
Critical Finance Review, 2019, 8: 277–299

Liquidity Risk After 20 Years
Luboš Pástor1

Robert F. Stambaugh2∗

1University of Chicago Booth School of Business, USA;
lubos.pastor@chicagobooth.edu
2Wharton School of the University of Pennsylvania, USA;
stambaugh@wharton.upenn.edu

ABSTRACT

The Critical Finance Review commissioned Li et al. (2019) and Pontiff
and Singla (2019) to replicate the results in Pástor and Stambaugh
(2003). Both studies successfully replicate our market-wide liquidity
measure and find similar estimates of the liquidity risk premium. In the
sample period after our study, the liquidity risk premium estimates are
even larger, and the liquidity measure displays sharp drops during the
2008 financial crisis. We respond to both replication studies and offer
some related thoughts, such as when to use our traded versus non-
traded liquidity factors and how to improve the precision of liquidity
beta estimates.
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1 Introduction

We began our work on liquidity risk 20 years ago, shortly after the 1998 collapse
of the Long-Term Capital Management (LTCM) hedge fund. LTCM held multiple
large trading positions that were exposed to the risk that market liquidity might
deteriorate. One famous example was their long-short position in off-the-run
versus on-the-run Treasury bonds. These positions performed well in normal
times, but they suffered when liquidity dried up in the summer of 1998. The LTCM
episode highlighted the facts that market liquidity fluctuates over time and that
asset prices respond to these fluctuations.

Twenty years ago, the role of liquidity in asset pricing was viewed largely in
static terms, based on differences in liquidity across assets. As in Amihud and
Mendelson (1986), less liquid assets were understood to offer higher expected
returns to compensate for their lower liquidity. Inspired by the LTCM episode, we
took a dynamic view, focusing on time variation in liquidity. Our idea was that
the price of an asset can depend not only on the asset’s liquidity but also on the
sensitivity of the asset’s return to pervasive liquidity shocks.

Our published study, Pástor and Stambaugh (2003), makes three primary
contributions. First, it advances the hypothesis that aggregate liquidity is a state
variable relevant for asset pricing. Motivated by the evidence of commonality in
liquidity (Chordia et al., 2000), we hypothesize that liquidity risk is systematic, or
non-diversifiable, and thus potentially priced. Second, to test the above hypothesis,
we construct a measure of aggregate stock market liquidity. From that measure,
we derive a liquidity factor that captures innovations in aggregate liquidity. Finally,
we find that the liquidity factor is priced, in that stocks with higher sensitivities
to this factor—i.e., higher liquidity betas—have higher average returns. Liquidity
betas are defined as slope coefficients βLi from the regression

ri,t = β
0
i + β

L
i Lt + β

M
i MKTt + β

S
i SMBt + β

H
i HMLt + εi,t , (1)

where ri,t denotes asset i’s excess return, Lt is the liquidity factor, and MKT, SMB,
and HML are the three factors of Fama and French (1993).

While our study focuses on equities, subsequent studies find liquidity risk to
be priced in other asset classes, such as hedge funds (Sadka, 2010), private equity
(Franzoni et al., 2012), emerging markets (Bekaert et al., 2007), and corporate
bonds (Bongaerts et al., 2017). Important theoretical insights into liquidity risk are
provided by Acharya and Pedersen (2005), Brunnermeier and Pedersen (2009),
and others. The literature on liquidity risk has grown tremendously, and we do
not attempt to review it here.

A decade after LTCM, academic interest in liquidity risk was further stimulated
by the 2008 financial crisis, during which markets experienced dramatic reductions
in liquidity. The crisis highlighted the effects of liquidity shocks on not only asset
prices but also real activity. When liquidity dries up in the market, other bad things
tend to happen. Liquidity shocks can destroy value, for example, by creating runs
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on financial institutions or by impeding the financing of viable investment projects.
The crisis clearly showed why investors may be willing to pay more for assets whose
values better withstand market-wide liquidity shocks. Our liquidity factor picks
up the key events of the crisis, as we show in Section 2.2. Because it happened
5 years after the publication of our paper, the crisis provides some out-of-sample
validation for the methodology behind our liquidity factor.

We are grateful to the editor of the Critical Finance Review, Ivo Welch, for
commissioning two studies to assess the extent to which our empirical results
can be replicated. We are especially grateful to the authors of those studies,
namely Hongtao Li, Robert Novy-Marx, Mihail Velikov, Jeffrey Pontiff, and Rohit
Singla, for undertaking this task and executing it with the utmost competence and
professionalism. We have learned a lot from their work.

In the rest of this paper, we first review key results of the replicators and
respond to some of their claims. We then present a few thoughts on our liquidity
factor, such as when to use its traded versus non-traded version, why we pay more
attention to historical rather than predicted liquidity betas, and why our liquidity
measure is more useful at the aggregate rather than the individual-stock level.
Finally, we discuss the implications of the asymmetric nature of liquidity shocks.
For example, we explain why liquidity betas are relatively hard to estimate and
what can be done to improve their precision.

2 Replication Results

Both Li et al. (2019) and Pontiff and Singla (2019) successfully replicate the
construction of our liquidity factor over the time period used in our study (1962
to 1999). Li, Novy-Marx, and Velikov report a correlation of 98.9% between their
liquidity series and ours. Pontiff and Singla report a correlation of one, up to five
significant digits.

The above correlations pertain to our main liquidity factor, Lt from Eq. (1).
Both studies also replicate the traded version of our factor, which we discuss in
more detail in Section 3.1. Li et al. (2019) report a 95% correlation between
their traded liquidity factor and ours in 1968 to 1999. Both their factor and
ours produce very similar alphas (see their Table 2). For example, both factors
produce in-sample four-factor Carhart alphas that round to 0.37% per month and
five-factor Fama–French alphas that round to 0.20% per month in 1968 to 1999.
Pontiff and Singla (2019) also report similar results for the traded factor. Their
in-sample estimate of the three-factor Fama–French alpha of the traded factor is
3.91% per year (t = 2.00; see their Table 1), which is close to the estimate of
4.15% (t = 2.08) reported in Table 8 of our 2003 study. Overall, both studies
have managed to closely replicate our main in-sample results.

In general, a successful outcome of in-sample replication is not guaranteed
even if the methodology used by the replication study is identical to that used
in the original study. Even if the code is the same, the data need not be. Our
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2003 study relies heavily on data from the Center for Research in Security Prices
(CRSP). In an effort to keep its database as clean as possible, CRSP performs
corrections to its historical data anytime it identifies, or becomes aware of, a
data error. As a result, the CRSP dataset analyzed in a given year is not identical
to the CRSP dataset covering the same period but downloaded years later. The
two datasets are very similar, but the cumulative effect of CRSP updates over
the interim period need not be negligible, especially if a long time has elapsed.
A good example is provided in Table 1 of Pontiff and Singla. Their estimated
in-sample alpha of 3.91% per year (t = 2.00), mentioned earlier, is identical to the
alpha they obtain when they replace their replicated traded factor series with the
updated series downloaded from our own websites. In other words, the difference
between 3.91% and 4.15%, discussed in the previous paragraph, is not a result of
a discrepancy between our methodology and that of Pontiff and Singla. Instead,
it is driven by the corrections in the 1962 to 1999 CRSP dataset since we first
used the data almost 20 years ago. Pontiff and Singla themselves write that “This
minor difference is almost certainly attributable to year-to-year corrections to the
CRSP data.”

2.1 Out-of-Sample Performance

Our 2003 study estimates the liquidity risk premium based on the sample period of
1968 to 1999. If our estimate were a fluke, it would likely disappear out of sample.
In contrast, both replication teams report that the magnitude of the liquidity risk
premium has increased since 1999.

Li et al. (2019) compare the in-sample (1968 to 1999) and the out-of-sample
(2000 to 2015) performance of the traded liquidity factor, for both their replicated
version and ours. They find that the out-of-sample performance is substantially
stronger than the in-sample performance, for all three-factor models they use. For
example, the four-factor Carhart alpha of our factor increases from 0.37% per
month (t = 2.14) in 1968 to 1999 to 0.68% per month (t = 2.31) in 2000 to 2015.
Pontiff and Singla (2019) also report an improved post-sample performance of
the traded factor, going through 2017 (see their Table 2). This evidence shows
that had we written our 2003 study today, our main results would have been quite
a bit stronger!

A possible reason why the evidence is stronger post-sample than in-sample is
the 2008 financial crisis. This post-sample crisis produced wide fluctuations in
liquidity, allowing more precise estimation of liquidity betas. In periods without
liquidity crises, liquidity betas are estimated with less precision. We elaborate on
this point in Section 4.

Given the strong post-sample performance of our traded liquidity factor, it is
not surprising that the factor’s full-sample performance in 1968 to 2015 is highly
significant. In their Table 3, Li, Novy-Marx, and Velikov report that our factor’s
alphas with respect to the three-, four-, and five-factor models range from 0.44%
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to 0.46% per month, with t-statistics ranging from 2.85 to 3.02. The premium for
liquidity risk seems alive and well.

Pontiff and Singla (2019) estimate not only the post-sample but also the pre-
sample magnitude of the liquidity risk premium. Such analysis was not feasible
when we wrote our 2003 study because CRSP added the pre-1962 daily data
only in 2005. In the sample period of 1932 to 1967, Pontiff and Singla find
no significant premium associated with liquidity risk: their traded factor has a
premium of −2.72% per year, with the t-statistic of −1.36. As a result of this
negative pre-sample performance, their estimate of the full-sample premium in
1932 to 2017 is positive but insignificant (see their Table 2).

Why is the pre-1962 evidence so different from the post-1962 evidence? Fig-
ure 1 of Pontiff and Singla (2019) shows that the pre-1962 fluctuations in liquidity
are much smaller in magnitude than the more recent fluctuations. The largest
pre-1962 fluctuations in liquidity are associated with the Great Depression, which
seems plausible, but the scale of these fluctuations is substantially smaller than
the scale of the post-1962 fluctuations.

One possible reason why the pre-1962 liquidity series is so much less volatile is
a different stock universe. Whereas the post-1962 CRSP daily data include stocks
from both the New York Stock Exchange (NYSE) and American Stock Exchange,
the pre-1962 daily data includes only NYSE stocks. The larger average size of NYSE
stocks could very well be responsible for the significantly lower pre-1962 volatility
of the liquidity series. The source of the pre-1962 daily data is also different.
The primary source is The New York Times, with the secondary source being The
Wall Street Journal. The main source of post-1962 data is the Interactive Data
Corporation. Given the different stock universes and data sources, the pre-1962
results may not be directly comparable to the post-1962 results. Additional analysis
of the volatility differences in the pre- and post-1962 samples seems warranted.

2.2 The 2008 Financial Crisis

Our 2003 study came out five years before a major financial crisis, during which
liquidity evaporated from many financial markets. The 2008 crisis provides a
valuable out-of-sample perspective on the behavior of our liquidity factor. If the
factor truly captures liquidity, it should have large negative realizations during
the crisis. Luckily for the factor, it does.

The 2008 financial crisis is commonly considered to have begun in the summer
of 2007 and ended in the spring of 2009. Between July 2007 and April 2009, our
liquidity factor experienced negative innovations in 17 out of 22 months. Three
of the five largest negative innovations during this period are associated with the
defining moments of the crisis, namely, the demise of Lehman Brothers (September
2008), the fall of Bear Stearns (March 2008), and the quant crisis (August 2007).
The two remaining largest drops in our liquidity measure occurred in December
2008 and January 2009, two of the worst months of the crisis. All five of these
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Figure 1: The Original PS Liquidity Series.

Description: This figure plots the aggregate liquidity series of Pástor and Stambaugh (2003) extended
through 2017 by Pontiff and Singla (2019).

Interpretation: The PS liquidity series, extended out of sample, successfully captures multiple large
drops in liquidity during the 2008 financial crisis.

drops rank among the 13 biggest drops in our liquidity measure since 1962, and
four of them are among the top nine. This evidence suggests that our liquidity
factor, whose methodology was designed well before the 2008 crisis, does a good
job capturing the most salient events of the crisis.

The large drops in liquidity are clearly visible in Figure 1, which plots the time
series of our aggregate liquidity measure in August 1962 to December 2017. The
drops in liquidity experienced during the 2008 crisis are not among the three
largest drops in the full sample, which occurred in October 1987, September 1998,
and November 1973. However, all three of those liquidity drops were short-lived.
In contrast, during the 2008 crisis, liquidity diminished month after month, with
devastating cumulative effects. For example, our liquidity measure experienced
four large drops during the five-month period between September 2008 and
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January 2009; as a result, the cumulative drop in liquidity during this period was
very large.

Our traded liquidity factor, which offers a long-short portfolio exposure to
liquidity risk, also performed poorly during the financial crisis. A simple way to see
this effect is in Figure 2 of Li et al. (2019), which plots the cumulative performance
of the traded factor in 1968 to 2015. The factor’s performance has been strong
overall, as indicated by the upward trend. Across the whole sample, the sharpest
drop in the factor’s performance occurs in the second half of 2008. Consider a
strategy that invests $1 in a Treasury bill and takes a long-short position of $1 each
in our traded factor, rebalanced monthly. The strategy’s cumulative excess return
over the six-month period (July to December 2008) is −34.3%, with negative
returns in five of the six months (all except August). This is what one would expect
from a strategy designed to capture the liquidity risk premium—it performs well
on average, but it loses money in periods in which the risk materializes. These
results provide additional out-of-sample support for our methodology.

2.3 Excluding Zero-Volume Days

To successfully replicate our liquidity factor, one must be aware of the fact that
when we estimate Eq. (1) in our 2003 study, we exclude days with zero trading
volume. That Eq. (1) takes the form of the regression

r e
i,d+1,t = θi,t +φi,t ri,d,t + γi,tsign(r e

i,d,t) · vi,d,t + εi,d+1,t , d = 1, . . . , D, (2)

where γi,t is the liquidity measure for stock i in month t and the remaining
quantities are defined as follows:

ri,d,t : the return on stock i on day d in month t,

r e
i,d,t : ri,d,t − rm,d,t , where rm,d,t is the return on the CRSP value-weighted market

return on day d in month t, and

vi,d,t : the dollar volume for stock i on day d in month t.

When we run this regression, we impose the screen vi,d,t > 0, thereby excluding
days with vi,d,t = 0 from the analysis. Unfortunately, we inadvertently neglected
to mention this important detail in our paper, as pointed out to us by Li et al.
(2019). If one replicates our analysis without imposing the positive-volume screen,
the resulting series has only a modest correlation with our factor: 39.2% when
computed over the period of August 1962 to December 1999, according to Li et al.
(2019), and 27% over the period of August 1962 to December 2017, according
to Pontiff and Singla (2019). Our failure to mention the positive-volume screen
may have caused some past replication attempts by other researchers to fail. We
sincerely apologize for this omission. We are grateful to both replication teams
for recognizing this oversight in a gracious manner.
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Without excluding zero-volume days, the estimates from the regression in
Eq. (2) would be difficult to interpret. As we explain in our 2003 study, the
coefficient of interest from this regression, γi,t , captures volume-related return
reversals. To capture return reversals that are not volume-related, such as the
bid-ask bounce, we include a second independent variable: lagged stock return,
ri,d,t . However, controlling for a bid-ask bounce is inappropriate on days with
zero trading volume because on such days, the stock price reported by CRSP is
simply the average of the bid and the ask. The inclusion of an inappropriate
control would result in a biased estimate of γi,t because this control, ri,d,t , is
positively correlated with signed volume sign(r e

i,d,t) · vi,d,t . In other words, if we
did not impose vi,d,t > 0, the regression in Eq. (2) would be misspecified. Our
imposition of this screen was appropriate, but our failure to mention it in the
paper obviously wasn’t.

2.4 Modifications of Our Liquidity Measure

Li et al. (2019) analyze numerous modifications of our factor construction method-
ology, such as different approaches to portfolio sorts, different rebalancing frequen-
cies, and different rebalancing months. While these modifications are interesting,
our methodological choices seem reasonable a priori. For example, while one
could certainly consider other numbers of portfolios, our choice to sort stocks into
10 decile portfolios seems natural. Our choice to allocate an equal number of
stocks to each decile portfolio seems equally plausible. Li, Novy-Marx, and Velikov
show that allocating stocks differently, by equalizing total market capitalization in
each portfolio, produces somewhat weaker results. Yet such “market cap breaks”
are not typically used in cross-sectional asset pricing tests, and it is not clear why
they should possess more power than the “name breaks” employed in our study.
Applying market cap breaks could result in a large imbalance in the number of
stocks across portfolios, to the point where some of the decile portfolios could
contain a very small number of large stocks.1 The diversification of idiosyncratic
risk within such small portfolios is quite imperfect, making the results noisier.

How often should one rebalance the portfolios of stocks sorted on liquidity be-
tas? We rebalance annually, at the end of the calendar year, which seems perfectly
plausible to us. Li, Novy-Marx, and Velikov argue that rebalancing at the monthly
frequency would be more natural. We agree that monthly rebalancing would also
be plausible, but compared to annual rebalancing, it would significantly increase
the portfolio’s trading costs. Li, Novy-Marx, and Velikov state in their abstract that
their liquidity factor constructed with monthly rebalancing “exhibits significantly

1For example, as of this writing, three stocks—Microsoft, Apple, and Amazon—together account
for more than 10% of the S&P 500 index. If we were to apply market cap breaks to stocks in this
index, we could in principle end up with a decile portfolio containing only two stocks. The CRSP
value-weighted market index contains more stocks than the S&P 500, so the problem is somewhat less
severe in our context.
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weaker performance” than our factor. Yet even under monthly rebalancing, the per-
formance of the liquidity factor remains statistically and economically significant.
The full-sample (1968 to 2015) alphas of the resulting traded factor are all signifi-
cant, ranging from 0.36% to 0.45% per year, with t-statistics ranging from 2.24
to 2.84 (see Table 3 of Li et al. (2019)).

Pontiff and Singla (2019) consider four modifications of our liquidity measure:
(1) inclusion of zero-volume days, (2) inclusion of stocks of all price levels, (3)
value-weighted index, and (4) zero-intercept restriction. They do not find any of
these measures to be priced.

Like our 2003 study, Pontiff and Singla test the joint hypothesis that liquidity
risk is priced and that they have the right measure of liquidity. We believe that
their rejection of this joint hypothesis is driven by the fact that their four liquidity
measures are inadequate.

We plot the four series in Figure 2. The first three series, plotted in Panels
A to C, do not appear to be good representations of market-wide liquidity. We
base this judgment on a visual examination of these series, invoking the “you
know it when you see it” doctrine mentioned in Li, Novy-Marx, and Velikov’s
introduction. Despite Pontiff and Singla’s good intention to improve the estimates
of the liquidity series, it seems hard to believe that any of the three series are
indeed improvements. On the contrary, they look less appealing as measures of
market-wide liquidity. Therefore, the evidence based on these modified series
does not imply that liquidity risk is without a premium.

The three series look unappealing not only ex post but also ex ante. The
misspecification induced by using zero-volume days is discussed in Section 2.3. The
inclusion of stocks with prices below $5 and above $1,000 is relatively uncommon.
Value-weighting seems less appealing than equal-weighting from the perspective of
diversifying away the estimation errors in the γi,t estimates across firms. Additional
arguments pertaining to value-weighting are discussed in Section II.C of our
2003 study.

The only series in Figure 2 that exhibits liquidity-like features is the series
plotted in Panel D, which corresponds to the zero-intercept modification. Perhaps
not surprisingly, the results for that series are more supportive of priced liquidity
risk than the results for the other three series. In Panel C of their Table 4, Pontiff
and Singla (2019) report that the resulting traded liquidity factor has an average
return of 3.13% per year in 1968 to 2017, with a t-statistic of 1.89. While these
numbers are lower than the 4.45% return with a t-statistic of 2.67 that Pontiff
and Singla report for our baseline index, they still indicate marginal significance
of liquidity risk, with a p-value of 0.06.

More important, we are not convinced by the argument that imposing the zero-
intercept restriction improves our procedure. It is true that imposing this restriction
saves a degree of freedom, but it also introduces misspecification. Pontiff and
Singla argue that the restriction is reasonable because it generates 1-day-ahead
forecasts of individual stock returns that are equal to market returns when the
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Figure 2: Modifications of the PS Liquidity Series.

Description: This figure plots the four modifications of the Pástor and Stambaugh (2003) aggregate
liquidity series constructed by Pontiff and Singla (2019).

Interpretation: Pontiff and Singla’s modifications of the original PS liquidity series, especially those
in Panels A through C, do not look plausible as measures of liquidity.

independent variables in regression (2) are zero. While market returns are indeed
plausible unconditional forecasts of individual stock returns, it is not clear that
they are plausible conditional on the very unlikely event that the independent
variables—lagged return and signed volume—are both equal to zero. Zeroing
out the intercept could result in biased regression estimates. We think of the
zero-intercept-modification series as a slightly misspecified version of our baseline
series. Given that, we do not find it surprising that this series produces slightly
weaker results.
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Figure 3: Alternative Liquidity Series.

Description: (Panel A) plots the original Pástor–Stambaugh aggregate liquidity series. The remaining
panels plot the five alternative liquidity series constructed by Pontiff and Singla (2019).

Interpretation: Pontiff and Singla’s alternatives to the original PS liquidity series do not look plausible
as measures of liquidity.

Besides the four modifications plotted in Figure 2, Pontiff and Singla consider
five additional alternative liquidity measures: (1) the proportion of zero returns,
(2) the Amihud index, (3) estimated relative bid-ask spread, (4) a hybrid measure,
and (5) a double variation on our original index. They find that none of these
measures are priced. Again, the joint hypothesis problem mentioned earlier
rears its head. Pontiff and Singla’s findings do not imply that liquidity risk is not
priced; they could simply mean that the five series are poor time-series proxies for
aggregate liquidity. All five series are plotted in Figure 3. Their visual examination
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indeed casts doubt on whether any of them capture liquidity. Most of these series
fail to pick up well-known liquidity-crisis months. For example, with the exception
of the bid-ask spread, all other alternative series fail to pick up the undisputed
evaporation of liquidity during the 2008 financial crisis. At the same time, the
alternative series do pick up months that are not known for being low-liquidity
based on other sources. These series exhibit both Type I and Type II errors, so to
speak.

The only series whose plot reveals some resemblance to liquidity is the bid-
ask spread. While this spread could be a good measure of liquidity from the
perspective of small retail investors, who might trade at the bid and ask quotes,
it is less useful to large investors, whose trades have price impact. We measure
liquidity by the temporary price impact resulting from a given amount of order
flow. The bid-ask spread cannot capture price impact because it does not take the
market’s depth into account. The correlation between the levels of our series and
the bid-ask spread in August 1962 to December 2017 is 29.6%. The two series
clearly capture different dimensions of liquidity. Not all dimensions of liquidity
need to be priced. If asset prices are determined primarily by large investors, our
liquidity measure, which aims to capture price impact, is more likely to be priced
than bid-ask spread.

2.5 Momentum

Pástor and Stambaugh (2003) find that the liquidity risk factor accounts for half of
the profits of the momentum strategy in stocks. Subsequent studies provide further
evidence of a link between liquidity risk and momentum. Sadka (2006) also finds
that a substantial portion of the profit in stock momentum is explained by liquidity
risk. To estimate the latter, he constructs an alternative measure of market-wide
liquidity using intraday data. Asness et al. (2013) conclude that a link between
momentum and liquidity risk exists quite broadly. Using multi-country data, they
find that, within stocks as well as other asset classes, momentum returns exhibit
positive sensitivities to measures of market-wide liquidity.

Li et al. (2019) argue that our finding of a link between momentum and
liquidity risk is due to the inclusion of momentum-related variables, namely past
return and share price, among the predictors of liquidity betas. They note that if
the predicted-beta liquidity factor is constructed by excluding cumulative return
and stock price, it can no longer explain much of momentum profit. That is useful
to know. However, we did not include these two variables in order to explain
momentum. We included them because they show up as significant determinants
of liquidity betas (see Table 2 in Pástor and Stambaugh (2003)). Excluding a
significant determinant would cause an omitted-variable problem in the analysis.
For that reason, we believe it makes sense to include both cumulative return and
stock price in the construction of the predicted-beta liquidity factor.

Li et al. (2019) also argue that explaining half of momentum is one of our most
important results. We do not share that view. Our main results instead relate to the
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measurement of market-wide liquidity and the pricing of liquidity risk more gen-
erally. Our objective was not to investigate momentum, which is not central to our
study. Evidence of a momentum link emerged simply when investigating the per-
formance of traded liquidity factors in the context of other popular traded factors.

3 How to Use the Liquidity Factors

3.1 Traded and Non-Traded Factors

Our liquidity factor comes in two versions: traded and non-traded. The non-traded
factor, Lt , is in Eq. (8) of Pástor and Stambaugh (2003). The traded factor, LIQ,
is the payoff on the 10–1 portfolio that is long stocks with the highest historical
liquidity betas and short stocks with the lowest historical liquidity betas. We are
sometimes asked by colleagues which of the two factors they should use. The
answer depends on the objective of the analysis.

For most objectives, the appropriate liquidity factor is the non-traded one, Lt .
This is the primary liquidity factor, designed to capture innovations in market
liquidity. If one wishes to estimate an asset’s liquidity risk, one should use Lt .

The traded factor, LIQ, is useful in estimating alpha with respect to a multifac-
tor model that includes a role for liquidity risk. In order to interpret the intercept
from a factor model regression as alpha, all factors must be payoffs on tradable
positions. Because Lt is not traded, it would be inappropriate to interpret the
intercept β0

i from the regression in Eq. (1) as alpha. However, if we replace Lt
in Eq. (1) by LIQ, the intercept can be interpreted as an alpha, because all four
factors are then traded.

Compared to other traded factors in popular multifactor models, LIQ is rather
unique in having an identified non-traded factor underlying it. Moreover, our
traded factor is formed by sorting on risk estimates, unlike other long-short factors
such as SMB and HML of Fama and French (1993, 2015). The latter factors are
often described as returns on mimicking portfolios, but the non-traded factors
(state variables) that those portfolios presumably mimic are not specified. That
slack cannot be afforded to LIQ.

One definition of a mimicking portfolio is advanced by Huberman et al. (1987),
hereafter HKS. In their setting, portfolios “mimic” non-traded factors if betas with
respect to the former can be used instead of betas with respect the latter to explain
the cross-section of expected returns. HKS provide the general characterization
for the weights in mimicking portfolios. One admissible specification constructs
portfolios maximally correlated with the non-traded factors. As HKS explain,
however, many other constructions are also admissible mimicking portfolios. Our
traded factor, LIQ, is not designed to maximize its correlation with innovations in
liquidity. Indeed, the simple correlation between LIQ and Lt is only 5.3%, based
on Pontiff and Singla’s data in the longest possible time period January 1932 to
December 2017.
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Using LIQ in a model with traded factors has a simple investment-based moti-
vation, as we explain in Section IV of Pástor and Stambaugh (2003). Adding LIQ
to an investment opportunity set consisting of other popular factors substantially
increases the maximum obtainable Sharpe ratio. Therefore, other assets are less
likely to produce alphas with respect to factors that include LIQ. If LIQ reduces
alphas, then betas with respect to LIQ help explain expected returns. Thus LIQ
behaves as a mimicking portfolio in the sense of HKS, though it is not constructed
to obey the formal conditions derived by that study, which does not address empir-
ical implementation. Instead, LIQ has a simple long-short construction typical of
other traded factors. Therefore, except when a traded factor is needed, one should
use the underlying non-traded factor, Lt , rather than its imperfect stand-in, LIQ.

3.2 Aggregate versus Firm-Level Liquidity

To construct our measure of aggregate market liquidity in month t, we average the
slope estimates γ̂i,t across stocks i (see Eqs. (1) and (5) of Pástor and Stambaugh
(2003)). One might be tempted to use the individual-firm estimates γ̂i,t on their
own as firm-level measures of liquidity. However, that is, not an appropriate use
of our liquidity measure. As we explain in Section III.D of Pástor and Stambaugh
(2003), the γ̂i,t estimates are too noisy to be useful at the individual firm level.
Despite our warnings, several studies, such as Goyenko et al. (2009), examine the
cross-section of the γ̂i,t estimates. Not surprisingly, they find that these estimates
are noisy. We do not use the firm-level estimates γ̂i,t for any purpose other than to
construct a market-wide measure of liquidity. When we average these estimates,
much of the noise diversifies away, resulting in what we believe is an appealing
measure of market-wide liquidity.

3.3 Historical versus Predicted Liquidity Betas

In our 2003 study, we produce two versions of the traded liquidity factor. Both
versions go long high-liquidity-beta stocks and short low-liquidity beta stocks, but
they differ in how the betas are estimated. One version uses “historical” liquidity
betas, which are estimated values of βLi from regression (1) estimated over the
previous 60 months of data. The other version uses “predicted” liquidity betas,
which are estimated as a linear function of seven firm-level characteristics (see
Eq. (10) in Pástor and Stambaugh, 2003). The results based on both versions of
the traded factor suggest that liquidity risk is priced.

In our 2003 study, we put a larger emphasis on predicted betas because
the associated procedure produced a larger spread in post-ranking liquidity be-
tas. Specifically, we sort stocks into portfolios in two different ways: based
on pre-ranking predicted betas and based on pre-ranking historical betas. At
the time when we wrote our 2003 study, the sort on predicted betas produced
a larger spread in post-ranking liquidity betas. Comparing Tables 3 and 7 in
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Pástor and Stambaugh (2003), the 10-1 portfolio’s post-ranking liquidity beta is
8.23 (t = 2.37) when the portfolios are formed based on predicted betas, but it is
only 5.99 (t = 1.88) when the portfolios are formed based on historical betas.

Years later, we noticed that the beta pattern flipped in the expanded sample:
historical betas now do a better job than predicted betas in creating dispersion
in the post-ranking betas. For example, when we extend Tables 3 and 7 through
December 2018, the 10-1 portfolio’s post-ranking liquidity beta is only 3.24 (t =
0.91) when the portfolios are formed based on predicted betas, but it is 8.04
(t = 3.16) when the portfolios are formed based on historical betas. It appears
that our model for predicting liquidity betas is somewhat unstable over time. To
maintain the quality of our traded liquidity factor, we decided about 10 years ago
to focus on historical betas, and we have been doing that ever since. A side benefit
of this re-focus is that historical betas are substantially easier to estimate than
predicted betas. Estimating historical betas requires only CRSP data, whereas
estimating predicted betas requires also Compustat data.

Li et al. (2019) report some difficulty in replicating our traded factor based
on predicted betas. We are not sure what the source of this difficulty is. Given
our present focus on historical betas, we have decided not to allocate time to this
issue. It is comforting that despite its non-trivial differences from our factor, the
predicted-beta-based liquidity factor constructed by Li, Novy-Marx, and Velikov
earns positive alphas both in and out of sample. Their Table 5 shows that the
factor performs most strongly against the five-factor Fama–French model, with
alphas that are positive and significant both in and out of sample (0.59% per
month (t = 4.04) in 1966 to 1999 and 0.73% per month (t = 2.56) in 2000 to
2015). That is, even though their predicted-beta-based traded liquidity factor
differs somewhat from ours, both factors appear to be priced.

4 Asymmetric Liquidity Shocks: Implications

The liquidity factor sleeps most of the time but wakes up during financial crises
and other significant disruptive events. This asymmetric nature of liquidity shocks,
which is apparent from Figure 1, has two important implications.

First, liquidity risk can explain, at least in principle, why asset return correla-
tions tend to rise sharply during crises. Most risky assets have positive exposures
to liquidity fluctuations: their prices tend to fall when liquidity dries up. In normal
times, these positive liquidity exposures contribute little to asset returns because
they are multiplied by small liquidity shocks. However, during crises, large nega-
tive realizations of the liquidity factor are multiplied by positive liquidity betas to
produce large negative contributions to asset returns. As a result of this common
exposure to liquidity risk, the prices of many risky assets fall and their correlation
rises sharply. Formally, in Eq. (1), βLi Lt ≈ 0 whenLt ≈ 0, but βLi Lt is large and
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negative for most assets when Lt � 0, resulting in highly correlated asset returns
during liquidity crises.

Second, liquidity betas are relatively hard to estimate, especially in normal
times. Running a regression of asset returns on liquidity shocks, whose values
in normal times are close to zero, produces noisy estimates of liquidity betas. To
achieve some precision, it helps to estimate liquidity betas over periods that include
substantial shocks to liquidity, such as financial crises. For example, liquidity betas
estimated over a period that includes the 2008 financial crisis are likely to be
more precise than those estimated in normal times. That the 2008 crisis occurred
after our initial sample period could be the reason why the post-sample evidence
on liquidity risk is even stronger than the in-sample evidence. Another way
of improving the precision of liquidity beta estimates is to form portfolios. To
illustrate these implications of skewed liquidity shocks, we conduct a simulation
analysis.

4.1 Simulation Analysis

We assume that excess stock returns are determined by the two-factor model

ri,t = β
LIQ
i F LIQ

t + βMKT
i FMKT

t + εi,t , (3)

where F LIQ
t and FMKT

t are the realizations of two hypothetical factors that we
refer to as liquidity and market factors, respectively. The liquidity factor’s real-
izations exhibit negative skewness, whereas the market factor’s realizations are
symmetrically distributed.

We simulate monthly time series of both factors, which we make uncorrelated
with each other. Each factor realization is the sum of a constant premium and
a zero-mean innovation. We assign a premium of 0.33% per month, or 4% per
year, to each factor. We assume both factors contribute equally to the volatility
of stock returns and that the volatility of F LIQ

t + FMKT
t is 20% per year, implying a

monthly volatility of 4.08% for each factor. We draw each monthly realization of
FMKT

t from a normal distribution with a mean of 0.33% and standard deviation of
4.08%. We construct monthly realizations of the liquidity factor as F LIQ

t = St + Jt ,
where St represents “small” shocks and Jt captures occasional jumps. Specifically,
St is normally distributed with a mean of 0.33% and a standard deviation of
1.22%, whereas Jt = −30% when a jump occurs and Jt = 0 otherwise. We set the
probability of a jump in any given month to 1/60.

Figure 4 plots simulated innovations of both factors over a 50-year period.
Panel A shows that the liquidity shocks are strongly negatively skewed, with
eight jumps (“liquidity crises”) occurring in this typical simulated history. These
asymmetric dynamics of simulated liquidity shocks are reminiscent of actual
liquidity realizations, plotted in Figure 1. In contrast, Panel B shows a symmetric
pattern of simulated market shocks resembling that of actual stock market returns.
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Figure 4: Simulated Innovations for a Hypothetical Sample.

Description: For one simulated 50-year sample, (Panel A) displays the liquidity innovations and
(Panel B) displays the market innovations.

Interpretation: Liquidity innovations are negatively skewed, whereas market innovations are
symmetric.
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We assume that stocks’ liquidity betas and market betas, βLIQ
i and βMKT

i , are
both uniformly and independently distributed within the range of 0.5 to 1.5. For
each individual stock, we assume that the two factors together explain 30% of
the variance of the stock’s return, ri,t . Given the stock’s betas, this assumption
implies the value for the variance of the stock’s εi,t , which is normally distributed,
independently across stocks and months. The draws of εi,t are combined with the
stock’s betas and the draws of F LIQ

t and FMKT
t to construct ri,t as in Eq. (3). Fixing

the sample length at 60 months, we estimate Eq. (3) as an OLS regression with
an intercept. For each simulated sample, we collect the sample estimates of βLIQ

i

and βMKT
i , denote them by β̂LIQ

i and β̂MKT
i , and construct the estimation errors

eLIQ
i = β̂LIQ

i − βLIQ
i (4)

eMKT
i = β̂MKT

i − βMKT
i . (5)

We simulate many 60-month samples of factors and returns on individual
stocks. Panel A of Figure 5 plots the distributions of eLIQ

i and eMKT
i across the

simulated samples. There is a stark difference between the two distributions,
especially in the tails. The distribution of eMKT

i tails off around the values of
−1 and 1, whereas that of eLIQ

i tails off around −3 and 3. In other words, it is
extremely rare for the estimates of market betas to be off by more than 1, whereas
the estimation errors in liquidity beta can be as large as 3. In that sense, liquidity
betas are clearly harder to estimate than market betas.

The difficulty in estimating liquidity betas stems from the rarity of liquidity
crises. The betas are especially hard to estimate in “calm” periods in which no
crises occur. To establish this result, we divide our simulated samples into two
subsets: those containing at least one large liquidity shock (i.e., at least one non-
zero value of Jt) and those with no large shocks. The first subset includes about
64% of all simulated samples. Panel A of Figure 6 shows that the distribution
of eLIQ

i is substantially wider in samples without large liquidity shocks. In such
samples, we sometimes observe estimation errors as large as 3 in magnitude,
whereas errors larger than 1 are extremely rare in samples with at least one large
liquidity shock. Therefore, a simple way to improve the precision of liquidity beta
estimates is to compute them over periods that include at least one liquidity crisis.

Another effective way to reduce the estimation error in liquidity betas is to
form portfolios. To illustrate this point, we expand our simulation exercise by
adding portfolio formation. Following the same procedure as before, we simulate
many 60-month samples of factor and return realizations for 2,000 individual
stocks. For each sample, we sort stocks into 10 portfolios by their true liquidity
betas, and also separately by their true market betas. We compute the liquidity
(market) beta of each portfolio as the average of the liquidity (market) betas
across all stocks in that portfolio, for both true and estimated betas.

Panels B of Figures 5 and 6 plot the distributions of the estimation errors
in portfolio betas. Compared to Panels A of the same figures, the distributions
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Figure 5: Distributions of Beta Estimation Errors.

Description: The plots display simulation-based sampling densities of estimation errors in liquidity
betas and market betas estimated with 5 years of monthly data. (Panel A) displays the densities of
errors in betas estimated for individual stocks; (Panel B) displays the densities of errors in estimated
portfolio betas.

Interpretation: Liquidity betas are harder to estimate than market betas. Forming portfolios helps
mitigate the problem.
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Figure 6: Effect of Liquidity Shocks on Liquidity Beta Estimates.

Description: The plots display simulation-based sampling densities of errors in liquidity betas esti-
mated during 5 year periods with and without large liquidity shocks. (Panel A) displays the densities
of errors in betas estimated for individual stocks; (Panel B) displays the densities of errors in estimated
portfolio betas.

Interpretation: Liquidity beta estimates are more precise when computed over periods that include
at least one liquidity crisis.
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are narrower by an order of magnitude, indicating that beta estimates are much
more precise when computed at the portfolio level rather than the individual
stock level. At both levels, the estimation errors in liquidity betas are larger than
those in market betas because the underlying problem—the scarcity of liquidity
crises—cannot be completely eliminated by forming portfolios. Nonetheless, these
plots show that portfolio formation is especially valuable when estimating liquidity
betas, given the large amount of noise in their individual-stock estimates.

5 Conclusion

Twenty years after LTCM, our profession has a deeper understanding of liquidity
risk and its effects on asset prices. Hundreds of studies have examined the pricing
of liquidity risk in various markets and the exposures of professional money
managers to this risk. This literature has also been among the few beneficiaries of
the 2008 financial crisis.

We commend Li et al. (2019) and Pontiff and Singla (2019) for their thorough
and successful replication of our 2003 study. In addition to handling their task
professionally and gracefully, they offer numerous interesting insights on this topic.
They find the liquidity risk factor to be priced not only in sample but also post
sample, and the post-sample performance they find is even stronger than the in-
sample performance. They also report that various alternative liquidity measures
are not priced, which leads them to voice skepticism about the cross-sectional
relation between liquidity risk and expected stock returns. However, many of
these alternative measures do not resemble liquidity when plotted, while others
may not be capturing the price-relevant dimension of liquidity. Upon reviewing
their evidence, we continue to believe it is reasonable to infer that liquidity risk is
priced.

Besides addressing replication, we also offer recommendations regarding the
usage of our liquidity factor, such as when to use its traded versus non-traded
version and whether to use historical or predicted liquidity betas. We explain why
liquidity betas are inherently difficult to estimate and offer tips on how to improve
their precision.

Despite the immense growth in research on liquidity risk, important questions
remain unanswered. For example, what predicts the periodic seizures in market
liquidity? Our work shows how one can measure market-wide liquidity and pro-
vides clues about how to hedge it, but not how to predict it. The origins of liquidity
shocks are of obvious interest not only to investors but also to policymakers.

The replication initiative of the Critical Finance Review raises a number of
interesting questions about replication in general. For example, should the repli-
cations that are published be a subset of those conducted, and, if so, how should
the former be selected? Galiani et al. (2017) report evidence that editors are
more likely to publish replication studies that overturn previous results rather



298 Luboš Pástor and Robert F. Stambaugh

than support them. Is such a preference desirable? If journals designate ex ante
the studies to be replicated, should editors select studies that they suspect are
more likely to be overturned, or should they instead select randomly from studies
deemed influential by an objective standard? The latter selection could be more
informative, for example, about the profession’s error rate. If a study goes beyond
replicating the original study and introduces additional results from alternative
specifications or sample periods, who replicates the replicators? If replicators
try enough variations, they will almost surely find some by chance that fail to
reproduce the original result. What are the incentives of a replicator? It is in-
creasingly common to make the computer code underlying the paper’s analysis
publicly available. Could such public posting jeopardize the independence of code
written for subsequent replications? These questions, and many others, are open
for debate in our academic community.2
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