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Abstract. Firms employ temporal data for predicting sales and making managerial deci-
sions accordingly. To use such data appropriately, managers need to make two major
analysis decisions: (a) the temporal granularity (e.g., weekly, monthly) and (b) an accompa-
nying demand model. In most empirical contexts, however, model selection, sales fore-
casts, and managerial decisions are vulnerable to both of these choices. Whereas extant
literature has proposed methods that can select the best-fitted model (e.g., Bayesian infor-
mation criterion) or provide predictions robust to model misspecification (e.g., weighted
likelihood), most methods assume that the granularity is either correctly specified or pre-
specify it. Our research fills this gap by proposing a method, the scaled power likelihood
with multiple weights (SPLM), that not only identifies the best-fitted granularity-model
combination jointly, but also conducts doubly (granularity and model) robust prediction
against their potentially incorrect selection. An extensive set of simulations shows that
SPLM has higher statistical power than extant approaches for selecting the best-fitted gran-
ularity-model combination and provides doubly robust prediction in a wide variety of
misspecified conditions. We apply our framework to predict sales for a scanner data set
and find that, similar to our simulations, SPLM improves sales forecasts due to its ability to
select the best-fitted pair via SPLM’s dual weights.

History:Olivier Toubia served as the senior editor andCarlMela served as associate editor for this article.
Supplemental Material: The online appendices and data are available at https://doi.org/10.1287/mksc.

2021.1340.
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1. Introduction
Firms and researchers routinely employ temporal data
for investigating a variety of marketing decisions. In
some instances, one may wish to infer the underlying
data generation process and derive insights regarding
optimal microlevel decisions. Alternatively, a different
goal may be to forecast more temporally aggregate de-
mand to plan the marketing mix (e.g., advertising,
price), production levels, and sales force allocation. Still
another goal, given that marketing actions (e.g., adver-
tising budgets) are routinely decided in “batched and
chunked” temporal periods (e.g., quarterly; Mela et al.
1997), is to predict drivers of demand at the granularity
of the firm’s managerial use (e.g., quarterly). For ad-
dressing some of these questions, it is ideal to use the
most granular data available, as this “analyzes the data
as they lie.” For example, in a retail context, one goal can
be to assess how customers traverse in real time through
a store and what products they purchase (e.g., Hui et al.
2009). In this case, real-time (the most granular) path
data likely offer the best way to address the question,

as opposed to data aggregated at either a daily orweekly
level, which both have significant information (feature)
loss. In contrast, for addressing other questions like
forecasting (as addressed in this paper), firms and re-
searchers have leeway in choosing (a) a level of temporal
granularity at which to analyze their in-sample data
and (b) a model given the chosen granularity (i.e., the
granularity-model pair). This is the topic addressed in
this research.

We address this topic from the point of view of
in-sample fit. Specifically, we propose in this paper a
novel heuristic selection tool (statistic) that builds
upon extant research from the statistics and machine
learning literature and allows a researcher to jointly
identify the best-fitted in-sample granularity-model
pair that can be used for out-of-sample forecasting.
We note that this is in stark contrast (as mentioned
earlier) to extant research that assumes the granularity
level before model selection.

We employ the following vignette to showcase our
granularity-model pair selection tool and contrast it
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with extant approaches. Suppose that a brand manager
of orange juice wants to generate the upcoming year’s
forecasts based on a demand model relating sales to ad-
vertising and price. To this end, she asks her analyst to
provide the best-fitted model specification that she can
use to forecast the upcoming year’s sales. The analyst
estimates a demand model at three commonly used
granularities—weekly, monthly, and quarterly. He real-
izes that a single model specification is not appropriate
across granularities, as the week-to-week demand varia-
tion versus the quarter-to-quarter variation needs to be
captured differently. In other words, he needs to choose
not just a demand model but a model-granularity pair.
Thus, at each granularity, the analyst specifies a set of
models. He also discovers that using the most granular
data (e.g., weekly) does not necessarily provide themost
accurate forecasts. More exploration indicates that mod-
el misspecification due to unmodeled short-term dy-
namics (e.g., stockpiling of juice) causes errors in the
week-to-week variation in demand that do not show up
in monthly or quarterly data. A large amount of error
variance in the week-to-week purchasing patterns gets
averaged out in a coarser granularity. On the other
hand, extant research (e.g., Christen et al. 1997) indicates
that using aggregated data to estimate demand models
can also lead to bias in parameter inference depending
on the type of model specification. The aforementioned
vignette emphasizes the link between the choices of
model specification and the level of granularity for de-
mand analysis.

The analyst decides to use extantmodel selection tools
to select the model with the best in-sample fit (e.g.,
smallest Bayesian information criterion [BIC]) at each
level of granularity, and then uses the chosen models to
forecast sales for the upcoming year. He finds that the
out-of-sample sales forecasts for the upcoming year vary
greatly with the choice of granularity, and the accompa-
nying model conditional on the granularity. This result
highlights two key notable issues. First, a comparison of
model fit across granularity-model pairs is necessary to
determine “the best among the best.” Traditional model
selection tools (e.g., Akaike information criterion [AIC],
BIC, deviance information criterion), however, cannot
be used for this task, as they are designed to select the
best-fitted model conditional on the chosen granularity
(i.e., for a fixed given data set), as per the panel on the
left-hand side of Figure 1. These model selection tools
(like BIC) vary with not only the in-sample fit but also
other elements of the data set (e.g., the number of obser-
vations). Thus, they cannot be used to jointly select the
best-fitted granularity-model pair, as described in the
panel on the right-hand side of in Figure 1. Second,when
one selects a granularity-model pair, there is the strong
possibility that either of the two choices—granularity
choice andmodel choice conditional on the granularity—
is misspecified. Hence, a selection tool should provide

in-sample fit that is robust against their erroneous
choices—granularity misselection and model misspecifi-
cation conditional on the granularity. Extant research,
however, has addressed single robustness—robustness to
model choice conditional on the granularity (e.g., Wang
et al. 2017). In this paper, we address both these issues
by proposing a selection tool that determines the best-
fitted in-sample granularity-model pair and provides
“doubly” robust protection.1

Our granularity-model selection tool has three de-
sirable properties:

1. Comparability: The tool is comparable not only
across models conditional on a granularity (as in extant
research) but also across granularities. Our tool is not
affected by elements of the data set that vary across
granularities (e.g., the number of observations).

2. Doubly fit: The tool measures in-sample fit of a
granularity-model pair, which can be used to identify
the granularity-model pair that provides the best
in-sample fit (“the best among the best”).

3. Doubly robust: The tool provides in-sample fit that
is robust to not only model selection conditional on the
granularity (i.e., classic robustness) but also granularity
choice. Specifically, the tool “corrects” for in-sample
misfit due to not only outlying observations condition-
al on the data at the chosen granularity (i.e., classic ro-
bustness) but also the entire data set if it does not fit the
chosenmodel.

Whereas these three properties are about in-sample
fit, we suggest that our proposed method can also be
more effective in improving out-of-sample prediction
than existing (in-sample) model selection tools (e.g.,
BIC) and estimation methods (e.g., likelihood) for two
reasons. First, since the first two properties (i.e.,
comparability, doubly fit) ensure the selection of the
best-fitted in-sample granularity-model pair, if the
out-of-sample period is stationary with the in-sample
period, more accurate out-of-sample predictions will
ensue. Thus, the manager in our vignette can improve
the out-of-sample sales forecast by using the best-
fitted pair identified by our approach. Second, since
the third property (i.e., doubly robust) enables our
method to correct for the in-sample misfit due to the
choice of granularity and the accompanying model, it
can reduce out-of-sample prediction errors (which we
call doubly robust prediction hereafter). Thus, our meth-
od can reduce out-of-sample prediction errors more
so than extant estimation methods (e.g., likelihood [L],
weighted likelihood [WL]), which are either not ro-
bust or singly robust.

To discuss how our proposed approach relates to,
nests, as well as extends extant (in-sample) estimation
methods and satisfies the desired properties, we pro-
vide a “modeling tree” in Figure 2. As shown in the first
level of the tree, unlike the standard likelihood method,
which assigns the same weight to all observations, our
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approach builds on extant robust estimation methods
(e.g., weighted likelihood) and down-weights observa-
tions that are discrepant from an assumed model. Next,
as shown in the second level of the tree, unlike the
weighted likelihood, which determines weights prior to
estimation (e.g., weights set as a function of the inverse
of the absolute residuals), our approach builds on the
power likelihood (PL, hereafter), which allows for latent
weights that are estimated jointlywith themodel parame-
ters (e.g.,Wang et al. 2017). Specifically, the PL raises each
observation-specific likelihood term to a latent weight,
and the posterior distribution of the weights is inferred
from data. The trade-off between the prior on theweights
and the likelihood automatically down-weights outlying
observations, which are highly discrepant from an as-
sumed model (i.e., those having extremely low likeli-
hoods due to the in-sample misfit between themselves
and the assumedmodel).

Note that PL still assumes that the granularity is
prespecified and thus does not satisfy the three prop-
erties noted earlier. We extend the PL framework to
the context where both granularity and model specifi-
cation can vary. We briefly discuss the intuition be-
hind our extension here, and the next section contains
the details. As shown in the third level of the tree in
Figure 2, we include two types of latent weights. One
set of weights identifies the degree of in-sample fit
between an entire data set and a model (i.e., the
in-sample fit of a granularity-model pair), satisfying
the doubly fit property. The other set of weights meas-
ures the degree of in-sample fit between an individual
observation and the model conditional on the entire
data set (i.e., conditional on the granularity). Our
method automatically down-weights not only the lat-
ter set of weights for individual outlying observations
conditional on the granularity (as PL does) but also

Figure 1. Comparison BetweenModel Selection and Granularity-Model Selection

Figure 2. Comparison Between the Scaled Power Likelihood withMultiple Weights (SPLM) and Extant Approaches
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the former set of weights if the entire data set does not
fit the chosen model. Hence, the use of these two types
of weights enables our method to correct for in-sample
misfit due to not only individual outlying observations
conditional on the chosen granularity (one aspect of
robustness) but also the entire data set if it does not fit the
chosen model (thus, the doubly robust property). Finally,
to make the in-sample fit comparable across granularity-
model pairs, we scale the likelihood (thus, the comparabili-
ty property). To describe itsmultiple components exactly,
we denote our method as the scaled power likelihood
withmultipleweights (SPLM, hereafter).

To assess the properties, performance, and limitations
of SPLM, we conduct a large-scale simulation study and
provide three key findings. First, SPLM performs better
in identifying the best-fitted granularity-model pair and
in providing doubly robust prediction than extant ap-
proaches do. It is due to the fact that SPLM scales the
likelihood and relaxes theweight constraints of the other
extant methods, as described in Figure 2. Second, we
show that conducting in-sample model estimation at
the SPLM-chosen granularity (even if it is coarser than
the most granular data available) improves out-of-sam-
ple prediction accuracy. We find this result particularly
important because it cautions against the aforemen-
tioned common practice of “tautologically” conducting
in-sample estimation at the finest granularity. Lastly,
evenwhen themanagerial goal is to predict sales at a cer-
tain fixed granularity, conducting in-sample estimation
at the SPLM-chosen granularity (even if it differs from
the managerially desired one) improves out-of-sample
prediction accuracy. This result also indicates that SPLM
can be applied evenwhen researchers at afirmhave con-
flicting prediction goals and hence need sales forecasts at
different granularities. Specifically, those researchers can
improve sales forecasts at each of their desired granular-
ities by performing in-sample estimation at the SPLM-
chosen granularity.

Following the simulation study, we apply SPLM as
well as extant approaches to estimate a demand mod-
el and to perform out-of-sample sales forecasting us-
ing a Nielsen scanner panel data set that contains
store-level sales and marketing actions (i.e., price, fea-
ture advertising). We show with this secondary data
set that SPLM improves sales forecasts due to its abili-
ty (1) to select the best-fitted granularity-model pair
and (2) to conduct doubly robust prediction.

The remainder of this paper proceeds as follows. In
Section 2, we formally define SPLM and discuss its
use as a doubly robust granularity-model selection
tool. In Section 3, simulation studies show that SPLM
is more effective (statistically more powerful) as a tool
for granularity-model selection and doubly robust
prediction than other extant approaches. In Section 4,
we report an empirical study that explores the extent
to which SPLM affects out-of-sample sales forecasting

performance. Finally, Section 5 concludes with limita-
tions and future research directions.

2. Scaled Power Likelihood with Multiple
Weights (SPLM)

Our proposed granularity-model pair selection tool
builds on a singly robust method recently introduced in
the statistics and machine learning literature known as
the power likelihood (PL) (e.g., Wang et al. 2017, Miller
and Dunson 2019). In this section, we begin with the
technical definition of the PL, discuss its benefits and
limitations, as well as our generalization. To help with
exposition, we use the context of an analyst trying to
forecast store-level sales for the next year using a store-
level panel data set for the current year. This context
matches the vignette described in the introduction and
our empirical application.

Consider a repeated measures (panel) data set of
nθ � ∑I

i�1Tθ,i observations of sales (salesθ,it) for store i
� 1, 2, . . . , I at time t � 1, 2, . . . , Tθ,i at granularity θ
(e.g., month). Suppose also that salesθ,it follows densi-
ty pθ(salesθ,it |bu,i), where bu,i is a heterogeneous pa-
rameter vector at granularity θ that follows density
p(bu,i |bu). Note that the density pθ(salesθ,it |bu,i) de-
pends on granularity θ, indicating that different models
may be used at different granularities, as described in
the panel on the right-hand side of Figure 1. The
term, PLθ, in Equation (1) is defined by raising
each marginal likelihood term, pθ(salesθ,it |bu) �∫
pθ(salesθ,it |bu,i) p(bu,i |bu)dbu,i, to an observation-

specific latent weight wθ,it > 0:

PLθ �
∏I
i�1

∏Tθ,i

t�1
pθ(salesθ,it |bu)wθ,it

�∏nθ
it�1

pθ(salesθ,it |bu)wθ,it

�∏nθ
it�1

∫
pθ(salesθ,it |bu,i)p(bu,i |bu)dbu,i

[ ]wθ,it
: (1)

As described later, we set the prior mode of wθ,it at 1
so that the standard likelihood is the default.

To extend the PL in Equation (1) to a fully Bayesian
framework, Equation (2) provides the joint distribu-
tion of data (salesu), model parameters (bu), and la-
tent weights (wu):

logpθ(salesu,bu,wu) ∝ logp(bu) + logp(wu) + logPLθ

� logp(bu) +
∑nθ
it�1

logp(wθ,it)

+∑nθ
it�1

wθ,it · logpθ(salesθ,it |bu): (2)

For model identification, we impose a prior on wθ,it,
p(wθ,it), that is an increasing function of wθ,it (e.g.,
beta, Dirichlet). Thus, for an observation that has a
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negative log likelihood, by lowering wθ,it from 1 (the
prior mode) toward 0, we obtain a loss in the second
term, logp(wθ,it), but a gain in the third term,
wθ,it · logpθ(salesθ,it | bu). Since the gain exceeds the
loss for observations that have a very negative log
likelihood (i.e., do not fit a chosen model conditional
on the granularity θ), Bayesian inference using PL au-
tomatically down-weights (i.e., lowers wθ,it for) those
outlying observations (e.g., Wang et al. 2017).2 There-
fore, PL allows for more flexibility in estimation than
the weighted likelihood, which determines the
weights prior to estimation (e.g., McCarthy and Jensen
2016, Wang et al. 2017).

We build our approach on the PL but make the fol-
lowing two modifications to satisfy the three properties
described earlier (i.e., comparability, doubly fit, and doubly
robust). As the first modification, we make logPLθ in
Equation (2) satisfy the comparability property—that is,
be comparable across granularities—by the following
two steps. Since logPLθ in Equation (2) sums up nθ log
likelihood terms, we divide logPLθ by nθ as the first
step, which is equivalent to the log of the fractional like-
lihood that is commonly used to assess the goodness of
fit per observation (e.g., Ruiz et al. 2020). However, the
fractional likelihood still depends on the level of granu-
larity θ, because each likelihood term at granularity θ,
which we denote, as earlier, by pθ(salesθ,it |bu), varies
with θ. Thus, as the second step, we scale each likeli-
hood term at granularity θ to the finest granularity
while ensuring that the scaling does not create addition-
al in-sample misfit. Specifically, we (a) scale the depen-
dent variable (not covariates) at granularity θ (here,
salesθ,it) to the finest granularity and then (b) replace the
dependent variable in each likelihood term at granulari-
ty θwith this scaled one. Note that, to perform (b) with-
out creating additional in-sample misfit, the scaling in
(a) should preserve the functional form of the distribu-
tion of the dependent variable.

To make this second step more tangible, let us revis-
it our motivating example and assume that the analyst
applies a monthly log-log demand model (where the
dependent variable, salesm,it, with the subscript “m”
for month, follows a log-normal distribution) as in
Sections 3 and 4. The analyst in this case can scale
each monthly likelihood term to the finest granularity
(here, weekly) without creating additional in-sample
misfit by (a) simply dividing monthly sales by the
number of weeks in a given month and then (b) re-
placing monthly sales in each likelihood term with the
scaled one (i.e., salesm,it

#weeksm,t
). It is appropriate to (b) replace

monthly sales in each likelihood term with the scaled
one, since the scaling in (a) preserves the functional
form of the distribution (i.e., the scaled one follows a
log-normal distribution). Whereas we have assumed a
log-log demand model, the proposed scaling can be

used for other types of models if it preserves the func-
tional form of the distribution of the dependent vari-
able. Two commonly used models that satisfy this
condition include a linear model (where a dependent
variable follows a normal distribution) and a log-
linear model (where a dependent variable follows a
log-normal distribution). In contrast, this simple divis-
ible scaling cannot be used for a Poisson (count)
model. The scaled dependent variable will likely have
noninteger values and thus cannot be assumed to fol-
low a Poisson distribution. We discuss situations
where the proposed scaling step of SPLM cannot be
simply accomplished as an area for future research in
our concluding section.

Formally, we make logPLθ in Equation (2) satisfy
the comparability property by dividing it with nθ and
then by replacing the likelihood term pθ(salesθ,it |bu)
for each observation (“it” subscript) with the scaled
term p1(θ)(salesθ,it |bu) (where subscript “1” indicates
the finest granularity) that transforms pθ(salesθ,it |bu)
to the finest granularity. Thus, the log of the scaled
power likelihood, logSPL1(θ), is

logSPL1(θ) � 1
nθ

·∑nθ
it�1

wθ,it · logp1(θ)(salesθ,it |bu)· (3)

As the second modification, in order to make our
method satisfy the doubly fit and doubly robust proper-
ties, we decompose the single latent weight wθ,it in
Equation (3) into two types of latent weights—name-

ly, a cross-granularity weight (i.e., Gθ �
∑nθ

it�1wθ,it
nθ

) and

within-granularity weight (i.e., fθ,it � wθ,it∑nθ
it�1wθ,it

). Thus,

the log of the scaled power likelihood with multiple
weights, logSPLM1(θ), is expressed as

logSPLM1(θ) � 1
nθ

·∑nθ
it�1

nθ ·
∑nθ

it�1wθ,it

nθ
· wθ,it∑nθ

it�1wθ,it

· logp1(θ)(salesθ,it |bu)
�∑nθ

it�1
Gθ · fθ,it · logp1(θ)(salesθ,it |bu): (4)

We extend SPLM in Equation (4) to a fully Bayesian
framework in Section A1 of Online Appendix A.

Our method, because of the use of Gθ (cross granu-
larity, column 1 in Table 1) and fθ,it (within granulari-
ty, column 2 in Table 1), allows for more flexibility
than extant methods. Note that Gθ and fθ,it are not al-
lowed to be fully flexible—that is, 0 < Gθ ≤ 1 and∑nθ

it�1 fθ,it � 1—by definition. We set Gθ and fθ,it to
have a prior mode at 1 and 1=nθ, respectively (in order
to set the standard likelihood approach, which as-
sumes that both granularity and model are correctly
specified, as the default). Also, in order to lower Gθ

and fθ,it from the default values of 1 and 1=nθ only
when the assumed model does not fit the entire data
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set and individual observations, respectively, we set
the priors on Gθ and fθ,it to be an increasing function
of Gθ and fθ,it (similar to the PL). By choosing priors
that meet the aforementioned conditions, our method
can identify two sets of weights3 and satisfy the doubly
fit and doubly robust properties, which we explain
next. Whereas there are many candidates for the prior
distributions, we assume that Gθ has a spike-and-slab
beta prior (with a spike at 1 as mentioned) and the
vector of fθ,it has a symmetric Dirichlet prior (centered
at 1=nθ). Our prior choices are explained in detail in
Section A1 of Online Appendix A.

Our method satisfies the doubly fit property by speci-
fying Gθ in addition to fθ,it. That is, one can identify the
best-fitted granularity-model pair by using Gθ as a
granularity-model selection criterion. Here is why. As
demonstrated in Section A1 of Online Appendix A (es-
pecially Equation (A7)), there is a trade-off between the
prior on Gθ, which is an increasing function of Gθ, and
the product of Gθ and the “scaled” in-sample fit of a

granularity-model pair—that is,
∑nθ

it�1logp1(θ)(salesθ,it |bu)
nθ

.
This trade-off allows our method to lower Gθ from 1
(the prior mode) toward 0 when the scaled in-sample
fit of a granularity-model pair is poor, as demonstrated
in Section A1 of Online Appendix A (especially Equa-
tions (A8)–(A9)). Since Gθ represents the scaled
in-sample fit, which is comparable across granularity-
model pairs,4 researchers can identify the best-fitted
granularity-model pair (among a set of granularity-
model candidates) by selecting the one that maximizes
Gθ. Furthermore, it is easy to interpret Gθ; Gθ will be
(almost) 1 if the analysis is conducted at the perfectly
fitted granularity-model pair and smaller than 1 if it is
not. Therefore, Gθ is the main heuristic selection tool
and contribution of this research. We demonstrate its
properties as a granularity-model selection criterion in
Sections 3 and 4.

Our method also satisfies the doubly robust property—
that is, it is robust to granularity selection and model se-
lection conditional on the granularity. Cross-granularity
robustness and within-granularity robustness are en-
abled by Gθ and fθ,it, respectively. First, as seen in Equa-
tion (4), SPLM raises the standard likelihood of the en-
tire data set to Gθ on average. In other words, it

“flattens the likelihood” of the entire data set by the
amount of in-sample misfit (between data at that granu-
larity and the accompanying model), providing
in-sample robustness across granularities. Second, if we
fix Gθ, then our method goes back to PL; thus, fθ,it
works in the same way as wθ,it in the PL, providing
in-sample robustness across models conditional on the
granularity.

We also propose that our method will offer better
out-of-sample forecasts than extant methods if the
out-of-sample period is stationary with respect to the
in-sample period. First, note that our proposed mea-
sure (Gθ) represents the scaled in-sample fit, which is
comparable across granularity-model pairs. Thus, we
can improve the out-of-sample forecasts by using the
pair that maximizes Gθ (indicating that the pair has
the best in-sample fit). Second, in-sample double
robustness, which corrects for in-sample misfit due to
both granularity and model selections, leads to “doubly
robust prediction,” as explained in the introduction.
Thus, ourmethodwill bemore effective in correcting for
out-of-sample prediction errors than extant (in-sample)
estimation methods, which are either not robust (e.g.,
likelihood) or singly robust (e.g., weighted likelihood,
PL).Wewill next assess the dual benefits of SPLM in im-
proving out-of-sample prediction—(1) granularity-
model selection and (2) doubly robust prediction—
through simulation and an empirical exercise with real
data.

3. Simulation
3.1. Simulation Objectives
We designed a large-scale simulation study to assess
the viability of our proposed method (SPLM) along
three major dimensions: (1) to demonstrate that con-
ducting a demand analysis at the SPLM-chosen gran-
ularity (even if the SPLM chosen one is coarser than
the most granular data available) can provide better
in-sample fit and out-of-sample predictions, suggest-
ing that it is not necessary to always use the most
granular data in practice; (2) relatedly, to assess the
performance of SPLM in selecting the best-fitted gran-
ularity-model pair in contrast to the aforementioned
extantmethods (L,WL, PL); and (3) to evaluate SPLM’s
ability to improve predictive accuracy and yield dou-
bly robust predictions (predictions that are robust
against granularity-model pair misselection) in com-
parison with the same three extant methods. Thus, we
hope to demonstrate that SPLM is valuable to research-
ers for granularity-model selection, as well as for pre-
dictive accuracy and robustness.

3.2. Simulation Design
We begin with an overview of the design and then ex-
plain the details in the next fewparagraphs. To provide

Table 1. Comparison Between Our Method (SPLM) and
the Extant Approaches

Cross-granularity
weight (Gθ)

Within-granularity
weight ( fθ,it)

Likelihood (L) 1 1=nθ
Weighted likelihood (WL) 1 A function of the

inverse of the
absolute residuals

Power likelihood (PL) 1 Latent
Our method (SPLM) Latent Latent
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support for our objectives of the simulation, we created
different granularity-model pairs and conducted (in-
sample) model estimation and (out-of-sample) predic-
tion using SPLM and the three extant methods. For
ease of explanation, we continue with the example of a
brand manager who is using store-level sales data for
the current year to predict demand for the upcoming
year.

Figure 3 lays out the data generation and modeling
steps that we pursued in the simulation study. We
simulated monthly demand data from a chosen data
generating process (DGP) using a 2 (sample size) × 2
(SNR) factorial design, as in Box 1 of Figure 3. For
each of the four cells, we generated 100 monthly level
data sets, yielding a total of 400 data sets. We then cre-
ated quarterly data and weekly data, via aggregating
and disaggregating the monthly data, respectively, as
in Box 2 of Figure 3. We did so in a way that analyzing
monthly data will provide better in-sample fit than
quarterly and weekly data (first objective). Since we
hope to demonstrate that SPLM identifies the best-
fitted granularity (rather than to uncover new and in-
teresting underlying mechanisms that determine the
best-fitted granularity), we selected aggregation and
disaggregation processes that are likely to be observed
in empirical data and utilized by researchers. We ex-
plain the data generation process in Sections 3.2.1 and
3.2.2. Then, for each of the 400 original 2 × 2 data set
triples (quarterly, monthly, weekly) from Boxes 1 and
2 of Figure 3, we fit 12 different model specifications
at the three granularities using four different methods
(L, WL, PL, SPLM), as given in Box 3(a) of Figure 3.
We explain the models and methods in Sections 3.2.3

and 3.2.4, respectively. Lastly, we compared the re-
sults across methods to demonstrate SPLM’s superior
ability to select the best-fitting granularity-model pair
(second objective) and to provide improved predictive
accuracy and doubly robust predictions (third objec-
tive), as in Box 3(b) of Figure 3.

3.2.1. Monthly Data (Box 1 of Figure 3). We created
monthly demand data for a period of two years (i.e.,
in-sample data for the current year and out-of-sample
data for the upcoming year) following three steps.
First, we generated monthly covariates (price and ad-
vertising) for a brand at store i in month t (� 1, 2, . . . ,
24):5

log(priceθ�m,it) ~ N(µprice,m, σ
2
price,m); (5)

log(adθ�m,it) ~ N(µad,m,σ
2
ad,m): (6)

Next, we generated brand-specific unit sales at store i
in month t using a log-log model:

log(salesm,it) � µm,it + εm,it

� αm,i + βm,ilog pricem,it

+ γm,ilog adm,it + δm,t + εm,it, (7)

with three heterogeneous parameters—namely, store-
level baseline intercept αm,i, store-level price elasticity
βm,i, and store-level advertising elasticity γm,i— and 11
monthly fixed effects δm,t, and an error term εm,it. The
heterogeneous parameters (αm,i, βm,i, γm,i) and error
term εm,it were assumed to follow independent
Normal distributions—that is, αm,i ~N(αm,σ2α,m), βm,i ~
N(βm,σ2β,m), γm,i ~N(γm,σ

2
γ,m), εm,it ~ N(0,σ2ε,m):6

Figure 3. Simulation Design
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Last, we used the first half of the data for in-sample esti-
mation and the second half of the data for out-of-sample
prediction.

When generating monthly data sets, we systemati-
cally varied the two factors—(a) sample size and (b)
signal-to-noise ratio (SNR)—that have been shown to
be important drivers for the performance of the extant
methods in model selection and singly robust predic-
tion (e.g., Mao 2013). First, we set the number of stores
I at two levels: 25 (small) and 100 (large). Second, we

varied SNR—that is,
σ2(µm,it)
σ2(εm,it)—at two levels: 1=9 (small)

and 9 (large), which is equivalent to changing the av-

erage relative error variance—that is, σ2(εm,it)
σ2(µm,it)+σ2(εm,it)—

over 0.10 (small) and 0.90 (large).

3.2.2. Quarterly and Weekly Data (Aggregation and
Disaggregation) (Box 2 of Figure 3). We aggregated
and disaggregated the 400 monthly data sets to quar-
terly and weekly levels, respectively. Among the many
possible aggregation and disaggregation processes, we
selected ones that are likely to be observed in empirical
data and utilized by researchers. (We explain our ag-
gregation and disaggregation processes and their ef-
fects on the chosen DGP in the next few paragraphs.)
Importantly, our aggregation process, linear aggrega-
tion as is commonly used, introduced bias but with no
added stochastic error in the chosen DGP. In turn, and
in contrast, our disaggregation process introduced ran-
dom noise with no bias. This way of creating quarterly
and weekly data allowed us to compare the perfor-
mance of SPLM with that of extant methods under
conditions when there is either bias or stochastic error
introduced in the chosen DGP. As we generated two
years of sales data, the quarterly, monthly, and weekly
data sets have nq � 8 · I, nm � 24 · I, and nw � 104 · I ob-
servations, where I is the number of stores, respectively.

(1) Quarterly Data (Aggregation)
We chose to linearly aggregate the monthly data to a
quarterly level, as is commonly done in research and
practice (e.g., Tellis and Franses 2006, Ivancic et al.
2011). Specifically, we summed up the monthly num-
ber of advertisements and monthly sales and took a
simple average of monthly prices.7 Since the chosen
monthly DGP (log-log demand model) in Equation (7)
for our simulated data was a nonlinear function, its lin-
ear aggregation introduced bias with no stochastic er-
ror (e.g., Christen et al. 1997). Thus, we expected that if
the log-log model in Equation (7) is applied to both
monthly and quarterly data, then the in-sample fit and
out-of-sample prediction accuracy would be higher at
the monthly level than at the quarterly level.

(2) Weekly Data (Disaggregation)
To create weekly data, we assumed that while each
store sets price and feature advertising every month (as

given in Equations (5) and (6)), its sales vary across
weeks. This assumption is plausible because even if the
marketing mix is determined at a monthly level, de-
mand could vary across weeks due to random shocks.
Formally, given monthly data (price, advertising, sales)
of store i for month j, we assumed that price was the
same across all weeks in a month and divided monthly
advertising into equal weekly amounts. We then dis-
tributed salesm,ij for a given month into four weeks as
follows:8

salesw,it � salesm,ij · sharew,it, (8)

where ∑4
t�1sharew,it � 1. The disaggregation vector

sharew,i � (sharew,i1, sharew,i2, sharew,i3, sharew,i4) was
drawn from a symmetric Dirichlet distribution, to
add random, but unbiased, stochastic noise when
generating weekly data from monthly data.9 We
used the Dirichlet distribution with a small concen-
tration parameter (here, 1) to increase the noise in
the week-to-week variation.

Note that store-level price and advertising were as-
sumed not to vary across weeks within a month and
monthly saleswere stochastically distributed to aweek-
ly level. Thus, if the brandmanager is given theseweek-
ly data and linearly aggregates the data to a monthly
level, then the noise will be smaller in the monthly (ag-
gregated) data than in the weekly (most granular) data.
Hence, we expected that even if we apply the model in
Equation (7) to both weekly and monthly data, the
in-sample fit and out-of-sample prediction accuracy
would be higher when the analysis is performed using
the latter.

3.2.3. Models (Box 3 of Figure 3). We assessed the
benefit of SPLM in identifying the chosen granularity-
model pair and correcting for granularity-model mis-
selection due to both the assumed temporal granulari-
ty and the model specification. For showcasing the
latter, we systematically varied three factors while es-
timating the demand model—(a) the functional form,
(b) seasonal fixed effects, and (c) the level of heteroge-
neity. For (a) the functional form, we assumed three
levels: log-log (chosen), log-linear, and linear. The oth-
er two factors were varied at two levels—namely, (b)
seasonal fixed effects, which are present in the model
(chosen) or absent in the model, and (c) the level of
heterogeneity, which is present in the model (chosen)
or absent in the model. Thus, there were 12 variations
of the estimated demand model (3 × 2 × 2) as de-
scribed in Box 3 of Figure 3.

3.2.4. Methods (Box 3 of Figure 3). We used the 400
data set triples to estimate model parameters for
the 12 specifications using four methods (L, WL, PL,
SPLM).10 Note that the extant methods have more
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restrictive weight constraints than SPLM does, as de-
scribed in Table 1.

3.3. Simulation Results
To compare in-sample estimation and out-of-sample
prediction results across granularity-model pairs and
the four methods (L, WL, PL, SPLM), we adopted the
following two steps, as described in Box 3 of Figure 3.
First, as described in Box 3(a) of Figure 3, for each of
the data set triples, we fit the aforementioned 12 mod-
el variations at the three different granularities using
the four different methods. For each of the four meth-
ods, we chose the best-fitted model (in-sample) given
the granularity, and then compared the in-sample fit
across granularities to select “the best of the best”
granularity-model pair. This approach is consistent
with the panel on the right-hand side of Figure 1.
Next, as described in Box 3(b) of Figure 3, we assessed
our SPLM method’s ability to select the best-fitting
pair and to provide improved predictive accuracy and
double robustness in comparison with the extant
methods (L, WL, PL).

3.3.1. Granularity-Model Selection. As noted earlier,
the cross-granularity weight, Gθ, is our proposed met-
ric to identify the granularity-model pair that provides
the best in-sample fit. The first panel of Figure 4(a)
demonstrates thatGθ is higher for themonthly (chosen
DGP) data than for either the quarterly (aggregated) or
weekly (disaggregated) data. Accordingly, the second
panel of Figure 4(a) and the first panel of Figure 4(b)
show lower in-sample misfit (measured using weighted
absolute percentage error, WAPE, as defined in the note
of Figure 4 and detailed in Online Appendix B) when
monthly data are used and when Gθ is higher, respec-
tively. The in-sample results are extended to out-of-
sample forecasting, since the out-of-sample period is sta-
tionary with the in-sample period in this simulation
study. Specifically, the third panel of Figure 4(a) and the
second panel of Figure 4(b) demonstrate lower out-of-
sample misfit (measured using WAPE) when monthly
data are used andwhenGθ is higher, respectively.

Hence, Figure 4 supports the first objective by pro-
viding evidence against the common belief that the
most granular data available always attain the best
in-sample fit and out-of-sample predictions. It also
demonstrates that Gθ is sensitive to the magnitude of
the in-sample misfit. To extend this result and support
the second objective, we compare Gθ with extant
methods in terms of the ability to identify in-sample
misfit in the next few paragraphs.

Next, as noted earlier, we examined whether SPLM
is more sensitive in identifying in-sample misfit and
so performs better in selecting the granularity-model
pair with the smallest in-sample misfit (i.e., the best-
fitted pair) than extant methods (L, WL, PL). Note that

in-sample misfit in the data set triples (that we gener-
ated) varied within a relatively small range, as this
was not the primary purpose of the simulation. For
example, the second panel of Figure 4(a) shows that
the 95% credible interval of quarterly in-sample misfit
is [52%, 58%]. To explore and assess SPLM’s ability to
identify the best-fitted pair in comparison with the ex-
tant methods over a wider range of “signal” (in-sample
misfit), we supplemented our simulation with an addi-
tional 100 data set triples, where we varied the levels of
signal, as described inOnline Appendix C.

Parts (a) and (b) of Figure 5 contain the results. In
Figure 5(a), the y-axis is the proportion of triples from
which each of the four methods (L, WL, PL, SPLM)
identifies the best-fitted granularity-model pair (in
this case, the monthly DGP). The x-axis is a measure
of in-sample misfit in a triple (in this case, the mini-
mum of quarterly and weekly in-sample WAPE). The
graph shows how well each method performs under
varying levels of in-sample misfit. The x-axis and y-
axis in Figure 5(b) are based on out-of-sample misfit
(measured using out-of-sample WAPE) and out-of-
sample prediction accuracy, respectively.

In Figure 5(a), for triples with small in-sample misfit
(here, less than 40%), the value of the y-axis for our
measure (Gθ of SPLM) is greater than that for extant
in-sample measures, namely, the in-sample R2 of L,
WL, and PL. This indicates that when in-sample misfit
is small, our measure (Gθ) is better in identifying the
best-fitted granularity-model pair than the extant
measures. Note that the value of the y-axis for the ex-
tant measures is zero, which indicates that extant
measures always fail to select the best-fitted granulari-
ty-model pair.11 When in-sample misfit is moderately
large (here, between 40% and 60%), Gθ is still more
likely to identify the best-fitted granularity-model pair
than the extant measures. When the degree of
in-sample misfit is sufficiently large (here, greater
than 60%), all four measures can identify the best-
fitted granularity-model pair.

Figure 5(b) shows the superiority of our measure
(Gθ) for out-of-sample forecasting as well. It identifies
the pair with the best predictions better than extant
out-of-sample measures (the out-of-sample R2 of L,
WL, and PL) do. Whereas the out-of-sample R2 is cal-
culated using out-of-sample data (by definition), it is
statistically less powerful in identifying the pair with
the best predictions than Gθ, due to its lack of compa-
rability across granularities.

Last, whereas we assumed earlier (in Figures 4 and
5) that a firm does not prespecify the data granularity
at which out-of-sample predictions have to be made,
this may not always be the case. Typically, if managers
want to make predictions at a certain fixed granularity,
then they estimate the model at that “desired gran-
ularity.” For example, Mela et al. (1997) analyze the
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effect of advertising on consumers’ brand choice at a
quarterly level, as their data provider is likely to make
marketing decisions at that level.

Assume that a firm wanted to predict sales at a par-
ticular granularity (say, weekly, which in this case is
the most granular). We applied the following three
forecasting approaches for forecasting weekly sales.
In the weekly approach, we estimated the demand
model with the weekly data (i.e., desired granularity)
and predicted sales at the weekly level. In the monthly
approach, we estimated the model at the monthly level
(i.e., SPLM-chosen granularity), predicted monthly
sales, and then consistently disaggregated it to forecast
sales at the weekly level. The definition and details of
consistent disaggregation are in Online Appendix D.
In the quarterly approach, we estimated the model us-
ing quarterly data, predicted quarterly sales, and then

consistently disaggregated it to the weekly level. A
similar procedure can be followed if the desired granu-
larity is either monthly or quarterly.

Figure 6 shows that smaller out-of-sample predic-
tion errors are obtained with the monthly approach
(i.e., estimating the model at the SPLM-chosen granu-
larity) than the other two approaches, regardless of
the desired granularity and estimation method (i.e.,
M1 < W1, Q1 under L; M2 < W2, Q2 under WL; M3 <
W3, Q3 under PL; M4 <W4, Q4 under SPLM). This re-
sult demonstrates that estimating and predicting at
the SPLM-chosen granularity-model pair, even if that
is not the managerially desired granularity (e.g., if the
manager has to make weekly or quarterly predictions
to set weekly or quarterly budgets) can improve pre-
dictions. This finding is highly relevant for managers
who may erroneously believe that their granularity

Figure 4. Relationship Between Cross-GranularityWeight (Gθ), In-Sample Misfit, and Out-of-Sample Misfit Under Large Sam-
ple Size and High SNR

Notes. (1) We used weighted mean absolute percentage error (WAPE), which takes the sales-weighted average of the absolute percentage errors
(APEs), to compare in-sample or out-of-sample misfit across granularities. We justified our use of WAPE in Online Appendix B. (2) Part (b) of
the figure has three clusters, as it plots the results for the three granularities—week, month, and quarter.
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used for estimating the demand model must match
with the one used for forecasting.

3.3.2. Doubly Robust Prediction. We have shown that
SPLM improves prediction accuracy by choosing the
best-fitted granularity-model pair (as in Figure 4). We
now demonstrate that SPLM provides predictions that
are robust against both granularity and model misspe-
cifications in comparison with those from extant meth-
ods (L,WL, PL), supporting our third objective.

First, to assess SPLM’s robustness to granularity
misspecification, assume that themanager erroneously

selected a weekly or quarterly granularity and chose
the best-fitted model given this misspecified granulari-
ty. Figure 6 demonstrates that SPLM reduces predic-
tion errors due to the granularity misspecification by a
greater amount than do extant methods (i.e., W4 <W1,
W2, W3; Q4 < Q1, Q2, Q3 in parts (b) and (c) of Figure
6). SPLM accomplishes this via down-weighting obser-
vations that are discrepant from a chosenmodel (as ex-
plained in Section 2). However, if the out-of-sample
data at the desired granularity are too noisy (here,
weekly data), then SPLMwill provide prediction accu-
racy similar to that under the extant methods (e.g., W4
is similar to W1–W3 in Figure 6(a)). Note that this

Figure 5. (Color online) Comparison of Gθ of SPLM and Extant Measures in Terms of the Ability to Identify a Granularity-
Model Pair That Provides the Best In-Sample Fit and Out-of-Sample Prediction Accuracy

Notes. (1) In part (a) of the figure, L,WL, and PL indicate the in-sample R2 of L,WL, and PL. In part (b), L,WL, and PL indicate the out-of-sample
R2 of L, WL, and PL. (2) We measured in-sample and out-of-sample misfit with weighted mean absolute percentage error (WAPE), which takes
the sales-weighted average of the absolute percentage errors (APEs), as explained in Online Appendix B.

Figure 6. Posterior Distributions of Percentage Errors of Predicting Sales at Different Desired Granularities Under Large Sample
Size and High SNR

Notes. (1) The labels in the x-axis indicate a forecasting approach and estimation method pair. From left to right, they are (W1) week + L, (W2)
week +WL, (W3) week + PL, (W4) week + SPLM, (M1) month + L, (M2) month +WL, (M3) month + PL, (M4) month + SPLM, (Q1) quarter + L,
(Q2) quarter +WL, (Q3) quarter + PL, and (Q4) quarter + SPLM. (2)Wemeasured out-of-sample prediction errors with weightedmean absolute
percentage error (WAPE), which takes the sales-weighted average of the absolute percentage errors (APEs), as explained in Online Appendix B.
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boundary condition (i.e., the out-of-sample data
should not be too noisy) may not heavily restrict our
application of SPLM in practice, as much empirical re-
search will satisfy this condition, since it is necessary
for reliable prediction.

Similarly, researchersmay (unknowingly) select amis-
specified model given the granularity. For example, in
our simulation study, researchersmay select either a line-
ar or log-linear demandmodel, estimate it usingmonthly
data, and then predict sales at their desired granularity.
Figure 7 demonstrates that SPLM reduces prediction er-
rors due to model misspecification more so than extant
methods regardless of the desired granularity. Since
SPLM uses more flexible weights than the extant meth-
ods (as described in Table 1), it can provide more
“protection” against model misspecification than the

extant ones. Figure 7 also shows that researchers may
well get even bigger benefits from using SPLM when
their assumed model is more discrepant from the data.
For example, SPLM reduces out-of-sample prediction er-
rors by a greater amount for the linear misspecification
(as in Figure 7(b)) than for the log-linear misspecification
(as in Figure 7(a)).

4. Secondary Data Application
4.1. Objectives
We provide evidence that the benefits of our pro-
posed method (SPLM) can be realized within sec-
ondary data contexts as well. In particular, we show the
following: (1) SPLM is more discriminating in selecting
a granularity-model pair that leads to better in-sample
fit and out-of-sample predictions as compared with the

Figure 7. Comparison of the Posterior Distributions of Prediction Errors Across the EstimationMethodsWhenMonthly Data
Are Estimated with aModel in aMisspecified Functional Form Under Large Sample Size and High SNR
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three aforementioned extant methods—that is, likeli-
hood (L), weighted likelihood (WL), and power likeli-
hood (PL); (2) relatedly, conducting a demand analysis
at the SPLM-chosen granularity improves predictive ac-
curacy even if the chosen granularity is neither the most
granular nor the managerially desired granularity (i.e.,
the granularity at which sales forecasts have to be
made); and (3) SPLM yields doubly robust predictions
as comparedwith the same three extantmethods.

4.2. Analysis
4.2.1. Data. We used data, made available by AC
Nielsen, at the universal product code (UPC)–store–
week level. The data include 671 UPCs and 34,759
stores across a variety of formats (grocery, mass mer-
chandise, drug stores) with sales, prices, and feature
advertising over a period of 12 years (2006–2017). We
illustrate the use of our proposed framework by
analyzing the demand for the leading brand-size com-
bination in the refrigerated orange juice category (Tro-
picana, 12 ounces) in drug stores across U.S. markets
over a period of two years (2015 and 2016).12 Our
choice of analyzing sales in comparable stores lowers
the possibility of omitted variables.

To create data at the store-week level from the data
at the UPC-store-week level, we summed up unit
sales and the incidence of feature advertising, and
sales-weighted averaged price over all UPCs for the
Tropicana brand. Thus, at the store-week level, our
advertising variable indicates the number of UPCs
with feature advertising at a given store and week. To
facilitate the comparison of results across three granu-
larities (weekly, monthly, quarterly), we set the month
and quarter of each week as the month and quarter of
the first day (Sunday) of the week. We then linearly
aggregated the store-week data (i.e., summed up sales
and advertisements, and took a simple average of
weekly prices) to the corresponding store-month and
store-quarter levels, respectively.

Table 2 summarizes the distributions of log unit
sales, log price, and log feature advertising across the
three granularities. The summaries are based on the
data from 2015, which was used for (in-sample) model
calibration, whereas the year 2016 was used for (out-
of-sample) forecasting.

4.2.2. Model Specifications. Demand analysis tries to
capture underlying drivers, and doing so at different
granularities may require different model specifications.
For instance, whereas dynamic purchase effects may
need to be considered when analyzing weekly data,
these effects may get averaged out and thus may not be
important when it comes to using quarterly data. Thus,
weekly variation in sales may be captured using an au-
toregressive (AR) log-log model, whereas quarterly data
may not need such dynamic effects. With this underly-
ing idea, at each granularity, we chose the best-fitted
model among three model specifications—that is, an
AR(p) log-log demand model, where p � 0, 1, or 2.13 If p
� 0, then we obtain a nonautoregressive log-log demand
model, which does not include lagged dependent varia-
bles as covariates. The most generalized model—the
AR(2) log-log model—is shown in Equation (9):

log(salesθ,it) �αθ,i + βθ,ilog(priceθ,it) + γθ,ilog(adθ,it + 1)

+∑2
p�1

ρθ,plog(salesθ,it−p) + δθ,t + εθ,it

� µθ,it + εθ,it, (9)

where the dependent variable salesθ,it indicates the
unit sales for Tropicana at drug store i for the t th
observation at granularity θ, with i � 1, : : : , I (where I
indicates the total number of drug stores); θ � week
(w), month (m), or quarter (q); t � 1, : : : ,Tθ (where
Tw � 52, Tm � 12, Tq � 4). The two covariates priceθ,it
and adθ,it captured the price and number of feature
advertisements of the brand at store i for the tth obser-
vation at granularity θ, respectively. In order to con-
trol for dynamic effects at granularity θ, we included
two lagged dependent variables—log(salesθ,it−1) and
log(salesθ,it−2).14 Seasonal patterns at the given granu-
larity were accommodated by including a time fixed
effect δθ,t (e.g., monthly fixed effect if we analyze
monthly level data). Finally, the store-level heteroge-
neous parameters (αθ,i, βθ,i, γθ,i) and the error term
(εθ,it) were assumed to follow independent Normal
distributions—that is, αθ,i ~N(αθ,σ2α,θ), βθ,i ~N(βθ,
σ2β,θ), γθ,i ~N(γθ,σ

2
γ,θ), εθ,it ~N(0,σ2ε,θ).

Note that whereas the inclusion of lagged sales as
covariates may improve model fit (as well as the out-
of-sample predictions) and account for dynamic pur-
chase effects, it can create an issue of endogeneity,
because lagged sales (as well as current sales) are
functions of unobserved store-level effects. We ad-
dressed the issue by applying the Arellano and Bover
(1995) method that used differences in further lags of
the dependent variable as instruments for a lagged
term (e.g., Yoganarasimhan 2012, Gamper-Rabindran
and Finger 2013, Uetake and Yang 2020). Following
Uetake and Yang (2020), we used six lagged differ-
ences as instruments for a lagged term. That is, we
used Δlog(salesθ,it−k) � log(salesθ,it−k) − log(salesθ,it−k−1),

Table 2. Means (Standard Deviations) of 2015 Nielsen
Orange Juice Data at Varying Granularities

Week Month Quarter

Log unit sales 2.498 (0.863) 4.030 (0.740) 5.156 (0.696)
Log price 0.569 (0.067) 0.570 (0.054) 0.570 (0.051)
Log number of
advertisements

0.042 (0.208) 0.180 (0.403) 0.382 (0.692)

Number of
observations

2,600 600 200
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where k � 2, 3, : : : , 7, and Δlog(salesθ,it−k) , where
k � 3, 4, : : : , 8, as instruments for log(salesθ,it−1) and
log(salesθ,it−2), respectively.15 Since the Arellano and
Bover (1995) method requires that there be no serial
correlation, for each of the model specifications, we
performed the Arellano-Bond test and confirmed that
there was no evidence of serial correlation (e.g.,
Arellano and Bond 1991, Yoganarasimhan 2012). We
also tested the power of the instruments via the
Sanderson-Windmeijer multivariate F-tests for multi-
ple endogenous variables (e.g., Andrews and Stock
2005, Sanderson and Windmeijer 2016, Uetake and
Yang 2020) and rejected a null hypothesis of having
weak instruments.

4.2.3. Approaches We selected a granularity-model
pair and performed in-sample estimation and out-of-
sample forecasting under both extant approaches and
our framework (SPLM), as shown in Table 3. Besides us-
ing three formal extant likelihood-based approaches—
approaches (3), (4), and (5)—we also used two simpler
methods—approaches (1) and (2)—that are commonly
used (e.g., Leone 1995, Bell and Song 2007).

1. Interpurchase time (IPT)
We set IPT as the temporal granularity based on past
work (e.g., Bass and Leone 1983, Leone 1995). For ex-
ample, Bass and Leone (1983) proposed to use the IPT
as the data interval for analysis, as the level of the IPT
may provide maximum information per observation.
(They did not offer any support for the assumption.)
Then, conditional on the IPT-chosen granularity, we
estimated the aforementioned model specifications
using the standard likelihood and selected the one with
the maximum in-sample and/or out-of-sample R2

(InR2
θ and/orOutR2

θ).
2. The most granular data

The Nielsen data are weekly in their most granular
state. Then, conditional on the finest granularity (here,
week), we estimated the model specifications under

the standard likelihood and selected the one with the
highest InR2

θ and/orOutR2
θ.

3. Likelihood (L)
We followed two steps: (a) At each of the three granu-
larities, we estimated the model specifications under
the standard likelihood and selected the model that
maximizes InR2

θ and/or OutR2
θ. (b) Then, among the

chosen three granularity-model pairs (i.e., quarterly,
weekly, and monthly models), we selected the one that
maximizes InR2

θ and/orOutR2
θ.

4. Weighted likelihood (WL)
We repeated the two steps described in (3) but used the
weighted likelihood for estimation.

5. Power likelihood (PL)
We repeated the two steps in (3) but used the power
likelihood for estimation.

6. Ourmethod (SPLM)
We repeated two steps in (3) but used SPLM for estima-
tion. We used the cross-granularity weight, Gθ, for
granularity-model selection.

4.3. Results
We show the results for both the first two simpler
methods and the more formal likelihood-based meth-
ods (L, WL, PL, SPLM) in Table 4. Although not ex-
plicitly shown in the table, the results for the simpler
approaches based on IPT (approach 1) and using the
most granular data (approach 2) are covered by our
findings obtained under the L approach in Table 4,
Panel A. The average IPT for the refrigerated orange
juice category is 69 days, which suggests possibly
quarterly granularity (albeit that is “more art than sci-
ence”), and weekly data are the most granular.

For the likelihood-based approaches, we compared
the “zero robust” (L), “singly robust” (WL and PL),
and “doubly robust” (SPLM) methods using the two
steps described in Section 4.2.3.16 At the first step, we
obtained similar results across the four approaches.
That is, at each granularity, the chosen best-fitted
model is the same across the four approaches (L, WL,
PL, and SPLM). Specifically, the nonautoregressive
model with quarterly fixed effects, the AR(1) model
with monthly fixed effects, and the AR(2) model with
weekly fixed effects were chosen for the quarterly,
monthly, and weekly data, respectively, regardless of
the approaches. This result suggests that (a) there is a
lot of signals in the data; (b) as the data get more gran-
ular, an autoregressive structure is needed; and (c) it
is important to use different models at different levels
of granularity.

The results obtained in the second step highlight
the differences between our method and the extant
methods (L, WL, PL), thus supporting the first objective
of the secondary data application. First, SPLM is more
discriminating in selecting the best-fitted granularity-
model pair (among the granularity-model candidates of

Table 3. Comparison of SPLM with the Extant Approaches

Approaches

Selection criteria
Estimation
methodsGranularity Model

(1) IPT IPT InR2
θ, OutR2

θ L
(2) The finest

granularity
The finest

granularity
InR2

θ, OutR2
θ L

(3) L InR2
θ, OutR2

θ InR2
θ, OutR2

θ L
(4) WL InR2

θ, OutR2
θ InR2

θ, OutR2
θ WL

(5) PL InR2
θ, OutR2

θ InR2
θ, OutR2

θ PL
(6) SPLM Gθ Gθ SPLM

Notes. (1) IPT, L,WL, PL, and SPLM stand for the interpurchase time,
likelihood, weighted likelihood, power likelihood, and scaled power
likelihood with multiple weights, respectively. (2) InR2

θ, OutR2
θ, and

Gθ indicate the in-sample R2, out-of-sample R2, and cross-granularity
weight, respectively, at granularity θ.
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interest) than the extant methods are. If we were to use
SPLM, thenwewould select to analyze the demand data
at a monthly level. The monthly data (and its accompa-
nyingmodel) yield significantly higher cross-granularity
weight (Ĝm � 0:948) and thus better fit than the other
two granularity-model pairs (i.e., quarterly and weekly
models). According to our simulation study, it might be
because the month-to-quarter (linear) aggregation creat-
ed bias and because the weekly data provided much
larger stochastic error than the monthly data. However,
under the L, WL, and PL methods, there is no single
“winning” granularity-model pair. Unlike the cross-
granularity weight, the selection criteria (InR2

θ and
OutR2

θ) under the extant methods are not significantly
higher at a monthly level than at a quarterly level. It is
because both InR2

θ and OutR2
θ lack of cross-granularity

comparability and particularly favor coarser granularity,
as explained in Section 3 (specifically Figure 5).

Next, in order to support the second objective, we
examined whether estimating and predicting sales at
the SPLM-chosen granularity (here, monthly) could
improve out-of-sample predictive performance, even
when the chosen granularity and the managerially de-
sired granularity (i.e., the granularity at which sales
forecasts have to be made) do not match. As in the
simulation study, we assumed that a brand manager
wanted to forecast quarterly sales and considered two
forecasting approaches. In a quarterly approach, we
estimated the best-fitted model at a quarterly level
(i.e., the desired granularity) and predicted quarterly
sales. In a monthly approach, we estimated the best-
fitted model at a monthly level (i.e., the SPLM-chosen
granularity-model pair), predicted monthly sales, and
summed them up to quarterly sales. In Figure 8, we
obtained smaller out-of-sample prediction errors un-
der the monthly approach than under the quarterly
approach (i.e., M1 < Q1 under L; M2 < Q2 under WL;
M3 < Q3 under PL; M4 < Q4 under SPLM). For in-
stance, under L, by using the monthly approach in-
stead of the quarterly one, we reduced the posterior
mean of prediction errors from 26.6% (with a 95%
credible interval [23.8%, 30.0%]) to 21.8% (with a 95%
credible interval [19.9%, 23.9%]).

One may argue that the manager can reduce predic-
tion errors just because the monthly data are more gran-
ular (and may have more information) than quarterly
data. This argument is in line with the common belief
that the use of the most granular data should lead to
the most accurate out-of-sample predictions. To test this
intuition, we introduced a weekly approach—that is, es-
timating the best-fitted model at a weekly level (i.e., the
finest granularity), predicting weekly sales, and sum-
ming them up to a quarterly level—and compared out-
of-sample prediction errors under the monthly and
weekly approaches. Figure 8 provides evidence against
this common belief by showing that prediction errors
under the weekly approach are larger than those under
the monthly approach (i.e., M1 < W1 under L; M2 <
W2 under WL; M3 < W3 under PL). In summary, Fig-
ure 8 extends our simulation results on granularity-
model selection (specifically Figure 6) to the real
empirical setting. It shows that out-of-sample predic-
tion accuracy is improved by analyzing at the SPLM-
chosen granularity (here, monthly), which provides
the best in-sample fit, even if the chosen granularity is
not at the desired granularity (here, quarterly) or the
most granular level (here, weekly).

Also, consistent with the simulation study, we now
assumed that the brand manager was interested in fore-
casting weekly sales (the most granular level) and that
the manager considered three forecasting approaches:
(1) estimating the best-fitted model at a weekly level
(i.e., desired granularity) and predicting weekly sales;
(2) estimating the best-fitted model at a monthly level

Table 4. Comparison of the Fit Measures Under the
Likelihood (L), Weighted Likelihood (WL), Power Likelihood
(PL), and Scaled Power Likelihood with Multiple Weights
(SPLM) at Weekly, Monthly, and Quarterly Levels

Week
θ �w

Month
θ �m

Quarter
θ � q

Panel A: Likelihood (L)

InR2
θ 0.693

[0.678, 0.709]
0.859

[0.846, 0.870]
0.883

[0.854, 0.905]
OutR2

θ 0.677
[0.663, 0.691]

0.793
[0.774, 0.812]

0.804
[0.769, 0.840]

Panel B: Weighted likelihood (WL)

InR2
θ 0.697

[0.682, 0.710]
0.846

[0.828, 0.861]
0.882

[0.848, 0.904]
OutR2

θ 0.680
[0.667, 0.694]

0.763
[0.737, 0.787]

0.803
[0.767, 0.836]

Panel C: Power likelihood (PL)

InR2
θ 0.703

[0.687, 0.716]
0.853

[0.837, 0.866]
0.869

[0.836, 0.895]
OutR2

θ 0.685
[0.669, 0.699]

0.791
[0.767, 0.811]

0.790
[0.749, 0.826]

Panel D: SPLM

Ĝθ 0.746
[0.722, 0.769]

0.948
[0.914, 0.971]

0.549
[0.466, 0.632]

Notes. (1) In L, WL, and PL, InR2
θ and OutR2

θ indicate Bayesian
in-sample R2 at granularity θ, and Bayesian out-of-sample R2 at
granularity θ, respectively. In SPLM, Ĝθ represents cross-granularity
weight. The values in cells indicate the posterior means of these
measures. The 95% credible intervals are in brackets. (2) We
computed the credible interval of the Bayesian in-sample R2 (InR2

θ) in
the following way. For each posterior draw s, we computed the
vector of µ̂θ,it,s (i.e., estimated logyθ,it) and ε̂θ,it,s (i.e., logyθ,it − µ̂θ,it,s),

and then InR2
θ � σ2(µ̂θ,it,s)

σ2(µ̂θ,it,s)+σ2(ε̂θ,it,s) following Gelman et al. (2019). Then,

we used the vector of InR2
θ (with size equal to the number of

posterior draws) to calculate its credible interval. The credible
interval of the Bayesian out-of-sample R2 (OutR2

θ) was computed in
the same way.
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(i.e., the SPLM-chosen granularity-model pair), predict-
ing monthly sales, and consistently disaggregating
them into weekly sales; and (3) estimating the best-
fitted model at a quarterly level, predicting quarterly
sales, and consistently disaggregating them into weekly
sales. (Consistent disaggregation is defined and de-
scribed in Online Appendix D.) The monthly and quar-
terly approaches must assume month-to-week and
quarter-to-week disaggregation processes, respectively,
which are typically (if not always) unknown in empiri-
cal settings. Thus, researchers might believe that those
approaches would provide considerably higher out-of-
sample prediction errors than those from the weekly
approach. However, Table 5 shows that this belief does
not hold under the monthly (i.e., SPLM-chosen) ap-
proach. Whereas prediction errors under the quarterly
approach are greater than those under the weekly ap-
proach (e.g., 38.5% versus 35.4% under L), the monthly
and weekly approaches show similar results (e.g.,
35.7% versus 35.4% under L). This finding suggests that
forecasts at the SPLM-chosen granularity (where Ĝθ is
maximized), which provides the best in-sample fit,
even when it is coarser than the managerially desired
one, can be as accurate as those obtained from more
granular data.

Last, Table 5 shows the role of SPLM in doubly ro-
bust prediction, supporting the third objective of the
empirical study. The errors in weekly sales predictions
are marginally smaller under SPLM than under extant
methods (L, WL, PL), regardless of the forecasting ap-
proaches. This finding is consistent with the simulation
results (specifically Figure 6), except that SPLMmargin-
ally improves predictions, even at the SPLM-chosen
granularity-model pair (e.g., 35.7% under L versus
34.1% under SPLM). Whereas the SPLM-chosen granu-
larity-model pair provides the best out-of-sample pre-
dictions among a set of granularity-model pairs of our

interest, prediction errors still exist. Thus, the prediction
errors at the SPLM-chosen pair can be reduced even
more so by applying SPLM, which down-weights ob-
servations and data that are discrepant from the chosen
model.

5. Conclusions and Future Research
Researchers frequently use historical demand data for
forecasting and other managerial goals. For any such
analysis, two decisions play a key role in determining
how managerially useful, accurate, and stable the re-
sults would be—(a) the temporal granularity for the
analysis and (b) the demand model given the chosen
granularity. For the former, extant research has em-
ployed a variety of heuristics to justify the choice (e.g.,
use the most granular data, or use the granularity at
which sales forecasts have to be made). In addition,
the same demand model specification may not be ap-
propriate across granularities—the best-fitted model
for the analysis of demand at the weekly level may
differ from that at the monthly level. Thus, the two de-
cisions are intertwined and should be decided jointly.
How to do so, however, is not straightforward.

The problem of what granularity to choose for anal-
ysis, and which model to employ given the chosen

Figure 8. Posterior Distributions of Percentage Errors of Pre-
dicting Quarterly Sales Across the Forecasting Approaches
and the EstimationMethods

Notes. (1) The x-axis indicates a forecasting approach and estimation
method pair. From left to right, they are (W1) week + L, (W2) week +
WL, (W3) week + PL, (W4) week + SPLM, (M1) month + L, (M2)
month + WL, (M3) month + PL, (M4) month + SPLM, (Q1) quarter +
L, (Q2) quarter + WL, (Q3) quarter + PL, (Q4) quarter + SPLM. (2)
We measured out-of-sample prediction errors with weighted mean
absolute percentage error (WAPE), which takes the sales-weighted
average of the absolute percentage errors (APEs), which is explained
in Online Appendix B.

Table 5. Comparison of Percentage Errors of Predicting
Weekly Sales Across the Forecasting Approaches and the
Estimation Methods

Estimation methods

Forecasting approaches

Week Month Quarter

Likelihood (L) 35.4
[34.4, 36.5]

35.7
[34.5, 37.1]

38.5
[36.8, 41.0]

Weighted likelihood (WL) 36.1
[34.9, 37.5]

35.5
[34.3, 36.6]

38.1
[36.3, 40.5]

Power likelihood (PL) 36.0
[35.0, 37.2]

35.7
[34.5, 37.2]

39.1
[37.0, 41.9]

SPLM 35.0
[34.1, 36.0]

34.1
[33.1, 35.2]

36.7
[34.9, 39.0]

Notes. (1) We measured out-of-sample prediction errors with weighted
mean absolute percentage error (WAPE), which takes the sales-
weighted average of the absolute percentage errors (APEs), which is
explained in Online Appendix B. (2) The values in cells indicate the
posteriormeans ofWAPE. The 95% credible intervals are in brackets.
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granularity, is managerially quite important as well,
given that past research has shown that out-of-sample
forecasts may vary across granularities and models
(e.g., Christen et al. 1997). Consider an organization
wherein the sales division is using data at a monthly
level to forecast sales for the upcoming year, while the
operations division is doing so at a weekly level to ac-
complish the same goal. These two divisions may
have different sales forecasts, and therefore doing so
can create friction within the organization in terms of
determining how much inventory to maintain and
what level of advertising needs to be done. To amelio-
rate this issue, it would be ideal if one could obtain
demand forecasts that are not as sensitive to both the
chosen granularity and model.

From both a theoretical and a practical perspec-
tive, how to select the best-fitted granularity-model
pair and provide robust forecasts across pairs is an
important problem. One important piece in this
puzzle is a way to compare model fit across
granularity-model pairs as the number of observa-
tions also differs across such pairs (in which case
the typical metrics of AIC and BIC fail to be applica-
ble). In this paper, we address all of these issues by
proposing a tool, called scaled power likelihood with
multiple weights (SPLM), that allows a researcher to
(1) jointly select the granularity-model pair that
provides the best in-sample fit (comparable across
granularities, which allows for selection) and (2) pro-
vide doubly robust protection against granularity mis-
selection and model misspecification (conditional on
the granularity).

We highlight the benefits of our proposed approach
as compared with other extant methods such as likeli-
hood, weighted likelihood, and power likelihood
using both a large-scale simulation study and a sec-
ondary data application. The simulation study pro-
vides three main results: (1) conducting analysis at the
SPLM-chosen granularity (even if the chosen one is
coarser than the most granular data available) can
provide better in-sample fit and out-of-sample predic-
tions; (2) SPLM improves out-of-sample forecasts
more so than the extant methods due to its ability to
select the best-fitted granularity-model pair and con-
duct doubly robust prediction; and (3) even when the
managerial goal is to predict sales at a certain granu-
larity (e.g., week or quarter), prediction accuracy can
be improved by performing model estimation at the
granularity chosen by SPLM (e.g., month) and then
appropriately transforming the predictions. The appli-
cation of our proposed framework to Nielsen store-
level scanner data confirms the findings from the
simulation study. Notably, SPLM selects a level of
analysis (i.e., store-monthly) that is neither the most
granular nor one that would be selected by simpler
extant approaches.

Our simulation and secondary data application also
suggest the following three guidelines to researchers
who are going to use our method (SPLM). First, SPLM
is most beneficial as a doubly robust granularity-
model selection tool when (a) sample size is large, (b)
estimated signal-to-noise ratio (SNR) is high, and (c)
the out-of-sample period is stationary with respect to
the in-sample period. Second, SPLM can be used
when researchers apply a model in which our pro-
posed scaling step (described in Section 2) can
preserve the functional form of the distribution of the
dependent variable. For instance, in our simulation
studies, we used log-log, log-linear, and linear de-
mand models. Lastly, researchers should note that,
whereas the SPLM-chosen granularity-model pair is
the best-fitted one for an application, we do not imply
that it is the true data generating process (DGP) for
that context. For example, in a grocery context, the
true DGP is likely at the customer level, but if we
model store-level sales (as in our empirical analysis),
then we will not uncover the true DGP, even if we an-
alyze the data at the best-fitted pair.

Future research may consider substantive extensions.
First, although we motivate a granularity-model selec-
tion issue with respect to time granularity (e.g., weekly
or monthly), researchers could extend the application of
SPLM to other types of granularities. For instance,
much past research has investigated the impact of inde-
pendent variables (e.g., price) on the choices made by
decision makers, but the level at which the decision
maker is modeled (a single individual or a dyad) is typ-
ically assumed a priori (e.g., Adamowicz et al. 2005).
Another context is spatial analysis, where researchers
must select the spatial units to analyze (e.g., census
tract, zip code) and build a model based on that chosen
spatial unit (e.g., Choi et al. 2010). Second, our proposed
framework can also be helpful in other applications
(e.g., data privacy), where it is important to understand
the trade-off between loss of information (via data ag-
gregation) versus privacy (keeping data at a finer gran-
ularity). Recent work in the area of data privacy and the
estimation of marketing mix models offers an interest-
ing opportunity for the application of SPLM as a metric
to choose the appropriate level of data aggregation
(e.g., Schneider et al. 2018). Lastly, whereas our research
focuses on developing an innovative approach for iden-
tifying the best-fitted granularity that can be used for
out-of-sample forecasting, it could serve as a foundation
for more normative research on when and why granu-
larity matters. For example, researchers could uncover
new and interesting mechanisms through which more
granular data might provide worse fit and forecasts.
Also, they could consider managerial goals that could
not be attained by selecting the best-fitted granularity
and uncover an interplay between these managerial
goals and granularity.
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Future research may consider methodological ex-
tensions as well. First, whereas our research assumes
a single granularity for the entire data set, there are
certainly contexts where multiple granularities may
be warranted. For instance, consider a manager who
is analyzing sales after a new product introduction. In
this case, demand analysis at a weekly level may be
preferable soon after the product is introduced,
whereas a coarser level of granularity may be prefera-
ble as the product matures. This intuition is consistent
with an extant finding that the speed of consumer’s
decision making (e.g., adoption, disadoption) varies
by product age (e.g., Arora et al. 2017). Second, it will
be interesting to consider dynamics in a fast-changing
market, by updating (online learning) the best-fitted
granularity-model pair as more data are added. Third,
future research can propose a scaling step that is more
generalizable than our proposed one (described in
Section 2). Finally, whereas our proposed method is
likelihood and data-size agnostic in theory, the appli-
cation to large data sets can be computationally pro-
hibitive and may require more scalable methods.

In conclusion, SPLMmay help improve out-of-sample
predictions (e.g., sales forecasting) due to its ability to se-
lect the best-fitted granularity-model pair and conduct-
ing doubly robust prediction. The issues related to the
appropriate level of data aggregation and the corre-
spondingmodel are quite general, and we hope this gen-
erality enhances the attractiveness of our proposed tool
to researchers across a wide variety of domains.
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Endnotes
1 In the literature on missing data and causal inference models, re-
searchers have used a term “doubly robust” in order to offer protec-
tion against misspecification of either of two models—for example,
one for a missingness mechanism and the other for a treatment ef-
fect (e.g., Bang and Robins 2005). However, in this paper, we use
the term “doubly robust” for a different purpose but in a similar
spirit—that is, to provide protection against granularity misselec-
tion and model misspecification conditional on the granularity.
2 If one posits a prior that constrains weights to be at most 1 (e.g.,
spike-and-slab beta), as in our simulations, then observations that
fit an assumed model well receive wθ,it � 1 (the prior mode) and the
others are down-weighted (0 < wθ,it < 1). If one assumes a prior
without this constraint, then observations can be either down- or
up-weighted (wθ,it > 1).
3 If Gθ and fθ,it were fully unconstrained, then the decomposition of
wθ,it in Equation (3) into Gθ and fθ,it in Equation (4) would not be

identified. However, as we now state,Gθ and fθ,it have different impact
on wθ,it (and hence are identified) since they meet the aforementioned
conditions (e.g., 0 < Gθ ≤ 1 and ∑nθ

it�1 fθ,it � 1). First, a decrease in Gθ

lowers wθ,it for all observations. This cannot be done by lowering fθ,it,
becausewe cannot lower fθ,it for all the observations due to its constraint
(∑nθ

it�1 fθ,it � 1). Second, a decrease in fθ,it for some observations lowers
wθ,it for those observations. This cannot be achieved by loweringGθ, be-
cause a decrease inGθ would lowerwθ,it for all observations.
4 The scaled in-sample fit does not depend on granularity θ, be-
cause it is an average of the log of the scaled likelihood terms,
p1(θ)(salesθ,it |bu), which transform the standard likelihood terms,
pθ(salesθ,it |bu), to the same granularity and thus do not depend on
granularity θ.
5 The means and variances of monthly price and advertising varia-
bles were similar to those from the real-data application—that is,
µprice,m � µad,m � 0 and σ2price,m � σ2ad,m � 0:4.
6 We designed our simulation study following the related literature
on price and advertising elasticities (e.g., Christen et al. 1997, Bijmolt
et al. 2005, Hanssens 2015) and the results from our real-data applica-
tion (in Section 4). We set the intercept αm � 0, price elasticity
βm � β � −2, and advertising elasticity γm � γ � 0:1, following the re-
lated literature. We set all of the parameter variances σ2α,m, σ

2
β,m, and

σ2γ,m as 0.01, which are similar to those estimated from the empirical
application. Month-level fixed effects (δm,t) were also set based on our
real-data application results. Note that the error variance σ2ε,m had
two levels—high and low—depending on the level of the SNR, as ex-
plained in Section 3.2.1.
7 We did not take a sales-weighted average of prices for the follow-
ing reason. Since we were interested in forecasting sales, which was
unknown when prediction was conducted, it did not make sense to
aggregate price to more-aggregated time units using “unknown”
sales information.
8 When disaggregating monthly sales into five weeks, we followed
the same steps but used a disaggregation vector that had five ele-
ments that summed up to 1.
9 Our disaggregation process introduced additional noise that was
negatively correlated across weeks within a month but uncorrelated
across months. This structure of the additional noise may not match
the empirical patterns of many data sets.
10 Across all the four methods, all intercepts and slope parameters in
Equation (7)—that is, αθ, βθ,γθ—had Gaussian priors, N(0, 3). Pa-
rameter and error variances—that is, σ2α,θ, σ

2
β,θ, σ

2
γ,θ, σ

2
ε,θ—hadweakly

informative inverse-gamma priors, IG(0:5, 0:5). As for SPLM, we im-
posed the priors that we derived in Section A1 of OnlineAppendixA
to the cross-granularity weight (Gθ) and the vector of the within-
granularity weights ( fu). Specifically, Gθ was assumed to have a
spike-and-slab prior using Beta(2, 1), and fu was assumed to follow a
symmetric Dirichlet prior with a concentration parameter of 2.
11 When the degree of in-sample misfit is very small (less than 40%),
the extant in-sample measures (InR2

L, θ, InR
2
WL, θ, and InR2

PL, θ) are al-
ways maximized at a quarterly level (i.e., the coarsest granularity).
This is because the distribution of the in-sample R2 depends on the
number of observations and particularly favors a coarser granularity
(the smaller number of observations). To be specific, since it follows
a beta distribution, Beta(a, bθ), whose shape parameter (bθ) increases
with the number of observations (nθ), its distribution at a coarser
granularity is more right-skewed and thus favors larger values (of
InR2

L, θ, InR
2
WL, θ, and InR2

PL, θ). For the same reason mentioned earli-
er, the out-of-sampleR2 favors a coarser granularity aswell.
12 We excluded drug stores where information about feature advertis-
ing was not recorded in either of those two years. After this exclusion,
there were 50 drug stores in the sample. The leading brand, Tropicana,
accounted for 42%, the largest market share, of the total category sales
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volume of drug stores. The sales of the size 12-ounce carton accounted
for 59% of the sales volume of the leading brand at drug stores.
13 Our analyses applied an AR(p) log-log demand model where p �
0, 1, or 2; however, whether adding more lags (p > 2) and/or using
different functional forms improves the in-sample fit and out-of-
sample prediction accuracy should be tested based on the empirical
context.
14 We used the data set of year 2014 (as well as the data sets of years
2015 and 2016) to create lagged dependent variables. For example,
one-period lagged unit sales at store i for the first quarter (t � 1,
θ � q) of year 2015 indicates unit sales at store i for the fourth quar-
ter (t � 4, θ � q) of year 2014.
15 We used the data sets of years 2013 and 2014 (as well as the data
sets of years 2015 and 2016) to create instrument variables. Our
analyses used differences in lagged variables as instruments; how-
ever, other types of instruments should be tested based on the em-
pirical context.
16 We expected that our method would have good discrimination, as
this empirical study satisfies the boundary conditions suggested by
the simulation studies—namely, (1) larger sample size (here, larger
than the small sample size [25] of the simulation) and (2) high estimat-
ed signal-to-noise ratio (SNR) (here, 8, 6, and 2 at the quarterly,
monthly, and weekly levels, all of which were higher than the low
SNR [1/9] of the simulation). Note that estimated SNR at granularity
θ was estimated as

σ2(µ̂θ,it)
σ2(ε̂θ,it), where µ̂θ,it replaced parameters in Equa-

tion (9) with their estimates and ε̂θ,it � logyθ,it − µ̂θ,it.
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