parametric families discussed in Sections 5.1-5.2. For notational
simplicity, we derive the results for a general outcome which may be as-
signed to be T for estimation of π(·), or TY for estimation of m(·). Let
(Z,X) denote a generic random vector where Z ∈ R and X ∈ Rp with sup-
port X ⊆ Rp. Consider an ‘extended’ parametric family of (working) models
for estimating E(Z |X) given by: g{β′Ψ(X)} where Ψ(X) ∈ RK is some vec-
tor of basis functions. Let β0 denote the ‘target’ parameter corresponding
to this working model and let β̂ be any estimator of β0 based on any suit-
able procedure applied to the observed data: {Zi,Xi}ni=1. Then, we estimate

E(Z |X = x) based on the working model as: g{β̂′Ψ(x)}. The result below
establishes a tail bound for this estimator w.r.t. its target g{β′0Ψ(x)}.

Theorem 5.1. Suppose β̂ satisfies a basic high-level L1 error guarantee:

P(‖β̂ − β‖1 > an) ≤ qn for some an, qn = o(1), an ≥ 0, qn ∈ [0, 1].

Suppose further that g(·) is Lipschitz continuous with |g(u)−g(v)| ≤ Cg|u−v|
∀ u, v ∈ R and that Ψ(X) is uniformly bounded, i.e. max1≤j≤K |Ψ[j](X)| ≤
CΨ <∞ a.s. [P], for some constants Cg, CΨ ≥ 0. Then, for any t ≥ 0,

P
[

sup
x∈X
|g{β̂′Ψ(x)} − g{β′0Ψ(x)}| > (

√
2CgCΨ)ant

]
≤ 2 exp(−t2) + qn.

Theorem 5.1 establishes a bound for the supremum which is much stronger
than what we need to verify our basic assumptions. Nevertheless, as a conse-
quence, it establishes that when one uses any of these ‘extended’ parametric
families for constructing {π̂(·), m̂(·)}, then the pointwise tail bounds required
in our basic Assumptions 3.2-3.3 hold with the choices of {vn,π, vn,m} ∝ an
and {qn,π, qn,m} ∝ qn. Further, as discussed in Sections 5.1 and 5.2, for most

common choices of β̂ based on penalized estimators from high dimensional
models, the L1 error rate an should behave as: an ∝ sβ0

√
(logK)/n w.h.p.

5.4. High Dimensional Single Index Models: Non-Asymptotic Bounds and
Rates for KS over Estimated Index Parameters. In this section, we study
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the properties of single index KS estimators involving high dimensional co-
variates with the index parameter being (possibly) unknown and estimated.
The underlying high dimensionality and the non-ignorable index estimation
error makes the analyses nuanced and different from most existing results
in the literature under classical settings. We consider both linear kernel av-
erage estimators (e.g. density estimators) as well as ratio form estimators
(e.g. conditional mean estimators) and develop a non-asymptotic theory that
establishes concrete tail bounds and pointwise convergence rates for such es-
timators. The results apply equally to both classical and high dimensional
regimes, and while obtained in course of characterizing our nuisance function
estimators’ properties, may also be useful in other applications and should
be of independent interest. We therefore present the results under a generic
framework and a set of notations that is independent of the rest of the paper.

Let {(Zi,Xi) : i = 1, . . . , n} denote a sample of n ≥ 2 i.i.d. realizations of
a generic random vector (Z,X) assumed to have finite 2nd moments, where
Z ∈ R, X ∈ Rp with support X ⊆ Rp and p ≥ 1 is allowed to be high
dimensional compared to the sample size, i.e. p is allowed to diverge with n.

Let β ∈ Rp be any (unknown) ‘parameter’ of interest and let β̂ denote any
reasonable estimator of β that satisfies a basic high-level L1 error guarantee:

(5.1) P(‖β̂−β‖1 > an) ≤ qn for some an, qn = o(1), an ≥ 0, qn ∈ [0, 1].

(5.1) is a reasonable high-level requirement that should hold in most cases. It
is important to note that (5.1) is the only condition we require on {β, β̂} for
all our results and nothing specific regarding their construction or properties.

Let W ≡ Wβ := β′X and Ŵ := β̂′X. For any x ∈ Rp, let wx ≡ wx,β :=

β′x and ŵx := β̂′x. For any w ∈ R, let mβ(w) := E(Z |W = w) and lβ(w) :=
mβ(w)fβ(w), where fβ(·) denotes the density of W ≡ β′X. Finally, for any
x ∈ X , let m(β,x) := mβ(β′x), f(β,x) := fβ(β′x) and l(β,x) := lβ(β′x).

Given any estimator β̂ of β satisfying (5.1), consider the following single
index KS estimators of l(β,x), f(β,x) and m(β,x) for any fixed x ∈ X ,

l̂(β̂,x) :=
1

nh

n∑
i=1

ZiK

(
β̂′Xi − β̂′x

h

)
≡ 1

nh

n∑
i=1

ZiK

(
Ŵi − ŵx

h

)
,

f̂(β̂,x) :=
1

nh

n∑
i=1

K

(
β̂′Xi − β̂′x

h

)
and m̂(β̂,x) :=

l̂(β̂,x)

f̂(β̂,x)
,

where K(·) : R→ R denotes any suitable kernel function (e.g. the Gaussian
kernel) and h ≡ hn > 0 denotes the bandwidth sequence with hn = o(1).
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l̂(·) and f̂(·) are both linear kernel average (LKA) estimators while m̂(·) is
a ratio type KS estimator. We obtain non-asymptotic tail bounds and (point-
wise) convergence rates for these estimators in Theorems 5.2-5.3 below. The
Assumptions K.1-K.2 for these results are given separately in Appendix K.2.

Theorem 5.2 (Tail bounds for LKA estimators). Consider the estimator
l̂(β̂,x) of l(β,x). Assume (5.1) and Assumptions K.1-K.2 (in Appendix K.2)
and that h = o(1), log(np)/(nh) = o(1) and (an/h)

√
log p = o(1). Then, for

any fixed x ∈ X and any t ≥ 0, with probability at least 1−9 exp(−t2)−2qn,

|l(β̂,x)−l(β,x)| ≤ C1

(
t+ 1√
nh

+
t2
√

log n

nh

)
+C2

(
h2 + an +

a2
n

h2
+

log(np)

nh

)
for some constants C1, C2 > 0 depending only on those in the assumptions.

Apart from an explicit tail bound, Theorem 5.2 also establishes the con-

vergence rate of l̂(β̂,x) to be O(nh−
1
2 + h2 + an + a2

nh
−2) which quantifies

the additional price one pays for estimating the high dimensional index pa-
rameter β apart from the error rate of a standard one dimensional KS. This
is highlighted through all the terms in the bound involving the L1 error rate
an of β̂. For a given an, one can also optimize the choice of h = O(n−a) over
a > 0 by minimizing the convergence rate above whose terms behave differ-
ently with h, similar to a variance-bias tradeoff phenomenon typically ob-
served in KS regression. We skip these technical discussions here for brevity.

Theorem 5.3 (Tail bounds for ratio type KS estimators). Consider the
ratio type KS estimator m̂(β̂,x) of m(β,x) and assume that |m(β,x)| ≤ δm
and f(β,x) ≥ δf > 0 for some constants δm, δf > 0. For any t ≥ 0, define:

εn(t) := C1
t+ 1√
nh

+C2
t2
√

log n

nh
+C3bn, where bn := h2 +an+

a2
n

h2
+

log(np)

nh

and C1, C2, C3 > 0 are the same constants as in Theorem 5.2. Assume (5.1),
Assumptions K.1-K.2 (in Appendix K.2) and that h = o(1), log(np)/(nh) =
o(1), (an/h)

√
log p = o(1) and bn = o(1). Then, for any fixed x ∈ X and

any t, t∗ ≥ 0 with t∗ further assumed w.l.o.g. to satisfy εn(t∗) ≤ δf/2 < δf ,
we have: with probability at least 1− 18 exp(−t2)− 9 exp(−t2∗)− 6qn,

|m̂(β̂,x)−m(β,x)| ≤ 2(1 + δm)

δf
εn(t) .

t+ 1√
nh

+
t2
√

log n

nh
+ bn,

where ‘.’ denotes inequality upto multiplicative contants (possibly depending
on those introduced in the assumptions). In particular, assuming further that
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{log(np) log n}/(nh) = o(1) and choosing t = t∗ = c
√

log np for any c > 0
(assuming w.l.o.g. the chosen t∗ satisfies the required condition), we have:

|m̂(β̂,x)−m(β,x)| . (c+ 1)

√
log(np)

nh

(
1 + c

√
log(np) log n

nh

)
+ bn

. c

√
log(np)

nh
+ bn with probability at least 1− 27(np)−c

2 − 6qn.

Theorem 5.3 establishes explicit tail bounds and convergence rates for the
ratio-type KS estimator m̂(β̂,x). As a consequence, it also verifies our basic
Assumption 3.3 regarding m̂(·) when one chooses to estimate it using SIMs.
In particular, in view of Remark 3.3, it establishes that the tail bound (3.7)
holds with the choices vn,m ∝

√
log(np)/(nh) + bn and qn,m ∝ (np)−c + qn,

for some c > 0, with bn and qn as above. Finally, as discussed in Sections
5.1 and 5.2, for most common choices of the estimator β̂, the L1 error rate
an is expected to behave as: an ∝ sβ

√
(log p)/n w.h.p., where sβ := ‖β‖0.

6. Simulation Studies. In this section, we perform a group of sim-
ulations to examine the performances of our method under different data
generating processes (DGPs) and parameter settings. We set n = 1000,
p = 50 and p = 500, which correspond to moderate dimensional and high
dimensional settings. We also set n = 50000 to study the double-robustness
of our proposed estimator and the performance of the complete case esti-
mator (see Section 6.4 for details). For DGPs, the observed data Dn :=
{Zi ≡ (Ti, TiYi,Xi) : i = 1, . . . , n} is given by X ∼ N(0,Σp) (the choices
of Σp will be discussed later) and three models for Y |X and T |X : a logis-
tic model for T |X and a linear model for Y |X (denoted as “linear-linear”
DGP), a logistic model with both linear and quadratic terms for T |X and
a linear model with both linear and quadratic terms for Y |X (denoted as
“quad-quad” DGP) and a single index model (SIM) for both T |X and Y |X
(denoted as “SIM-SIM” DGP). These models are formalized as following:

(a) “Linear-linear” DGP:

Y = γ0 + γ ′X + ε, ε|X ∼ N(0, 1),

logit{π(X)} = logit{E(T |X)} = α0 +α′X.
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(b) “Quad-quad” DGP:

Y = γ0 + γ ′X +

p∑
j=1

γ∗jX
2
j + ε, ε|X ∼ N(0, 1),

logit{π(X)} = logit{E(T |X)} = α0 +α′X +

p∑
j=1

α∗jX
2
j .

(c) “SIM-SIM” DGP:

Y = γ0 + γ ′X + cY (γ ′X)2 + ε, ε|X ∼ N(0, 1),

logit{π(X)} = logit{E(T |X)} = α0 +α′X + cT (α′X)2.

The covariance matrix Σp is chosen to be: Σp = Ip (identity matrix) or Σij =
ρ|i−j| (first order autoregressive AR(1) covariance matrix) or Σp = ρ1p1

′
p +

(1− ρ)Ip (compound symmetric matrix) with ρ = 0.2. These choices of the
covariance structure of X correspond to different correlations among the
coordinates of X and different sparsities of the covariance matrices, ranging
from independent and sparse (identity matrix) to correlated and not sparse
(compound symmetric matrix). The simulation is replicated for 500 times
(100 times for n = 50000). The tuning parameter in the penalized regression
for θ̂DDR is selected using 10-fold cross validation using minimizing mean
squared errors (MSE) as criterion. Further details on parameter choices and
other implementation details are given in Appendix B.1.

To avoid getting extreme values for π(·), we manually truncated π(·)
to 0.1-0.9. By the choice of our parameters, the proportion of data being
truncated is roughly 1% and the proportion of objects with missing outcomes
turns out to be 40%.

6.1. Target Parameter and choices of working nuisance models. We con-
sider the linear regression problem with missing outcome Y . Our target
parameter θ0 is the best linear estimator:

θ0 := arg min
θ∈Rd

E(Y − θ′
−→
X)2 = Σ−1E(

−→
XY ),

with d = p + 1 and the definition of −→v is given in Section 2. This θ0 is a
model-free parameter that is always the target for linear regression problems
regardless of whether E(Y |X) is truly linear or not. For “linear-linear” DGP,
θ0 matches with γ introduced previously. For other non-linear DGPs, θ0

is in general different from the parameters we introduced in the working
nuisance models. By the choice of our parameters, this θ0 is sparse. For all
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DGPs (linear or non-linear), we compute (and fix) θ0 based on a large data
with size 200000.

To obtain the DDR estimator θ̂DDR for θ0, two choices of the working
nuisance model for π̂(·) and three choices of m̂(·) are considered. For the
choices of the propensity score π̂(·):

(1) Fit an L1 penalized logistic regression with linear covariates based on
the observed data {Ti,Xi}ni=1 (denoted as “π̂: linear”).

(2) Fit an L1 penalized logistic regression with both linear and quadratic
covariates based on the observed data {Ti,Xi}ni=1 (“π̂: quad”).

For the choices of the conditional mean m̂(·):

(1) Fit an L1 penalized linear regression using the ‘complete case’ data D(c)
n

(“m̂: linear”).
(2) Fit an L1 penalized linear regression with both linear and quadratic

covariates using the ‘complete case’ data D(c)
n (“m̂: quad”).

(3) Fitting a SIM using the ‘complete case’ data D(c)
n with the index pa-

rameter estimated via inverse-probability-weighted Lasso (“m̂: SIM”).

In total, 6 different working nuisance models for π̂(·) and m̂(·) are consid-
ered. One should notice that these notations are used for estimating the
nuisance functions via working models, and have no relation with (and are
independent of) the true DPGs for π(·) and m(·). For the SIM, the direction
γ is estimated by a weighted L1 penalized linear regression in the ‘complete

case’ data D(c)
n , using the inverse estimated propensity score π̂(·) as weights.

For each DGP, there exists a combination of working nuisance models that
at least correctly specifies one of π(·) and m(·). For “linear-linear” DGP, all
the working nuisance models correctly specify the DGP. For “quad-quad”
DGP, only the combination “π̂: quad-m̂: quad” correctly specifies both of
the nuisance models. There are some combinations that correctly specifies
one of π(·) and m(·). For example, the combination “π̂: linear-m̂: quad”
correctly specifies the working nuisance function m(·) but misspecifies π(·).
For “SIM-SIM” DGP, we include the case that m(·) is correctly specified
but omit the case when π(·) is correctly specified.

From the results presented in Section 6.3, we would see that correctly
specifying the conditional mean m(·) would largely reduce the estimation
errors comparing to that of π(·).

6.2. Estimators implemented. Aside from θ̂DDR, we also consider two
other estimators for comparison:

(a) θ̂orac (oracle): An estimator obtained assuming π(·) and m(·) are known.
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(b) θ̂full (super oracle): An estimator obtained assuming the full dataset is
observed (no missing outcomes).

The implementation of these estimators are the same as our proposed esti-
mator θ̂DDR, using the corresponding working nuisance functions or dataset.
The oracle estimator θ̂orac is considered to examine the impact of estimat-
ing the nuisance function by comparing the performance between θ̂DDR and
θ̂orac. The super oracle estimator θ̂full is computed assuming full data is ob-
served which would never happen under our missing outcomes framework.
This ideal-case estimator is used as a benchmark value to indicate the best
one can achieve.

We evaluate the simulation performances by:

(1) Measuring the L2 norms of the differences between the estimators and
the true parameter θ0. This is defined as ‖θ̃ − θ0‖2, where θ̃ is any
candidate estimator. The reported values are the average L2 norms over
all replications with the standard errors in the parentheses.

(2) Calculating the average coverage probabilities (CovP) and average lengths
of the confidence intervals (CIs). We calculate the empirical coverage
probability and average length of the CI for each coefficient and the re-
ported values are means and medians together with standard errors and
median absolute deviation (MAD) as subscripts taken over the truly
zero and non-zero coefficients. The default level of the CIs is 95%.

(3) We investigate double-robustness of our estimator and the performance
of the complete case estimator (samples with T = 1) in Section 6.4.

6.3. Simulation Results. The simulation results using identity covariance
matrix are provided in this section. The results of using AR(1) and com-
pound symmetric covariance matrices share the similar results and hence
are included in the supplementary material (Appendix B).

Table 6.1 and 6.2 provide the estimation errors for n = 1000 and p = 50,
500. From the tables we could see that when both working nuisance models
are correctly specified, the estimation errors of our proposed DDR estimator
θ̂DDR are closed to those of the oracle estimators. Examples are given in Table
6.1(a) and Table 6.2(a). For the “linear-linear” DGP, all the working models
are correctly specified as we mentioned in Section 6.1. With the increasing of
p, the estimation errors stay the same pattern but are in general larger than
the case when p = 50. When at least one of the working nuisance models
is not correctly specified, the estimation errors are considerably larger. We
also notice that when the conditional mean m(·) is correctly specified, the
errors are closer to the oracle comparing when π(·) is correctly specified.
For example in Table 6.1(b), under the “quad-quad” DGP, the error for “π̂:
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Table 6.1 The L2 errors of the estimators comparing with oracle values
under the setting of n = 1000 using identity covariance matrix. Different
working nuisance models for π(·) and m(·) and different estimators are com-
pared.

(I) p = 50.
(a) DGP: “Linear-linear” for π(·) and m(·).

Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.222 (0.035) 0.223 (0.036) 0.168 (0.027)
π̂: quad 0.221 (0.035) 0.223 (0.036) 0.168 (0.027)

m̂: quad
π̂: logit 0.224 (0.035) 0.223 (0.036) 0.168 (0.027)
π̂: quad 0.224 (0.035) 0.223 (0.036) 0.168 (0.027)

m̂: SIM
π̂: logit 0.222 (0.036) 0.223 (0.036) 0.168 (0.027)
π̂: quad 0.222 (0.036) 0.223 (0.036) 0.168 (0.027)

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.682 (0.115) 0.478 (0.076) 0.453 (0.074)
π̂: quad 0.638 (0.105) 0.478 (0.076) 0.453 (0.074)

m̂: quad
π̂: logit 0.475 (0.077) 0.478 (0.076) 0.453 (0.074)
π̂: quad 0.475 (0.077) 0.478 (0.076) 0.453 (0.074)

m̂: SIM
π̂: logit 0.683 (0.116) 0.478 (0.076) 0.453 (0.074)
π̂: quad 0.64 (0.108) 0.478 (0.076) 0.453 (0.074)

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.618 (0.138) 0.517 (0.125) 0.499 (0.121)
π̂: quad 0.613 (0.137) 0.517 (0.125) 0.499 (0.121)

m̂: quad
π̂: logit 0.616 (0.141) 0.517 (0.125) 0.499 (0.121)
π̂: quad 0.612 (0.14) 0.517 (0.125) 0.499 (0.121)

m̂: SIM
π̂: logit 0.553 (0.132) 0.517 (0.125) 0.499 (0.121)
π̂: quad 0.55 (0.131) 0.517 (0.125) 0.499 (0.121)
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Table 6.2 See caption of Table 6.1.
(II) p = 500.

(a) DGP: “Linear-linear” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.448 (0.047) 0.424 (0.042) 0.317 (0.028)
π̂: quad 0.448 (0.046) 0.424 (0.042) 0.317 (0.028)

m̂: quad
π̂: logit 0.461 (0.05) 0.424 (0.042) 0.317 (0.028)
π̂: quad 0.461 (0.05) 0.424 (0.042) 0.317 (0.028)

m̂: SIM
π̂: logit 0.436 (0.045) 0.424 (0.042) 0.317 (0.028)
π̂: quad 0.436 (0.045) 0.424 (0.042) 0.317 (0.028)

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 1.153 (0.122) 0.866 (0.082) 0.811 (0.078)
π̂: quad 1.141 (0.121) 0.866 (0.082) 0.811 (0.078)

m̂: quad
π̂: logit 0.887 (0.088) 0.866 (0.082) 0.811 (0.078)
π̂: quad 0.887 (0.088) 0.866 (0.082) 0.811 (0.078)

m̂: SIM
π̂: logit 1.151 (0.117) 0.866 (0.082) 0.811 (0.078)
π̂: quad 1.136 (0.117) 0.866 (0.082) 0.811 (0.078)

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 1.103 (0.158) 1.116 (0.168) 1.087 (0.165)
π̂: quad 1.09 (0.149) 1.116 (0.168) 1.087 (0.165)

m̂: quad
π̂: logit 1.108 (0.159) 1.116 (0.168) 1.087 (0.165)
π̂: quad 1.095 (0.151) 1.116 (0.168) 1.087 (0.165)

m̂: SIM
π̂: logit 1.034 (0.161) 1.116 (0.168) 1.087 (0.165)
π̂: quad 1.021 (0.153) 1.116 (0.168) 1.087 (0.165)



HIGH-DIMENSIONAL M-ESTIMATION WITH MISSING OUTCOMES 37

quad-m̂: linear” is larger than that of “π̂: linear-m̂: quad”. Similar patterns
can also be observed from “SIM-SIM” DGP. In fact, when the working
model for m(·) is correct, the estimation performances are equally good for
both choices of the working model for π(·). In the “SIM-SIM” DGP, the
estimation errors for using different working nuisance model are relatively
close to each other. This is due to the parameter that we choose for the
“SIM-SIM” DGP. In addition, comparing the estimation errors of θorac and
θfull across different DGPs, we notice that they are relatively closer for
“quad-quad” and “SIM-SIM” DGPs than those of the “linear-linear” DGPs.
The joint effect of missing outcomes and non-linear DPGs reduces the gap
between the estimation errors using oracle and super oracle estimator.

Table 6.3 Average coverage probabilities and lengths of the CIs built upon
the desparsified estimator under the setting of n = 1000 using identity co-
variance matrix. Different working nuisance models for π(·) and m(·) are
compared. We report the means and medians together with standard errors
and MAD as subscripts. The reported values are separated into truly zero
and non-zero coefficients.

(I) p = 50.
(a) DGP: “Linear-linear” for π(·) and m(·).

Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.160 0.940.01 (0.940.01) 0.160

π̂: quad 0.940.01 (0.940.01) 0.160 0.940.01 (0.940.01) 0.160

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.160 0.940.01 (0.940.01) 0.160

π̂: quad 0.950.01 (0.950.01) 0.160 0.940.01 (0.940.01) 0.160

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.160 0.930.01 (0.930.01) 0.160

π̂: quad 0.950.01 (0.950.01) 0.160 0.940.01 (0.940.01) 0.160

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP:Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.410 0.880.16 (0.930.02) 0.460.08

π̂: quad 0.950.01 (0.950.01) 0.410 0.890.12 (0.930.02) 0.460.07

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.340 0.940.01 (0.940.01) 0.380.06

π̂: quad 0.940.01 (0.950.01) 0.340 0.940.01 (0.940.01) 0.380.06

m̂: SIM
π̂: logit 0.950.01 (0.940.01) 0.410 0.880.16 (0.940.02) 0.460.08

π̂: quad 0.950.01 (0.950.01) 0.410 0.890.12 (0.930.03) 0.470.07

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.460 0.940.01 (0.940.01) 0.520.04

π̂: quad 0.940.01 (0.940.01) 0.450 0.940.01 (0.940.01) 0.520.04

m̂: quad
π̂: logit 0.950.01 (0.950.01) 0.450 0.940.01 (0.940.01) 0.520.04

π̂: quad 0.950.01 (0.950.01) 0.450 0.940.01 (0.940.01) 0.520.04

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.40 0.940.01 (0.940.01) 0.460.03

π̂: quad 0.950.01 (0.950.01) 0.40 0.940.01 (0.940.01) 0.450.03
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Table 6.4 See caption of Table 6.3.
(II) p = 500.

(a) DGP: “Linear-linear” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP:Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.160 0.920.01 (0.920.01) 0.160

π̂: quad 0.940.01 (0.940.01) 0.160 0.910.02 (0.920.01) 0.160

m̂: quad
π̂: logit 0.940.01 (0.950.01) 0.170 0.910.02 (0.910.01) 0.170

π̂: quad 0.940.01 (0.950.01) 0.170 0.910.02 (0.910.01) 0.170

m̂: SIM
π̂: logit 0.940.01 (0.940.01) 0.160 0.920.01 (0.920.01) 0.160

π̂: quad 0.940.01 (0.950.01) 0.160 0.920.01 (0.920.01) 0.160

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.950.01 (0.950.01) 0.440 0.910.03 (0.920.02) 0.460.07

π̂: quad 0.950.01 (0.950.01) 0.430 0.910.03 (0.920.01) 0.460.06

m̂: quad
π̂: logit 0.940.01 (0.950.01) 0.330 0.920.01 (0.920.01) 0.350.04

π̂: quad 0.940.01 (0.950.01) 0.330 0.920.01 (0.920.01) 0.350.04

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.440 0.910.05 (0.930.02) 0.470.07

π̂: quad 0.950.01 (0.950.01) 0.430 0.910.04 (0.920.01) 0.460.06

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.950.01) 0.530 0.870.05 (0.880.06) 0.570.03

π̂: quad 0.940.01 (0.950.01) 0.530 0.870.05 (0.860.07) 0.570.03

m̂: quad
π̂: logit 0.950.01 (0.950.01) 0.530 0.880.04 (0.880.05) 0.570.03

π̂: quad 0.950.01 (0.950.01) 0.530 0.870.05 (0.870.06) 0.570.03

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.50 0.930.02 (0.930.01) 0.540.03

π̂: quad 0.950.01 (0.950.01) 0.50 0.930.02 (0.930.01) 0.540.03

Table 6.3 and 6.4 provide summary statistics of the coverage probabilities
and lengths of the CIs. From the results, we could see that the coverage prob-
abilities of the truly zero coefficients are always at a desired level regardless
of the working nuisance models and DGPs. For the truly non-zero coeffi-
cients, the results are determined by the working models and n, p. When
m(·) is correctly specified, the CIs would provide correct coverage probabil-
ities when p = 50. When m(·) is not correctly specified, the performance
of the CIs is in general not good in terms of mean coverage probabilities,
but these CIs still have a reasonable median coverage probabilities (see Ta-
ble 6.3(b)). This implies that in the moderate dimensional case, there are
some particular coefficients whose corresponding CIs have very bad cover-
age probabilities when the model is misspecified while some others still have
desired value. When the true DGP is “SIM-SIM”, different working models
provide similar results. The pattern is the same as the one we observe in the
estimation error table.

When p = 500, the coverage probabilities of the CIs are slightly below
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95% even when the working models are correctly specified. This is the price
we have to pay for estimating the influence function for θ0 and the precision
matrix under high dimensional setting. These finite sample biases would be
reduced with larger sample sizes. When m(·) is not correctly specified, the
performance of the CIs is not good (see Table 6.4(c) and Table B.4(c)).
These provide examples showing the benefits of correctly specifying m(·)
under the “SIM-SIM” DGP. However, due to the limited sample size, the
differences between the coverage probabilities of the CIs obtained using cor-
rect and incorrect working models are not distinguishable. The pattern is
much clearer when we examine the large sample setting (n = 50000). In
this scenario, the median coverage probabilities for the misspecified working
models are also below 95%, which is different from p = 50.

In addition, the average lengths of the CIs are in general shorter for the
models that correctly specifiesm(·) (see Table 6.3(b)(c) and Table 6.4(b)(c)).
Those misspecified working models provide CIs that have poor coverage
probabilities even with larger lengths.

6.4. Investigating double-robustness of the proposed estimator and the per-
formance of complete case estimator via large sample results. To investigate
whether our proposed estimator has the desired double-robustness property,
we study a large sample setting where n = 50000, p = 50 and 500. This
aims to study the asymptotic properties of our estimator. When either the
propensity score π(·) or the conditional mean m(·) is correctly specified,
our estimator should be consistent. In addition, aside from the oracle and
super oracle estimators, we also consider the complete case estimator θ̂cc,
which is an estimator obtained by using only the complete data (samples
with T = 1). This estimator is known to be consistent only when the DGP
is “linear-linear”.

Table 6.5 and Table 6.6 provide the results of estimation errors of θ̂DDR,
coverage probabilities and lengths of the CIs. We could see the double-
robustness of our estimator through the estimation errors. When both work-
ing nuisance models are correctly specified, the estimation errors achieve
the oracle estimator and are close to the super oracle estimator. In addi-
tion, when only the conditional mean m(·) is correctly specified, it could
have similar performance comparing to both correctly specified. This is con-
sistent with the case when n = 1000. When only the propensity score is
correctly specified, the errors are smaller than the case when both are mis-
specified but cannot reach the same level as the correctly specified case. This
is due to the convergence rate is slow in such cases (see the discussion in
Section A). Another thing to notice is the complete case estimator. As we
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Table 6.5 Table (a): The L2 errors of the estimator comparing with oracle
values under the setting of n = 50000 using identity covariance matrix and
“quad-quad” DGP. Different working nuisance models for π(·) and m(·) and
different estimators are compared. Table (b): Average coverage probabilities
and lengths of the CIs built upon the desparsified estimator. We report the
means and medians together with standard errors and MADs as subscripts.
The reported values are separated into truly zero and non-zero coefficients.

(I) p = 50.
(a) L2 errors of the estimator.

Working nuisance model θ̂DDR θ̂orac θ̂full θ̂cc

m̂: linear
π̂: logit 0.46 (0.026) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.204 (0.137) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

m̂: quad
π̂: logit 0.071 (0.01) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.072 (0.011) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

m̂: SIM
π̂: logit 0.323 (0.019) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.175 (0.079) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

(b) Average coverage probabilities and lengths of the CIs.
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.03 (0.950.03) 0.060 0.680.39 (0.840.19) 0.070.02

π̂: quad 0.960.02 (0.960.01) 0.120.01 0.960.02 (0.960.03) 0.140.08

m̂: quad
π̂: logit 0.940.03 (0.950.02) 0.050 0.930.03 (0.950.01) 0.050.01

π̂: quad 0.940.03 (0.950.03) 0.050 0.940.02 (0.950.01) 0.050.01

m̂: SIM
π̂: logit 0.940.03 (0.940.01) 0.060 0.80.19 (0.880.13) 0.070.01

π̂: quad 0.950.02 (0.950.03) 0.10 0.950.02 (0.950.02) 0.120.06

Table 6.6 See caption of Table 6.5.
(I) p = 500.

(a) L2 errors of the estimator.

Working nuisance model θ̂DDR θ̂orac θ̂full θ̂cc

m̂: linear
π̂: logit 0.297 (0.017) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)
π̂: quad 0.282 (0.113) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)

m̂: quad
π̂: logit 0.177 (0.008) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)
π̂: quad 0.18 (0.01) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)

m̂: SIM
π̂: logit 0.407 (0.022) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)
π̂: quad 0.294 (0.045) 0.178 (0.009) 0.173 (0.007) 0.325 (0.018)

(b) Average coverage probabilities and lengths of the CIs.
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.950.02 (0.950.03) 0.070 0.780.32 (0.940.04) 0.070.01

π̂: quad 0.950.02 (0.960.01) 0.090 0.940.04 (0.960.03) 0.10.03

m̂: quad
π̂: logit 0.950.02 (0.950.01) 0.050 0.940.02 (0.940.02) 0.050.01

π̂: quad 0.950.02 (0.950.01) 0.050 0.940.02 (0.940.02) 0.050.01

m̂: SIM
π̂: logit 0.950.02 (0.950.03) 0.080 0.750.38 (0.940.05) 0.090.01

π̂: quad 0.950.02 (0.950.01) 0.080 0.880.12 (0.920.04) 0.090.02



HIGH-DIMENSIONAL M-ESTIMATION WITH MISSING OUTCOMES 41

stated, only in “linear-linear” DGP is the complete case estimator consis-
tent. This is clearly revealed in the last column of the Table 6.5 and 6.6.
The lengths of the CIs show similar pattern as in the case of n = 1000. For
those working models that only specify one of π(·) and m(·) correct, the
CIs have desired coverage probabilities but are wider than the CIs obtained
when both are correct. For the working models that misspecify both, the
coverage probabilities are very poor not only in mean, but also in median.

7. Discussion. In this paper, we study the high dimensionalM -estima–
tion problem with missing outcomes. With the response Y possibly missing
at random and high dimensional covariates, we consider estimation and infer-
ence problem for the target parameter θ0, which is defined as the minimizer
of the risk of a convex loss. This parameter of interest is defined in such a
way that it is a high dimensional parameter under a fully non-parametric
model. This framework includes standard regression problem with missing
outcomes and is also applicable to causal inference literature such as het-
erogeneous treatment effects estimation.

We propose an L1-regularized debiased and doubly robust (DDR) estima-
tor for θ0 and carefully study its properties. Under proper assumptions and
high-order consistency in estimating the working models for the propensity
score and the outcome model, we provide the finite sample non-asymptotic
estimation error bounds for θ0. When both working models are correctly
specified, we propose a desparsified estimator using an one-step update pro-
cedure that achieves the semi-parametric efficiency bound. Meanwhile, we
provide theoretical results on estimating the nuisance functions (propen-
sity score and outcome models) using linear and non-linear, parametric and
semi-parametric models, which expands the current literature.

We also investigate the double robustness of our estimator showing its
consistency even if only one of the working models on the propensity score
and the outcome models is correctly specified. We include both the theoret-
ical results and the simulations that examine this property in the appendix.
The sharp rates of our proposed estimator under more general settings re-
quires case-by-case studies and remains an open problem.

SUPPLEMENTARY MATERIAL

Supplementary Materials for “High Dimensional M-Estimation
with Missing Outcomes: A Semi-Parametric Framework” (.pdf file).
In the Supplementary Material (Appendices A-K), we collect several impor-
tant materials that could not be accommodated in the main manuscript.
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Bühlmann, P. and Van De Geer, S. (2011). Statistics for High-Dimensional Data:
Methods, Theory and Applications. Springer Science & Business Media.
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APPENDIX A: DOUBLE ROBUSTNESS OF THE DDR ESTIMATOR

Our probabilistic analysis of ‖Tn‖∞ for establishing the convergence rate
of θ̂DDR (in the light of Lemma 2.1) has so far assumed that both the nuisance
functions {π(·),m(·)} are correctly estimated via {π̂(·), m̂(·)} satisfying As-
sumptions 3.2-3.3. As noted in (2.2), the nature of the population DDR loss
LDDR(·) and the empirical version LDDR

n (·) is such that consistency of ‖Tn‖∞
(and hence θ̂DDR) should hold even if only one of {π̂(·), m̂(·)} is correct.

In this section, we briefly sketch the arguments that ensure consistency of
‖Tn‖∞ even if only one of {π̂(·), m̂(·)} is correctly specified but not necessar-
ily both. The convergence rates underlying this consistency, while reasonable,
are not necessarily sharp however. To obtain sharper rates (if possible at all)
under these general situations, one needs a far more nuanced case-by-case
analysis which will depend now on the construction of the estimators and
their first order properties and rates, unlike the case when both the esti-
mators are correctly specified and the results are first order insensitive (see
Remark 3.1) requiring no specific knowledge about the estimators except
for some high-level convergence properties. This is true even for classical
settings and the high dimensional setting here only lends further complexity
and subtlety to the issue. Considering the main goals and scope of this paper,
we suppress such finer analysis under those cases for the sake of simplicity.

Case 1. Suppose that π̂(·) is misspecified, such that π̂(x)
P→ π∗(x) 6= π(x)

following Assumption 3.2 with π(·) therein replaced by a general π∗(·), while

m̂(·) is still correctly specified with m̂(x)
P→ m(x) following Assumption 3.3.

In this case, the terms T0,n and Tm,n in the decomposition (3.1) of Tn will
stay unaffected and their properties still governed by the results of Theorems
3.1 and 3.3 respectively, while the error terms Tπ,n and Rπ,m,n involving π̂(·)
would be affected and need to be appropriately analyzed as follows.
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Tπ,n should be further decomposed into two terms as: Tπ,n = T̃π,n+T∗π,n,

where T̃π,n :=
1

n

n∑
i=1

{
Ti

π̂(Xi)
− Ti
π∗(Xi)

}
{Yi −m(Xi)}h(Xi)

and T∗π,n :=
1

n

n∑
i=1

{
Ti

π∗(Xi)
− Ti
π(Xi)

}
{Yi −m(Xi)}h(Xi),

while Rπ,m,n should be decomposed further as: Rπ,m,n = R̃π,m,n + R∗π,m,n,

where R̃π,m,n :=
1

n

n∑
i=1

{
Ti

π̂(Xi)
− Ti
π∗(Xi)

}
{m̃(Xi)−m(Xi)}h(Xi)

and R∗π,m,n :=
1

n

n∑
i=1

{
Ti

π∗(Xi)
− Ti
π(Xi)

}
{m̃(Xi)−m(Xi)}h(Xi).

Suppose Assumption 3.2 is modified appropriately with π(·) therein replaced
throughout by π∗(·), the true target function of π̂(·) in this case, and assume
also that π∗(X) > δ∗π > 0 for some constant δ∗π, and π∗(X)−π(X) is bounded
(or sub-Gaussian). Then, under Assumptions 1.1 and 3.1-3.3, using similar
arguments as those used in the proofs of Theorems 3.1-3.2 (for T∗π,n and T̃π,n

respectively) and Theorem 3.4 (for R̃π,m,n and R∗π,m,n), it can be shown that

‖T̃π,n‖∞ . vn,π
√

log(nd)

√
log d

n
and ‖T∗π,n‖∞ .

√
log d

n
w.h.p., and

‖R̃π,m,n‖∞ . vn,πvn̄,m(log n) and ‖R∗π,m,n‖∞ . vn̄,m
√

log n w.h.p.

Case 2. Suppose m̂(·) is misspecified instead with m̂(x)
P→ m∗(x) 6= m(x)

according to Assumption 3.3 with m(·) replaced by a general m∗(·) therein,

while π̂(·) is still correctly specified with π̂(x)
P→ π(x) following Assumption

3.2. In this case, the terms T0,n and Tπ,n in the decomposition (3.1) of Tn

stay unaffected and their properties still governed by the results of Theorems
3.1 and 3.2 respectively, while the error terms Tm,n and Rπ,m,n involving
m̂(·) would be affected and need to be appropriately analyzed as follows.

Tm,n may be further decomposed into two terms as: Tm,n = T̃m,n+T∗m,n,

where T̃m,n :=
1

n

n∑
i=1

{
Ti

π(Xi)
− 1

}
{m̃(Xi)−m∗(Xi)}h(Xi)

and T∗m,n :=
1

n

n∑
i=1

{
Ti

π(Xi)
− 1

}
{m∗(Xi)−m(Xi)}h(Xi),
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while Rπ,m,n should be decomposed further as: Rπ,m,n = R†m,n + R∗∗π,m,n,

where R†m,n :=
1

n

n∑
i=1

{
Ti

π̂(Xi)
− Ti
π(Xi)

}
{m̃(Xi)−m∗(Xi)}h(Xi)

and R∗∗π,m,n :=
1

n

n∑
i=1

{
Ti

π̂(Xi)
− Ti
π(Xi)

}
{m∗(Xi)−m(Xi)}h(Xi).

Suppose Assumption 3.3 is modified appropriately whereby m(·) is replaced
throughout by m∗(·), the true target function of m̂(·) in this case. Further,
assume also that m∗(X)−m(X) is sub-Gaussian. Then, under Assumptions
1.1 and 3.1-3.3, using similar arguments as those in the proofs of Theorems
3.1 and 3.3 (for T∗m,n and T̃m,n respectively) and Theorem 3.4 (for R†m,n
and R∗∗π,m,n), it is not difficult to show that the following hold:

‖T̃m,n‖∞ . vn̄,m
√

log(nd)

√
log d

n
and ‖T∗m,n‖∞ .

√
log d

n
w.h.p., and

‖R†m,n‖∞ . vn,πvn̄,m(log n) and ‖R∗∗π,m,n‖∞ . vn,π
√

log n w.h.p.

Combining the results over the two cases, under a general setting allowing
for misspecification of either π̂(·) or m̂(·), the terms in (3.1) therefore satisfy:

‖T0,n‖∞ + ‖Tπ,n‖∞ + ‖Tm,n‖∞ .

√
log d

n
{1 + 1(π∗,m∗)6=(π,m) + o(1)}

(A.1)

and ‖Rπ,m,n‖∞ . {vn,π1(m∗ 6=m) + vn̄,m1(π∗ 6=π)}
√

log n+ vn,πvn̄,m(log n).

Hence, even under possible misspecification of one of the nuisance function
estimators, ‖Tn‖∞ is certainly oP(1) and thus double robust (in terms of con-
sistency). Consequently, θ̂DDR is also double robust (in terms of consistency)
in the light of Lemma 2.1 for an appropriately chosen λn ≥ 2‖Tn‖∞ = oP(1)
as long as the corresponding the deviation bounds in (2.13) involving

√
sλn

(for L2 consistency) and s
√
λn (for L1 consistency) are assumed to be o(1).

It is important to note from (A.1) that under the misspecification of either
π̂(·) or m̂(·), at least one among ‖Tπ,n‖∞ and ‖Tm,n‖∞ is no longer a lower
order term, but instead contributes an extra term of order

√
(log d)/n, same

as the main term T0,n, while the other one stays to be of lower order. More
importantly, however, the behavior of the product-type bias (or ‘drift’) term
Rπ,m,n changes dramatically! From being a lower order term involving the
products of the rates of π̂(·) and m̂(·), it now involves the individual rates
themselves appearing as leading order terms in a complementary manner, i.e.
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vn̄,m appears if π̂(·) is misspecified and vn,π appears if m̂(·) is misspecified.
This is mainly due to the unavoidable appearance of the additional terms
R∗π,m,n or R∗∗π,m,n, and their control inevitably requires use of the first order
properties and rates of {π̂(·), m̂(·)}. In general, these rates are not necessarily
of faster (or even same) order than

√
(log d)/n. In fact, they are quite likely

to be slower in most cases, especially if π̂(·) and/or m̂(·) are obtained based
on non/semi-parametric models or high dimensional parametric models, in
all of which cases the convergence rates are typically slower than

√
(log d)/n.

Hence, under misspecification of π̂(·) or m̂(·), the L2 convergence rate of
θ̂DDR is likely to be slower than the usual benchmark rate of

√
s(log d)/n. To

achieve estimators with faster rates, one needs to carefully incorporate fur-
ther bias corrections while constructing the estimator itself given a choice of
{π̂(·), m̂(·)}. This is quite a challenging problem in high dimensional settings,
even for the simple case of mean (or ATE) estimation and with {π̂(·), m̂(·)}
obtained using standard high dimensional sparse parametric models. This
case has been considered only recently by Avagyan and Vansteelandt (2017)
and Smucler, Rotnitzky and Robins (2019), where the methods and the asso-
ciated analyses are evidently quite involved. We refer the interested reader to
these papers for further insights on the problem and the ensuing challenges
and nuances. However, given the scope of this paper, we do not delve further
into such analyses for brevity, especially since in our case, the parameter is
also high dimensional which lends further complexity to the problem. But
we do empirically investigate in detail and validate the double robustness of
θ̂DDR and θ̃DDR in our simulation studies; see Section 6 for all the results.

APPENDIX B: SUPPLEMENTARY NUMERICAL RESULTS

B.1. Simulation Setting: Technical Details. In this section we pro-
vide more technical details of the simulation. The parameters in the DGPs
are specified as the following:

(a) Choices of α, α∗ and α0:

(i) When p = 50, we set ‖α‖0 = 5 and ‖α∗‖0 = 2 with:

α = 1/
√

5(1,−1, 0.5,−0.5, 0.5,0p−5),

α∗ = (0.25,−0.25,0p−2).

(ii) When p = 500, we set ‖α‖0 = 10 and ‖α∗‖0 = 4 with:

α = 1/
√

10(13,−12,0.52,−0.53,0p−10),

α∗ = (0.252,−0.252,0p−4).
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(b) Choices of γ, γ∗ and γ0:

(i) When p = 50, we set ‖γ‖0 = 10 and ‖γ∗‖0 = 5 with:

γ = (13,−12,0.52,−0.53,0p−10),

γ∗ = (1,−1, 0.5, 0.5,−0.5,0p−5).

(ii) When p = 500, we set ‖γ‖0 = 20, ‖γ∗‖0 = 5 with:

γ = (13,−12,0.55,−0.55,0.252,−0.253,0p−20),

γ∗ = (1,−1, 0.5, 0.5,−0.5,0p−5).

In the SIM, cT and cY are set to be 0.2 and
0.3√

λmax(Σp)
and the intercepts

γ0 and α0 are set to be 1 and 0.5. Here λmax(Σp) is the largest eigenvalue of
the matrix Σp and we define the notation ad := (a, a, . . . , a︸ ︷︷ ︸

d

). The parameters

in the DGPs for T |X are normalized by
√
‖α‖0 so that the proportion of

π(X) that is close to 0 or 1 is small.
The number of folds in the sample splitting is 2. The tuning parameters in

fitting the penalized logistic regression for π(·) are selected using Bayesian
information criterion (BIC) and the tuning parameters in the penalized re-
gression for m(·) are selected using 10-fold cross validation with minimizing
mean squared errors (MSE) as criterion. The band-width in the nonpara-
metric regression for SIM is chosen using least square cross-validation as
suggested in the “np” package in R. All the codes are implemented in R and
will be provided upon request.

As a summary, the algorithm for obtaining the DDR estimator θ̂DDR,
the desparsified DDR estimator θ̃DDR and its confidence interval is given in
Algorithm 1:

B.2. Simulations with non-identity covariance structures. In this
section we provide some additional simulation results. Aside from identity
covariance matrix, we also study the case when the covariance matrix Σp is
AR(1) and compound symmetric.

When the covariance matrix is AR(1), the results are given in Table B.1,
B.2, B.3 and B.4. Overall, the results are consistent with the scenario when
Σp is identity matrix. The estimation errors for two choices of the covariance
matrix are close to each other, drawing the similar conclusions as the identity
case. This is because the AR(1) covariance matrix with a relatively small
ρ = 0.2 is very close to an identity matrix. One thing to notice is that in
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Algorithm 1 Summarized Algorithm for Obtaining θ̂DDR and θ̃DDR

Input: Generated data Dn := {Zi ≡ (Ti, TiYi,Xi) : i = 1, . . . , n} based on one of the
DGPs.
Output: θ̂DDR,θ̃DDR and corresponding confidence intervals.

1: Estimation of nuisance functions π(·) and m(·) given observed data.

(i) Estimation of π(·): One of the two working models for π(·).
(ii) Estimation of m(·): One of the three working models for m(·).

2: Obtaining θ̂DDR using the L1 regularized DDR estimator

(i) Obtain the sample-split version m̃(·) of m̂(·) based on (2.7).

(ii) Obtain the pseudo outcome Ỹ using m̃(·) and π̂(·) based on (2.10).

(iii) Fit an L1 penalized linear regression using pseudo outcomes {Ỹi,Xi}ni=1 to obtain

θ̂DDR.

3: Desparsified estimator of θ̂DDR

(i) Obtain an estimator for Ω, denoted as Ω̂. There are two possible methods for
estimating Ω:

(a) When p is relatively small comparing with n: invert Σ̂ directly.

(b) Otherwise, use node-wise Lasso (ref).

(ii) Compute the desparsified DDR estimator θ̃DDR by (4.1).

(iii) Compute the confidence intervals for θ0 as discussed in Section 4.1.
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Table B.1 The L2 errors of the estimator comparing with oracle values un-
der the setting of n = 1000 using AR(1) covariance matrix. Different working
nuisance models for π(·) and m(·) and different estimators are compared.

(I) p = 50.
(a) DGP: “Linear-linear” for π(·) and m(·).

Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.222 (0.038) 0.223 (0.038) 0.169 (0.028)
π: quad 0.222 (0.038) 0.223 (0.038) 0.169 (0.028)

m̂: quad
π̂: logit 0.224 (0.038) 0.223 (0.038) 0.169 (0.028)
π̂: quad 0.223 (0.038) 0.223 (0.038) 0.169 (0.028)

m̂: SIM
π̂: logit 0.222 (0.038) 0.223 (0.038) 0.169 (0.028)
π̂: quad 0.222 (0.038) 0.223 (0.038) 0.169 (0.028)

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.664 (0.107) 0.469 (0.075) 0.445 (0.074)
π: quad 0.625 (0.104) 0.469 (0.075) 0.445 (0.074)

m̂: quad
π̂: logit 0.464 (0.075) 0.469 (0.075) 0.445 (0.074)
π̂: quad 0.464 (0.075) 0.469 (0.075) 0.445 (0.074)

m̂: SIM
π̂: logit 0.671 (0.109) 0.469 (0.075) 0.445 (0.074)
π̂: quad 0.631 (0.106) 0.469 (0.075) 0.445 (0.074)

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.569 (0.127 ) 0.478 (0.112) 0.459 (0.109)
π: quad 0.567 (0.127) 0.478 (0.112) 0.459 (0.109)

m̂: quad
π̂: logit 0.562 (0.126) 0.478 (0.112) 0.459 (0.109)
π: quad 0.562 (0.126) 0.478 (0.112) 0.459 (0.109)

m̂: SIM
π̂: logit 0.499 (0.119) 0.478 (0.112) 0.459 (0.109)
π̂: quad 0.498 (0.12) 0.478 (0.112) 0.459 (0.109)
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Table B.2 See caption of Table B.1.
(II) p = 500.

(a) DGP: “Linear-linear” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.42 (0.045) 0.401 (0.043) 0.295 (0.029)
π̂: quad 0.419 (0.044) 0.401 (0.043) 0.295 (0.029)

m̂: quad
π̂: logit 0.43 (0.046) 0.401 (0.043) 0.295 (0.029)
π̂: quad 0.43 (0.046) 0.401 (0.043) 0.295 (0.029)

m̂: SIM
π̂: logit 0.409 (0.044) 0.401 (0.043) 0.295 (0.029)
π̂: quad 0.408 (0.044) 0.401 (0.043) 0.295 (0.029)

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 1.06 (0.112) 0.797 (0.084) 0.743 (0.077)
π̂: quad 1.049 (0.109) 0.797 (0.084) 0.743 (0.077)

m̂: quad
π̂: logit 0.814 (0.083) 0.797 (0.084) 0.743 (0.077)
π̂: quad 0.814 (0.083) 0.797 (0.084) 0.743 (0.077)

m̂: SIM
π̂: logit 1.05 (0.11) 0.797 (0.084) 0.743 (0.077)
π̂: quad 1.038 (0.109) 0.797 (0.084) 0.743 (0.077)

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 1.026 (0.166) 1.001 (0.153) 0.974 (0.151)
π̂: quad 1.016 (0.159) 1.001 (0.153) 0.974 (0.151)

m̂: quad
π̂: logit 1.029 (0.162) 1.001 (0.153) 0.974 (0.151)
π̂: quad 1.019 (0.157) 1.001 (0.153) 0.974 (0.151)

m̂: SIM
π̂: logit 0.961 (0.162) 1.001 (0.153) 0.974 (0.151)
π̂: quad 0.952 (0.158) 1.001 (0.153) 0.974 (0.151)
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Table B.3 Average coverage probabilities and lengths of the CIs built upon
the desparsified estimator under the setting of n = 1000 using AR(1) co-
variance matrix. Different working nuisance models for π(·) and m(·) are
compared. We report the means and medians together with standard errors
and MAD as subscripts. The reported values are separated into truly zero
and non-zero coefficients.

(I) p = 50.
(a) DGP: “Linear-linear” for π(·) and m(·).

Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.170 0.940.01 (0.940.02) 0.170

π̂: quad 0.940.01 (0.940.01) 0.170 0.940.01 (0.940.02) 0.170

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.170 0.940.01 (0.940.02) 0.170

π̂: quad 0.940.01 (0.940.01) 0.170 0.940.01 (0.950.02) 0.170

m̂: SIM
π̂: logit 0.940.01 (0.940.01) 0.170 0.940.01 (0.940.01) 0.170

π̂: quad 0.940.01 (0.940.01) 0.170 0.940.01 (0.940.01) 0.170

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.420 0.890.14 (0.940.02) 0.470.08

π̂: quad 0.940.01 (0.940.01) 0.420 0.90.12 (0.940.02) 0.470.07

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.340 0.950.01 (0.950.01) 0.380.05

π̂: quad 0.940.01 (0.940.01) 0.340 0.940.01 (0.940.01) 0.380.05

m̂: SIM
π̂: logit 0.940.01 (0.940.01) 0.420 0.890.14 (0.940.01) 0.470.07

π̂: quad 0.940.01 (0.940.01) 0.420 0.90.12 (0.940.02) 0.470.07

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.950.01 (0.950.01) 0.430 0.940.01 (0.940.01) 0.480.03

π̂: quad 0.950.01 (0.940.01) 0.430 0.940.01 (0.940.01) 0.480.03

m̂: quad
π̂: logit 0.950.01 (0.950.01) 0.420 0.940.01 (0.940.01) 0.470.03

π̂: quad 0.950.01 (0.950.01) 0.420 0.940.01 (0.940.01) 0.470.03

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.370 0.940.01 (0.950.01) 0.410.02

π̂: quad 0.950.01 (0.950.01) 0.370 0.940.01 (0.950.01) 0.410.02
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Table B.4 See caption of table B.3.
(II) p = 500.

(a) DGP: “Linear-linear” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.950.01 (0.950.01) 0.170 0.910.02 (0.910.01) 0.170

π̂: quad 0.950.01 (0.950.01) 0.170 0.910.02 (0.910.01) 0.170

m̂: quad
π̂: logit 0.950.01 (0.950.01) 0.170 0.910.02 (0.910.02) 0.170

π̂: quad 0.950.01 (0.950.01) 0.170 0.910.02 (0.910.02) 0.170

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.160 0.910.01 (0.910.01) 0.170

π̂: quad 0.950.01 (0.950.01) 0.160 0.910.01 (0.910.02) 0.170

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.950.01 (0.950.01) 0.440 0.920.03 (0.930.02) 0.460.07

π̂: quad 0.950.01 (0.950.01) 0.430 0.910.03 (0.920.02) 0.460.06

m̂: quad
π̂: logit 0.950.01 (0.950.01) 0.330 0.920.02 (0.920.02) 0.350.04

π̂: quad 0.950.01 (0.950.01) 0.330 0.920.02 (0.920.02) 0.350.04

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.440 0.910.03 (0.920.02) 0.460.07

π̂: quad 0.950.01 (0.950.01) 0.430 0.910.03 (0.910.02) 0.460.06

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.950.01 (0.950.01) 0.520 0.880.04 (0.880.04) 0.550.03

π̂: quad 0.950.01 (0.950.01) 0.520 0.870.04 (0.870.04) 0.550.03

m̂: quad
π̂: logit 0.950.01 (0.950.01) 0.520 0.880.03 (0.880.03) 0.550.03

π̂: quad 0.950.01 (0.950.01) 0.520 0.880.03 (0.880.04) 0.550.03

m̂: SIM
π̂: logit 0.950.01 (0.950.01) 0.480 0.930.01 (0.940.01) 0.510.03

π̂: quad 0.950.01 (0.950.01) 0.480 0.930.01 (0.940.01) 0.510.03



HIGH-DIMENSIONAL M-ESTIMATION WITH MISSING OUTCOMES 55

Table B.2(c), the estimation errors of the “m̂: SIM” are slight better than
the oracle and super oracle estimator. This is in general not the case.

When the covariance matrix is compound symmetric matrix, the results
are given in table B.5 and B.7 for p = 50 and in table B.6 and B.8 for p = 500.
Notice that a compound symmetric matrix is not sparse, so the node-wise
Lasso method is not theoretically guaranteed to work when p = 500. The
general pattern stays the same as identity and AR(1) covariance matrix
structure. When p = 500, having errors in estimating the precision matrices
and the influence function leads to slightly lower coverage probabilities even
when the working models are correctly specified.

Table B.5 The L2 errors of the estimator comparing with oracle values
under the setting of n = 1000 using compound symmetric covariance matrix.
Different working nuisance models for π(·) and m(·) and different estimators
are compared.

(I) p = 50.
(a) DGP: “Linear-linear” for π(·) and m(·).

Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.245 (0.039) 0.247 (0.04) 0.185 (0.03)
π̂: quad 0.245 (0.038) 0.247 (0.04) 0.185 (0.03)

m̂: quad
π̂: logit 0.248 (0.039) 0.247 (0.04) 0.185 (0.03)
π̂: quad 0.247 (0.039) 0.247 (0.04) 0.185 (0.03)

m̂: SIM
π̂: logit 0.246 (0.039) 0.247 (0.04) 0.185 (0.03)
π̂: quad 0.246 (0.038) 0.247 (0.04) 0.185 (0.03)

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.701 (0.126) 0.513 (0.088) 0.483 (0.083)
π̂: quad 0.657 (0.118) 0.513 (0.088) 0.483 (0.083)

m̂: quad
π̂: logit 0.509 (0.087) 0.513 (0.088) 0.483 (0.083)
π̂: quad 0.509 (0.088) 0.513 (0.088) 0.483 (0.083)

m̂: SIM
π̂: logit 0.704 (0.126) 0.513 (0.088) 0.483 (0.083)
π̂: quad 0.662 (0.119) 0.513 (0.088) 0.483 (0.083)

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.284 (0.052) 0.272 (0.047) 0.224 (0.042)
π̂: quad 0.282 (0.052) 0.272 (0.047) 0.224 (0.042)

m̂: quad
π̂: logit 0.287 (0.052) 0.272 (0.047) 0.224 (0.042)
π̂: quad 0.285 (0.052) 0.272 (0.047) 0.224 (0.042)

m̂: SIM
π̂: logit 0.275 (0.048) 0.272 (0.047) 0.224 (0.042)
π̂: quad 0.274 (0.048) 0.272 (0.047) 0.224 (0.042)
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Table B.6 See caption of table B.5.
(II) p = 500.

(a) DGP: “Linear-linear” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.492 (0.055) 0.466 (0.05) 0.35 (0.032)
π̂: quad 0.492 (0.055) 0.466 (0.05) 0.35 (0.032)

m̂: quad
π̂: logit 0.509 (0.059) 0.466 (0.05) 0.35 (0.032)
π̂: quad 0.508 (0.059) 0.466 (0.05) 0.35 (0.032)

m̂: SIM
π̂: logit 0.483 (0.053) 0.466 (0.05) 0.35 (0.032)
π̂: quad 0.483 (0.053) 0.466 (0.05) 0.35 (0.032)

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 1.245 (0.131) 0.949 (0.094) 0.89 (0.087)
π̂: quad 1.236 (0.13) 0.949 (0.094) 0.89 (0.087)

m̂: quad
π̂: logit 0.972 (0.1) 0.949 (0.094) 0.89 (0.087)
π̂: quad 0.973 (0.1) 0.949 (0.094) 0.89 (0.087)

m̂: SIM
π̂: logit 1.251 (0.128) 0.949 (0.094) 0.89 (0.087)
π̂: quad 1.24 (0.128) 0.949 (0.094) 0.89 (0.087)

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model θ̂DDR θ̂orac θ̂full

m̂: linear
π̂: logit 0.46 (0.055) 0.463 (0.051) 0.364 (0.036)
π̂: quad 0.458 (0.055) 0.463 (0.051) 0.364 (0.036)

m̂: quad
π̂: logit 0.473 (0.057) 0.463 (0.051) 0.364 (0.036)
π̂: quad 0.472 (0.057) 0.463 (0.051) 0.364 (0.036)

m̂: SIM
π̂: logit 0.466 (0.054) 0.463 (0.051) 0.364 (0.036)
π̂: quad 0.465 (0.054) 0.463 (0.051) 0.364 (0.036)
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Table B.7 Average coverage probabilities and lengths of the CIs built upon
the desparsified estimator under the setting of n = 1000 using compound
symmetric covariance matrix. Different working nuisance models for π(·)
and m(·) are compared. We report the means and medians together with
standard errors and MAD as subscripts. The reported values are separated
into truly zero and non-zero coefficients.

(I) p = 50.
(a) DGP: “Linear-linear” for π(·) and m(·).

Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.180 0.940.01 (0.940.01) 0.180

π̂: quad 0.940.01 (0.940.01) 0.180 0.940.01 (0.940.01) 0.180

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.180 0.940.01 (0.940.01) 0.180

π̂: quad 0.940.01 (0.940.01) 0.180 0.940.01 (0.940) 0.180

m̂: SIM
π̂: logit 0.940.01 (0.940.01) 0.180 0.940.01 (0.940.01) 0.180

π̂: quad 0.940.01 (0.940.01) 0.180 0.940.01 (0.940.01) 0.180

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.450 0.90.11 (0.940.01) 0.490.07

π̂: quad 0.940.01 (0.950.01) 0.450 0.90.1 (0.930.02) 0.490.06

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.370 0.950.01 (0.950.01) 0.410.05

π̂: quad 0.940.01 (0.940.01) 0.370 0.950.01 (0.950.01) 0.410.05

m̂: SIM
π̂: logit 0.940.01 (0.950.01) 0.450 0.90.11 (0.940.02) 0.50.07

π̂: quad 0.940.01 (0.950.01) 0.450 0.90.09 (0.930.02) 0.50.06

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.210 0.940.01 (0.940.01) 0.220.01

π̂: quad 0.940.01 (0.940.01) 0.210 0.940.01 (0.940.01) 0.220.01

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.210 0.940.01 (0.940.01) 0.230.01

π̂: quad 0.940.01 (0.940.01) 0.210 0.940.01 (0.940.01) 0.220.01

m̂: SIM
π̂: logit 0.940.01 (0.940.02) 0.20 0.940.01 (0.950.01) 0.210.01

π̂: quad 0.940.01 (0.940.01) 0.20 0.940.01 (0.950.01) 0.210.01
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Table B.8 See caption of table B.7.
(II) p = 500.

(a) DGP: “Linear-linear” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.180 0.910.02 (0.920.01) 0.180

π̂: quad 0.940.01 (0.940.01) 0.180 0.910.02 (0.920.01) 0.180

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.180 0.910.02 (0.910.01) 0.190

π̂: quad 0.940.01 (0.940.01) 0.190 0.910.02 (0.910.01) 0.190

m̂: SIM
π̂: logit 0.940.01 (0.940.01) 0.180 0.910.01 (0.910.01) 0.180

π̂: quad 0.940.01 (0.940.01) 0.180 0.910.01 (0.910.01) 0.180

(b) DGP: “Quad-quad” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.950.01) 0.470 0.910.02 (0.920.01) 0.50.06

π̂: quad 0.940.01 (0.940.01) 0.470 0.910.03 (0.910.03) 0.490.06

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.360 0.920.02 (0.920.01) 0.380.04

π̂: quad 0.940.01 (0.940.01) 0.360 0.920.02 (0.920.02) 0.380.04

m̂: SIM
π̂: logit 0.940.01 (0.940.01) 0.470 0.910.03 (0.920.02) 0.50.06

π̂: quad 0.940.01 (0.940.01) 0.470 0.910.03 (0.910.02) 0.490.06

(c) DGP: “SIM-SIM” for π(·) and m(·).
Working nuisance model Zero Non-zero

CovP: Mean (Median) Length CovP: Mean (Median) Length

m̂: linear
π̂: logit 0.940.01 (0.940.01) 0.180 0.920.01 (0.920.01) 0.180

π̂: quad 0.940.01 (0.940.01) 0.180 0.920.01 (0.920.01) 0.180

m̂: quad
π̂: logit 0.940.01 (0.940.01) 0.190 0.920.01 (0.920.01) 0.190

π̂: quad 0.940.01 (0.940.01) 0.190 0.920.01 (0.920.01) 0.190

m̂: SIM
π̂: logit 0.940.01 (0.940.01) 0.180 0.920.01 (0.920.01) 0.180

π̂: quad 0.940.01 (0.940.01) 0.180 0.920.01 (0.920.01) 0.180
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Table B.9 The L2 errors of the estimator comparing with oracle values
under the setting of n = 50000 and p = 50 using identity covariance matrix.
Different working nuisance models for π(·) and m(·) and different estimators
are compared.

(a) DGP: “Linear-linear” model for π(·) and m(·).
working nuisance model θ̂DDR θ̂orac θ̂full θ̂cc

m̂: linear
π̂: logit 0.033 (0.005) 0.033 (0.005) 0.025 (0.003) 0.032 (0.004)
π̂ quad 0.033 (0.005) 0.033 (0.005) 0.025 (0.003) 0.032 (0.004)

m̂: quad
π̂: logit 0.033 (0.005) 0.033 (0.005) 0.025 (0.003) 0.032 (0.004)
π̂: quad 0.033 (0.005) 0.033 (0.005) 0.025 (0.003) 0.032 (0.004)

m̂: SIM
π̂: logit 0.066 (0.011) 0.033 (0.005) 0.025 (0.003) 0.032 (0.004)
π̂: quad 0.067 (0.011) 0.033 (0.005) 0.025 (0.003) 0.032 (0.004)

(b)DGP: “Quad-quad” model for π(·) and m(·).
working nuisance model θ̂DDR θ̂orac θ̂full θ̂cc

m̂: linear
π̂: logit 0.46 (0.026) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.204 (0.137) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

m̂: quad
π̂: logit 0.071 (0.01) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.072 (0.011) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

m̂: SIM
π̂: logit 0.323 (0.019) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)
π̂: quad 0.175 (0.079) 0.072 (0.011) 0.069 (0.01) 0.528 (0.021)

APPENDIX C: TECHNICAL TOOLS

We collect here some useful definitions and supporting lemmas that serve
throughout as key technical ingredients in the proofs of all our main results.

C.1. Orlicz Norms, Sub-Gaussians and Sub-Exponentials. We
first introduce a few definitions and results regarding concentration bounds.

Definition C.1 (Orlicz norms). For any α > 0, let ψα(·) denote the
function given by: ψα(x) = exp(xα) − 1 ∀ x ≥ 0. Then, for any random
variable X and any α > 0, the ψα-Orlicz norm ‖X‖ψα of X is defined as:

‖X‖ψα := inf {c > 0 : E{ψα(|X|/c)} ≤ 1} ,

and X is said to have a finite ψα-Orlicz norm, denoted as ‖X‖ψα < ∞ (if
the set above is empty, then the infimum is simply defined to be ∞).

For a random vector X ∈ Rd (d ≥ 1), we define X to have finite ψα-Orlicz
norm if each coordinate of X does and we let ‖X‖ψα := max1≤j≤d ‖X[j]‖ψα .

A random variable (or random vector) is said to be sub-Gaussian or sub-
exponential if it has finite ψα-Orlicz norm with α = 2 or α = 1 respectively.
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Table B.10 Average coverage probabilities and lengths of the CIs built
upon the desparsified estimator under the setting of n = 50000 and p = 50
using identity covariance matrix. Different working nuisance models for π(·)
and m(·) are compared. We report the means and medians together with
standard errors and MADs as subscripts. The reported values are separated
into truly zero and non-zero coefficients.

(a) DGP: “Linear-linear” model for π(·) and m(·).
working nuisance model zero non-zero

CovP: mean (median)) Length CovP: mean (median) Length

m̂: linear
π̂: logit 0.940.03 (0.950.01) 0.020 0.930.03 (0.940.02) 0.020

π̂: quad 0.940.03 (0.950.02) 0.020 0.930.03 (0.940.02) 0.020

m̂: quad
π̂: logit 0.940.03 (0.950.01) 0.020 0.930.03 (0.940.02) 0.020

π̂: quad 0.940.03 (0.950.01) 0.020 0.930.03 (0.940.02) 0.020

m̂: SIM
π̂: logit 0.950.01 (0.960.01) 0.040 0.940.03 (0.940.04) 0.050

π̂: quad 0.950.01 (0.960.01) 0.040 0.940.03 (0.930.04) 0.050

(b) DGP: “Quad-Quad” model for π(·) and m(·).
working nuisance model zero non-zero

CovP: mean (median) Length CovP: mean (median) Length

m̂: linear
π̂: logit 0.940.03 (0.950.03) 0.060 0.680.39 (0.840.19) 0.070.02

π̂: quad 0.960.02 (0.960.01) 0.120.01 0.960.02 (0.960.03) 0.140.08

m̂: quad
π̂: logit 0.940.03 (0.950.02) 0.050 0.930.03 (0.950.01) 0.050.01

π̂: quad 0.940.03 (0.950.03) 0.050 0.940.02 (0.950.01) 0.050.01

m̂: SIM
π̂: logit 0.940.03 (0.940.01) 0.060 0.80.19 (0.880.13) 0.070.01

π̂: quad 0.950.02 (0.950.03) 0.10 0.950.02 (0.950.02) 0.120.06
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Note that sub-Gaussians and sub-exponentials also possess other alterna-
tive definitions in terms of tail bounds, moment bounds or moment generat-
ing functions that are standard in the literature. All these definitions may be
shown to be equivalent, upto constant factors in the parameters, to the one
above. The ψα-Orlicz norms are more general norms allowing for any α > 0
(not just 1 or 2), and hence, weaker tail behaviors. It is also worth noting
that a bounded random variable X has ‖X‖ψα <∞ for any α ∈ (0,∞].

C.2. Properties of Orlicz Norms and Concentration Bounds.
We enlist here some useful general properties of Orlicz norms along with a
few specific ones for sub-Gaussians and sub-exponentials. These are all quite
well known and routinely used. Their statements (possibly with slightly dif-
ferent constants) and proofs can be found in several relevant references, in-
cluding Van der Vaart and Wellner (1996); Pollard (2015); Vershynin (2012,
2018); Rigollet and Hütter (2017) and Wainwright (2019) among others. We
therefore skip their proofs here for the sake of brevity.

Lemma C.1 (General properties of Orlicz norms, sub-Gaussians and sub–
exponentials). Let X,Y denote generic random variables and let µ := E(X).

(i) (Basic properties). For α ≥ 1, ‖·‖ψα is a norm satisfying: (a) ‖X‖ψα ≥
0 and ‖X‖ψα = 0⇔ X = 0 a.s., (b) ‖cX‖ψα = |c|‖X‖ψα ∀ c ∈ R and
‖|X|‖ψα = ‖X‖ψα, and (c) ‖X + Y ‖ψα ≤ ‖X‖ψα + ‖Y ‖ψα.

(ii) (Monotonicities). (a) For any 0 < α ≤ β, (log 2)1/α‖X‖ψα ≤ (log 2)1/β

‖X‖ψβ . (b) For any α > 0, ‖|X|α‖ψ1 ≤ ‖X‖αψα. (c) If |X| ≤ |Y | a.s.,
then ‖X‖ψα ≤ ‖Y ‖ψα ∀ α > 0. (d) If X is bounded, i.e. |X| ≤M a.s.
for some constant M , then ‖X‖ψα ≤ (log 2)−1/αM for each α ∈ (0,∞].

(iii) (Tail bounds and equivalences). (a) If ‖X‖ψα ≤ σ, then P(|X| > ε) ≤
2 exp(−εα/σα) ∀ ε ≥ 0. (b) Conversely if P(|X| > ε) ≤ C exp(−εα/σα)
∀ ε ≥ 0, for some (C, σ, α) > 0, then ‖X‖ψα ≤ σ(1 + C/2)1/α.

(iv) (Moment bounds). If ‖X‖ψα ≤ σ for some (α, σ) > 0, then E(|X|m) ≤
Cmα σ

mmm/α ∀ m ≥ 1, for some constant Cα depending only on α. (A
converse also holds although not presented here). In particular,

(a) If ‖X‖ψ1 ≤ σ, then for each m ≥ 1, E(|X|m) ≤ σmm! ≤ σmmm.

(b) If ‖X‖ψ2 ≤ σ, then E(|X|m) ≤ 2σmΓ(m/2 + 1) ∀ m ≥ 1, where
Γ(a) :=

∫∞
0 xa−1exp(−x)dx ∀ a > 0 denotes the Gamma function.

Hence, E(|X|) ≤ σ
√
π and E(|X|m) ≤ 2σm(m/2)m/2 ∀ m ≥ 2.

(v) (Hölder-type inequality for the Orlicz norm of products). For any
α, β > 0, let γ := (α−1 +β−1)−1. Then, for any X,Y with ‖X‖ψα <∞
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and ‖Y ‖ψβ <∞, ‖XY ‖ψγ <∞ and ‖XY ‖ψγ ≤ ‖X‖ψα‖Y ‖ψβ . In par-
ticular, if X and Y are sub-Gaussian, then XY is sub-exponential and
‖XY ‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2. Further, if Y is bounded with Y ≤ M a.s.
and ‖X‖ψα <∞ for any α > 0, then ‖XY ‖ψα ≤M‖X‖ψα.

(vi) (Orlicz norms and tail bounds for maximums). Let {Xi}ni=1 (n ≥ 1) be
random variables (possibly dependent) with max

1≤i≤n
‖Xi‖ψα ≤ σ for some

(α, σ) and let Zn := max
1≤i≤n

|Xi|. Then, ‖Zn‖ψα ≤ σ(log n + 2)1/α ≤

σ{3 log(n+ 1)}1/α and P{Zn > cσ(log n)1/α} ≤ 2n−(cα−1) ∀ c > 1.

(vii) (MGF related properties of sub-Gaussians). Let E[exp{t(X − µ)}] de-
note the moment generating function (MGF) of X−µ at t ∈ R. Then:

(a) If ‖X − µ‖ψ2 ≤ σ, then E[exp{t(X − µ)}] ≤ exp(2σ2t2) ∀ t ∈ R.

(b) Conversely, if E[exp{t(X−µ)}] ≤ exp(σ2t2) ∀ t ∈ R, then ∀ ε ≥ 0,
P(|X − µ| > ε) ≤ 2 exp(−ε2/4σ2) and hence, ‖X − µ‖ψ2 ≤ 2

√
2σ.

Lemma C.2 (Concentration bounds for sums of independent sub-Gaussian
variables). Let {Xi}ni=1 (n ≥ 1) be independent (but not necessarily i.i.d.)
random variables with means {µi}ni=1 such that ‖Xi − µi‖ψ2 ≤ σi for some
{σi}ni=1 ≥ 0. Then, for any set of real numbers {ai}ni=1, we have

E

[
exp

{
t
n∑
i=1

ai(Xi − µi)

}]
≤ exp

(
2t2

n∑
i=1

σ2
i a

2
i

)
∀ t ∈ R, and

P

{∣∣∣∣∣
n∑
i=1

ai(Xi − µi)

∣∣∣∣∣ > ε

}
≤ 2 exp

(
−ε2

8
∑n

i=1 σ
2
i a

2
i

)
∀ ε ≥ 0.

This further implies that ‖ai(Xi − µi)‖ψ2 ≤ 4(
∑n

i=1 σ
2
i a

2
i )

1/2. In particular,
when ai = 1/n and σi = σ, ‖ 1

n

∑n
i=1(Xi − µi)‖ψ2 ≤ (4σ)/

√
n.

Lemma C.3 (Sub-Gaussian properties of binary random variables). Let
Z ∈ {0, 1} be a binary random variable with E(Z) ≡ P(Z = 1) = p ∈ [0, 1]
and let Z̃ = (Z − p). Then, ‖Z̃‖ψ2 ≤ 2p̃, where p̃ = 0 if p ∈ {0, 1}, p̃ = 1/2
if p = 1/2, and p̃ = [(p− 1/2)/ log{p/(1− p)}]1/2 if p /∈ {0, 1, 1/2}.

Lemma C.3 explicitly characterizes the sub-Gaussian properties of (cen-
tered) binary random variables and its proof can be found in Buldygin and
Moskvichova (2013). The statement therein uses a MGF based definition
of sub-Gaussians. The statement above is appropriately modified with the
factor 2 multiplied in the ‖ · ‖ψ2 norm bound to adapt to our definition.
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Next, we present a version of the well known Bernstein’s inequality. While
Lemma C.2 is useful, it applies only to sub-Gaussians. However, Bersntein’s
inequality applies more generally to sub-exponentials that include as special
cases: sub-guassian variables, bounded variables, as well as products of two
sub-Gaussian and/or bounded variables (see Lemma C.5).

Lemma C.4 (Bernstein’s inequality - adopted from Van de Geer and Led-
erer (2013)). Let {Zi}ni=1 be independent (but not necessarily i.i.d.) random
variables and let µi := E(Zi) ∀ 1 ≤ i ≤ n. Suppose ∃ constants σ,K ≥ 0
such that n−1

∑n
i=1 E(|Zi − µi|m) ≤ (m!/2)σ2Km−2 for each m ≥ 2. Then,

P

(∣∣∣∣∣ 1n
n∑
i=1

(Zi − µi)

∣∣∣∣∣ ≥ √2σε+Kε2

)
≤ 2 exp

(
−nε2

)
for any ε ≥ 0.

In particular, if {Zi}ni=1 are i.i.d. realizations of a sub-exponential variable Z
with E(Z) = µ and ‖Z‖ψ1 ≤ σZ for some σZ ≥ 0, then ‖Z−µ‖ψ1 ≤ 2σZ and
the bound above holds with σ ≡ 2

√
2σZ and K ≡ 2σZ . Two important special

cases of such a setting include: (a) Z = XY with X and Y sub-Gaussian,
in which case σZ ≤ ‖X‖ψ2‖Y ‖ψ2, and (b) Z = XY with X sub-exponential
and |Y | ≤M a.s. for some M > 0, in which case σZ ≤M‖X‖ψ1.

Lemma C.5 (The Bernstein moment conditions and their verification).
Consider the moment conditions required in Bernstein’s inequality in Lemma
C.4. Define a random variable Z to satisfy the Bernstein moment conditions
(BMC) with parameters (σ,K) ≥ 0, denoted as Z ∼ BMC(σ,K), if for each
m ≥ 2, E(|Z − µ|m) ≤ (m!/2)σ2Km−2 where µ := E(Z). Then,

(a) If Z is sub-exponential with ‖Z‖ψ1 ≤ σZ , then Z ∼ BMC(2
√

2σZ , 2σZ)
and |Z| ∼ BMC(2

√
2σZ , 2σZ).

(b) If X and Y sub-Gaussian variables, then Z := XY ∼ BMC(2
√

2σZ , 2σZ)
with σZ = ‖X‖ψ2‖Y ‖ψ2.

(c) If X is sub-exponential and Y is a bounded random variable with |Y | ≤
M a.s., then Z := XY ∼ BMC(2

√
2σZ , 2σZ) with σZ = M‖X‖ψ1.

Proof. If ‖Z‖ψ1 ≤ σZ , then using Lemma C.1 (i)(c) and (iv)(a), ‖Z −
µ‖ψ1 ≤ 2σZ and E(|Z − µ|m) ≤ (2σZ)mm! ≡ (m!/2)(2

√
2σZ)2(2σZ)m−2 for

each m ≥ 1. Hence, by definition, Z ∼ BMC(2
√

2σZ , 2σZ).
Similarly, ‖|Z|‖ψ1 = ‖Z‖ψ1 ≤ σZ and ‖|Z|−E{|Z|}‖ψ1 ≤ 2σZ . Therefore,

by identical arguments as above we again have: |Z| ∼ BMC(2
√

2σZ , 2σZ).
Finally, using Lemma C.1, we have: for case (b), ‖Z‖ψ1 ≤ ‖X‖ψ2‖Y ‖ψ2 ≡

σZ , while for case (c), ‖Z‖ψ1 ≤ M‖X‖ψ1 ≡ σZ . The desired results then
follow by using the same arguments used for proving the first result above.
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The following lemma is a useful concentration inequality that applies gen-
erally to any random variables with finite ψα-Orlicz norm, preserves the right
rate and tail behaviors and involves only the variance in the leading term.

Lemma C.6 (Concentration bounds with variance in the leading term -
adopted from Theorem 3.4 of Kuchibhotla and Chakrabortty (2018)). Sup-
pose {Xi}ni=1 are independent mean zero random vectors in Rp, for any p ≥ 1
and n ≥ 2, such that for some α > 0 and some Kn > 0,

max
1≤i≤n

max
1≤j≤p

‖Xi[j]‖ψα ≤ Kn, and define Γn := max
1≤j≤q

1

n

n∑
i=1

E
(
X2
i[j]

)
.

Then for any t ≥ 0, with probability at least 1− 3e−t,∥∥∥∥∥ 1

n

n∑
i=1

Xi

∥∥∥∥∥
∞

≤ 7

√
Γn(t+ log p)

n
+
CαKn(log n)1/α(t+ log p)1/α∗

n
,

where α∗ := min{α, 1} and Cα > 0 is some constant depending only on α.

Finally, we end with a simple lemma that relates high probability bounds
to sub-Gaussian type tail bounds with an extra probability correction term.

Lemma C.7 (High probability bounds to sub-Gaussian type tail bounds).
Let Xn be any sequence of random variables satisfying |Xn| ≤ an with prob-
ability at least 1− qn for some an ∈ [0,∞) and qn ∈ [0, 1], ∀ n ≥ 1. Then,

P(|Xn| > t) ≤ 2 exp
{
−t2/(2a2

n)
}

+ qn for any t ≥ 0.

Proof. Define the event An := {Xn ≤ an} and let Acn denote its com-
plement event. Then, P(Acn) ≤ qn by assumption. Furthermore, note that
|Xn1(An)| ≤ an a.s. [P], where 1(·) denotes the indicator function. Hence,
using Lemma C.1 (ii) (d), we have: ‖Xn1(An)‖ψ2 ≤ (log 2)−1/2an ≤

√
2an.

Hence, using Lemma C.1 (iii) (a), P{|Xn1(An)| > t} ≤ 2 exp{−t2/(2a2
n)}

for any t ≥ 0. Consequently, we have: for any t ≥ 0,

P(|Xn| > t) = P(|Xn| > t,An) + P(|Xn| > t,Acn)

≤ P(|Xn1(An)| > t) + P(Acn) ≤ 2 exp{−t2/(2a2
n)}+ qn.

This establishes the desired tail bound and completes the proof.
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APPENDIX D: PROOF OF LEMMA 2.1

The proof relies substantially on a useful result of Negahban et al. (2012).
We therefore adopt some of their basic notations and terminology at the
beginning of the proof in order to facilitate the use of that result.

For any u ∈ Rp, letR(u) = ‖u‖1 and letR∗(u) ≡ supv∈Rp\{0}{u′v/R(v)}
be the ‘dual norm’ for R(·). Further, for any subspaceM⊆ Rp, let Ψ(M) ≡
supu∈M\{0}{R(u)/‖u‖2} denote its ‘subspace compatibility constant’ with

respect to R(·). Then, with J ,MJ and M⊥J as defined in Section 2, it
is not difficult to show that: (i) R(·) is decomposable with respect to the
orthogonal subspace pair (MJ ,M⊥J ) for any J ⊆ {1, . . . , p}, in the sense
thatR(u+v) = R(u)+R(v) ∀ u ∈MJ ,v ∈M⊥J ; (ii)R∗(u) = ‖u‖∞ ∀ u ∈
Rp; and (iii) with J = A(v) for any v ∈ Rp, Ψ2(MJ ) = sv. (We refer to
Negahban et al. (2012) for further discussions and/or proofs of these facts).
Lastly, let PJ (v) and P⊥J (v) respectively denote the orthogonal projections
of any v ∈ Rp onto MJ and M⊥J , for any J as above.

To establish the result, we consider the alternative representation (2.11)
of θ0 based on regularized minimization of the pseudo loss L̃DDR

n (θ) defined
in (2.10). Clearly, since L(·) is convex and differentiable in θ as assumed, so
is L̃DDR

n (θ). Further, owing to (2.3)-(2.6), we have: for any θ,v ∈ Rd,

∇L̃DDR
n (θ) = ∇LDDR

n (θ) and δL̃DDR
n (θ,v) = δLDDR

n (θ,v),(D.1)

where δL̃DDR
n (θ,v) := L̃DDR

n (θ + v) − L̃DDR
n (θ) − v′∇L̃DDR

n (θ). Thus, under
Assumption 2.1, L̃DDR

n (θ) also satisfies the RSC property (2.12) at θ = θ0.
Hence, using the decomposability of R(·) over (MJ ,M⊥J ) with J chosen

to be A(θ0), and the RSC property of L̃DDR
n (θ) at θ = θ0 under Assumption

2.1 and (D.1), we have: by Theorem 1 of Negahban et al. (2012), for any
realization of Dn and any choice of λ ≡ λn ≥ 2‖∇LDDR

n (θ0‖∞,∥∥∥θ̂DDR − θ0

∥∥∥
2
≡
∥∥∥θ̂DDR(λn;Dn)− θ0

∥∥∥
2
≤ 3
√
s

λ

κDDR

(D.2)

where, while applying the result from Negahban et al. (2012), we chose the
parameter θ∗, in their notation, as θ∗ = θ0, {R(·),R∗(·)} as {‖ · ‖1, ‖ · ||∞},
and used: Ψ2(MJ ) = ‖θ0‖0 ≡ s, R∗[∇{L̃DDR

n (θ)}] = R∗[∇{LDDR
n (θ)}] ≡

‖∇LDDR
n (θ0)‖∞ and P⊥A(θ0)(θ0) = ΠAc(θ0)(θ0) ≡ Πc

θ0
(θ0) = 0.

Further, using Lemma 1 of Negahban et al. (2012), we also have that for
λ chosen as above, the error ∆̂ := (θ̂DDR − θ0) belongs to the set C(θ0) as
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defined in (2.12). Consequently, ‖Πc
θ0

(∆̂)‖1 ≤ 3‖Πθ0(∆̂)‖1. Hence we have:∥∥∥θ̂DDR − θ0

∥∥∥
1
≡ ‖∆̂‖1 = ‖Πθ0(∆̂)‖1 + ‖Πc

θ0
(∆̂)‖1 ≤ 4‖Πθ0(∆̂)‖1

≤ 4
√
s‖Πθ0(∆̂)‖1 ≤ 4

√
s
∥∥∥θ̂DDR − θ0

∥∥∥
2
≤ 12s

λ

κDDR

,

where the final step follows from using (D.2). This, along with (D.2), estab-
lishes the desired L2 and L1 error bounds for θ̂DDR. The rest of the informal
claims in the second part of Lemma 2.1 are straightforward consequences of
combining the deterministic error bounds proved above with the results of
Theorems 3.1-3.4. This completes the proof of Lemma 2.1.

APPENDIX E: PROOF OF THEOREM 3.1

Recalling from (3.1) and (3.2), we note that T0,n is simply a sum of two
centered i.i.d. averages given by:

T0,n = T
(1)
0,n + T

(2)
0,n ≡

1

n

n∑
i=1

T
(1)
0 (Zi) +

1

n

n∑
i=1

T
(2)
0 (Zi), where(E.1)

T
(1)
0 (Z) := {m(X)−g(X,θ0)}h(X) and T

(2)
0 (Z) :=

T

π(X)
{Y−m(X)}h(X),

with E{T(1)
0 (Z)} = 0 and E{T(2)

0 (Z)} = 0 since E{∇φ(X,θ0)} = 0 and
E{ε(Z)|X} = 0, by definition, and ε(Z) ⊥⊥ T |X due to Assumption 1.1 (a).

Now, using Assumption 3.1 (a) and Lemma C.5 (a), we have:

(E.2) T
(1)
0[j](Z) ≡ ψ(X)h[j](X) ∼ BMC(σ̄1, K̄1) ∀ j ∈ {1, . . . , d},

for some constants σ̄1 := 2
√

2σψσh ≥ 0 and K̄1 := 2σψσh ≥ 0.
Next, using Assumption 3.1 (a) and Lemma C.1 (v), ‖ε(Z)h[j](X)‖ψ1 ≤

σεσh for each j ∈ {1, . . . , d}. Further, owing to Assumption 1.1 (b) and
(1.1), T/π(X) ≤ δ−1

π a.s. [P]. Hence, using Lemma C.5 (b), we have

(E.3) T
(2)
0[j](Z) ≡ T

π(X)
ε(Z)h[j](X) ∼ BMC(σ̄2, K̄2) ∀ j ∈ {1, . . . , d},

for some constants σ̄2 := 2
√

2σεσhδ
−1
π ≥ 0 and K̄2 := 2σεσhδ

−1
π ≥ 0

Hence, (E.2) and (E.3) ensure that for each j ∈ {1, . . . , d}, T
(1)
0[j](Z) and

T
(2)
0[j](Z) satisfy the required moment conditions for Bernstein’s inequality
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(Lemma C.4) to apply. Using Lemma C.4, we then have: for any ε1 ≥ 0,

P

{∥∥∥T(1)
0,n

∥∥∥
∞
≡

∥∥∥∥∥ 1

n

n∑
i=1

T
(1)
0 (Zi)

∥∥∥∥∥
∞

>
√

2σ̄1ε1 + K̄1ε
2
1

}

≤
d∑
j=1

P

{∣∣∣∣∣ 1n
n∑
i=1

T
(1)
0[j](Zi)

∣∣∣∣∣ > √2σ̄1ε1 + K̄1ε
2
1

}

≤
d∑
j=1

2 exp
(
−nε21

)
= 2d exp

(
−nε21

)
≡ 2 exp

(
−nε21 + log d

)
,(E.4)

where the second step uses the union bound (u.b.). Similarly, for any ε2 ≥ 0,

P

{∥∥∥T(2)
0,n

∥∥∥
∞
≡

∥∥∥∥∥ 1

n

n∑
i=1

T
(2)
0 (Zi)

∥∥∥∥∥
∞

>
√

2σ̄2ε2 + K̄2ε
2
2

}

≤
d∑
j=1

P

{∣∣∣∣∣ 1n
n∑
i=1

T
(2)
0[j](Zi)

∣∣∣∣∣ > √2σ̄2ε2 + K̄2ε
2
2

}

≤
d∑
j=1

2 exp
(
−nε22

)
= 2d exp

(
−nε22

)
≡ 2 exp

(
−nε22 + log d

)
.(E.5)

Hence, setting ε1 = ε2 ≡ ε for any ε ≥ 0, letting σ0 := σ̄1 + σ̄2 and K0 :=
K̄1 + K̄2, and using (E.4)-(E.5) in the original decomposition (E.1) of T0,n,
we have a tail bound for ‖T0,n‖∞, as follows. For any ε ≥ 0,

P
(
‖T0,n‖∞ ≡

∥∥∥T(1)
0,n + T

(2)
0,n

∥∥∥
∞
>
√

2σ0ε+K0ε
2
)

≤ P
(∥∥∥T(1)

0,n

∥∥∥
∞
>
√

2σ̄1ε+ K̄1ε
2
)

+ P
(∥∥∥T(2)

0,n

∥∥∥
∞
>
√

2σ̄2ε+ K̄2ε
2
)

≤ 4 exp
(
−nε2 + log d

)
.(E.6)

(E.6) therefore establishes a general tail bound for ‖T0,n‖∞ and also estab-
lishes its rate of convergence. This completes the proof of Theorem 3.1.

APPENDIX F: TECHNICAL DISCUSSIONS ON THE ERROR TERMS

We note here a few useful details regarding the structure and techniques
for controlling the error terms Tπ,n, Tm,n and Rπ,m,n accounting for the
nuisance function estimators {π̂(·), m̂(·)} in the decomposition (3.1) of Tn.
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(a) The structure of Tπ,n and reasons for obtaining π̂(·) solely from Xn.
Tπ,n is simply the sample average of the random variables {Tπ(Zi)}ni=1 in
(3.3). However, this average is not an i.i.d. average due to the presence of π̂(·)
which depends on all observations in Dn. A key property that is quite useful
in this regard is that, by assumption, π̂(·) is obtained solely from the subset
Xn := {(Ti,Xi) : i = 1, . . . , n} of Dn. Hence, {Tπ(Zi)}ni=1 |Xn are condition-
ally independent and centered with E{Tπ(Zi)} = E[E{Tπ(Zi) | π̂(·),Xi}]
= E[E{Tπ(Zi) | Xn}] = 0. The conditioning on Xn ensures that π̂(·), as well
as all other components in Tπ(Zi) which are functions of (Ti,Xi) only, can
now be treated as fixed and further, the conditional expectation being 0 fol-
lows from the fact that E[{Yi−m(Xi)}|Xn]≡ E{ε(Zi)|Xn}= E{ε(Zi)|Ti,Xi}
= E{ε(Zi) |Xi} = 0, where the final step is due to Assumption 1.1 (a).

Thus, Tπ,n is a centred average of (conditionally) independent variables.
We exploit this and the structure of Tπ(Z) in Theorem 3.2 to control Tπ,n.

(b) The structure of Tm,n and the benefits of sample splitting/cross-fitting.
Tm,n is simply the sample average of the random variables {Tm(Z)}ni=1

in (3.4). However, in the absence of sample splitting, this is not an i.i.d.
average due to the presence of m̂(·) which depends on all observations in
Dn. Further, unlike Tπ,n where {Tπ(Zi)}ni=1 |Xn were at least (conditionally)
independent and centered, Tm,n possesses no such desirable features even if

m̂(·) is obtained solely from the subset D(c)
n := {(Yi,Xi) : Ti = 1, 1 ≤ i ≤ n}

of ‘complete cases’ in Dn, as D(c)
n still (implicitly) depends on {Ti}ni=1 due

to the restriction to the set with Ti = 1, and not just on {Yi,Xi}ni=1.
Thus, in the absence of sample splitting, Tm,n has no additional ‘struc-

ture’ readily available that may lead to averages of variables which can be
treated as conditionally independent and centered. In general, to control
Tm,n without sample splitting, one needs tools from empirical process the-
ory. The corresponding analyses can be substantially involved and the condi-
tions necessary can be quite strong, especially in high dimensional settings.
However, these technical issues can be avoided through the sample splitting
based estimates {m̃(Xi)}ni=1 which ‘induces’ a natural independence.

For any Z ⊥⊥ m̂(·), or more specifically, Z ⊥⊥ {data used to obtain m̂(·)},
E{Tm(Z) | m̂(·),X} = E{Tm(Z)|X} = 0 due to Assumption 1.1 (a). Hence,
E{Tm(Z) | m̂(·)} = 0 and for any i.i.d. collection {Zk}Kk=1 of Z ⊥⊥ m̂(·),
{Tm(Zk)}Kk=1 | m̂(·) are (conditionally) independent and centered random
variables. These serve as the main motivations behind the sample splitting.

In contrast to the ‘in-sample’ estimates {m̂(Xi}ni=1, wherein m̂(·) is ob-
tained from Dn and also evaluated at the same training points {Xi}ni=1 ∈ Dn,
thereby making them intractably dependent on m̂(·), the cross-fitted esti-
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mates {m̃(Xi)}ni=1 ensure that for each k 6= k′ ∈ {1, 2}, the evaluation points

{Xi ∈ D(k)
n } used are independent of the estimator m̂(k′)(·) obtained from

D(k′)
n ⊥⊥ D(k)

n , thus inducing a desirable ‘independence structure’. This has
substantial technical as well as practical benefits in reducing over-fitting.
We exploit the technical benefits greatly in Theorem 3.3 to control Tm,n.

(b) The structure of Rπ,m,n. Finally, note that Rπ,m,n is essentially a sec-
ond order (product-type) bias term involving the product of two error terms
arising from the estimation of {π(·),m(·)}. Under reasonable assumptions on
the convergence rates of the estimators {π̂(·), m̂(·)}, one can try to control
the behavior of this term by ‘naive’ techniques, as opposed to the more so-
phisticated analyses required for controlling Tπ,n and Tm,n. Such techniques
and associated conditions are well known and standard in the literature for
the special case of the mean estimation problem (or ATE estimation problem
in CI), where a commonly adopted assumption is to have the product of the
two convergence rates to be faster than n−0.5 (Farrell, 2015; Chernozhukov
et al., 2018a). In general, such product conditions are typically reasonable
and allows for much weaker (slower) convergence rates for one estimator as
long as the other one has sufficiently fast enough rates. A stronger but fa-
miliar sufficient condition however is to have the convergence rates of both
estimators to be faster than n−0.25. In Theorem 3.4, we control Rπ,m,n by
adopting a similar condition with an additional logarithmic factor involved
to account for the inherent high dimensionality of our error terms.

APPENDIX G: PROOF OF THEOREM 3.2

To establish Theorem 3.2, we first state and prove a more general result
that gives an explicit tail bound for ‖Tπ,n‖∞.

Theorem G.1 (Tail bound for ‖Tπ,n‖∞). Let Assumptions 1.1, 3.1 and
3.2 hold with the sequences (vn,π, qn,π) and the constants (δπ, σε, σh, C) as
defined therein, Then, for any ε, ε1, ε2, ε3 ≥ 0, with ε2 < δπ small enough,

P
(
‖Tπ,n‖∞ > ε

)
≤ 2 exp

{
−nε2

dn(ε1, ε2, ε3)
+ log d

}
+ 4 exp

(
−nε23 + log d

)
+ 2C exp

{
−ε21
v2
n,π

+ log(nd)

}
+ 2C exp

{
−ε22
v2
n,π

+ log(nd)

}
+ 4qn,π(nd),

where, for any (ε1, ε2, ε3) ≥ 0 as above, dn(ε1, ε2, ε3) ≥ 0 is given by:

dn(ε1, ε2, ε3) :=
8σ2

εε
2
1

(δπ − ε2)2

(
‖µ(2)

h ‖∞
δπ

+
√

2σπε3 +Kπε
2
3

)
, with
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‖µ(2)
h ‖∞ := max1≤j≤d E{h2

[j](X)}, σπ := 2
√

2σ2
hδ
−2
π and Kπ := 2σ2

hδ
−2
π .

G.1. Proof of Theorem G.1. Let Xn := {(Ti,Xi) : i = 1, . . . , n}. Let
EXn(·) and PXn(·) respectively denote expectation and probability w.r.t. Xn
and P(· | Xn) denote conditional probability given Xn. Next, let us define:

∆π,n(X) := π̂(X)− π(X), ‖∆π,n‖∞,n := max
1≤i≤n

|∆π,n(Xi)| ,(G.1)

π̃n(X) := − 1

π̂(X)
and ‖π̃n‖∞,n := max

1≤i≤n
|π̃n(Xi)| .(G.2)

Further, for each j ∈ {1, . . . , d}, let us define:

ϕ[j](T,X) :=
T

π(X)
h[j](X), ϕ̄

(2)
n[j] ≡ ϕ̄

(2)
n[j](Xn) :=

1

n

n∑
i=1

ϕ2
[j](Ti,Xi),(G.3)

µ
(2)
ϕ[j] := E

{
ϕ2

[j](T,X)
}
≡ E

{
ϕ̄

(2)
n[j](Xn)

}
and µ

(2)
h[j] := E

{
h2

[j](X)
}
.(G.4)

Using (G.1)-(G.3) in (3.3) and recalling that ε(Z) = Y −m(X), we have:

(G.5) Tπ(Z) = ∆π,n(X)π̃n(X)ϕ(T,X)ε(Z), where

ϕ(T,X) ∈ Rd denotes the vector with jth entry = ϕ[j](T,X) ∀ 1 ≤ j ≤ d.

Under Assumptions 1.1 (a) and 3.1 (b), E{ε(Z) |X} ≡ E{ε(Z) |T,X} = 0
and ‖ε(Z)|X‖ψ2 ≡ ‖ε(Z)|(T,X)‖ψ2 ≤ σε(X) ≤ σε <∞. Hence, ε(Zi)|Xn are
(conditionally) independent random variables satisfying: E{ε(Zi) | Xn} = 0
and ‖ε(Zi) | Xn‖ψ2 ≤ σε ∀ 1 ≤ i ≤ n. Further, conditional on Xn, φ(Ti,Xi),
∆π,n(Xi) and h[j](Xi) are all constants ∀ i, j. Using these facts along with
(G.1)-(G.3), we have: ∀ 1 ≤ i ≤ n and 1 ≤ j ≤ d,∥∥Tπ[j](Zi)

∣∣ Xn∥∥ψ2
≡
∥∥∆π,n(Xi)π̃n(Xi)ϕ[j](T,Xi)ε(Zi) | Xn

∥∥
ψ2

≤ ∆π,n(Xi)π̃n(Xi)ϕ[j](Ti,Xi)σε(Xi) ≤ σε ‖∆π,n‖∞,n ‖π̃n‖∞,nϕ[j](Ti,Xi).

Further, ∀ 1 ≤ j ≤ d, {Tπ[j](Zi)}ni=1 |Xn are (conditionally) independent and
centered random variables. Hence, using Lemma C.2, we have: ∀ 1 ≤ j ≤ d,∥∥∥∥∥ 1

n

n∑
i=1

Tπ[j](Zi)

∣∣∣∣ Xn
∥∥∥∥∥
ψ2

≤ 4cn,j(Xn)√
n

, where

cn,j(Xn) := σε ‖∆π,n‖∞,n ‖π̃n‖∞,n
(
ϕ̄

(2)
n[j]

)1/2
(G.6)

and all notations are as defined in (G.1)-(G.3). Using Lemma C.2 again, it
now follows that for any ε ≥ 0,

P

{∣∣∣∣∣ 1n
n∑
i=1

Tπ[j](Zi)

∣∣∣∣∣ > ε

∣∣∣∣ Xn
}
≤ 2 exp

{
−nε2

8c2
n,j(Xn)

}
∀ 1 ≤ j ≤ d.(G.7)
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The fundamental bound for ‖Tπ,n‖∞. Using (G.7), the union bound (u.b.)
and the law of iterated expectations (l.i.e.), we then have: for any ε ≥ 0,

P

{
‖Tπ,n‖∞ ≡

∥∥∥∥∥ 1

n

n∑
i=1

Tπ(Zi)

∥∥∥∥∥
∞

> ε

}

≤
d∑
j=1

P

{∣∣∣∣∣ 1n
n∑
i=1

Tπ[j](Zi)

∣∣∣∣∣ > ε

}
[using the u.b.],

=
d∑
j=1

EXn

[
P

{∣∣∣∣∣ 1n
n∑
i=1

Tπ[j](Zi)

∣∣∣∣∣ > ε

∣∣∣∣ Xn
}]

[using the l.i.e.],

≤
d∑
j=1

2 EXn

[
exp

{
−nε2

8c2
n,j(Xn)

}]
[using (G.7)].(G.8)

Next, we aim to control the behavior of the random variable c2
n,j(Xn)

appearing in the bound (G.8). Based on the definition of cn,j(Xn) in (G.6),

it suffices to separately control the variables ‖∆π,n‖2∞,n, ‖π̃n‖2∞,n and ϕ̄
(2)
n[j].

Controlling ‖∆π,n‖2∞,n. Using (3.6) in Assumption 3.2 along with the u.b.,
and recalling all notations defined in (G.1)-(G.2), we have: for any ε1 ≥ 0,

P
{
‖∆π,n‖2∞,n ≡ max

1≤i≤n
|∆π,n(Xi)|2 > ε21

}
≤

n∑
i=1

P {|π̂(Xi)− π(Xi)| > ε1} ≤ Cn exp

(
−ε21
v2
n,π

)
+ nqn,π.(G.9)

Controlling ‖π̃n‖2∞,n. Using similar arguments, along with (1.1), we have:
∀ ε2 ≥ 0 small enough such that ε2 < δπ with δπ as in (1.1),

P
[
‖π̃n‖2∞,n ≡ max

1≤i≤n
|π̃n(Xi)|2 > (δπ − ε2)−2

]
≤

n∑
i=1

P
{
π̂−1(Xi) > (δπ − ε2)−1

}
≤

n∑
i=1

P {π̂(Xi) < π(Xi)− ε2}

≤
n∑
i=1

P {|π̂(Xi)− π(Xi)| > ε2} ≤ Cn exp

(
−ε22
v2
n,π

)
+ nqn,π(G.10)

Controlling ϕ̄
(2)
n[j]. Finally, in order to control ϕ̄

(2)
n[j](Xn) which is an average

of the i.i.d. random variables {ϕ2
[j](Ti,Xi)}ni=1, we first recall all notations
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from (G.3)-(G.4) and note that under Assumption 3.1 (a), ‖h2
[j](X)‖ψ1 ≤ σ2

h

∀ j ∈ {1, . . . , d} owing to Lemma C.1 (v). Further, T 2/π2(X) ≤ δ−2
π a.s.

[P]. Hence, using Lemma C.5 (b), we have: ∀ j ∈ {1, . . . , d}, and for some
constants σπ ≡ σ̄ϕ := 2

√
2σ2

hδ
−2
π and Kπ ≡ K̄ϕ := 2σ2

hδ
−2
π ,

ϕ2
[j](T,X) ≡ T 2

π2(X)
h2

[j](X) ∼ BMC(σ̄ϕ, K̄ϕ) and further,(G.11)

µ
(2)
ϕ[j] ≡ E

{
ϕ2

[j](T,X)
}

= E

{
h2

[j](X)

π(X)

}
≤
µ

(2)
h[j]

δπ
≤
‖µ(2)

h ‖∞
δπ

,(G.12)

where ‖µ(2)
h ‖∞ := max{µ(2)

h[j] : j = 1, . . . , d} <∞ and µ
(2)
h[j] is as in (G.4).

Using (G.11)-(G.12) along with Lemma C.4, we then have: for any ε3 > 0
and for each j ∈ {1, . . . , d},

P

{
ϕ̄

(2)
n[j] ≡

1

n

n∑
i=1

ϕ2
[j](Ti,Xi) >

‖µ(2)
h ‖∞
δπ

+
√

2σ̄ϕε3 + K̄ϕε
2
3

}

≤ P

{∣∣∣∣∣ 1n
n∑
i=1

ϕ2
[j](Ti,Xi)− µ(2)

ϕ[j]

∣∣∣∣∣ > √2σ̄ϕε3 + K̄ϕε
2
3

}
≤ 2 exp

(
−nε23

)
.(G.13)

For any ε1, ε3 > 0, and any ε2 > 0 such that ε2 < δπ, let us now define
the event Aπ,n,j(ε1, ε2, ε3), for each j ∈ {1, . . . , d}, as follows.

Aπ,n,j(ε1, ε2, ε3) :=
{

8c2
n,j(Xn) > dn(ε1, ε2, ε3)

}
, 1 ≤ j ≤ d, where(G.14)

dn(ε1, ε2, ε3) :=
8σ2

εε
2
1

(δπ − ε2)2

(
‖µ(2)

h ‖∞
δπ

+
√

2σ̄ϕε3 + K̄ϕε
2
3

)
.

Then, recalling from (G.6) that c2
n,j(Xn) ≡ σ2

ε ‖∆π,n‖2∞,n ‖π̃n‖
2
∞,n ϕ̄

(2)
n[j]

and using the bounds (G.9), (G.10) and (G.13) for ‖∆π,n‖2∞,n, ‖π̃n‖2∞,n and

ϕ̄
(2)
n[j] respectively, along with the union bound, we have:

P (Aπ,n,j) ≡ PXn (Aπ,n,j) ≡ PXn
{

8c2
n,j(Xn) > dn(ε1, ε2, ε3)

}
≤ Cn exp

(
−ε21
v2
n,π

)
+ Cn exp

(
−ε22
v2
n,π

)
+ 2nqn,π + 2 exp

(
−nε23

)
.(G.15)
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Therefore, it now follows that for each j ∈ {1, . . . , d} and any ε ≥ 0,

EXn

[
exp

{
−nε2

8c2
n,j(Xn)

}]
= E

[
exp

{
−nε2

8c2
n,j(Xn)

} ∣∣∣∣Acπ,n,j
]
P
(
Acπ,n,j

)
+ E

[
exp

{
−nε2

8c2
n,j(Xn)

} ∣∣∣∣Aπ,n,j
]
P (Aπ,n,j)

≤ exp

{
−nε2

dn(ε1, ε2, ε3)

}
+ 2 exp

(
−nε23

)
+ 2nqn,π(G.16)

+ Cn exp

(
−ε21
v2
n,π

)
+ Cn exp

(
−ε22
v2
n,π

)
[using (G.14)-(G.15)].

The final bound for ‖Tπ,n‖∞. Using (G.16) in the fundamental bound
(G.8) for ‖Tπ,n‖∞, we finally have: for any ε ≥ 0,

P
(
‖Tπ,n‖∞ > ε

)
≤

d∑
j=1

2 EXn

[
exp

{
−nε2

8c2
n,j(Xn)

}]

≤ 2d exp

{
−nε2

dn(ε1, ε2, ε3)

}
+ 4d exp

(
−nε23

)
+ 4qn,π(nd)

+ 2C(nd) exp

(
−ε21
v2
n,π

)
+ 2C(nd) exp

(
−ε22
v2
n,π

)
[using (G.16)],

≡ 2 exp

{
−nε2

dn(ε1, ε2, ε3)
+ log d

}
+ 4 exp

(
−nε23 + log d

)
+ 4qn,π(nd)(G.17)

+2C exp

{
−ε21
v2
n,π

+ log(nd)

}
+ 2C exp

{
−ε22
v2
n,π

+ log(nd)

}
.

This leads to the desired bound and completes the proof of Theorem G.1.

G.2. Completing Proof of Theorem 3.2. We next evaluate the gen-
eral tail bound for ‖Tπ,n‖∞ in Theorem G.1 under a specific family of choices
for (ε, ε1, ε2, ε3) > 0 in order to understand its behavior and also establish the
convergence rate of ‖Tπ,n‖∞. Let (c1, c2, c3) > 1 be any universal constants
and set ε1 = c1vn,π

√
log(nd), ε2 = c2vn,π

√
log(nd) and ε3 = c3

√
(log d)/n,

where we assume w.l.o.g. that ε3 < 1 and ε2 ≤ δπ/2, so that (δπ−ε2) ≥ δπ/2.
Further with a choice of ε3 as above, note that

‖µ(2)
h ‖∞
δπ

+
√

2σ̄ϕε3 + K̄ϕε
2
3 ≤

‖µ(2)
h ‖∞
δπ

+
(√

2σ̄ϕ + K̄ϕ

)
c3

√
log d

n
.
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Using these in the definition (G.14) and letting Cϕ := (
√

2σ̄ϕ+ K̄ϕ), we get

dn(ε1, ε2, ε3) ≤ 8σ2
ε

4c2
1

δ2
π

{vn,π
√

log(nd)}2
(
‖µ(2)

h ‖∞
δπ

+ c3Cϕ

√
log d

n

)
.

Given these choices of {εj}3j=1, let us now set ε = c
√
{(log d)/n}dn(ε1, ε2, ε3)

for any universal constant c > 1. Using Theorem G.1, we then have:

With probability at least 1− 2

dc2−1
− 4

dc
2
3−1
−

2∑
j=1

2C

(nd)c
2
j−1
− 4qn,π(nd),

‖Tπ,n‖∞ ≤ c

√
log d

n
{vn,π

√
log(nd)}C1

(
‖µ(2)

h ‖∞
δπ

+ C2

√
log d

n

) 1
2

,

where C1 := c1(4
√

2σε/δπ) and C2 := c3Cϕ ≡ c3(
√

2σ̄ϕ + K̄ϕ), with σ̄ϕ and
K̄ϕ being as in (G.11). This completes the proof of Theorem 3.2.

APPENDIX H: PROOF OF THEOREM 3.3

To show Theorem 3.3, we first state and prove a more general result that
gives an explicit tail bound for ‖Tm,n‖∞.

Theorem H.1 (Tail bound for ‖Tm,n‖∞). Let Assumptions 1.1, 3.1 (a)
and 3.3 hold with the sequences (vn̄,m, qn̄,m), n̄ ≡ n/2 and the constants
(δπ, σh, C) as defined therein. Then, for any ε, ε1, ε2 ≥ 0,

P
(
‖Tm,n‖∞ > ε

)
≤ 4 exp

{
−n̄ε2

tn̄(ε1, ε2)
+ log d

}
+ 8 exp(−n̄ε22 + log d)

+ 4C exp

{
−ε21
v2
n̄,m

+ log(n̄d)

}
+ 4qn̄,m(n̄d), where

tn̄(ε1, ε2) := 8δ̄2
πε

2
1

(
‖µ(2)

h ‖∞ +
√

2σmε2 +Kmε
2
2

)
, with

‖µ(2)
h ‖∞ := max1≤j≤d E{h2

[j](X)}, δ̄π ≤ δ−1
π , σm := 2

√
2σ2

h and Km := 2σ2
h.
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H.1. Proof of Theorem H.1. We first rewrite Tm,n from (3.1) as:

Tm,n ≡ 1

n

n∑
i=1

{
Ti

π(Xi)
− 1

}
{m̃(Xi)−m(Xi)}h(Xi)

=
1

2n̄

2∑
k 6=k′=1

∑
i∈Ik′

{
Ti

π(Xi)
− 1

}{
m̂(k)(Xi)−m(Xi)

}
h(Xi)

=:
1

2

2∑
k 6=k′=1

T
(k,k′)
m,n̄ , where T

(k,k′)
m,n̄ :=

1

n̄

∑
i∈Ik′

T(k)
m (Zi) and(H.1)

T(k)
m (Z) :=

{
T

π(X)
− 1

}{
m̂(k)(X)−m(X)

}
h(X) ∀ k 6= k′ ∈ {1, 2}.

Define X ∗n,k := {Xi : i ∈ Ik} ∀ k ∈ {1, 2}, and let EX ∗n,k(·) and P(· | X ∗n,k)
respectively denote expectation w.r.t. X ∗n,k and conditional probability given

X ∗n,k. Further, for each k 6= k′ ∈ {1, 2}, let ED(k)
n ,X ∗

n,k′
(·) and P(· | D(k)

n ,X ∗n,k′)

respectively denote expectation w.r.t. {D(k)
n ,X ∗n,k′} and conditional proba-

bility given {D(k)
n ,X ∗n,k′}. With D(k)

n ⊥⊥ X ∗n,k′ ∀ k 6= k′ ∈ {1, 2}, we note that
ED(k)

n ,X ∗
n,k′

(·) = EX ∗
n,k′
{ED(k)

n
(·)}. Next, let us define: ∀ k 6= k′ ∈ {1, 2},

∆
(k)
m,n̄(X) := m̂(k)(X)−m(X),

∥∥∥∆
(k,k′)
m,n̄

∥∥∥
∞,n̄

:= max
i∈Ik′

∣∣∣∆(k)
m,n̄(Xi)

∣∣∣ ,(H.2)

h̄
(2,k′)
n̄[j] :=

1

n̄

∑
i∈Ik′

h2
[j](Xi) and let ψ(T,X) :=

T

π(X)
− 1.(H.3)

Further, for any a ∈ (0, 1], let ā := 2ã/a, where ã := 1/2 if a = 1/2,
ã := 0 if a = 1 and ã := [(a − 1/2)/ log{a/(1 − a)}]1/2 if a /∈ {1/2, 1}. Let
{π̄(X), π̃(X)} and {δ̄π, δ̃π} denote the corresponding versions of {ā, ã} for
a ≡ π(X) and a ≡ δπ respectively, with δπ being as in (1.1). We note that
ā is decreasing in a ∈ (0, 1] and ã ≤ 1/2, so that ā ≤ 1/a ∀ a ∈ (0, 1]. Using
this and (1.1), we therefore have: π̄(x) ≤ δ̄π ≤ 1/δπ ∀ x ∈ X .

Using the notations from (H.2) and (H.3), we have: for each k ∈ {1, 2},

T(k)
m (Z) ≡

{
T

π(X)
− 1

}
{m̂(k)(X)−m(X)}h(X) = ψ(T,X)∆

(k)
m,n̄(X)h(X).

Now, for each k ∈ {1, 2} and k′ 6= k ∈ {1, 2}, D(k)
n ⊥⊥ X ∗n,k′ and we have:

{ψ(Ti,Xi) |D(k)
n ,X ∗n,k′}i∈Ik′ ≡ {ψ(Ti,Xi) | X ∗n,k′}i∈Ik′ ≡ {ψ(Ti,Xi) |Xi}i∈Ik′
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are (conditionally) independent sub-Gaussian random variables that satisfy:

∀ i ∈ Ik′ , E{ψ(Ti,Xi) | D(k)
n ,X ∗n,k′} ≡ E{ψ(Ti,Xi) |Xi} = 0 and

‖ψ(Ti,Xi) | D(k)
n ,X ∗n,k′‖ψ2 ≡ ‖ψ(Ti,Xi) |Xi‖ψ2 ≤ π̄2(Xi) ≤ δ̄2

π,(H.4)

where the bounds on the ‖ · ‖ψ2 norm follow from using Lemma C.3 and
Lemma C.1 (i)(b) along with the definitions of π̄(·) and δ̄π given earlier.

Further, conditional on D(k)
n and X ∗n,k′ , {∆

(k)
m,n̄(Xi)}i∈Ik′ and {h[j](Xi)}i∈Ik′ ,

for each j ∈ {1, . . . , d}, are all constants. Hence, using Lemma C.2 and (H.4),
along with (H.1)-(H.3), we have: ∀ k 6= k′ ∈ {1, 2} and j ∈ {1, . . . , d},∥∥∥∥∥∥ 1

n̄

∑
i∈Ik′

T
(k)
m[j](Zi)

∣∣∣∣D(k)
n ,X ∗n,k′

∥∥∥∥∥∥
ψ2

≤
4dn̄,j

(
D(k)
n ,X ∗n,k′

)
√
n̄

, where(H.5)

dn̄,j

(
D(k)
n ,X ∗n,k′

)
:= δ̄π

∥∥∥∆
(k,k′)
m,n̄

∥∥∥
∞,n̄

(
h̄

(2,k′)
n̄[j]

)1/2
.

Using Lemma C.2, we then have: ∀ k 6= k′ ∈ {1, 2}, 1 ≤ j ≤ d and ε ≥ 0,

P


∣∣∣∣∣∣ 1n̄
∑
i∈Ik′

T
(k)
m[j](Zi)

∣∣∣∣∣∣ > ε

∣∣∣∣D(k)
n ,X ∗n,k′

 ≤ 2 exp

 −n̄ε2

8d2
n̄,j

(
D(k)
n ,X ∗n,k′

)
 .

The fundamental bound for ‖T(k,k′)
m,n̄ ‖∞. Using the bound obtained above

for T
(k,k′)
m,n̄[j] | D

(k)
n ,X ∗n,k′ , we then have the following (unconditional) proba-

bilistic bound for ‖T(k,k′)
m,n̄ ‖∞. For any ε ≥ 0 and k 6= k′ ∈ {1, 2},

P

∥∥∥T(k,k′)
m,n̄

∥∥∥
∞
≡

∥∥∥∥∥∥ 1

n̄

∑
i∈Ik′

T(k)
m (Zi)

∥∥∥∥∥∥
∞

> ε


≤

d∑
j=1

P


∣∣∣∣∣∣ 1n̄
∑
i∈Ik′

T
(k)
m[j](Zi)

∣∣∣∣∣∣ > ε

 [using the u.b.],

=

d∑
j=1

ED(k)
n ,X ∗

n,k′

P

∣∣∣∣∣∣ 1n̄
∑
i∈Ik′

T
(k)
m[j](Zi)

∣∣∣∣∣∣ > ε

∣∣∣∣D(k)
n ,X ∗n,k′




≤ 2
d∑
j=1

ED(k)
n ,X ∗

n,k′

exp

 −n̄ε2

8d2
n̄,j

(
D(k)
n ,X ∗n,k′

)

 .(H.6)
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Next, we aim to control the random variable d2
n̄,j(D

(k)
n ,X ∗n,k′) appearing

in (H.6). Based on the definition (H.5) of d2
n̄,j(D

(k)
n ,X ∗n,k′), it suffices to

separately control
∥∥∥∆

(k,k′)
m,n̄

∥∥∥2

∞,n̄
and h̄

(2,k′)
n̄[j] . To this end, let ED(k)

n
(·) and

PD(k)
n

(·) denote expectation and probability w.r.t D(k)
n ∀ k ∈ {1, 2}.

With D(k)
n ⊥⊥ X ∗n,k′ for each k 6= k′ ∈ {1, 2}, we note that for any event

A ≡ A(D(k)
n ,X ∗n,k′), P(A) ≡ PD(k)

n ,X ∗
n,k′

(A) = EX ∗
n,k′

[ED(k)
n
{1(A) | X ∗n,k′}] ≡

EX ∗
n,k′

[PD(k)
n
{A(D(k)

n ,X ∗n,k′) | X ∗n,k′}] = EX ∗
n,k′

[PD(k)
n
{A(D(k)

n ,X ∗n,k′)}], where

the final step holds since PD(k)
n

(· | X ∗n,k) = PD(k)
n

(·) as D(k)
n ⊥⊥ X ∗n,k′ .

Controlling
∥∥∥∆

(k,k′)
m,n̄

∥∥∥2

∞,n̄
. Using (3.8) in Assumption 3.3 along with the

u.b. and the notations and facts discussed above, we have: ∀ k 6= k′ ∈ {1, 2},

P
{∥∥∥∆

(k,k′)
m,n̄

∥∥∥2

∞,n̄
≡ max

i∈Ik′

∣∣∣∆(k)
m,n̄(Xi)

∣∣∣2 > ε21

}
≤
∑
i∈Ik′

P
{∣∣∣∆(k)

m,n̄(Xi)
∣∣∣ > ε1

}
≤
∑
i∈Ik′

EX ∗
n,k′

{
C exp

(
−ε21
v2
n̄,m

)
+ qn̄,m

}

≡ Cn̄ exp

(
−ε21
v2
n̄,m

)
+ n̄qn̄,m for any ε1 ≥ 0,(H.7)

where we also used that D(k)
n ⊥⊥ X ∗n,k′ which ensures PD(k)

n
(· |X ∗n,k) = PD(k)

n
(·)

and makes (3.8) in Assumption 3.3 applicable conditional on X ∗n,k′ .

Controlling h̄
(2,k′)
n̄[j] . We first recall that ‖µ(2)

h ‖∞ = max1≤j≤d µ
(2)
h[j], where

µ
(2)
h[j] ≡ E{h2

[j](X)}. Now, ∀ k′ ∈ {1, 2} and j ∈ {1, . . . , d}, h̄
(2,k′)
n̄[j] is sim-

ply an average of the i.i.d. random variables {h2
[j](Xi)}i∈Ik′ . Further, using

Assumption 3.1 (a) and Lemma C.5 (a), h2
[j](X) ∼ BMC(σ̄h, K̄h) for some

constants σm ≡ σ̄h := 2
√

2σ2
h and Km ≡ K̄h := 2σ2

h. Hence, using Lemma
C.4, we have: for each k′ ∈ {1, 2} and j ∈ {1, . . . , d}, and for any ε2 ≥ 0,

P

h̄
(2,k′)
n̄[j] ≡ 1

n̄

∑
i∈Ik′

h2
[j](Xi) > ‖µ(2)

h ‖∞ +
√

2σ̄hε2 + K̄hε
2
2

(H.8)

≤ P


∣∣∣∣∣∣ 1n̄
∑
i∈Ik′

h2
[j](Xi)− µ(2)

h[j]

∣∣∣∣∣∣ > √2σ̄hε2 + K̄hε
2
2

 ≤ 2 exp(−n̄ε22).
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The final bound for
∥∥∥T(k,k′)

m,n̄

∥∥∥
∞

. For any ε1, ε2 ≥ 0, let us now define:

(H.9) tn̄(ε1, ε2) := 8δ̄2
πε

2
1

(
‖µ(2)

h ‖∞ +
√

2σ̄hε2 + K̄hε
2
2

)
.

Then, using the bounds (H.7) and (H.8) in the definition of d2
n̄,j(D

(k)
n ,X ∗n,k′)

in (H.5), we have: for each k 6= k′ ∈ {1, 2}, j ∈ {1, . . . , d} and ε1, ε2 ≥ 0,

P
{

8d2
n̄,j(D(k)

n ,X ∗n,k′) > tn̄ (ε1, ε2)
}

≤ Cn̄ exp

(
−ε21
v2
n̄,m

)
+ n̄qn̄,m + 2 exp(−n̄ε22).(H.10)

Using (H.10) in the fundamental bound (H.6) for ‖T(k,k′)
m,n̄ ‖∞, we then have:

for each k 6= k′ ∈ {1, 2} and for any ε, ε1, ε2 ≥ 0,

P
{∥∥∥T(k,k′)

m,n̄

∥∥∥
∞
> ε

}
≤ 2

d∑
j=1

ED(k)
n ,X ∗

n,k′

exp

 −n̄ε2

8d2
n̄,j

(
D(k)
n ,X ∗n,k′

)



≡ 2

d∑
j=1

E

exp

 −n̄ε2

8d2
n̄,j

(
D(k)
n ,X ∗n,k′

)
 1{

8d2
n̄,j(D

(k)
n ,X ∗

n,k′ ) ≤ tn̄(ε1,ε2)
}


+ 2
d∑
j=1

E

exp

 −n̄ε2

8d2
n̄,j

(
D(k)
n ,X ∗n,k′

)
 1{

8d2
n̄,j(D

(k)
n ,X ∗

n,k′ ) > tn̄(ε1,ε2)
}


≤ 2d

[
exp

{
−n̄ε2

tn̄(ε1, ε2)

}
+ P

{
8d2

n̄,j(D(k)
n ,X ∗n,k′) > tn̄ (ε1, ε2)

}]
≤ 2d

[
exp

{
−n̄ε2

tn̄(ε1, ε2)

}
+ Cn̄ exp

(
−ε21
v2
n̄,m

)
+ n̄qn̄,m + 2 exp(−n̄ε22)

]
.(H.11)

Thus, (H.11) establishes an explicit tail bound for
∥∥∥T(k,k′)

m,n̄

∥∥∥
∞

.

The final bound for ‖Tm,n‖∞. A tail bound for ‖Tm,n‖∞ now follows easily
using (H.1) and (H.11) along with the u.b. For any ε, ε1, ε2 ≥ 0, we have:

P
(
‖Tm,n‖∞ > ε

)
≤ P

(∥∥∥T(1,2)
m,n̄

∥∥∥
∞
> ε

)
+ P

(∥∥∥T(2,1)
m,n̄

∥∥∥
∞
> ε

)
(H.12)

≤ 4d exp

{
−n̄ε2

tn̄(ε1, ε2)

}
+ 4Cn̄d exp

(
−ε21
v2
n̄,m

)
+ 4n̄dqn̄,m + 8d exp(−n̄ε22).

This leads to the desired bound and concludes the proof of Theorem H.1.
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H.2. Completing the Proof of Theorem 3.3. Given the general
tail bound for ‖Tm,n‖∞ in Theorem H.1, we next evaluate it for a specific
set of choices of (ε, ε1, ε2) > 0 in order to understand its behavior and also
establish the convergence rate of ‖Tm,n‖∞. To this end, let (c1, c2) > 1 be
any universal constants and set ε1 = c1vn̄,m

√
log(n̄d) and ε2 = c2

√
(log d)/n̄,

where we further assume w.l.o.g. that ε2 < 1 so that

‖µ(2)
h ‖∞ +

√
2σ̄hε2 + K̄hε

2
2 ≤ ‖µ

(2)
h ‖∞ +

(√
2σ̄h + K̄h

)
c2

√
log d

n̄
.

Using these in the definition (H.9) and letting Ch := (
√

2σ̄h + K̄h), we have:

tn̄(ε1, ε2) ≤ 8c2
1δ̄

2
π{vn̄,m

√
log(n̄d)}2

{
‖µ(2)

h ‖∞ + c2Ch

√
log d

n̄

}
.

Given these choices of {εj}2j=1, let us now set ε = c
√
{(log d)/n̄}tn̄(ε1, ε2)

for any c > 1. Using Theorem H.1 and with n̄ ≡ n/2 ≤ n, we then have:

With probability at least 1− 4

dc2−1
− 8

dc
2
2−1
− 4C

(n̄d)c
2
1−1
− 4qn̄,m(n̄d),

‖Tm,n‖∞ ≤ c

√
log d

n
{vn̄,m

√
log(nd)}C∗1

(
‖µ(2)

h ‖∞ + C∗2

√
log d

n

) 1
2

,

where C∗1 := 4c1δ̄π and C∗2,n :=
√

2c2Ch ≡
√

2c2(
√

2σ̄h + K̄h), with σ̄h and
K̄h being as in (H.8). This completes the proof of Theorem 3.3.

APPENDIX I: PROOF OF THEOREM 3.4

To show Theorem 3.4, we first state and prove a more general result that
gives an explicit tail bound for ‖Rπ,m,n‖∞.

Theorem I.1 (Tail bound for ‖Rπ,m,n‖∞). Let Assumptions 1.1, 3.1,
3.2 and 3.3 hold with the sequences (vn,π, qn,π), (vn̄,m, qn̄,m, n̄) and the con-
stants (δπ, σh, C) as defined therein, and let ‖µ|h|‖∞ := max{E{|h[j](X)|} :
j = 1, . . . , d}. Then, for any ε1, ε2, ε3, ε4 ≥ 0 with ε2 < δπ small enough,

P
{
‖Rπ,m,n‖∞ >

ε1ε3
δπ − ε2

r∗(ε4)

}
≤ 2d exp(−nε24)

+Cn

{
exp

(
−ε21
v2
n,π

)
+ exp

(
−ε22
v2
n,π

)
+ exp

(
−ε23
v2
n̄,m

)}
+ 2nqn,π + nqn̄,m,

where r∗(ε4) := ‖µ|h|‖∞ +
√

2σπ,mε4 + Kπ,mε
2
4 with σπ,m := 4σhδ

−1
π and

Kπ,m := 2
√

2σhδ
−1
π being constants.
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I.1. Proof of Theorem I.1. Recalling from the notations in (3.1),

(I.1) Rπ,m,n =
1

n

n∑
i=1

{
Ti

π̂(Xi)
− Ti
π(Xi)

}
{m̃(Xi)−m(Xi)}h(Xi).

Hence, with ‖∆π,n‖∞,n and ‖π̃n‖∞,n as in (G.1) and (G.2) respectively,

and with
∥∥∥∆

(k,k′)
m,n̄

∥∥∥
∞,n̄

as in (H.2) for any k 6= k′ ∈ {1, 2}, we have:

‖Rπ,m,n‖∞ ≤ ‖π̃n‖∞,n ‖∆π,n‖∞,n
∥∥∆∗m,n

∥∥
∞,n ‖ξ̄n‖∞, where(I.2)∥∥∆∗m,n

∥∥
∞,n := max

{∥∥∥∆
(1,2)
m,n̄

∥∥∥
∞,n̄

,
∥∥∥∆

(2,1)
m,n̄

∥∥∥
∞,n̄

}
and

ξ̄n :=
1

n

n∑
i=1

ξ(Ti,Xi), with ξ(T,X) :=

{
T

π(X)

∣∣h[j](X)
∣∣}d

j=1

∈ Rd.

For most of the quantities appearing in the bound (I.2), we already have
their explicit tail bounds. Specifically, using (G.9), we have: for any ε1 ≥ 0,

(I.3) P
{
‖∆π,n‖∞,n > ε1

}
≤ Cn exp

(
−ε21
v2
n,π

)
+ nqn,π, where

and using (G.10), for any ε2 ≥ 0 small enough such that ε2 < δπ,

(I.4) P
{
‖π̃n‖∞,n > (δπ − ε2)−1

}
≤ Cn exp

(
−ε22
v2
n,π

)
+ nqn,π.

Next, using (H.7) and recalling that n̄ = n/2, we have: for any ε3 ≥ 0,

P
{∥∥∆∗m,n

∥∥
∞,n > ε3

}
≤

∑
k 6=k′∈{1,2}

P
{∥∥∥∆

(k,k′)
m,n̄

∥∥∥
∞,n̄

> ε3

}

≤ 2Cn̄ exp

(
−ε23
v2
n̄,m

)
+ 2n̄qn̄,m ≡ Cn exp

(
−ε23
v2
n̄,m

)
+ nqn̄,m.(I.5)

Finally, ξ̄n is a simple i.i.d. average defined by the random vector ξ(T,X)
and can be controlled as follows. Under Assumption 3.1 (a) and Lemma C.1
(ii)(a), ‖|h[j](X)|‖ψ1 = ‖h[j](X)‖ψ1 ≤

√
2‖h[j](X)‖ψ2 ≤

√
2σh ∀ 1 ≤ j ≤ d.

Further, due to (1.1), T/π(X) ≤ δ−1
π a.s. [P]. Hence, using Lemma C.5 (ii),

we have: for constants σπ,m ≡ σ̄ξ := 4σhδ
−1
π and Kπ,m ≡ K̄ξ := 2

√
2σhδ

−1
π ,

(I.6) ξ[j](T,X) ≡ T

π(X)
|h[j](X)| ∼ BMC(σ̄ξ, K̄ξ) ∀ j ∈ {1, . . . , d}.
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Further, E{ξ[j](T,X)} = E{|h[j](X)|} ≡ µ|h[j]| (say) ∀ j ∈ {1, . . . , d}, and

recall that ‖µ|h|‖∞ = max{µ|h[j]| : j = 1, . . . , d}. Using (I.6) and Lemma
C.4 along with the u.b., we then have: for any ε4 ≥ 0,

P
{∥∥ξ̄n∥∥∞ > r∗(ε4) ≡ ‖µ|h|‖∞ +

√
2σ̄ξε4 + K̄ξε

2
4

}
≤

d∑
j=1

P

{∣∣∣∣∣ 1n
n∑
i=1

ξ[j](Ti,Xi)− µ|h[j]|

∣∣∣∣∣ > √2σ̄ξε4 + K̄ξε
2
4

}
≤ 2d exp(−nε24) ≡ 2 exp(−nε24 + log d).(I.7)

Using the bounds (I.3), (I.4), (I.5) and (I.7), along with the u.b., in the
original bound (I.2) for ‖Rπ,m,n‖∞, we then have: for any ε1, ε2, ε3, ε4 ≥ 0,

P
{
‖Rπ,m,n‖∞ >

ε1ε3
δπ − ε2

r∗(ε4)

}
≤ 2d exp(−nε24)(I.8)

+Cn

{
exp

(
−ε21
v2
n,π

)
+ exp

(
−ε22
v2
n,π

)
+ exp

(
−ε23
v2
n̄,m

)}
+ 2nqn,π + nqn̄,m,

where we assume that ε2 < δπ. The proof of Theorem I.1 is complete.

I.2. Completing the Proof of Theorem 3.4. Given the general tail
bound for ‖Rπ,m,n‖∞ in Theorem I.1, we next evaluate it under a specific set
of choices for ε1, ε2, ε3, ε4 > 0 to understand its behavior and to establish the
convergence rate of ‖Rπ,m,n‖∞. Let c1, c2, c3, c4 > 1 be universal constants,
and set ε1 = c1vn,π

√
log n, ε2 = c2vn,π

√
log n, ε3 = c3vn̄,m

√
log n and ε4 =

c4

√
(log d)/n, where we assume w.l.o.g. that ε2 ≤ δπ/2 and ε4 < 1, so that

r∗(ε4) ≤ ‖µ|h|‖∞ + c4Cξ

√
log d

n
, where Cξ :=

√
2σ̄ξ + K̄ξ

with σ̄ξ and K̄ξ as in (I.6). Using Theorem I.1, we then have: with probability

at least 1−
∑3

j=1Cn
−(c2j−1) − 2d−(c24−1) − 2nqn,π − nqn̄,m,

‖Rπ,m,n‖∞ ≤
2c1c3

δπ
{vn,πvn̄,m(log n)}

(
‖µ|h|‖∞ + c4Cξ

√
log d

n

)
, where

This leads to the desired bound and completes the proof of Theorem 3.4.

APPENDIX J: PROOF OF THEOREM 4.1

Under the assumed form of L(·) and recalling the definition of Σ̂ and that
∇LDDR

n (θ) = ∇L̃DDR
n (θ), we first note that the gradient ∇LDDR

n (θ) satisfies:

∇LDDR
n (θ̂DDR)−∇LDDR

n (θ0) = 2Σ̂(θ̂DDR − θ0).
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Using the definition (4.1) of θ̃DDR and the notations in (4.2), we then have:

(θ̃DDR − θ0) = (θ̂DDR − θ0)− 1

2
Ω̂{∇LDDR

n (θ0) + 2Σ̂(θ̂DDR − θ0)}

= −1

2
Ω∇LDDR

n (θ0)− 1

2
(Ω̂−Ω)∇LDDR

n (θ0) + (Id − Ω̂Σ̂)(θ̂DDR − θ0)

≡ −1

2
Ω∇LDDR

n (θ0) + Rn,1 + Rn,3 [using (4.2)].(J.1)

Next, recall from (3.1) that ∇LDDR
n (θ0) ≡ Tn = T0,n+Tπ,n−Tm,n−Rπ,m,n,

with all notations as in (3.2)-(3.5). Further, with our choice of L(·), we have:

T0,n ≡
1

n

n∑
i=1

T0(Zi) = − 2

n

n∑
i=1

ψ0(Zi), with ψ0(Z) as in the ALE (4.3).

Applying these facts in (J.1) and using the notations in (4.2), we then have:

(θ̃DDR − θ0) = −1

2
Ω(T0,n + Tπ,n −Tm,n −Rπ,m,n) + Rn,1 + Rn,3

= −1

2
ΩT0,n −

1

2
Ω(Tπ,n −Tm,n −Rπ,m,n) + Rn,1 + Rn,3

≡ 1

n

n∑
i=1

Ωψ0(Zi) + Rn,1 + Rn,2 + Rn,3 ≡
1

n

n∑
i=1

Ωψ0(Zi) + ∆n.(J.2)

Now, under Assumptions 1.1, 3.1, 3.2 and 3.3, all of Theorems 3.1-3.4 apply,
and under Assumption 2.1 and with L(·) being convex and differentiable in
θ trivially, Lemma 2.1 applies as well. Using these results, we then have:

‖∇LDDR
n (θ0)‖∞ = OP

(√
log d

n

)
and ‖θ̂DDR(λn)− θ0‖1 = OP

(
s

√
log d

n

)(J.3)

for any choice of λn �
√

(log d)/n, as assumed. Using these facts along with
Assumption 4.1 (a) and multiple uses of L1-L∞ type bounds, we then have:

‖Rn,1‖∞ ≤
1

2
‖Ω̂−Ω‖1‖∇LDDR

n (θ0)‖∞ = OP

(
rn

√
log d

n

)
, and(J.4)

‖Rn,3‖∞ ≤ ‖Id − Ω̂Σ̂‖max‖θ̂DDR(λn)− θ0‖1 = OP

(
ωns

√
log d

n

)
.(J.5)

Next, to control Rn,2 ≡ −1
2Ω(Tπ,n −Tm,n −Rπ,m,n), observe that each of

the variables −1
2ΩTπ,n, −1

2ΩTm,n and −1
2ΩRπ,m,n admit exactly the same
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form as Tπ,n, Tm,n and Rπ,m,n in (3.1), respectively, but with a different
choice of the function h(X) in the definitions (3.3)-(3.5) of the underlying
summands for these terms. In this particular case, the summands correspond
to the forms (3.3)-(3.5) with h(X) replaced by h̃(X) = ΩΨ(X) ≡ Υ(X).

Further under Assumption 4.1 (b), h̃(X) is sub-Gaussian with ‖h̃(X)‖ψ2 ≤
σΥ, as required in Assumption 3.1 (a). Hence, under Assumptions 1.1, 3.1,
3.2, 3.3 and 4.1, Theorems 3.2, 3.3 and 3.4 certainly apply to ΩTπ,n, ΩTm,n

and ΩRπ,m,n with this ‘modified choice’ h̃(X) of h(X), using which we have:

‖ΩTπ,n‖∞ + ‖ΩTm,n‖∞ = OP

(
(vn,π + vn̄,m)

√
(log d) log(nd)

n

)
and ‖ΩRπ,m,n‖∞ = OP (vn,πvn̄,m log n) ,

where both results follow directly from the non-asymptotic bounds in Theo-
rems 3.2-3.4. Combining these and recalling the definition of v∗n in Assump-
tion 4.1 (b) along with the rate condition on v∗n assumed therein, we have:

(J.6) ‖Rn,3‖∞ ≡
1

2
‖Ω(Tπ,n −Tm,n −Rπ,m,n)‖∞ = OP

(
v∗nn

− 1
2

)
.

Combining (J.4), (J.5) and (J.6) along with the definition of ∆n in (4.2),
and using these in the original decomposition (J.2) of (θ̃DDR− θ0), we have:

(θ̃DDR − θ0) =
1

n

n∑
i=1

Ωψ0(Zi) + ∆n, where ∆n satisfies:

‖∆n‖∞ ≡ ‖Rn,1 + Rn,2 + Rn,2‖∞ ≤ ‖Rn,1‖∞ + ‖Rn,2‖∞ + ‖Rn,3‖∞

= OP

(
rn

√
log d

n
+ v∗nn

− 1
2 + ωns

√
log d

n

)
= oP(n−

1
2 ).(J.7)

(J.7) therefore establishes the desired ALE (4.3). Note further that the claim
E{ψ0(Z)} = 0 holds as a simple consequence of the definition of θ0 and As-
sumption 1.1 (b). Specifically, recalling the notations ε(Z) = Y −m(X) and
ψ(X) = m(X)−g(X,θ0) from Assumption 3.1 (a), with g(X,θ0) = Ψ(X)′θ0

for our choice of L(·), we have: E{ε(Z)|X} = 0, by definition of m(X), and
hence, E{ψ(X)Ψ(X)} = E[Ψ(X){Y −Ψ(X)′θ0}] − E{Ψ(X)ε(Z)} = 0, by
definition of θ0 and L(·). Further, T ⊥⊥ Y |X by Assumption 1.1 (a). Thus,

E{ψ0(Z)} ≡ E{Ψ(X)ψ(X)}+ EX[E{Tπ−1(X)|X}E{ε(Z)|X}] = 0.

This therefore completes the proof of the first part of Theorem 4.1.
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To establish the (coordinatewise) asymptotic normality results claimed in
the second part, we simply use the established ALE (4.3) or (J.7) and invoke
Lyapunov’s Central Limit Theorem (CLT) along with Slutsky’s Theorem. To
apply Lyapunov’s CLT, we need to verify the Lyapunov moment conditions
for Γ0(Z) ≡ Ωψ0(Z). We establish this by first showing that Γ0(Z) is, in fact,
sub-exponential (as per Definition C.1 with α = 1) under our assumptions.

To this end, under Assumptions 3.1 (a), 1.1 (b) and 4.1 (b), we have:

‖Γ0(Z)‖ψ1 ≡ ‖Ωψ0(Z)‖ψ1 = ‖ΩΨ(X){ψ(X) + Tπ−1(X)ε(Z)}‖ψ1(J.8)

≤ ‖ΩΨ(X)‖ψ2{‖ψ(X)‖ψ2 + ‖ε(Z)‖ψ2δ
−1
π } ≤ σΥ(σψ + δ−1

π σε) =: σΓ0 ,

where the steps follow from using Lemma C.1 (v) and (i) (c). Consequently,
using (J.8) and Lemma C.1 (iv) (a), we have: uniformly in j ∈ {1, . . . , d},

ρΓ0,j := E{|Γ0[j](Z)|3} ≤ 6σ3
Γ0
< ∞ and σ2

0,j := E{|Γ0[j](Z)|2} > c2
0,

where the second result is due to the lower bound condition assumed on σ0,j

with the constant c0 > 0 as defined there. Hence, ρΓ0,j/σ
3
0,j ≤ 6σ3

Γ0
/c3

0 <∞
uniformly in j ∈ {1, . . . , d}. Thus, the Lyapunov moment conditions are now
verified (uniformly) for each coordinate of Γ0(Z) ≡ ΩΨ0(Z). Note also that
E{Γ0(Z)} = 0 since E{ψ0(Z)} = 0, as shown earlier. Finally, observe that

σ−1
0,j |∆n[j]| ≤ c−1

0 ‖∆n‖∞ = oP(n−
1
2 ). Hence, by Lyapunov’s CLT along with

multiple uses of Slutsky’s Theorem, we have: for each 1 ≤ j ≤ d,

√
nσ−1

0,j

(
θ̃DDR[j] − θ0[j]

)
=

1√
nσ0,j

n∑
i=1

Γ0[j](Zi) +
√
nσ−1

0,j∆n[j]|(J.9)

=
1√
nσ0,j

n∑
i=1

Γ0[j](Zi) + oP(1)
d→ N (0, 1) + oP(1)

d→ N (0, 1).

This establishes the first of the two (coordinatewise) asymptotic normality
claims in Theorem 4.1. For the second claim, we mainly need to establish the
consistency of the estimator σ̂2

0,j of σ2
0,j , uniformly in 1 ≤ j ≤ d, as claimed.

The asymptotic normality then follows directly from Slutsky’s Theorem and
(J.9). To establish the consistency, we first note that for all 1 ≤ j ≤ d,

σ2
0,j − σ2

0,j ≡
1

n

n∑
i=1

Γ̂2
0[j](Zi)− E{Γ2

0[j](Z)}

(J.10)

=

{
1

n

n∑
i=1

Γ̂2
0[j](Zi)−

1

n

n∑
i=1

Γ2
0[j](Zi)

}
+

{
1

n

n∑
i=1

Γ2
0[j](Zi)− E{Γ2

0[j](Z)}

}
,
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where Γ0(Z) = Ωψ0(Z) and Γ̂0(Z) = Ω̂ψ̂0(Z) with ψ̂0(Z) given by:

ψ̂0(Z) :=

[
{m̂(X)−Ψ(X)′θ̂DDR}+

T

π̂(X)
{Y − m̂(X)}

]
Ψ(X).

Next, recall from (3.1) the terms T0(Z),Tπ(Z),Tm(Z) and Rπ,m(Z) defined
in (3.2)-(3.5), with g(X,θ0) = Ψ(X)′θ0 and h(X) = −2Ψ(X) in this case,
and let T∗0(Z),T∗π(Z),T∗m(Z) and R∗π,m(Z) respectively denote their versions
with h(X) replaced by h∗(X) = Ψ(X). Then, we have: ψ0(Z) = T∗0(Z) and

ψ̂0(Z) = T∗0(Z) + T∗π(Z)−T∗m(Z)−R∗π,m(Z)−Ψ(X)Ψ(X)′(θ̂DDR − θ0).

Hence for all 1 ≤ i ≤ n, Γ̂0(Zi)− Γ0(Zi) satisfies:

Γ̂0(Zi)− Γ0(Zi) ≡ Ω̂ψ̂0(Zi)−Ωψ0(Zi) = (Ω̂−Ω)T∗0(Zi)(J.11)

+Ω̂{T∗π(Zi)−T∗m(Zi)−R∗π,m(Zi)} − Ω̂Ψ(Xi)Ψ(Xi)
′(θ̂DDR − θ0).

Under Assumption 3.1 (a) and 1.1 (b), similar to the proof of (J.8), we have
using Lemma C.1 (v) and (i) (c): T∗0(Z) ≡ −1

2T0(Z) is sub-exponential with

‖T∗0(Z)‖ψ1 ≤ ‖Ψ(X)‖ψ2{‖ψ(X)‖ψ2 + ‖ε(Z)‖ψ2δ
−1
π } ≤ σh(σψ + δ−1

π σε).

Hence, max1≤i≤n ‖T∗0(Zi)‖∞ ≡ max1≤i≤n,1≤j≤d |T∗0[j](Zi)| = OP(log(nd))

due to Lemma C.1 (vi). Using this along with Assumption 4.1 (a), we have:

max
1≤i≤n

‖(Ω̂−Ω)T∗0(Zi)‖∞ ≤ ‖Ω̂−Ω‖1 max
i
‖T∗0(Zi)‖∞ = OP (rn log(nd)) .

(J.12)

Now, since Ψ(X), ε(Z) and ΩΨ(X) are all sub-Gaussian due to Assumptions
3.1 (a) and 4.1 (b), using Lemma C.1 (vi), we have:

(J.13) max
1≤i≤n

{‖Ψ(Xi)‖∞ + ‖ΩΨ(Xi)‖∞ + |ε(Zi)|} = OP

(√
log(nd)

)
.

Next, recalling the proof techniques and notations introduced in the proofs
of Theorems 3.2, 3.3 and 3.4, as well as using Assumption 1.1 (b), we have:

max
1≤i≤n

‖T∗π(Zi)‖∞ ≤ δ−1
π ‖π̃n‖∞,n ‖∆π,n‖∞,n max

1≤i≤n
{‖Ψ(Xi)‖∞|ε(Zi)|},

(J.14)

max
1≤i≤n

‖T∗m(Zi)‖∞ ≤ (1 + δ−1
π )

∥∥∆∗m,n
∥∥
∞,n max

1≤i≤n
‖Ψ(Xi)‖∞ and

max
1≤i≤n

‖R∗π,m(Zi)‖∞ ≤ δ−1
π ‖π̃n‖∞,n ‖∆π,n‖∞,n

∥∥∆∗m,n
∥∥
∞,n max

1≤i≤n
‖Ψ(Xi)‖∞,
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where ‖π̃n‖∞,n and ‖∆π,n‖∞,n are as in (G.1)-(G.2) and
∥∥∆∗m,n

∥∥
∞,n is as

defined in (H.2) and (I.2). Using (I.3), (I.4) and (I.5), we further have:

‖π̃n‖∞,n ‖∆π,n‖∞,n = OP(vn,π
√

log n) and
∥∥∆∗m,n

∥∥
∞,n = OP(vn̄,m

√
log n).

(J.15)

Using (J.13) and (J.15) in (J.14), we then have:

max
1≤i≤n

{‖T∗π(Zi)‖∞ + ‖T∗m(Zi)‖∞ + ‖R∗π,m(Zi)‖∞} = OP(ṽn),(J.16)

where ṽn := {(vn,π + vn̄,m)
√

log n+ vn,πvn̄,m(log n)} log(nd).

Using similar arguments as above, with Ψ(X) replaced by ΩΨ(X) in (J.14)
throughout, and using (J.13) and (J.15), we also have:

(J.17) max
1≤i≤n

{‖ΩT∗π(Zi)‖∞+‖ΩT∗m(Zi)‖∞+‖ΩR∗π,m(Zi)‖∞} = OP(ṽn).

Combining (J.16) and (J.17) along with Assumption 4.1 (a), we have:

max
1≤i≤n

‖Ω̂{T∗π(Zi)−T∗m(Zi)−R∗π,m(Zi)}‖∞

≤ max
1≤i≤n

{‖ΩT∗π(Zi)‖∞ + ‖ΩT∗m(Zi)‖∞ + ‖ΩR∗π,m(Zi)‖∞}

+ ‖Ω̂−Ω‖1 max
1≤i≤n

{‖T∗π(Zi)‖∞ + ‖T∗m(Zi)‖∞ + ‖R∗π,m(Zi)‖∞}

= OP (ṽn + rnṽn) = OP (ṽn) , since rn = o(1).(J.18)

Now turning to the third term in (J.11), under Assumption 4.1, and using
(J.3) and (J.13) along with multiple uses of L1-L∞ type bounds, we have:

‖Ω̂Ψ(Xi)Ψ(Xi)
′(θ̂DDR − θ0)‖∞ ≤ ‖ΩΨ(Xi)‖∞‖Ψ(Xi)‖∞‖θ̂DDR − θ0‖1

+ ‖Ω̂−Ω‖1‖Ψ(Xi)‖∞‖Ψ(Xi)‖∞‖θ̂DDR − θ0‖1 ∀ 1 ≤ i ≤ n, so that

max
1≤i≤n

‖Ω̂Ψ(Xi)Ψ(Xi)
′(θ̂DDR − θ0)‖∞ ≤ OP

(
s

√
log d

n
log(nd)(1 + rn)

)
.

(J.19)

Applying (J.12), (J.18) and (J.19) in (J.11) via triangle inequality, we get

max
1≤i≤n

‖Γ̂0(Zi)− Γ0(Zi)‖∞ = OP

(
rn log(nd) + ṽn + s

√
log d

n
log(nd)

)
.

(J.20)
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Finally, note that owing to (J.8), Γ0(Z) is sub-exponential with ‖Γ0(Z)‖ψ1

≤ σΓ0 <∞. Hence, using Bernstein’s Inequality (Lemma C.4), we have:

max
1≤j≤d

{
1

n

n∑
i=1

|Γ0[j](Zi)|

}
≤ max

1≤j≤d
E{|Γ0[j](Z)|}+OP

(√
log d

n
+

log d

n

)
,

(J.21)

which is OP(1) since E{|Γ0[j](Z)|} ≤ σΓ0 ∀ j owing to Lemma C.1 (iv) (a).
Applying (J.20) and (J.21) to the first term in (J.10) via several uses of

the triangle inequality and that a2− b2 = (a− b)(a+ b) ∀ a, b ∈ R, we have:

max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

Γ̂2
0[j](Zi)−

1

n

n∑
i=1

Γ2
0[j](Zi)

∣∣∣∣∣(J.22)

= max
1≤j≤d

1

n

n∑
i=1

|Γ̂0[j](Zi)− Γ0[j](Zi)| |Γ̂0[j](Zi)− Γ0[j](Zi) + 2Γ0[j](Zi)|

≤ max
1≤i≤n

‖Γ̂0(Zi)− Γ0(Zi)‖∞

[
max

1≤j≤d

{
2

n

n∑
i=1

|Γ0[j](Zi)|

}
+ oP(1)

]

= OP

(
rn log(nd) + ṽn + s

√
log d

n
log(nd)

)
.

Furthermore, since ‖Γ0(Z)‖ψ1 ≤ σΓ0 , we have: max1≤j≤d ‖Γ2
0[j](Z)‖ψα ≤ σ2

Γ0

with α = 1
2 owing to Lemma C.1 (v). Hence, using Lemma C.6, we get

max
1≤j≤d

∣∣∣∣∣ 1n
n∑
i=1

Γ2
0[j](Zi)− E{Γ2

0[j](Z)}

∣∣∣∣∣ ≤ OP

(√
log d

n
+

(log n)2(log d)2

n

)
.

(J.23)

Hence, combining (J.22) and (J.23) via a triangle inequality and applying
them in (J.10), and recalling ṽn from (J.16), we finally have:

max1≤j≤d |σ̂2
0,j − σ2

0,j | = OP(τn) = oP(1), where(J.24)

τn := rn log(nd) + ṽn + s
√

log d
n log(nd) +

√
log d
n + (logn)2(log d)2

n .

Note that we have implcitly assumed τn to be o(1) here. A careful analysis
will reveal that this entails essentially the same rate conditions as those
needed for the ALE (4.3) in Theorem 4.1 to hold, upto an additional factor
of
√

log(nd) appearing in the first three terms of τn, as well as the presence
of the last term in τn (which is expected to be of lower order than the rest).
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(J.24) therefore establishes the desired (uniform) consistency of the stan-
dard error estimators {σ̂0,j}dj=1, and also establishes the second asymptotic
normality result in Theorem 4.1 through use of (J.9), (J.24) and Slutsky’s
Theorem, as discussed earlier. This completes the proof of Theorem 4.1.

APPENDIX K: PROOFS OF ALL RESULTS IN SECTION 5

We present here the proofs of Theorems 5.1-5.3, as well as the assumptions
required for Theorems 5.2 and 5.3. We begin with the proof of Theorem 5.1.

K.1. Proof of Theorem 5.1. Under the assumed conditions, we have:

sup
x∈X
|g{β̂′Ψ(x)} − g{β′0Ψ(x)}| ≤ Cg sup

x∈X
|(β̂ − β0)′Ψ(x)|

≤ Cg‖β̂ − β0‖1 sup
x∈X
‖Ψ(X)‖∞ ≤ CgCΨ‖β̂ − β0‖1.(K.1)

where the steps follow from the Lipschitz continuity of g(·) and the bound-
edness of Ψ(·) along with an L1-L∞ bound. Now, under the L1 error bound
assumed for β̂ and using a simple union bound argument, we have: ∀ ε ≥ 0,

P(‖β̂ − β0‖1 > ε)

= P(‖β̂ − β0‖1 > ε, ‖β̂ − β0‖1 ≤ an) + P(‖β̂ − β0‖1 > ε, ‖β̂ − β0‖1 > an)

≤ P(‖β̂ − β0‖1 > ε, ‖β̂ − β0‖1 ≤ an) + P(‖β̂ − β0‖1 > an)

≤ P(‖β̂ − β0‖1 > ε | ‖β̂ − β0‖1 ≤ an)P(‖β̂ − β0‖1 ≤ an) + qn

≤ 2 exp{−ε2/(2a2
n)}(1− qn) + qn ≤ 2 exp{−ε2/(2a2

n)}+ qn,

where the final bounds follow from an application of Hoeffding’s inequality
for bounded random variables (or using Lemma C.1 (ii)(d) and (iii)(a)).
Using this bound along with that in (K.1), we then have: for any ε ≥ 0,

P[sup
x∈X
|g{β̂′Ψ(x)} − g{β′0Ψ(x)}| > CgCΨε] ≤ 2 exp{−ε2/(2a2

n)}+ qn.

The desired result then follows by setting ε =
√

2ant for any t ≥ 0.

K.2. Assumptions for Theorems 5.2 and 5.3. We summarize here
the smoothness and regularity assumptions required for Theorems 5.2-5.3.

Assumption K.1 (Standard smoothness assumptions and conditions on
K(·) and the tail behavior of Z). We assume the following conditions.

(a) Z is sub-Gaussian with ‖Z‖ψ2 ≤ σZ for some constant σZ ≥ 0.
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(b) K(·) is bounded and integrable with ‖K(·)‖∞ ≤MK and
∫
R |K(u)|du ≤

CK for some constants MK , CK ≥ 0.

(c) Let m
(2)
β (w) := E{Z2 |β′X = w} for any w ∈ R. Then, m

(2)
β (w)fβ(w) is

bounded in w ∈ R and ‖m(2)
β (·)fβ(·)‖∞ ≤ B1 for some constant B1 ≥ 0.

(d) K(·) is a second order kernel satisfying:
∫
RK(u)d(u) = 1,

∫
R uK(u)du =

0 and
∫
R u

2|K(u)|du ≤ RK < ∞ for some constant RK ≥ 0. lβ(·) ≡
mβ(·)fβ(·) is twice continuously differentiable with bounded second
derivatives l

′′
β(·) satisfying: ‖l′′β(·)‖∞ ≤ B2 for some constant B2 ≥ 0.

Assumption K.2 (Further conditions on K(·) and other assumptions to
account for the estimation error of β). We also assume the following.

(a) K(·) is continuously differentiable with a bounded and integrable deriva-
tive K ′(·) satisfying ‖K ′(·)‖∞ ≤MK′ and

∫
R |K

′(u)|du ≤ CK′ for some
constants MK′ , CK′ ≥ 0. Further, K(u)→ 0 as u→∞ or u→ −∞.

(b) Let ηβ(w) := E(ZX |β′X = w)fβ(w) for any w ∈ R, and let ηβ[j](·) de-

note the jth coordinate of ηβ(·) for j = 1, . . . , d. Then, for each j, ηβ[j](·)
is continuously differentiable with derivative η′β[j](·) that is bounded uni-

formly in j = 1, . . . , d. Further, lβ(·) is also continuously differentiable
with a bounded derivative l′β(·). Thus, max1≤j≤d ‖η′β[j](·)‖∞ ≤ B∗1 and

‖l′β(·)‖∞ ≤ B∗2 for some constants B∗1 , B
∗
2 ≥ 0.

(c) K ′(·) satisfies a ‘local’ Lipschitz property as follows. There exists a con-
stant L > 0 such that for all u, v ∈ R with |u−v| ≤ L, |K ′(u)−K ′(v)| ≤
ϕ(u)|u−v| for some bounded and integrable function ϕ(·) : R→ R+ with
‖ϕ(·)‖∞ ≤Mϕ and

∫
R ϕ(u)du ≤ Cϕ for some constants Mϕ, Cϕ ≥ 0.

(d) X is bounded, i.e. ‖X‖∞ ≤MX a.s. [P] for some constantMX ≥ 0, and β̂
satisfies the high-level guarantee (5.1). Further, we assume an/h = o(1)
and 2MX(an/h) ≤ L, where L is as in (c) above and an is as in (5.1).

Most of the smoothness assumptions and the conditions on K(·) in As-
sumptions K.1 and K.2 are fairly mild and standard in the non-parametric
statistics literature. Similar or equivalent versions of these assumptions can
be found in a variety of references including Newey and McFadden (1994);
Andrews (1995); Masry (1996) and Hansen (2008), among others.

Assumption K.2 (c) imposes a ‘local’ Lipschitz property of sorts on K ′(·),
where the Lipschitz ‘constant’ is a bounded function that also decays quickly
enough to be integrable. This is satisfied by the Gaussian kernel in particular.
In general, it holds for any K(·) where K ′(·) has a compact support and is
Lipschitz continuous, or K ′(·) is differentiable with a bounded derivative
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K ′′(·) that has a polynomially integrable tail, i.e. |K ′′(u)| ≤ |u|−ρ for some
ρ > 1 and all u ∈ R such that |u| > L∗ for some L∗ > 0 (see Hansen (2008)).

Finally, the boundedness assumption on X is mostly for the simplicity
of our exposition. With appropriate modifications in the proofs, this can be
relaxed to allow for more general tail behaviors of X (e.g. X is sub-Gaussian),
although the corresponding technical analyses can be more involved.

K.3. Proof Sketch for Theorems 5.2 and 5.3. We first introduce
two key supporting lemmas regarding tail bounds for l̂(β̂,x) both of which
will be useful for proving Theorems 5.2 and 5.3. We begin with a few no-
tations and a sketch of our analysis to set up and prove these lemmas, and
subsequently, use them to complete the proofs of the main theorems.

To analyze the behavior of l̂(β̂,x), we first introduce the corresponding
hypothetical version of the estimator where the index parameter β is treated
as known. Specifically, for any x ∈ X , let us define the ‘oracle’ ‘estimator’:

l̃(β,x) :=
1

nh

n∑
i=1

ZiK

(
β′Xi − β′x

h

)
≡ 1

nh

n∑
i=1

ZiK

(
Wi − wx

h

)
.

Then, we note that the error l̂(β̂,x) − l(β,x) of the original estimator l̂(·)
admits the following decomposition. For any x ∈ X ,

|l̂(β̂,x)− l(β,x)| ≤ |l̃(β,x)− l(β,x)|+ |l̂(β̂,x)− l̃(β,x)|

≤ |l̃(β,x)− E{l̃(β,x)}|+ |E{l̃(β,x)} − l(β,x)|+ |l̂(β̂,x)− l̃(β,x)|

=: |S̃n(x)|+ |Sn(x)|+ |R̂n(x)| (say).

Thus, to analyze the behavior of |l̂(β̂,x)− l(β,x)|, it suffices to control each
of the quantities S̃n(x), Sn(x) and R̂n(x). We now proceed towards obtaining
non-asymptotic pointwise tail bounds for these quantities. We first focus on
S̃n(x) and Sn(x) which involve only the hypothetical estimator l̃(·).

Lemma K.1 (Characterizing the tail bounds for S̃n(x) and Sn(x)). Un-
der Assumption K.1 (a)-(c), we have: for any fixed x ∈ X and any t ≥ 0,

P
{
|S̃n(x)| > C1

t√
nh

+ C2
t2
√

log n

nh

}
≤ 3 exp(−t2),

where C1 := 7(B1CKMK)1/2 and C2 := DσZMK for some absolute constant
D > 0. Further, under Assumption K.1 (d), we have:

|Sn(x)| ≤ C3h
2 uniformly in x ∈ X , where C3 := B2RK .
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Hence, for any x ∈ X and t ≥ 0, with probability at least 1− 3 exp(−t2),

(K.2) |l̃(β,x)− l(β,x)| ≤ C1
t√
nh

+ C2
t2
√

log n

nh
+ C3h

2, ∀ x ∈ X .

Next, we aim to control the term R̂n(x) whose behavior signifies the
nature and extent of the additional price one pays due to estimation of β.

Using a first order Taylor series expansion of l̂(β̂,x) around l̂(β,x) ≡
l̃(β,x), we first rewrite R̂n(x) ≡ l̂(β̂,x)− l̃(β,x) as:

R̂n(x) = (β̂ − β)′

{
1

nh

n∑
i=1

Zi
(Xi − x)

h
K ′
(
W ∗i − w∗x

h

)}
, where

{W ∗i }ni=1 and w∗x are ‘intermediate’ points that satisfy, for each i = 1, . . . , n,

|(W ∗i − w∗x)− (Wi − wx)| ≤ |(Ŵi − ŵx)− (Wi − wx)| ≡ |(β̂ − β)′(Xi − x)|.

We now rewrite the expansion above as: R̂n(x) ≡ R̂n,1(x)+R̂n,2(x), where

R̂n,1(x) := (β̂ − β)′

{
1

nh

n∑
i=1

Zi
(Xi − x)

h
K ′
(
Wi − wx

h

)}
=: (β̂ − β)′T̂n(x) (say), and R̂n,2(x) := R̂n(x)− R̂n,1(x).

In the result below, we now characterize the tail bounds for R̂n(x).

Lemma K.2 (Characterizing the tail bounds for R̂n,1(x) and R̂n,2(x)).
Under Assumption K.2 (a), (b) and (d), and Assumption K.1 (a) and (c),
we have: for any t ≥ 0, with probability at least 1− 3 exp(−t2)− qn,

|R̂n,1(x)| ≤ C∗1an + C∗2
an(t+

√
log p)√

nh3
+ C∗3

an(t2 + log p)
√

log n

nh2
, where

C∗1 , C
∗
2 , C

∗
3 > 0 are constants depending only on the constants introduced in

Assumptions K.2 and K.1, and x ∈ X is any fixed evaluation point.
Further, under the additional condition in Assumption K.2 (c), we have:

for any t ≥ 0, with probability at least 1− 3 exp(−t2)− qn,

|R̂n,2(x)| ≤ 4M2
XC
∗
4

a2
n

h2
+ 4M2

X

(
C∗5

ta2
n√
nh5

+ C∗6
t2a2

n

√
log n

nh3

)
, where

≤ 3 exp(−t2) + qn, for any fixed x ∈ X and any given t ≥ 0, where

C∗4 , C
∗
5 , C

∗
6 > 0 are constants depending only on the constants introduced in

Assumptions K.1 and K.2, and x ∈ X is any fixed evaluation point.
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With an/h = o(1) as assumed, note that the second and the third terms
in the bound for R̂n,2(x) are each dominated by the respective terms in the

bound for R̂n,1(x) in Lemma K.2. Using this, we obtain a bound for R̂n(x)
as follows: for any t ≥ 0, with probability at least 1− 6 exp(−t2)− 2qn,

|R̂n(x)| ≡ |l̂(β̂,x)− l̃(β,x)|

≤ C∗1 (an + a2
nh
−2) + C∗2

an(t+
√

log p)√
nh3

+ C∗3
an(t2 + log p)

√
log n

nh2
,(K.3)

for some constants C∗1 , C
∗
2 , C

∗
3 > 0 (possibly different from those in Lemma

K.2) depending only on the constants defined in Assumptions K.1 and K.2.

K.4. Completing the Proof of Theorem 5.2. Combining the bounds
(K.2) and (K.3) via a union bound, we then have: for any x ∈ X and for
any t ≥ 0, with probability at least 1− 9 exp(−t2)− 2qn,

|l̂(β̂,x)− l(β,x)| ≤ |l̃(β,x)− l(β,x)|+ |R̂n(x)| ≤ C1
t√
nh

+ C2
t2
√

log n

nh

+ C3h
2 + C∗1 (an + a2

nh
−2) + C∗2

an(t+
√

log p)√
nh3

+ C∗3
an(t2 + log p)

√
log n

nh2

≡ D1
t√
nh

(
1 +

an
h

)
+D2

t2
√

log n

nh

(
1 +

an
h

)
+D3bn, where

(K.4)

rn := h2 + an +
a2
n

h2
+
an
h

√
log p

nh
+
an
h

√
log n log p

nh
= o(1) and

D1, D2, D3 > 0 are some constants depending on the constants {Cj , C∗j }3j=1.

Further, with (an
√

log p)/h = o(1) and {log(np)}/(nh) = o(1) by as-
sumption, the fourth term in the definition of rn in (K.4) can be bounded
as: (an/h){

√
log p/(nh)} = o(1/

√
nh) and the fifth term can be bounded as:

an
h

√
log n log p

nh
≤ an

√
log p

h

log(np)

nh
= o

(
log(np)

nh

)
,

where we used that
√

log n
√

log p ≤ (log n+ log p)/2 ≤ log(np). Using these
simplifications in (K.4) and that an/h = o(1) by assumption, we finally have:
for any x ∈ X and for any t ≥ 0, with probability at least 1−6 exp(−t2)−2qn,

|l̂(β̂,x)− l(β,x)| ≤ D∗1
t√
nh

+D∗2
t2
√

log n

nh
+D∗3bn, where

bn := h2 + an +
a2
n

h2
+

1√
nh

+
log(np)

nh
and



HIGH-DIMENSIONAL M-ESTIMATION WITH MISSING OUTCOMES 93

D∗1, D
∗
2, D

∗
3 > 0 are some constants depending only on those introduced in

the assumptions. This completes the proof of Theorem 5.2.

K.5. Completing the Proof of Theorem 5.3. Using Theorem 5.2,
we have: for any fixed x ∈ X and for any t ≥ 0,

P
{
|l̂(β̂,x)− l(β,x)| > εn(t)

}
≤ 9 exp(−t2) + 2qn and

P
{
|f̂(β̂,x)− f(β,x)| > εn(t)

}
≤ 9 exp(−t2) + 2qn,(K.5)

where we recall that {f̂(β̂,x), f(β,x)} is a special case of {l̂(β̂,x), l(β,x)}
with Z ≡ 1 so that Theorem K.2 indeed applies to get both bounds above.

Next, note that m̂(·) ≡ l̂(·)/f̂(·) and m(·) ≡ l(·)/f(·), so that

|f̂(·){m̂(·)−m(·)}| = |{l̂(·)− l(·)} −m(·){f̂(·)− f(·)}|

≤ |l̂(·)− l(·)|+ |m(·)||f̂(·)− f(·)| ≤ |l̂(·)− l(·)|+ δm|f̂(·)− f(·)|,

where in the last step, we used ‖m(·)‖∞ ≤ δm by assumption. Using a simple
union bound argument, we then have: for any x ∈ X and for any t ≥ 0,

P
{
|f̂(β̂,x){m̂(β̂,x)−m(β̂,x)}| > (1 + δm)εn(t)

}
≤ P

{
|l̂(β̂,x)− l(β,x)| > εn(t)

}
+ P

{
|f̂(β̂,x)− f(β,x)| > εn(t)

}
≤ 18 exp(−t2) + 4qn,(K.6)

where the final step follows from using the bounds in (K.5).
Recall further that by assumption, |f(β,x)| ≡ f(β,x) ≥ δf > 0 ∀ x ∈ X .

Then, for any x ∈ X and any t∗ ≥ 0 such that δf − εn(t∗) > 0, we have:

P{|f̂(β,x)| < δf − εn(t∗)} ≤ P{|f̂(β,x)| < |f(β,x)| − εn(t∗)}

≤ P{|f̂(β,x)− f(β,x)|| > εn(t∗)} ≤ 9 exp(−t2∗) + 2qn,(K.7)

where the penultimate bound follows since |b| − |a| ≤ ||a| − |b|| ≤ |a− b| for
any a, b ∈ R, and the final bound follows from (K.5). In particular, we have:

P
{
|f̂(β,x)| <

δf
2

}
≤ 9 exp(−t2∗) + 2qn, ∀ t∗ ≥ 0 such that εn(t∗) ≤

δf
2
.

Combining this bound along with (K.6), we now have: for any x ∈ X and
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for any t, t∗ ≥ 0 with εn(t∗) ≤ δf/2,

P
{
|m̂(β̂,x)−m(β,x)| > 2(1 + δm)

δf
εn(t)

}
= P

{
|m̂(β̂,x)−m(β,x)| > 2(1 + δm)

δf
εn(t), |f̂(β̂,x)| ≥

δf
2

}
+ P

{
|m̂(β̂,x)−m(β,x)| > 2(1 + δm)

δf
εn(t), |f̂(β̂,x)| <

δf
2

}
≤ P

{
|f̂(β̂,x)||m̂(β̂,x)−m(β̂,x)| > (1 + δm)εn(t)

}
+ P

{
|f̂(β̂,x)| <

δf
2

}
≤ 18 exp(−t2) + 9 exp(−t2∗) + 6qn,

where the final bound follows from using (K.6), (K.7) and the bound noted
below (K.7) as a special case. This completes the proof of Theorem 5.3.

K.6. Proof of Lemma K.1. Let Z := (Z,X) and rewrite l̃(β,x) as:

l̃(β,x) =
1

n

n∑
i=1

Th(Zi; x,β), where Th(Z; x,β) :=
1

h
ZK

(
Wi − wx

h

)
.

Under Assumption K.1 (a)-(b) and using Lemma C.1 (i)(b), (ii)(d) and (v),
Th(Z; x,β) is sub-Gaussian with ‖Th(Z; x,β)‖ψ2 ≤ h−1σZMK . Hence, using
Lemma C.1 (iv)(b) and (i)(c), we have:

‖Th(Z; x,β)− E{Th(Z; x,β)}‖ψ2 ≤ 3h−1σZMK uniformly for all x ∈ X .

Further, under Assumption K.1 (b)-(c), we have: uniformly for all x ∈ X ,

Var{Th(Z; x,β)} ≤ E{T 2
h (Z; x,β)} = EW [E{T 2

h (Z; x,β)|W}]

= h−2

∫
R
E(Z2 |W = w)K2{(w − wx)/h}fβ(w)dw

≡ h−2

∫
R
m

(2)
β (w)K2{(w − wx)/h}fβ(w)dw

= h−1

∫
R
m

(2)
β (wx + hu)fβ(wx + hu)K2(u)du ≤ h−1B1MKCK ,

where the penultimate step follows from a standard change of variable argu-
ment. We have thus verified all the conditions required for Lemma C.6 using
which we now obtain: for any t ≥ 0, with probability at least 1−3 exp(−t2),

S̃n(x) ≡ |l̃(β,x)− E{l̃(β,x)}| ≤ 7t

√
B1MKCK

nh
+ t2

DσZMK

nh

√
log n,
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where while using Lemma C.6, we set Γn = h−1B1MKCK , Kn = h−1σZMK ,
p = 1, α = 2, and D depends on the absolute constant Cα in the statement
of the lemma. This completes the proof of the first part of Lemma K.1.

For the second part regarding Sn(x) ≡ E{l̃(β,x)} − l(β,x), observe that
E{l̃(β,x)} = E{Th(Z; x,β)} and l(β,x) ≡ lβ(wx). We the have: ∀ x ∈ X ,

Sn(x) = E{Th(Z; x,β)} − l(β,x) = EW [E{Th(Z; x,β)|W}]− lβ(wx)

= h−1

∫
R
E(Z |W = w)K{(w − wx)/h}fβ(w)dw − lβ(wx)

= h−1

∫
R
lβ(w)K{(w − wx)/h}dw − lβ(wx)

=

∫
R
lβ(wx + hu)K(u)du− lβ(wx) =

∫
R
{lβ(wx + hu)− lβ(wx)}K(u)du

= hl′β(wx)

∫
R
uK(u)du︸ ︷︷ ︸

= 0

+h2R∗(x) := h2

∫
R
l′′β(w∗x,u)u2K(u)du, where

w∗x,u is some ‘intermediate’ point satisfying |wx,u−wx| ≤ h|u|. The first two
steps use E(Z |W = w) ≡ mβ(w) and mβ(w)fβ(w) ≡ lβ(w). The next steps
follow from a standard change of variable and Taylor series expansion argu-
ment under the assumed smoothness of lβ(·) in Assumption K.1 (d) along
with the conditions imposed therein on the kernel K(·). Using Assumption
K.1 (d), we further have: ‖l′′β(·)‖∞ ≤ B2 and

∫
|u2K(u)|du ≤ RK . Hence,

|Sn(x)| ≤ B2

∫
R
u2|K(u)|du ≤ B2RK uniformly for all x ∈ X .

This establishes the second part of Lemma K.1 and completes the proof.

K.7. Proof of Lemma K.2. To control R̂n,1(x) ≡ (β̂−β)′T̂n(x), note

|R̂n,1(x)| ≤ ‖β̂ − β‖1
[
‖T̂n(x)− E{T̂n(x)}‖∞ + ‖E{T̂n(x)}‖∞

]
(K.8)

In the light of (K.8) and the assumed high probability bound for ‖β̂ − β‖1
in Assumption K.2 (d), it now suffices to bound ‖T̂n(x)−E{T̂n(x)}‖∞ and
‖E{T̂n(x)}‖∞. To this end, for each x ∈ X , define

T∗h(Z; x) :=
1

h2
Z(X−x)K ′

(
W − wx

h

)
so that T̂n(x) ≡ 1

n

n∑
i=1

T∗h(Zi; x).
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Now under Assumptions K.1 (a), K.1 (c), K.2 (a), K.2 (d) and using Lemma
C.1 (i)(b)-(c), (iv)(b) and (v) at appropriate places, we have: for all x ∈ X ,

max
1≤j≤p

‖T∗h[j](Z; x)‖ψ2 ≤ 2h−2MXMK′σZ and therefore,

max
1≤j≤p

‖T∗h[j](Z; x)− E{T∗h(Z; x)}‖ψ2 ≤ 6h−2MXMK′σZ .

Further, under Assumptions K.2 (d), K.1 (c), K.2 (a) and with E{Z2(X[j]−
x[j])

2 |W} ≤ 4M2
XEW (Z2 |W ) ≡ 4M2

Xm
(2)
β (W ) ∀j, we have: for all x ∈ X ,

max
1≤j≤p

E[{T∗h[j](Z; x)}2] ≤ 4

h4
M2

X

∫
R
m

(2)
β (w)[K ′{(w − wxj )/h}]2fβ(w)dw

≤ 4

h3
M2

XMK′B1

∫
R
m

(2)
β (wx + hu)fβ(wx + hu){K ′(u)}2du

≤ 4

h3
M2

XMK′B1

∫
R
|K ′(u)|du ≤ 4

h3
B1M

2
XMK′CK′ ,

where the second step follows from a change of variable argument and the
final two bounds follow from using the assumptions mentioned above.

Using Lemma C.6 with the parameters therein set to: α = 2, Γn ∝ h−3

and Kn ∝ h−2, all in the light of the two bounds above, we then have: for
any fixed x ∈ X and for any t ≥ 0, with probability at least 1− 3 exp(−t2),∥∥∥T̂n(x)− E{T̂n(x)}

∥∥∥
∞
≡

∥∥∥∥∥ 1

n

n∑
i=1

T∗h(Zi; x)− E{T∗h(Z; x)}

∥∥∥∥∥
∞

≤ C1
(t+
√

log p)√
nh3

+ C2
(t2 + log p)

√
log n

nh2
,(K.9)

for some constants C1, C2 > 0 depending only on those introduced in the
assumptions. Here, we further used

√
a+ b ≤

√
a +
√
b for any a, b ≥ 0 to

obtain the bound (K.9) from the one originally provided by Lemma C.6.
Next, we focus on controlling ‖E{T∗h(Z; x)}‖∞. To this end, recall the

definitions of ηβ(·) ∈ Rp and lβ(·) ∈ R, and let η′β(w) := d
dwηβ(w) ∈ Rp.

Then, under Assumption K.2 (a)-(b), we have: uniformly in x ∈ X ,

E{T∗h(Z; x)} =
1

h2
EW [E{(ZX − Zx)|W}K ′{(W − wx)/h}]

≡ 1

h2

∫
R
{ηβ(w)− xlβ(w)}K ′{(W − wx)/h}dw

=
1

h

∫
R
{ηβ(wx + hu)− xlβ(wx + hu)}K ′(u)du

=

∫
R
{η′β(wx + hu)− xl′β(wx + hu)}K(u)du,
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where the last two steps follow from a change of variable and integration
by parts argument, where the latter is applicable under Assumption K.2
(a)-(b). Under Assumptions K.2 (a), K.2 (b) and K.2 (d), we then have:

‖E{T∗h(Z; x)}‖∞ ≤
{

max
1≤j≤p

‖η′β[j](·)‖∞ + ‖x‖∞‖l′β(·)‖∞
}∫

R
|K(u)|du

≤ (B∗1 +MXB
∗
2)CK uniformly in x ∈ X .(K.10)

Finally, recall that from Assumption K.2 (d), we have β̂ − β‖1 ≤ an with
probability at least 1−qn. Combining this with the bounds (K.9) and (K.10)
and applying them in (K.8) through a simple union bound, we have: for any
fixed x ∈ X and for t ≥ 0, with probability at least 1− 3 exp(−t2)− qn,

|R̂n,1(x)| ≤ an

{
C∗1 + C∗2

(t+
√

log p)√
nh3

+ C∗3
(t2 + log p)

√
log n

nh2

}
,

for some constants C∗1 , C
∗
2 , C

∗
3 depending only on those introduced in our

assumptions. This establishes the first part of Lemma K.2.

To establish the second part of Lemma K.2 regarding bounds for R̂n,2(x),
first recall that for some ‘intermediate’ points {W ∗i }ni=1 and w∗x satisfying

|(W ∗i − w∗x)− (Wi − wx)| ≤ |(Ŵi − ŵx)− (Wi − wx)| ≡ |(β̂ − β)′(Xi − x)|,

|R̂n,2(x)| ≡

∣∣∣∣∣(β̂ − β)′

nh2

n∑
i=1

Zi(Xi − x)

{
K ′
(
W ∗i − w∗x

h

)
−K ′

(
Wi − wx

h

)}∣∣∣∣∣
≤ ‖β̂ − β‖1

nh2

n∑
i=1

‖Xi − x‖∞|Zi|
∣∣∣∣K ′(W ∗i − w∗xh

)
−K ′

(
Wi − wx

h

)∣∣∣∣
≤ 2MX‖β̂ − β‖1

{
1

nh2

n∑
i=1

|Zi|
∣∣∣∣K ′(W ∗i − w∗xh

)
−K ′

(
Wi − wx

h

)∣∣∣∣
}
,

(K.11)

where the steps follow from an L1-L∞ bound along with a triangle inequality
and using the boundedness of X from Assumption K.2 (d).

Let An denote the event ‖β̂−β‖1 ≤ an and let Acn denote the complement
event of An. Then, from Assumption K.2 (d), we have P(An) ≥ 1 − qn.
Further, on the event An, (β̂ − β)′(Xi − x)/h ≤ 2MX(an/h) ≤ L under
Assumption K.2 (d) and consequently, using Assumption K.2 (c) with the
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function ϕ(·) as defined therein, we have: on the event An,∣∣∣∣K ′(Wi − wx

h

)
−K ′

(
W ∗i − w∗x

h

)∣∣∣∣ ≤ 1

h
|(β̂ − β)′(Xi − x)|ϕ

(
Wi − wx

h

)

≤ 1

h
‖(β̂ − β)‖1‖(Xi − x)‖∞ϕ

(
Wi − wx

h

)
≤ 2MXan

h
ϕ

(
Wi − wx

h

)
,

(K.12)

and consequently, combining (K.11) and (K.12), we have: on the event An,

|R̂n,2(x)| ≤
2M2

Xa
2
n

nh3

n∑
i=1

|Zi|ϕ
(
Wi − wx

h

)
∀ x ∈ X .(K.13)

Thus, we have: for any ε ≥ 0 and for any x ∈ X ,

P(|R̂n,2(x)| > ε) ≤ P(|R̂n,2(x)| > ε,An) + P(|R̂n,2(x)| > ε,Acn)

≤ P

{
4M2

Xa
2
n

nh3

n∑
i=1

|Zi|ϕ
(
Wi − wx

h

)
> ε,An

}
+ P(Acn)

≤ P

{
4M2

Xa
2
n

nh3

n∑
i=1

|Zi|ϕ
(
Wi − wx

h

)
> ε

}
+ qn,(K.14)

where the steps follow from (K.13) and that P(Acn) ≤ qn by assumption.
Next, define: Th(Z; x) ≡ Th(Z; x,β) := h−3|Z|ϕ{(W − wx)/h} and recall

that m
(2)
β (W ) ≡ E(Z2 |W ). Then, using the boundedness conditions from

Assumptions K.1 (c) and K.2(c), along with use of iterated expectations, we
bound the first and second moments of Th(Z; x) ∀ x ∈ X as follows.

E{T 2
h (Z; x)} =

1

h6

∫
R
m

(2)
β (w)ϕ2

(
W − wx

h

)
fβ(w)dw

=
1

h5

∫
R
m

(2)
β (wx + hu)fβ(wx + hu)ϕ2(u)du ≤ B1MϕCϕ

h5
, and

E{Th(Z; x)} =
1

h3

∫
R
E(|Z||W = w)ϕ

(
W − wx

h

)
fβ(w)dw

≤ 1

h3

∫
R
{m(2)

β (w)}
1
2ϕ

(
W − wx

h

)
fβ(w)dw

≤ 1

h2

∫
R
{m(2)

β (wx + hu)}
1
2ϕ(u)fβ(wx + hu)du ≤

(B1Cf )
1
2Cϕ

h2
,

where Cf > 0 is a constant such that ‖fβ(·)‖∞ ≤ Cf . Further, under As-
sumptions K.1 (a) and K.2 (c), using various parts of Lemma C.1, we have:

‖Th(Z; x)− E{Th(Z; x)}‖ψ2 ≤ 3‖Th(Z; x)‖ψ2 ≤ 3h−3σZMϕ ∀x ∈ X .
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Hence, using Lemma C.6, with all required conditions verified now, we have:
for any x ∈ X and for any t ≥ 0, with probability at least 1− 3 exp(−t2),∣∣∣∣∣ 1n

n∑
i=1

Th(Zi; x)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1n

n∑
i=1

Th(Zi; x)− E{Th(Z; x)}

∣∣∣∣∣+ |E{Th(Z; x)|

≤ C3
t

nh5
+ C4

t2
√

log n

nh3
+
C5

h2
,(K.15)

for some constants C3, C4, C5 > 0 depending only on those in the assump-
tions. Hence, using (K.15) in (K.14), we now have: for any t ≥ 0,

P
{
|R̂n,2(x)| ≥ 4M2

Xa
2
n

(
C3

t

nh5
+ C4

t2
√

log n

nh3
+
C5

h2

)}
≤ P

{
1

nh3

n∑
i=1

|Zi|ϕ
(
Wi − wx

h

)
> C3

t

nh5
+ C4

t2
√

log n

nh3
+
C5

h2

}
+ qn

≡ P

(∣∣∣∣∣ 1n
n∑
i=1

Th(Zi; x)

∣∣∣∣∣ > C3
t

nh5
+ C4

t2
√

log n

nh3
+
C5

h2

)
+ qn

≤ 3 exp(−t2) + qn for any x ∈ X .

This establishes the desired bound for R̂n,2(x) and completes the proof.
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