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Abstract

Globally, 1.5 billion people live off the grid, their only access to electricity often limited to

operationally-expensive fossil fuel generators. Solar power has risen as a sustainable and less

costly option, but its generation is variable during the day and non-existent at night. Thanks

to recent technological advances, which have made large-scale electricity storage economically

viable, a combination of solar generation and storage holds the promise of cheaper, greener, and

more reliable off-grid power in the future. Still, it is not yet well-understood how to jointly

determine optimal capacity levels for renewable generation and storage. Our work aims to shed

light on this question by developing a model of strategic capacity investment in both renewable

generation and storage to match demand with supply in off-grid use-cases, while relying on

fossil fuel as backup. Despite the complexity of the underlying model, we are able to extract two

general results. First, we find that solar capacity and storage capacity are strategic complements,

except in cases with very high investment in generation capacity, when they surprisingly turn

into strategic substitutes, with implications for long-term investment decisions. Second, we

develop a simple heuristic to determine which storage technology, within a given portfolio, can

turn a profit in the broadest set of market conditions, and thus is likely to be adopted first. We

find that currently, low-efficiency, cheap technologies such as thermal can more easily turn a

profit in off-grid applications than high-efficiency, expensive ones such as lithium-ion batteries.

We then develop two newsvendor-like approximations of the general model that are analytically

tractable, yield precise values for the optimal investment decisions and profit in some cases, and

provide bounds to the optimal investment decisions and profits in all other cases. To conclude, we

calibrate our models to measure the accuracy of our solutions utilizing real-life data from three

geographically-diverse islands, and then use our approximations to provide high-level insights

on the role that large-scale storage will play in the years ahead as technology improves, carbon

taxes are levied, and solar becomes cheaper.
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1 Introduction

About 1.5 billion people worldwide live without connection to modern electricity grids and usually

rely on diesel or gasoline generators for their electricity needs, which not only generate dirty energy

but are also very expensive to operate (Lam et al. 2019). This problem is quite common in

developing countries but is also present in the developed world - whether one looks at islands in

Europe or remote villages in the Americas, off-grid power is typically provided through burning

fossil fuels, with the same drawbacks of cost and pollution everywhere. While solar has become the

cheapest source of electricity in most parts of the world (Lazard 2020), and may seemingly constitute

an ideal solution to replace fossil fuel generators in such settings, the sun does not always shine

and electricity demand cannot be backlogged. Hence, shifting off-grid energy provision toward

renewable generation inevitably means finding ways to match demand with an intermittent supply.

The solution could be the storage of excess generation, to be used at a later time when needed.

This is not a new idea: Pumped hydro systems have been utilized in mature energy grids since

the late 19th century. However, they are prohibitively expensive for smaller, off-grid applications,

they require locations with specific geographic qualities that are rather uncommon, and even then,

they only provide a small fraction of the total demand in energy. Thankfully, four concurrent

developments in recent years have made multi-hour storage for off-grid applications sought after,

technically feasible, and potentially profitable.

The first trend is the ever-decreasing cost of fossil-free technologies, with wind generation costs

down 40% and photovoltaic prices down by 70-80%, compared to 2009 (IRENA 2017), rendering

renewables increasingly competitive and making the problem of intermittency increasingly pressing.

Second, the cost of non pumped-hydro energy storage has also been decreasing steadily over the

past several years. And as technology matures and the cost-benefit ratio improves, more people

will take advantage of energy storage solutions. A recent examples of this is an island in American

Samoa replacing oil imports with a combination of solar and storage,1.

The third development is political in nature, with many national and regional governments

enacting regulation that requires minimum renewable energy generation ratios in future decades.

The island nation of the Maldives aims for 70% renewables by 2030 (World Bank 2020) and the

European Union targets 40% by 2030 (EU Commission 2021). Using a different metric, India,

home to the world’s largest off-grid population, aims for 450GW of renewable generation by 2030

(Frangoul 2021).

The last element, which compounds the previous three, is that carbon emissions are under

scrutiny in international treaties, such as the Paris and Katowice climate accords (EU Com-

mission 2015), and further environmental regulations are investigated by economic scholars and

(non)governmental institutions (Nordhaus 1994, World Bank 2017).

Taken together, these trends make the provision of renewable-based off-grid energy and storage

1
https://www.nationalgeographic.com/science/article/tau-american-samoa-solar-power-microgrid-tesla-solarc

ity
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not only politically desirable, but also economically attainable, while potentially offering simulta-

neously both lower long-term costs and sustainability. Thus, managing the operational aspect of

supplying customers with renewable electricity, especially with intermittent generation, is of utmost

relevance.

In this paper, we propose a two-stage, stylized model to study the capacity investment decision

in storage and renewable generation. In the first stage, a utility provider decides on a combination

of renewable generation and storage capacity to serve demand, while we assume that fossil-powered

generators already exist as the current generating technology, and can be used as a backup. In the

second stage, generation and storage utilization happen over the lifetime of the investment. This

model is novel and unique in the literature as it approaches storage differently than traditional time

series and computational approaches (Salas and Powell 2018, Cruise et al. 2019). Our analysis offers

insights on the strategic relation between generation and storage investment decisions. Specifically,

we find that the firm’s investment decisions are strategic complements when renewable generation

or storage capacities are low, but interestingly, turn into strategic substitutes when generation

capacity becomes large. This finding challenges the notion that such investment decisions always

support each other.

Some researchers (Diouf and Pode 2015, Kittner et al. 2017) and policy makers (Tsiropoulos I.

2018) suggest that lithium batteries, with their high efficiency and market penetration, may be the

future technology of choice. By contrast, we find that technologies such as thermal, that are less

efficient but cheaper than lithium batteries, stand to gain the upper hand. Furthermore, we derive

a simple heuristic that can be used to determine which storage technology within a given portfolio

can turn a profit in the broadest set of market conditions, and thus is likely to be adopted first.

Since in a model that keeps track of the energy stored across all periods —henceforth referred

to as “tracking” model —the firm’s capacity investments solutions are analytically intractable, we

employ two simplifying assumptions and develop two corresponding simplified models for which

analytical characterization is possible. In the first of those models, called full-discharge model, we

assume that all the energy stored during the day is discharged within the following 24 hours. In

the second model, called partial-discharge model, we assume that energy stored in a period is lost

if it is not used by the end of the following period. Thanks to either of these assumptions, the

T periods of the model under study, which are temporally linked by the stored energy carryover

in the tracking model, can be disjoint into T temporally-independent periods (or pairs of periods)

with important implications for tractability. In particular, when the cost of fossil fuel backup

energy is lower than a given threshold, we are able to derive closed-form solutions for the firm’s

capacity investment decisions. Beyond this threshold, the solution to our models provide bounds

for the optimal storage decision in the “tracking” model. Furthermore, we show via simulation

that one of our approximations - the partial-discharge model – constitutes a reasonable proxy for

both generation and storage investment decisions across a fairly wide range of realistic problem

parameters.
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Our model also helps sketch high-level trends regarding the role of storage in the coming years.

As storage technologies gradually become cheaper, we find that investment in renewable storage

will not happen gradually; rather, there will be a no-investment period, followed by a period of

rapid adoption. However, the need for fossil/nuclear energy will likely remain in the medium-to-

long term, due to the need of complementing renewables with some amount of non-intermittent

generation.

Lastly, we investigate the case in which the back-up generator is downsized following the in-

stallation of solar capacity, and therefore cannot fulfill all of demand by itself. In this case, it is

optimal for the firm to employ a policy where the generator is run preemptively to ensure that

the charge at the end of each period does not fall below a threshold level. Numerical simulation

leads to further insights on emissions and renewable investments. For example, reducing backup

capacity by as much as 30-40% often leads to no decrease in emissions and may even increase them

— the smaller size of the backup generator increases the risk of not meeting all future demand and

induces the firm to run it more often (see Section 5.4 for a full discussion).

To summarize, our paper develops a model to jointly determine solar generation and storage

for off-grid use cases in the presence of a backup generator, and uses it to (i) solve for the optimal

investment decisions and/or derive bounds thereof; (ii) characterize the strategic interaction be-

tween generation and storage investments; (iii) derive a simple and effective heuristic to compare

different storage technologies; (iv) uncover the consequences of curbing fossil generation on renew-

able investments, costs, and most importantly emissions; and (v) obtain high-level insights on the

role of storage over the coming decades. Overall, our results provide both theoretical and practical

insights for policy makers, utilities, and technology startups operating in this space.

2 Literature Review

Given the broad relevance of renewable energy and storage, our paper is at the intersection of

multiple research streams. At its core, the investment decision deals with the intricacies of capacity

management under uncertainty, an area for which Van Mieghem (2003) provides an excellent review.

This stream includes the classic decision of long-term investment, facing market variability (Arrow

2017), but also how decisions change when different options of fulfilling demand are available

(Shumsky and Zhang 2009), and how financing impacts such capacity choice (Boyabatlı and Toktay

2011). Wang et al. (2013) point out that such investment decisions are increasingly common as

many industries are changing production and distribution practices to become more sustainable.

Thematically, this paper relies on energy research that includes work by Kök et al. (2020)

and Wu and Kapuscinski (2013) on the role of renewable intermittency for electricity systems; the

impact of emission cost on profitability and technology choice (Drake et al. 2016); the optimal design

of feed-in-tariffs (Alizamir et al. 2016); the effect of net-metered energy on a utility’s profitability

(Sunar and Swaminathan 2018); the capacity effects of different renewable ownership structures
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(Agrawal et al. 2019) and energy storage policies (Wu et al. 2012). Additionally, there is a broad

field of research on the technical feasibility of renewable grids, from comparing different types of

storage (Dunn et al. 2011) over cost-minimal combinations of technologies to achieve high renewable

penetration (Budischak et al. 2013), to the long-term impact of large-scale wind energy deployment

(Miller and Keith 2018). Beyond this literature, storage investment has also been studied by various

papers in economics (Neetzow et al. 2018).

Most papers in the field approach the inherent complexity of storage investment like Jiang et al.

(2014), who employ large-scale models and efficient algorithms to optimize over large parameter

spaces in order to establish lower bounds on algorithmic solutions. Similarly, Kim and Powell

(2011) use parametric models to derive optimal energy commitment conditions in the electricity

market. However, it is difficult to extract high-level managerial insights from such computer-

guided analyses, given that there are: multiple charge/discharge periods, at least one source of

stochasticity, and one must also keep track of the “inventory” of the storage unit, i.e., the charge.

Even if solutions are obtainable in closed form in these papers, they typically do not easily lend

themselves to interpretations, and make it difficult to develop intuition.

Alternatively, Aflaki and Netessine (2017) employ a higher level of abstraction and aim to

derive generalizable, strategic investment insights for renewables using a Newsvendor approach.

They conclude that, in the presence of renewable intermittency, an increasing renewable generation

share might even increase carbon emissions due to carbon-intensive backup plants. Analogously,

Kök et al. (2020) use a Newsvendor-style model to solve a capacity investment problem between

conventional and renewable energy sources. They find that flexible, conventional sources and

renewables are complements. We use a similarly stylized approach in the context of off-grid energy

storage.

To the best of our knowledge, there are currently no papers that consider the strategic role of

storage investments. While there are some operational papers on storage in the context of renewable

energy, they have a different scope. Qi et al. (2015) look at the combination of grid-interconnection

and storage to improve dispatchability of an individual wind farm. They are able to show the

existence of lower and upper bounds for storage sizes, but focus more on the grid and deployment

aspect than the storage itself, and do not investigate the impact of storage on the overall market.

Zhou et al. (2019) study a similar scenario and derive heuristics for storage decisions, obtained from

an MDP model. Yang and Nehorai (2014) provide an intricate Lagrangian optimization approach

to reduce the complexity of planning generation and storage investments for micro-grids, but only

obtain numerical results without generating analytical insights. Luo et al. (2015) calculate the

optimal battery capacity in a similar wind-park setting, but the paper is simulation-based and

focuses on using storage to bridge the gap between actual and forecasted renewable generation.

Schill and Kemfert (2011) focus on the effect of pumped hydro in the German oligopoly market.

They find that pumped hydro does not affect a participant’s market power and its storage capacity

is generally underutilized. Strategic investment analysis was not a part of the paper. Lastly, Song
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et al. (2012) discuss storage on an individual project level, with emphasis on the state-of-charge

of a battery, but they do not consider an entire energy market, backup costs, or the existence of

alternative generation technologies. Avci et al. (2014) analyze storage capacity in the context of an

electric vehicle charging station focusing not on the combined or total charge but on the optimal

number of replacement batteries for a recharge station. The authors employ a repair model to

capture the recharging process, as is typical in the spare-parts literature (Muckstadt 2004).

This paper, therefore, expands the existing operations literature on energy storage by presenting

a way to jointly model energy storage and intermittent renewable generation capacity investment,

while considering backup capacity, charging/discharging efficiency, and emission prices.

3 Model

We aim to capture the strategic trade-off between intermittent renewables combined with storage on

one hand, and fossil fuel backup on the other. Operationally, this means making a decision between

two technologies: a cheaper and less predictable (renewable) technology and a more expensive, yet

always available alternative. Storage can then be thought of as a costly means of reducing the

variability of the former option.

3.1 Model Setup

We formulate the problem as a 2-stage, 2-variable newsvendor-like model (but with uncertainty in

supply rather than demand). In stage one, the utility makes joint capacity decisions on renewable

generation and energy storage. In stage two, demand and generation are realized over T stochas-

tically identical periods: demand is met by employing the capacities from stage one, while supply

shortages are met through fossil fuel backup. Figure 1 provides a graphical illustration of the model

elements and their relation to each other.

Demand Structure. When modeling storage, the need to consider at least two periods to allow

for charging and discharging to occur is inherent. Each of the T periods in the model represents a

24-hour cycle that is further subdivided into two sub-periods, day and night, each lasting 12 hours.

This night/day distinction captures the main source of variation in electricity consumption, aligns

with the solar generation profile, and simultaneously provides structure to the storage decisions.

During the day sub-period, deterministic demand DH occurs, which is followed by the night, in

which deterministic demand DL occurs. While this is a simplification of real demand patterns, the

most important factor governing storage usability is not the absolute level of supply or demand,

but the difference between the two, which allows for charging and discharging. We focus on this

mismatch by assuming two deterministic demands and variable solar generation, motivated by the

fact that in practice variability in supply is much higher than variability in demand. Alternative
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Figure 1: Model Diagram

day/night split lengths can also be accommodated by adding another parameter to the model and

adapting the demand accordingly.

Generation Technology. We assume solar generation in this model as it is the cheapest gen-

eration source in expectation and in many off-grid use-cases the only feasible renewable solution

due to geographical/physical restrictions. In addition, solar panels are more modular than wind

turbines, the other frequently-built renewable technology, and can therefore be sized according to

the specific needs of the use-case.

Generation during the day is uncertain and is a function of installed generation capacity, Q, while

it does not depend on previous period generation or demand. Specifically, we assume for simplicity

that daily generation in each period qt is distributed uniformly qt ∼ U [0, Q]. Generation from solar

panels at night is naturally 0. This dichotomous nature is the core source of the aforementioned

difference between supply and demand, and the reason why we focus on two 12-hour sub-periods

for the strategic investment case. Since solar generation will always be lower than energy demand

during the night, if any storage charge is to be accumulated for subsequent discharge, the storage

unit must be charged by generating more electricity than is demanded, during the day. The unit

costs cQ are linear, average per-period costs of generation capacity. They are obtained by splitting

the unit capacity cost across the T days of the assumed investment life-time. We assume that, as is

the case in reality, 2cQ < g. That is, in expectation (given the uniform distribution of generation)

solar is cheaper than the backup technology, as otherwise one would never invest in any solar.

Marginal generation costs are 0. Potential renewable subsidies can be priced into the model by

calculating the expected subsidies over the lifetime and adjusting the unit costs accordingly.

Storage Technology. Let K be the size of the storage, measured in energy - which is power

over time (e.g., MWh) - it can discharge. The storage exhibits cycle efficiency 0 < e ≤ 1, where
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1 − e units of energy are lost in each charging/discharging cycle. This efficiency is a core metric

for storage technologies, as a perfect system would not lose any energy in the charging/discharging

process and return 100% of the originally stored energy. But among other things, secondary

reactions in a battery and mechanical losses in thermal systems lead to energy dissipation in real-

world installations. Next to unit cost, this factor is of utmost importance when choosing a storage

solution, and ranges from 20% to almost 100% in practice, depending on technology and scale

(Koohi-Fayegh and Rosen 2020). Unit costs cK are linear in MWh and are distributed equally

across all T periods. Since we measure storage in discharge-able units, we adjust the unit cost as

cK/e to account for the fact that less efficient storage technologies need more capacity to be able

to discharge the same amount of energy (to discharge 100 units, a 50% efficient technology needs

a capacity of 200).

Brief discussion. Given the fast-paced nature of the energy storage industry, we built the model

to capture virtually any type of technology. Advancements in storage technology mostly revolve

around three key performance features: unit cost, cycle-efficiency, and number of discharge cycles.

Cost and efficiency are directly captured through parameters in the model, while discharge life cycles

are indirectly captured by splitting the investment cost over the respective number of days/periods

that correspond to the anticipated lifetime.

Backup Technology. The backup capacity is assumed to already exist, typically in the form of

a diesel or gasoline generator that traditionally represents the main source of electricity generation

in many off-grid scenarios. As this backup burns fossil fuel, we assume a marginal generation cost

of g per unit of energy while the generator has the ability to quickly respond to changes in demand.

We assume this technology to be able to generate enough electricity to satisfy demand and to be

always available (this will be relaxed in Sections 3.3 and 5.4).

Application. This model is applicable to every energy market where solar generation is possible,

and generation costs by conventional generators can be estimated2. For example, the model can

be applied to any off-grid location —islands using diesel-generators to fulfill inhabitants’ electricity

needs, remote mines burning gas to power operations, villages and small towns in under-developed

countries, etc. The reason is that such off-grid locations exhibit known, constant backup costs as

they typically have only one type of generator as backup, no merit ordering, and no capacity or

energy auctions. As a consequence, the value of solar is easy to compute and equal to the cost

of the backup generation it replaces. Lam et al. (2019) estimate that globally 20-30 million of

such off-grid sites exist - millions of locations that represent the use-cases we model and that could

benefit from the insights we develop.

2A benefit of using this model is that all parameters can be easily derived from historic knowledge of demand

patterns (average electricity consumption) and publicly available sources (technology and cost parameters)
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REIDS, a Singapore-based project, focuses on exactly the energy transition we describe by

providing it for islands around Asia and Oceania (Choo 2017). Their business model centers

on electrifying or repowering off-grid islands with renewable micro-grids that only rely on diesel-

generators as a last resort. In a similar vein, the European Union spearheaded the TILOS project

on the eponymous Greek island, where it tests the integration of renewable energy and a natrium-

based battery solution (Kaldellis and Zafirakis 2020).

3.2 Objective Functions

The setup we are considering is that of a utility firm simultaneously investing in generation and

storage. In Section 3.2.1 we present a model, henceforth referred to as tracking model, that keeps

track of the energy stored over time as a function of realized generation. This model is useful

to tie together the various elements of the model, and derive some structural properties, but is

in general too complex to be solved analytically. For this reason, in Sections 3.2.2 and 3.2.3 we

introduce two simplified versions of the tracking model that are easier to study and provide useful

approximations to the investment decisions from the tracking (time-series) model. The quality of

these approximations will be numerically investigated in Section 5.

3.2.1 The Tracking Model.

We begin by describing the charging and discharging process. Let xt denote the energy stored at

the end of period t (and hence the charge at beginning of period t + 1). We can compute storage

at the end of time t using the following expression

xt =
(

min
[(
xt−1 + e(qt −DH)+ − (DH − qt)+

)+
,K
]
−DL

)+
, (1)

where (a)+ = max[0, a]. During the day, there are two possible scenarios: either generation

(qt ∈ [0, Q]) is sufficient to meet daily demand, qt ≥ DH and unused energy in the amount of

(qt−DH)+ is charged into storage for later use, allowing e(qt−DH)+ of discharge, or generation is

insufficient to meet daily demand, qt < DH , and energy in the amount of (DH − qt)+ is discharged

to serve unmet demand. During the night, DL of energy is discharged to serve nightly demand.

The formula ensures that the storage charge is never negative or higher than storage capacity K.

The objective function that the firm wants to maximize can be written as the sum of cost-

savings from solar and storage across the T periods, minus the capacity cost. Since fossil generation

is always available but costly, the economic benefit of each unit of renewable generation, which has

zero marginal cost, is equal to the cost g of the fossil backup it replaces. Cost-savings are thus

simply equal to the total demand that can be fulfilled, by direct generation or through storage,

multiplied by g. To avoid confusion between cost-savings and capacity cost, we will subsequently

refer to cost-savings as revenue as they capture the economic benefit that is derived from investing

in solar and storage capacity. Equation 2 captures all revenues earned during the day across the T

periods.
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g E
[ T∑
t=1

(
min[xt−1 + qt, DH ]

)]
. (2)

The first term in the minimum in Equation 2 is the total renewable energy that is available either

through generation qt in that sub-period or by discharging storage xt−1. The second term DH is

the demand during the day, which is the maximum amount of energy to be fulfilled during the day

sub-period.

At night there is no generation, so any replacement of the backup occurs by discharging stored

energy, as captured in Equation 3 below.

g E
[ T∑
t=1

(
min

[(
xt−1 + e(qt −DH)+ − (DH − qt)+

)+
,K,DL

] )]
. (3)

That is, the firm can fulfill demand equal to the minimum of the charge at the end of the day and

the nightly demand DL. Note that, as with the definition for xt, the charge cannot be negative or

exceed storage capacity K.

Lastly, the firm has to pay cQ for the solar generation capacity Q and cK/e for the storage

unit capacity K each period (total cost divided by all periods), which leaves us with the following

objective function for the tracking model, where xt−1 is defined as per Equation 1:

ΠTR(Q,K) =g E
[ T∑
t=1

(
min[xt−1 + qt, DH ] + min

[(
xt−1 + e(qt −DH)+ − (DH − qt)+

)+
,K,DL

] )]
− T cK

e
K − TcQQ,

(4)

The objective function of the tracking model is intractable and no closed-form solution for the

investment decisions (Q∗TR,K
∗
TR) can be derived. The main source of complexity comes from

adjacent periods being linked to each other through the energy carryover terms xt. There is, in

other words, a positive probability that a unit of charge from period one (or any other period)

would get discharged in any subsequent period up to the last one.

Despite not having closed form results for the tracking model, we can still obtain several insights

from it by indirectly leveraging some of its properties. We present these insights in the following

subsections.

Strategic Complements or Substitutes? In this subsection, we aim to understand if there

is a strategy relation between generation and storage capacity. In other words, we study whether

investing in either capacity affects the value of investing in the other (see Appendix A.1).

Theorem 1. Strategic Interaction between Investment Decisions

In the tracking model, renewable generation and energy storage are:

• Strategic complements at lower levels of capacity investment. Formally ∂2ΠTR/∂Q∂K > 0 if

Q < Q∗bor or K < DL, where Q∗bor =
√
g(D2

L/e+ 2DHDL +D2
H)/2cQ;
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• Strategic substitutes at higher levels of generation capacity, when storage exceeds nightly de-

mand. Formally, ∃ Q′ s.t. ∂2ΠTR/∂Q∂K < 0, ∀ K > DL, Q > Q
′
.

At low levels, capacities in the tracking model are strategic complements because for storage

to be profitable, it must occur frequently enough that generation outstrips demand, otherwise the

storage does not get charged often, and thus cannot justify its cost. An increase in generation

therefore leads to an increase in storage because the higher odds of observing excess generation

means that a larger battery is needed to store it - we have strategic complementarity.

However, at high-enough levels of generation, we have strategic substitutability. The reason be-

ing that for storage to be profitable, it is not sufficient that generation outstrips demand frequently

—which ensures that the storage gets charged often —but at the same time it is also important

that demand outstrips generation frequently, otherwise stored energy is rarely put to use — as it

happens when generation is very high. For example, imagine a scenario in which renewable gen-

eration capacity is thousands of times higher than demand: there would (nearly) always be more

energy generated than demanded, removing any need for storage beyond that of covering nightly

demand.

For more details and the strategic investment results for the simplified models, we direct the

interested reader to Appendix A.1 (particularly Equations 16 and 18).

Comparing Storage Technologies. Even with the rapid advances in storage technologies over

the last years, storage of renewable energy is not yet a profitable investment in all scenarios.

However, current trends in many parts of the world (e.g., emission targets issued by governments,

increasing calls for a carbon tax) signal that energy storage will likely become a sizeable market in

the near future. This means that the storage technologies that exist, or are being developed today,

will soon compete for the storage market of tomorrow. Hence, a question of interest is: Which of

these technologies is likely to be adopted first? It would thus be useful to establish a criterion that,

for any given set of non-Pareto dominated technologies —i.e., a set where no technology is both

cheaper and more efficient than another —could determine which technology can turn a profit in

the broadest set of market conditions, and is thus more likely to be adopted first. To this end, we

first formalize the above discussion and then present our result.

Definition 1. Storage technology A (eA, cAK) is preferred to storage technology B (eB, cBK) if and

only if ΓA ⊃ ΓB, where Γj , {(cQ, DH , DL, g) : K∗TR(cQ, DH , DL, g, e
j , cjK) > 0} is the set of non-

storage parameters for which the firm finds it optimal to invest in strictly positive storage capacity

under storage technology j ∈ {A,B}.

In order to investigate conditions that render one technology preferable over another under

Definition 1, we employ a result from the full-discharge model, which we will introduce subsequently

and which is equivalent to the tracking model for the parameter space we consider (Theorems 3

and 4). The next lemma (see Appendix A.4 for derivation) will prove useful.
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Lemma 1. Storage Profitablity

• The optimal storage investment is positive if and only if the backup cost is higher than the

threshold g0 = cQ + cK/e+
√
c2
Q + 2cQcK/e. Formally K∗TR > 0, ⇐⇒ g > g0;

• The threshold g0 is strictly increasing in the ratio cK
e , for any DH , DL, and cQ.

Interestingly, the lemma shows that the backup cost threshold below which storage becomes

profitable, g0, depends on storage technology parameters cK and e only through their ratio, cKe . We

call such ratio the storage-cost-to-efficiency ratio. We have the following result:

Theorem 2. Comparison of Storage Technologies

a) Storage technology (eA, cAK) is preferred to (eB, cBK) if and only if cAK/e
A < cBK/e

B;

b) A given storage technology (eS , cSK) can profitably be invested in iff cSK/e
S < g −

√
2cQg.

Theorem 2 provides a necessary and sufficient condition for one storage technology to be pre-

ferred over another (point a): a lower cost-to-efficiency ratio cK
e renders a technology preferred to

other technologies with a higher ratio. Moreover, this ratio can also be employed to determine

whether a given technology is altogether profitable (point b). Overall, the results in Theorem 2

highlight that it is the storage-cost-to-efficiency ratio that governs the suitability of a given tech-

nology as a profitable investment, and that such ratio can be a simple yet quite effective criterion

to rank-order technologies from most to least-preferred, in the sense of Definition 1.

We now move from these structural properties to the second objective of our work —the devel-

opment of simple, tractable solutions for the optimal capacity investments into solar and storage.

To this end, we develop two simplified models in the next subsections that approximate the profit

and the investment decisions of the tracking model and allow for closed-form investment results.

These models will be henceforth referred to as the full- and partial-discharge models. We examine

the quality of these approximations numerically in Section 5.

3.2.2 The Full-Discharge Model.

The full-discharge model rests on Assumption 1.

Assumption 1. In the full-discharge model, all the energy stored in a period is profitably discharged

by the end of the period.

Under this assumption, each unit of stored energy is discharged and earns revenue equal to

g regardless of whether there was enough demand to be served. An important implication of

this assumption is that the full-discharge model does not require tracking of stored energy from

one period to the next. This approach removes the interdependence between subsequent periods,
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meaning that we can solve the firm’s problem as if the firm had to serve only one period (or, more

appropriately, T identical periods). The objective function of the full-discharge model becomes:

ΠF (Q,K) = T ·
(
g E

[
min[qt, DH ] + min[e(qt −DH)+,K]

]
− cK

e
K − cQQ

)
. (5)

For the above objective function, all partial derivatives and the Hessian can be signed (see Appendix

A.3) leading to the following result on the optimal investment decisions.

Theorem 3. Optimal Decisions under the Full-discharge Model

Under the full-discharge model, the objective function is globally concave over its domain. The

optimal investment choices are given by:

Q∗F =DHg

√
(1− e)e

2(cK+cQ)eg − c2
K − e2g2

K∗F =max

[
−DHe+DH(ge− cK)

√
(1− e)e

2(cK+cQ)eg − c2
K − e2g2

, 0

]
.

We discuss the results from Theorem 3 after Theorem 4, which relates the full-discharge capac-

ities to that of the tracking model.

Theorem 4. Comparison Between Full-discharge and Tracking Models

• If g ≤ g0, the backup cost is too low for the firm to invest in any storage. In that case, the

full-discharge model’s investment decisions from Theorem 3, and the profit, coincide with the

tracking model’s. Formally, if g ≤ g0, K∗F = K∗TR = 0, Q∗F = Q∗TR, and Π∗F = Π∗TR, where g0

is given by:

g0 = cQ +
cK
e

+

√
c2
Q +

2cQcK
e

.

• If g0 < g ≤ gF , the firm’s storage investment is positive and the full-discharge model’s

investment decisions and profit coincide with the tracking model’s. Formally, (Q∗F ,K
∗
F ) =

(Q∗TR,K
∗
TR) and Π∗F = Π∗TR, if g0 < g ≤ gF , where gF is given by:

gF =
(em+ 1)

(√
cQ (2cK(em(m+ 2) + 1) + cQ(em+ 1)2) + cQem+ cQ

)
+ cKem(m+ 2) + cK

e(em(m+ 2) + 1)
,

where m = DH/DL.

• If g > gF , storage investment is strictly positive, larger than what is needed to meet nightly

demand, and the full-discharge model’s storage investment decisions and profit are strictly

higher than the tracking model’s. Formally, K∗F > DL, K
∗
F > K∗TR, and Π∗F > Π∗TR, if

g > gF .

Theorem 4 contains three elements. First, it establishes the existence of a backup cost threshold,

g0, below which investing in storage is not profitable. Such a threshold increases in storage cost

cK as well as in generation cost cQ, and decreases in storage efficiency e. In this parameter space,
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the full-discharge model’s investment decisions are exact, that is, they match the tracking model

(Appendix A.4). Second, if the backup costs are between g0 and gF , storage investment is positive

and the full-discharge model’s investment decisions coincide with the tracking model. Third, if

the backup cost is beyond the threshold gF , it is optimal for the firm to build at least enough

storage capacity to serve all nightly demand; the full-discharge model then is no longer an exact

approximation of the tracking model. In this regime, the full-discharge model is still useful, as

its investment decisions constitute an upper bound to the tracking model’s optimal investment

decisions.

With this context established, we return to insights previously obtained in Theorem 3 regarding

the drivers of generation and storage investments. The optimal generation investment is propor-

tional to daily demand, decreasing in solar cost, and has non-linear relationships with efficiency as

well as storage cost. The optimal storage investment also scales with daily demand and is higher

when the difference between cK and g is low enough relative to the storage technology’s efficiency

e, as this roughly measures the relative cost of serving demand with stored renewables versus fossil

backup capacity. If this difference (ge−cK) is insufficient, optimal storage capacity is zero. Further

note that the storage capacity is affected by the same radical expression as generation —this is the

indirect impact of solar on storage.

In combination, Theorem 3 shows that a firm may find it optimal to serve demand with renew-

able generation without investing in storage, but that storage deployment cannot be optimal in the

absence of renewable generation.

3.2.3 The Partial-Discharge Model.

When g > gF , the full-discharge model does not provide an exact solution to the tracking model but

rather an upper bound to the investment decisions of the firm. Thus, in this section, we develop

a second model that can supply additional information regarding optimal investment when the

backup cost g is higher than gF .

The partial-discharge model rests on the following two assumptions.

Assumption 2. In the partial-discharge model, energy charged in period t expires (i.e., is lost

forever) if not used by the end of period t+ 1.

Assumption 3. In the partial-discharge model, demand is met by employing the most recently-

generated energy first.

Note that Assumption 3 entails a LIFO use of energy, meaning that the firm serves demand in

a period using energy generated in that period if available, then energy stored in that period if any,

and then energy stored in the previous period — in this order of priority. Note also that the need

to specify a priority order in the use of energy arises because of Assumption 2 — when energy does

not expire, there is no need to treat the energy stored at different times differently.
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The use of a LIFO rule for energy consumption, whereby energy that expires at the end of the

period is given the lowest priority, may appear sub-optimal, and in fact, it is: Using older energy

first would indeed be preferable profit-wise, yet our assumption does the opposite. The advantage

of such an approach is not to proxy profit as much as possible, but to make the problem more

tractable, as we are about to explain.

Under Assumptions 2 and 3, revenues in period t are a function of storage at the end of period

t − 1, xPt−1 (which is important for the accuracy of the partial-discharge model), but are not a

function of storage at the end of period t − 2, xPt−2; nor are they a function of storage in any

previous periods. This ensures that revenues in a period are only a function of events occurring

in that period and the previous period. This is in stark contrast with the tracking model, where

revenues in a period are a function of events occurring in that period and all previous periods.

Because of this feature, as we are going to show, our assumptions greatly simplify the objective

function.

More specifically, Assumption 2 prevents xPt−2 from directly affecting revenues in period t,

because such energy expires at the end of period t − 1. However, xPt−2 may still affect revenues

in period t indirectly, i.e., it may affect xPt−1, which in turn affects revenues in period t. This can

happen in two ways. First, some demand in period t − 1 may be served using xPt−2 instead of the

energy generated in period t−1, qt−1, and this alone renders xPt−1 a function of xPt−2. Alternatively,

xPt−2 may occupy storage capacity and prevent energy generated in excess during the day, in period

t− 1, to be stored in the battery, which again affects xPt−1.

Assumption 3 breaks the indirect dependency between xPt−2 and xPt−1 because the use of xPt−2

has the lowest priority: It is used to meet demand in period t−1 only if qt−1 is not sufficient, and is

kept in storage only if this does not prevent newly-generated energy to also be stored when needed.

Together, Assumptions 2 and 3 imply that the energy available at the beginning of period t,

xPt−1, is given by:

xPt−1 =
(

min[e(qt−1 −DH)+,K]−DL

)+
, (6)

which is notably not a function of xPt−2 or energy stored in any previous period. In particular,

this means that revenues in any period t can be computed in expectation by simply knowing the

probability distribution of solar generation qt and qt−1.3

To further improve tractability, we modify the revenue terms that capture the energy generated

in a period, and discharged in the following period by replacing it with a weakly lower term (see

Equation 89 in Appendix B.1). The resulting objective function of the partial-discharge model can

thus be written as:

ΠP (Q,K) = T ·
(
g E

[
min[qt, DH ] + min[e(qt −DH)+, DL]+

min[(eqt − eDH −DL)+,K −DL, (eDH +DL − eqt+1)+]
]
− cK

e
K − cQQ

)
,

(7)

3We ignore start-up effects (i.e., storage in the very first period would be empty), since they have negligible impact

on the overall revenues given that the expected life of a solar panel is 30 years — more than 10,000 days.
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where the term multiplied by T is the profit earned in a period, i.e., the cost-saved from solar

and storage serving demand.

Theorem 5 characterizes the optimal investment decisions for the firm, under the assumption

that storage capacity is not excessively higher than demand, K < eDH + 2DL. This condition is

made for tractability, always holds for e = 1, and is confirmed in all of our numerically-simulated

scenarios (see Appendix A.5 for more details).

Theorem 5. Optimal Decisions under the Partial-discharge Model

Under the partial-discharge model:

• if gF ≤ g ≤ gP , the border solution is optimal, i.e., Q∗P = Q∗bor and K∗P = K∗bor,

Q∗bor =

√
g(D2

L/e+ 2DHDL +D2
H)

2cQ
, K∗bor = DL,

• if g > gP , the interior solution is optimal, i.e., Q∗P = Q∗int and K∗P = K∗int,

Q∗int =
3

√
−d+

√
d2 + c3 +

3

√
−d−

√
d2 + c3,

K∗int = DL +
1

2

(
Qe−

√
4(DL +DHe)2 − 4e(DL +DHe)Q+

e(4cK + eg)Q2

g

)
;

where gP is defined as

gP =

(
cK + cKem(2 +m) + 2cQ(1 + em)2

)2
2cQe(1 + em)2(1 + em(2 +m))

,

where m = DH/DL and c and d are defined in Appendix A.5, Equations 32 and 33.

Theorem 5 characterizes the optimal decisions of the firm under the partial-discharge model.

When g is moderately low (gF ≤ g ≤ gP ), the firm builds only enough storage capacity to fulfill

nightly demand. When g > gP , the firm builds more storage capacity than that, potentially

allowing excess solar energy during one period to fulfill unmet demand during the next period.

The next theorem compares the investment decisions obtained from the partial-discharge model

with those of the tracking model.

Theorem 6. Comparison Between Partial-discharge and Tracking Model

a) The optimal profit under the tracking model, Π∗TR, is always bounded below by its equivalent

in the partial-discharge model, Π∗P ≤ Π∗TR;

b) The optimal storage capacity investment under the tracking model for a given value of gen-

eration, KTR(Q), is always bounded below by its equivalent in the partial-discharge model,

KP (Q) ≤ KTR(Q). When gF ≤ g ≤ gP , the optimal storage capacity investment under the

tracking model, K∗TR, is always bounded below by its equivalent in the partial-discharge model,

K∗P ≤ K∗TR.
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The partial-discharge model always underestimates the marginal value of storage compared to

the tracking model. For this reason, the partial-discharge model’s storage investment decision pro-

vides a lower-bound to the investment decision of the tracking model. This bound holds analytically

for gF ≤ g ≤ gP and it holds numerically in all other cases, but is elusive to prove for g > gP because

of the interplay between the two decision variables. The reason for the lower-bounding is that both

assumptions underlying the partial-discharge model reduce the value of stored energy, which has a

lower duration (Assumption 2) and is employed sub-optimally (Assumption 3), leading the firm to

build less storage capacity compared to the tracking model. The decision on generation capacity

obtained from the partial-discharge model is, instead, not always lower than the one obtained from

the tracking model. We provide a more detailed analysis of this in Section 5.

Remark. Taken together, the full- and partial-discharge models provide important information

that can be employed to make investment decisions. At lower backup costs, the full-discharge model

is exact, while for higher backup costs, the full-discharge and partial-discharge models respectively

provide an upper bound and a lower bound for firm profit and storage investment in the tracking

model. We test the accuracy of our two models in Section 5.1.

3.3 Strategic Usage of Capacity-Limited Backup Generator

So far, we always assumed that the backup generator has sufficient capacity to fulfill all demand.

However, it is conceivable that there exist off-grid use-cases in which the back-up generation is

performed by several combined generators. In those cases, once the solar and storage investment

has been made, it may be desirable to retire some of the former back-up generators, and use the

remaining capacity strategically.

We study this problem for the tracking model by employing a dynamic programming setup for

which we introduce the following notation: Let G denote the backup generator capacity in each

sub-period for which we assume G ≤ min(DH , DL). Running said generator incurs cost g per unit

of energy, but not fulfilling demand incurs cost αg. We assume α > 1/e, so that running the

generator in combination with storage is at least profitable if meeting demand is guaranteed (i.e.

charge storage with the generator during the day to serve demand at night). We thus have to make

two decisions each day - how much to run the generator during the day GHt and how much to run

it during the night GLt. The state of the model consists of the charge at the beginning of the period

xt−1 and the amount of solar generation in the period qt. Together we have the two-dimensional

state per period st = (xt−1, qt) with time-invariant state space S = [0,K]× [0, Q]. For this setting,

we take renewable generation and storage capacity as given.

The objective in the capacity-limited generator scenario is to trade off the cost of running the

generator against not meeting demand. Let UHt and ULt denote the unmet demand during the day
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and the night. The per-period cost c(·) and unmet demands are shown in Equation 8.

c(xt−1, qt, GHt, GLt) =g(GHt +GLt) + αg(UHt + ULt).

UHt =(DH −GHt − xt−1 − qt)+,

ULt =
(
DL −GLt −min

[(
xt−1 + e(GHt −DH + qt)

+ − (DH −GHt − qt)+
)+
,K
])+

.

(8)

Clearly, the unmet demands are decreasing in storage charge, generation and the back-up de-

cision quantities GHt, GLt. Also, given the efficiency loss of the storage solutions, running the

generator during the day to fulfill demand at night costs g/e per unit of nightly demand met,

making it more expensive than regular back-up operations to meet demand. Crucially, the storage

term xt is what links the state variables and decisions from one period to the next, as we show in

Equation 9.

xt=min

[(
min

[(
xt−1 + e(qt +GHt −DH)+−(DH − qt −GHt)+

)+
,K
]
+e(GLt −DL)+−(DL −GLt)+

)+
,K

]
.

(9)

The terms in the first minimum account for the storage charge at the end of the day sub-period,

while the outer minimum tracks the charge from the end of the day sub-period to the end of the

night sub-period. We show in Appendix 7 that because all periods are linked through storage,

rather than looking at the two generator decisions GHt, GLt separately for every period, it suffices

to consider what the charge at the end of the period xt is supposed to be. We can thus denote the

optimal action in each period as the target charge xt. Conceptually this works, because once the

starting charge xt−1 and the solar generation realization qt are known, there is no more uncertainty

in period t4. Our action space is X = [0,K] and is state- and time-invariant.

Because the periods are linked in this fashion - like an extended version of the tracking model

- we can denote the optimal, multi-period cost from t to T with v∗t (·) using the recursion equation

shown in Equation 10.

vt(xt−1, qt) =c(xt−1, qt, xt(GHt, GLt, ·)) + E
[
vt+1(xt, qt+1)

]
,

v∗t (xt−1, qt) = min
xt∈X

{
c(xt−1, qt, xt(GHt, GLt, ·)) + E

[
vt+1(xt, qt+1)

]}
,

s.t. (9),

(10)

where the expectation is taken w.r.t. the random generation realization. The total cost starting

from t until the end of the lifetime is equal to the cost in this period c(·) plus the expectation over

generation realizations of the next period’s cost-function vt(xt, qt+1).

An important quantity to consider for the optimal generator decision is χ , min[(xt−1 + e(qt +

G − DH)+ − (DH − qt − G)+)+,K] − xt − (DL − G), the maximum amount of energy, beyond a

target charge xt, one can end the night-subperiod with, leading to our next theorem:

4We will at times write xt(xt−1, qt, GHt, GLt) to indicate that the action in period t is dependent on the storage

charge at the beginning of the period xt−1 and the generation realization qt and the generator decisions.
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Theorem 7. Optimal Policy In The Capacitated Generator Setting

In the off-grid setting with a capacitated generator:

• There exists a unique, optimal policy that is a threshold policy that aims to end a period with

an optimal storage charge x∗t .

• For any starting charge xt−1 and solar realization qt, the optimal generator policy ĜHt, ĜLt

is:

ĜHt ,



ḠHt if χ < 0

ḠHt − χ/e if χ ∈ (0, e(ḠHt − (DH − qt)+)+]

G̃Ht − χ if χ ∈ (e(ḠHt − (DH − qt)+)+, G̃Ht]

0 if χ > G̃Ht

ĜLt , (G− (χ− G̃Ht)+)+,

where ḠHt and G̃Ht are defined in Appendix A.7.

• The optimal end-of-period-charge x∗t can be lower bounded in closed form (see Equation 75 in

Appendix A.7).

The intuition for the optimal policy is that generating and storing a unit of charge has a

constant cost, g/e, and decreasing marginal returns, thus making it optimal to target the end-of-

period storage for which the benefit equals the cost.

In Section 5.4 we leverage results from Theorem 7 to provide important insights on the use of

a downsized generator and its impact on emissions and renewable investments.

4 Data

After studying the theoretical properties of our model in the previous section, we now use empiri-

cal data from differently-sized islands around the world to complement our analytical findings. We

chose islands as the studied scenario in this paper because they are off-grid use-cases, are found

in most countries, and are clearly geographically isolated from any interconnection or neighbour-

ing generation. We use the real-life data to calibrate our model to i) analyze the quality of the

approximation of our full- and partial-discharge models (Section 5.1); ii) derive insights on how

changes in technology and policy may impact storage and generation capacity investments over the

coming years (Sections 5.2, 5.3, and Appendix B.6); iii) numerically investigate the emission and

investment impact of reducing the capacity of the generator (Section 5.4). We begin by describing

our data.
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Market Data. As islands typically do not have full-fledged utilities, obtaining reliable power data

for them is notoriously difficult. We gathered our energy demand and price data from different

partners that work with these communities. For La Palma (PAL), we obtained the data from La

Palma Renovable a EU-backed NGO pursuing the energy transition on the island. For Astypalaia

(AST), the time series were kindly shared by Nikos Mamassis who had previously researched the

stochasticity of the island’s natural resources (Klousakou et al. 2018). For Weno (WEN), the data

came from an energy consultancy that was tasked by the state of Micronesia to map a trajectory

for future power generation in the country. These islands are characterized by different population

sizes and varied ratios of day-to-night demands —see Table 1. The backup cost is rather high in all

cases as it is driven by the inefficient generation based on imported oil (but governments typically

heavily subsidize electricity prices for consumers). For carbon-emissions, we use data from the

Spanish Register of Emissions and Pollutant Sources for La Palma’s power plant (for lack of better

data, we assume pollution intensity to be the same for all other islands’ generators). The data has

10-minute or hourly granularity and consists of time series varying in duration, from several days

to a few years.

Table 1: Historic Energy Demand and Price Data from Islands

Unit La Palma Astypalaia Weno

Demand Day (DH) kWh 407,800 7,600 22,900

Demand Night (DL) kWh 327,100 9,600 14,400

Demand Ratio (m = DH/DL) Numeral 1.25 0.79 1.59

Population #People 85,000 1,400 14,400

Backup Cost (g) $/MWh 229 200 205

Backup CO2 tons/MWh 0.72 0.72 0.72

Demands are averages across all observations (day sub-period from 8am-8pm in La Palma, 7am-

7pm in Astypalaia and 6am-6pm in Weno) and the backup costs are the average generation

costs.

Storage and Renewable Data. For storage technology, we will consider two options. Lithium-

ion batteries will be the high cost - high efficiency technology we analyze. One alternative to

batteries is thermal energy storage - systems in which energy is stored as heat in various conductive

materials ranging from sand over concrete or salt to oils. Typically, these storage solutions have

lower levels of efficiency than batteries but they are also less expensive to build. We obtained

parameter estimates for the storage technologies from the proprietary research of Kraftblock, a

German energy storage start-up. We validated this data against publicly available sources, such as

Fu et al. (2018) and reports of contemporary storage installations, as well as Larcher and Tarascon

(2015) for storage manufacturing emissions. The solar generation assumptions contain the upfront

investment costs and maintenance costs and are in line with the high end of photovoltaic costs in

Lazard’s Levelized Cost of Energy Analysis as the equipment has to be imported by ship (Lazard
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Table 2: Storage Technology and Renewable Generation Data

Battery Thermal

$/MWh 330,000 100,000

Lifetime in days 5,475 10,950

$/MWh / day 60 9

Efficiency 90% 45%

t CO2/MWh in Production 150 80

t CO2/MWh / day 0.030 0.005

Solar

$/MW 1,560,000

Lifetime in days 10,950

$/MWh/day 11.9

Capacity Factor (r) 25%

2020). To make the two technologies under study comparable, we adjust the cost for the expected

lifetime of the technology. Table 2 summarizes storage and renewable generation data.

5 Numerical Analysis

5.1 On the Quality of the Partial- and Full-discharge Approximations

We begin our numerical analysis with an evaluation of the full- and partial-discharge models devel-

oped in Section 3.2. We want to understand how good of an approximation each of these models

provides, relative to the tracking model, whose solution is obtained through a computer simula-

tion.5 For all three models, generation patterns are drawn across 10,950 day/night periods (30

years). We benchmark the models across 342 different sets of parameters, for different markets and

storage technologies, and varying storage cost, generation cost and backup cost from 50% to 200%

of their current values as well as demand ratios from 100% to 200%.

Table 3: Percentage Deviation of Partial- and Full-discharge Model Profit and Capacities Compared

to the Tracking Model

Profit Generation Storage

n = 342 Deviation Thermal Battery Thermal Battery Thermal Battery

Partial-Discharge

average -4% 0% 1% 2% -27% -2%

median -4% 0% 1% 2% -28% -1%

largest (magn.) -6% -2% -8% -1% -35% -23%

Full-Discharge

average 39% 47% 76% 42% 18% 196%

median 39% 51% 79% 43% 10% 209%

largest (magn.) 49% 70% 95% 102% 130% 281%

Table 3 summarizes the model deviations across all 342 benchmark cases broken down by

5We investigate the simulation for storage capacities K ∈ [0, 2DL/e + DH ] (upper limit equals max discharge in

the partial-discharge model) and generation capacities Q ∈ [0, 4DH + 4DL/e)]. For each parameter set, we run the

simulation in an evenly-spaced 100x100 capacity grid and select the run with the highest profit.

21

Electronic copy available at: https://ssrn.com/abstract=3761397



storage technology, and reports the average, median, and largest deviation (in magnitude) for each.

Deviations for both simplified models are calculated relative to the tracking model.

The most important finding is that profit wise, the partial-discharge model is very accurate,

and only a few percentage points off relative to the tracking model (worst-case deviations are only

-6% and -2% for Thermal and Battery technologies, respectively). The full-discharge model is

not nearly as good, with average deviations around 40-50%. This suggests that the full-discharge

model, despite being exact for a certain range of game parameters (as per Theorem 3), becomes

fairly imprecise outside of that range.

The accuracy of the partial-discharge model carries over from profit to generation, with average

and median deviations from the tracking model on the order of 1% to 2%, and worst-case deviation

of -8% and -1% for Thermal and Battery technologies, respectively. Gaps increase slightly for

storage decisions, with average and median around -30% for Thermal and -1% to -2% for Battery,

but even the worst-case deviations are within -35% and -23% respectively.

Overall, our numerical analyses confirm how well the the partial-discharge model approximates

the tracking model across the wide range of parameters considered. These observations also confirm

that the partial- and full-discharge models provide a lower and upper bound, respectively, for the

tracking model’s storage capacity investment, as discussed in Theorems 4 and 6. For a more detailed

discussion of the model’s approximations, please see Appendix B.5.

5.2 Improving Storage Technologies

In this section, we employ our partial-discharge model to characterize the optimal storage invest-

ment decision under changing technology. One driver of increasing storage penetration is technology

improvement —that is, lower capacity cost or higher efficiency. We compared hundreds of hypo-

thetical storage technology combinations of efficiency (30% to 100% in 1% increments) and unit

costs ($1 to $65 in $1 increments) for La Palma with and without subsidies (results for AST and

WEN are similar to PAL). For each of these hypothetical technologies, we calculated the profit-

maximizing capacity investment. Figure 2 plots isocurves for the optimal storage investment as a

function of capacity cost and efficiency, while also marking where lithium batteries and thermal

technologies are positioned.6 Importantly, these isocurves plot storage capacity in the amount

that can be charged (K/e), rather than the amount that can be discharged, which highlights the

investment dynamics as efficiency changes. Three observations are worth noting from these plots.

The first observation pertains to the the complex dynamics of how storage capacity changes

as technology improves. Initially, as technology improves (moving from the top-left toward the

bottom-right of the plot in Figure 2a) capacity stays equal to zero; the firm does not invest in any

storage (the white area above the 0-storage line). As technology further improves and the 0-storage

isocurve is crossed, storage becomes profitable. From this point onward, storage grows rapidly in

response to small improvements in technology (isocurves are increasingly close to each other) until

6As discussed in Section 3.1, these two parameters are enough to capture the key features of any storage technology.
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(a) PAL (b) SUB

Figure 2: Storage Capacity Investment for Hypothetical Technologies in La Palma (with and with-

out subsidies)

it reaches the capacity to fully cover nightly demand. From this level onward, storage capacity

dynamics change. In particular, a decrease in cost has no consequences on storage (isocurves are

vertical in the plot) until the cost drops below a certain threshold, which makes it profitable to

build enough storage to carry energy into the following day. From this point onward, lower costs do

increase storage, while higher efficiency has a dual effect: On the one hand, more efficiency makes

storage attractive, resulting in more capacity investment, and on the other, more efficiency means

that less storage capacity is needed to fulfill the same amount of demand, resulting in less capacity.

The net effect of those two drivers can go both ways as evidenced by the different slopes of the

isocurves to the right of their vertical parts.

The second observation pertains to the 0-storage isocurve, which identifies all technologies

(combinations of capacity cost and efficiency) that would make a firm break-even when investing in

a small amount of storage. This isocurve closely matches a line equation of the form cK
e = constant,

providing empirical support to the finding in Theorem 2 that comparing technologies based on their

storage-cost-to-efficiency ratio constitutes a simple yet powerful way to determine which one can

more easily turn a profit (and is thus likely to be adopted first).

The third observation pertains to the usefulness of identifying the 0-storage isocurve. Consider,

for example, a storage company developing a new technology aimed at markets like the subsidized

island case depicted in Figure 2b. Suppose, for illustrative purposes, that the company had, so far,

developed a hypothetical storage technology with a cost of $40 per MWh per day and 60% efficiency.

Based on Figure 2b, the company could easily realize that further efforts to boost efficiency alone

would never lead to investment, no matter how large the improvement. The company would then

conclude that achieving a lower unit cost should become the priority.

To illustrate the last point in more detail, we plot the 0-storage isocurves for all three islands,
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and two hypothetical islands in Figure 3. The two hypothetical islands are: (i) an island with

the subsidized electricity rate (SUB) that end customers on the islands pay (after accounting for a

75% subsidy), which is closer to backup costs in major grids and therefore allows some high-level

insights for (off-grid) scenarios with cheaper, non-renewable options as well; and (ii) a hypothetical

island with solar generation cost at 25% of current values. Two dynamics are worth mentioning

Figure 3: Storage Technology Efficiency Frontier for the Three islands and two Hypothetical Sce-

narios

in Figure 3. First, one can view these 0-storage isocurves as technology efficiency frontiers for

each island. Given a market with its back-up and renewable costs, only storage technologies below

the frontier are in the investment consideration set - storage technologies above the frontier are

dominated by the choice to not invest in storage. Second, this graph shows how removing the back-

up cost subsidies in La Palma would be equal to reducing technology costs by 83% —graphically,

the subsidy removal is equivalent to shifting the grey (lowest) line of the subsidized island up to the

green (second highest) line of La Palma, thereby increasing the space below the line - i.e. the space

of profitable technologies. In comparison, a four-fold reduction in solar costs would only shift the

frontier upwards by 24% (equivalent to shifting the green line up to the purple line). This quantifies

the magnitude of difference that policy changes can make in investment outcomes, relative to the

incremental technological progress.

5.3 Carbon Prices and their Impact on the Adoption of Storage Technologies

In the next two sections, we use the partial-discharge model to derive high-level insights on

practically-relevant issues that surround the use of renewables. The following strategic insights

are to be taken as characterizations of first-order effects rather than precise estimates of future

developments. As evidenced in Theorems 4 and 5, the backup energy cost g has a significant effect

on capacity investments. So far, the numerical value for g used in our analysis is based on the av-

erage generation cost on the studied islands. However, an increasing number of intergovernmental
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organizations, federal regulators, and local administrations are vowing to impose or increase some

form of carbon taxes, in order to reduce carbon emissions and curb global warming. It is therefore

of interest to understand the impact of increased carbon prices (e.g., through a direct tax) on op-

timal renewable generation and storage capacities since these directly affect emission savings. To

this end, we calculate which carbon tax levels would be required to reach enough storage capacity

a) for nightly demand (12 hours), b) nightly and daily demand (24 hours), and c) two nights and

one daily demand (36 hours). SUB in the table refers to the island with the subsidized backup

costs. While intuitively any duration of storage can be achieved through a sufficiently high carbon
Table 4: Carbon Price to Reach Storage Capacity to Cover demand for a Certain Time Period

($/ton of CO2)

Market Technology >12h >24h >36h

PAL Thermal $0 $0 >$200

AST Thermal $0 $0 >$200

WEN Thermal $0 $7 >$200

SUB Thermal $34 >$200 >$200

PAL Battery $0 >$200 >$200

AST Battery $0 >$200 >$200

WEN Battery $0 >$200 >$200

SUB Battery $97 >$200 >$200

price, Table 4 shows that, depending on the specific market and technology, the tax levels that are

required to achieve the same relative capacities differ vastly.

Consider, for example, the level of carbon prices needed for 12 hours of storage to be profitable,

for different markets. For unsubsidized islands no carbon prices are needed, while for the subsidized

island, carbon prices are substantial.

Similarly, consider the level of carbon prices needed for 24 hours of storage to be profitable,

for different technologies. Thermal storage needs zero or very-low carbon prices in unsubsidized

islands, while battery storage is still not profitable even when carbon prices are as high as $200.

These findings point to the fact that it is very important for regulators to consider the implica-

tions of carbon pricing or storage subsidies with respect to their idiosyncratic market/technology

situation, as these are by no means one-size-fits-all tools.

Another related question is when the technologies will become cheap enough (at current im-

provement rates) to serve a high share of demand by renewable generation and storage. We in-

vestigate this question in Appendix B.6 and find that i) at the subsidized electricity prices of the

islands, 70% renewables could be achieved in around five years; ii) without the fossil-fuel subsidies

80% renewable generation would be profitable today; and iii) reaching e.g. 95% renewable share is

decades away as replacing back-up capacity becomes increasingly expensive as the renewable share

increases. For more details, please see Appendix B.6.
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5.4 Strategic Usage of Capacity-Limited Backup Generator - Optimal Policy

and Carbon Emissions

We start the numerical analysis of the capacitated generator problem by analyzing the policy

threshold x∗t and the lower bound for which we have an analytical solution. Two parameter choices

that have to be made for this scenario are the size of the backup generator capacity G as well as

the factor α that captures how costly it is to fail to meet demand, compared with running the

generator 7. In Figure 4 we plot the value for the optimal generator policy threshold, which we

obtained numerically, for increasing levels of α, and compare it with our analytical lower-bound

from Theorem 7. For this figure, we have assumed G = 0.5DH (the figure is qualitatively similar

for other values of G). Intuitively, the threshold is increasing in α. If α was exactly equal to one,

Figure 4: Capacitated Generator Policy Thresholds and Bounds for Battery and Thermal Storage

not meeting demand would incur as much cost as running the generator, so it would be sub-optimal

to use the generators to achieve a ”buffer” charge in order to increase the odds of meeting future

demand. However, as α becomes larger, so does x∗t , and running the generator to create at least

some buffer charge becomes cheaper than potentially not serving demand. As it can be observed in

Figure 4, the analytical lower-bound is slightly conservative for thermal when α is in the range 5-8,

but it rapidly catches up for higher αs. For batteries, it is remarkably close to the optimal generator

threshold regardless of the value of α. Baik et al. (2020) estimate US customers’ willingness to pay

for electricity during an outage at around $2 per kWh, which equals an α of 15 when assuming an

average electricity price of 13 cents per kWh, suggesting a narrow gap between our lower-bound

and the optimal generator threshold for realistic values of α.

Having assessed the quality of the analytical lower-bound for the optimal threshold policy, in

the rest of this subsection we aim to understand how the decision to reduce the backup generator

7Technically, x∗t is not stationary, but in practice it is the same for all periods (as the solar randomness is i.i.d.)

except the final days before terminal period T . In those final periods, x∗t is lower as the future value E[v∗(xt, qt+1)]

is lower when carrying xt through to the terminal period becomes more likely. For all calculations in this section, we

use and report the average x∗t over 10,950 periods (i.e. 30 years).
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capacity affects emission savings, costs, and capacity investments. Figure 5 shows the impact of

curtailing generator capacity on emissions, total costs, solar capacity and generation capacity using

Weno’s demands and Thermal technology. We compare the case in which the generator is run

strategically (in the sense of Theorem 7) to minimize total cost, including cost of unmet demand,

(Figure 5, panel a) with the case in which the generator is used myopically, i.e., to simply serve

unmet demand without creating a buffer charge (Figure 5, panel b). Note that the two cases are

identical when generator capacity is either abundant (there is no point in running the generator

preemptively) or zero. Note also that emissions are (trivially) minimized in the latter case (far

right in the graphs). We want to highlight six observations from Figure 5 (the effects that we

(a) Strategic Generator Use (b) Myopic Generator Use

Figure 5: Comparing Outcomes for Different Generator Capacities Under Strategic and Myopic

Use

are about to discuss persist across all simulations we have run, unless otherwise specified). First,

as one would expect, a comparison of panels (a) and (b) shows that a strategic use of the backup

generator leads to lower cost (red line) and higher emissions (black line) compared to a myopic use.

This is because the strategic use of the backup generator aims to minimize costs, and its preemptive

use (as per Theorem 7) leads to it being used more often compared to a myopic (i.e. passive) use.

Second, even accounting for the above consideration, emission reductions under the strategic

use (black line, panel a) are surprisingly low for a wide range of generator capacity. For example,

reducing generator capacity by 35% has basically no impact on emissions. Moreover, a reduction

in generator capacity may actually increase emissions. The reason is that a smaller generator is

less able to meet unexpected energy shortages, increasing the risk of future unmet demand and

thus the need to stock energy preemptively in the sense of Theorem 7.

Third, the way of operating a backup generator affects not just the absolute magnitude of

emission levels, but also when backup capacity reductions reduce emissions levels (shape of the

black line). For example, under the strategic use of generator (panel a), more than half of the
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reduction in emissions are achieved by reducing backup generator capacity from 30% down to zero

(i.e., no backup generator). That is, substantial reductions in emissions are obtained only with

very substantial reductions in backup capacity. By contrast, in the myopic case (panel b), most of

the emission savings are obtained by cutting backup capacity in half, while reducing it from 30%

of demand to zero has nearly no effect on emissions.

Fourth, as the capacity of the back-up generator is further reduced, the optimal storage capacity

increases a lot faster, and farther, than solar capacity. For example, getting rid of the generator

altogether causes approximately a doubling in storage capacity and only a 20% increase in solar

capacity (regardless of how the generator is used). The exact effect sizes differ by market, technology

and α, but the general trend persists - additional storage, not additional solar is the capacity

investment of choice when facing a limited back-up generator.

Fifth, the cost increase associated with a reduction in backup generator capacity, even a size-able

one, is not unreasonably high —e.g., in our simulations the cost increase remains below 25-30% for

thermal as shown in Figure 5, but goes up to 45-50% for batteries. Thus, achieving a substantial

reduction in emissions at a somewhat reasonable increase in cost is possible, provided that the

reduction in backup capacity is replaced by an appropriate increase in storage (and to some extent

generation) capacity.

Lastly, if we look at investment decisions as a function of generation capacity, we observe that

storage capacity is quite similar in the strategic vs myopic use of the generator. By contrast, solar

capacity is higher in the myopic case. This is because a myopic use of a downsized backup generator

renders the firm more vulnerable to unexpected energy shortages, and thus prompts the firm to

install more solar generation in the first place (yellow line).

Practical Takeaway. In principle, a moderate downsize of backup capacity could seem like

a good first step to achieve lower emissions while maintaining sound operations, especially since

capacity tends to exhibit decreasing marginal returns. Instead, we find that a moderate downsize of

backup capacity (30-40%) has near-zero impact on emissions, and in some cases may even increase

emissions —and costs. If a meaningful decrease in emissions is to be achieved, the recommended

course of action is a strong reduction in backup capacity, accompanied by a substantial increase

in storage capacity and a modest increase in generation capacity, in order to preserve good service

levels and keep overall costs in check.

6 Discussion

Our paper provides the first tractable methodological approach in the operations literature to study

large-scale storage capacity investment that is used to shift intermittent solar electricity across time,

especially between night and day, for off-grid applications. Our results yield several practical take-

aways. We show how an investor can use information on demand, cost, and technology to decide
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on the optimal level of fossil-free generation and storage. We find that these capacity investments

are strategic complements at lower capacity levels, but interestingly, they turn into strategic sub-

stitutes when renewable generation increases. We then develop two simple models, the full- and

partial-discharge, which provide upper and lower bounds for profit and optimal storage investment

decisions, with the former yielding exact solutions when the backup cost is low enough, and the

latter yielding a pretty good approximation in all other cases. We also establish a simple condition

based on the storage-cost-to-efficiency ratio to determine which of the two storage technologies can

more easily turn a profit, and is thus likely to be adopted sooner - an approach that can be used

by firms to support strategic technology decisions.

Our models also help us derive insights on the role of storage in the coming years. As storage

technologies become gradually cheaper, we find that investments in off-grid renewable storage will

not happen gradually; rather, there will be a zero-investment period, followed by a period of rapid

adoption, followed again by a slower period. Despite the sudden increase in the short-to-medium

term, we find that the need for non-intermittent fossil energy (e.g., on islands) will likely remain

in the long-term, due to the need of complementing solar power with some amount of flexible,

non-intermittent generation. Lastly, our analytical and numerical results show how an off-grid

community interested in reducing its emissions can reduce fossil backup capacity and adjust its

renewable investment decisions to maintain high service levels and keep costs in check.

However, it must be noted that these findings are based on a stylized model, which tries to

identify the over-arching dynamics driving renewable investment choices, but cannot necessarily

replicate them in detail. Although designed to provide quick estimates on optimal capacities, the

models presented in this paper simplify the demand and generation dynamics observed in practice.

Additional layers of complexity could be added by considering stochastic demand and/or costs,

higher granularity to compute supply-demand mismatch, consumption changes among electricity

customers over time, as well as constraints on location choices or other geographic limitations.

Likewise, the engineering and design challenges for storage installations are glanced over as we

treat them as a modular investment with known capabilities. These limitations simultaneously

present ample opportunities for future research. Understanding how existing fossil generation and

social factors impact the adoption of storage capacity, where to locate said investments, and how to

size the individual modular components of the combined storage system are all relevant, challenging,

and open questions.
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Appendix A Proofs of Theorems

A.1 Proof of Theorem 1

We want to show two properties of the tracking model: First that at low levels of capacity, gener-

ation and storage are strategic complements and second that they become strategic substitutes at

high levels of generation.

We start by showing strategic complementarity at low levels of capacity. Let storage capacity be

smaller than nightly demand (0 ≤ K < DL). In this case, one can always discharge any accumulated

charge with 100% certainty in the following night. We show in Theorem 4 that for these levels of

storage the tracking and the full discharge model are equivalent and we will show subsequently (in

Equation 16), that in the full discharge model capacities are always strategic complements. We

derive Q∗bor in Appendix A.5 in Equation 41, by showing that for any generation capacity below it

Q < Q∗bor, we are in the full-discharge model. Notably, this is also true for all values of generation

capacity below daily demand Q ≤ DH + DL/e because these result in optimal storage capacity

below nightly demand K ≤ DL and we are again in the full-discharge case.

We now turn to the high-capacity case, which we define as K ≥ DL and for which we introduce

the tracking model objective function below. We will show that for sufficiently high generation,

strategic substitutability always arises for any given level of storage.

ΠTR(Q,K) =

g E
[ T∑
t=1

(
min[qt, DH ] + min[xTRt−1, (DH − qt)+] + min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+, DL]

) ]
−

T
cK
e
K − TcQQ,

where xTRt = (min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+,K]−DL)+.

(11)

For notational convenience, we omit the subscript TR in the remainder of the proof, but always

work with tracking model.

Because the objective function is intractable, we proceed to prove strategic substitutability

without directly inspecting the cross-derivative. Before we begin the proof, we need to introduce

one definition:

• Let LTS , (K −DL)+ be the long - term - storage capacity, i.e. storage capacity in excess

of nightly demand that is used to carry electricity into future periods.

Note that LTS and storage differ by the nightly amount of storage DL, so LTS can be zero, while

storage is still positive.
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We now proceed to prove strategic substitutability in five steps:

1. We define the value of LTS as the difference in profit between having a given, strictly positive

amount of LTS and having no LTS (i.e. K = DL);

2. We upper-bound the value of LTS;

3. We solve the expression for the upper bound;

4. We show that the upper bound on the value of LTS is decreasing in Q and becomes negative

when Q is large enough, which implies that for large enough Q the optimal LTS is zero;

5. We connect the optimal LTS capacity of 0 at high capacity levels to strategic substitutability;

Step 1: Defining the value of LTS

We define the value that LTS generates as the difference in profit between having any positive LTS

and having no LTS:

ΛLTS(Q,K) = ΠLTS(Q,DL + LTS)−ΠLTS(Q,DL)

=
{
g E

[ T∑
t=1

(
min[qt, DH ] + min[xt−1, (DH − qt)+]+

min
[(
xt−1 + e(qt −DH)+ − (DH − qt)+

)+
, DL + LTS,DL

] )]
− T cK

e
(DL + LTS)− TcQQ

}
−{

g E
[ T∑
t=1

(
min[qt, DH ] + min[0, (DH − qt)+]+

min
[(

0 + e(qt −DH)+ − (DH − qt)+
)+
, DL

] )]
− T cK

e
DL − TcQQ

}
,

=
{
g E

[ T∑
t=1

(
min[xt−1, (DH − qt)+] + min

[(
xt−1 + e(qt −DH)+ − (DH − qt)+

)+
, DL

]
−

min
[(
e(qt −DH)+ − (DH − qt)+

)+
, DL

] )]
− T cK

e
LTS.

}
(12)

Step 2: Upper bounding the value of LTS

Because this value of LTS is still a multi-period sum of differences and thus difficult to analyze,

we will make the following assumption that upper bounds the value of LTS and yields a neat

expression for the per-period profit obtained through LTS. We will then show that even this per-

period upper bound of LTS value approaches zero for storage capacities over nightly demand.

Assumption: We start every period with the fullest charge possible, i.e. we replace xt−1 with

K −DL = LTS.

This is an upper bound of the value of LTS, as it replaces the terms in the minimums that are

impacted by LTS capacity with the maximum value those terms can attain, thus weakly increasing

34

Electronic copy available at: https://ssrn.com/abstract=3761397



the value of LTS. Additionally, this re-formulation breaks the inter-temporal connection between

periods, allowing us to rephrase the profit as T times the expected profit from the single period.

We denote this upper bound by Λ̄LTS(Q,K) > ΛLTS(Q,K):

Λ̄LTS(Q,K)

=
{
g E

[ T∑
t=1

(
min[LTS, (DH − qt)+] + min

[(
LTS + e(qt −DH)+ − (DH − qt)+

)+
, DL

]
−

min
[(
e(qt −DH)+ − (DH − qt)+

)+
, DL

] )]
− T cK

e
LTS

}
,

= T
{
g E

[(
min[LTS, (DH − qt)+] + min

[(
LTS + e(qt −DH)+ − (DH − qt)+

)+
, DL

]
−

min
[(
e(qt −DH)+ − (DH − qt)+

)+
, DL

] )]
− cK

e
LTS

}
,

= T
{
g
[ 1

Q

(D2
H

2
− ((DH − LTS)+)2

2

)]
+ gE

[
min

[(
LTS + e(qt −DH)+ − (DH − qt)+

)+
, DL

] ]
−

g
[ 1

Q

(D2
L

2e
+ (Q−DH −DL/e)DL

)]
− cK

e
LTS

}
(13)

Step 3: Deriving the upper-bound expression

The expected value of the second minimum in Λ̄LTS(Q,K) is

min
[(
LTS + e(qt −DH)+ −(DH − qt)+

)+
, DL

]
and takes different values depending on the mag-

nitude of LTS. We further upper-bound the value of LTS, by using the highest possible value this

minimum can take, which is DL.

Λ̄LTS(Q,K)

= T
{
g
[ 1

Q

(D2
H

2
− ((DH − LTS)+)2

2

)]
+ gE

[
min

[(
LTS + e(qt −DH)+ − (DH − qt)+

)+
, DL

] ]
−

g
[ 1

Q

(D2
L

2e
+ (Q−DH −DL/e)DL

)]
− cK

e
LTS

}
,

< T
{
g
[ 1

Q

(D2
H

2
− ((DH − LTS)+)2

2

)]
+ g
[
DL

]
−

g
[ 1

Q

(D2
L

2e
+ (Q−DH −DL/e)DL

)]
− cK

e
LTS

}
,

= T
{
g
[ 1

Q

(D2
H

2
− ((DH − LTS)+)2

2

)]
+ g
[
DL

DH +DL/e

Q

]
− cK

e
LTS

}
,

(14)

Step 4: Showing that, for any positive LTS, there exists a generation capacity beyond which LTS

value becomes negative.

We can now show that for any value of LTS, there exists a generation capacity beyond which this

expression is negative - i.e. at sufficiently large generation Q, the value contribution of LTS is

negative and the optimal LTS should thus be set to 0.
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T
{
g
[ 1

Q

(D2
H

2
− ((DH − LTS)+)2

2

)]
+ g
[
DL

DH +DL/e

Q

]
− cK

e
LTS

}
,

→
D2
H

2Q
− ((DH − LTS)+)2

2Q
+DL

DH +DL/e

Q
=
cK
ge
LTS,

(15)

The LHS of the second line in Equation 15 is strictly decreasing in Q and goes to zero as

Q → +∞, while the RHS is positive. Therefore, it is always possible to find a capacity Q′ high

enough so that the LHS is lower than the RHS for any Q > Q′. This means that total value of any

LTS capacity always becomes negative for sufficiently large generation capacity, and in those cases

it would be optimal to set LTS equal to 0.

Step 5: Connecting an optimal LTS capacity of zero to strategic substitutability

As long as it is profitable to install strictly positive LTS for some value of generation capacity (that

is, as long as the problem is non-trivial and at least some multi-period storage increases profit) then

optimal storage capacity must decrease at some point as we know we have LTS = 0 at sufficiently

high generation. This implies that the two capacities are strategic substitutes when generation

capacity is large enough and concludes the proof.

For completeness, we briefly state strategic complementarity results for both simplified models

by studying their respective cross-derivatives:

Full-Discharge Cross-Derivative

We study the cross-derivative of the full discharge model:

∂2ΠF (Q,K)

∂K∂Q
=
g

Q2
[
K

e
+DH ] > 0. (16)

The cross-derivative in the full-discharge model is clearly always positive: In this model generation

and storage capacity are strategic complements.

Partial-Discharge Cross-Derivative

We study the cross-derivative of the partial-discharge discharge model:

∂2ΠP (Q,K)

∂K∂Q
=

4DHDLg

Q3e
+

2D2
Hg

Q3
+

4DLgK

Q3e
− 2gK2

Q3e
− 2DLg

Q2e
− DHg

Q2
+
gK

Q2e
. (17)

We show ∂2ΠP (Q,K)
∂Q∂K < 0 if and only if the following hold,

4DHDL + 2D2
He+

4DLK

e
− 2K2

e
< Q(2DL +DHe−K),

Q > 2(DH +
K

e
), or

K > 2DL +DHe.

(18)
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The cross-derivative in the partial-discharge model is positive if and only if both capacities are

lower than some threshold values identified above. In this model generation and storage capacity

are strategic complements unless one of them is high enough, in which case they are strategic

substitutes.

A.2 Proof of Theorem 2

We equate the backup cost parameter g to g0 from Theorem 4 (at g0, the full-discharge and tracking

model are identical). From this equation we can then derive the storage-cost-to-efficiency ratio cK
e :

g0 = cQ +
cK
e

+

√
c2
Q +

2cQcK
e

,

(g − cQ −
cK
e

)2 = c2
Q +

2cQcK
e

,

cK
e

= g −
√

2cQg.

(19)

Each storage technology is characterized by the two parameters cost cK and efficiency e. Together,

they affect g0 only through their ratio cK/e. Additionally, g0 is strictly increasing in this ratio cK/e,

so a technology with a higher cost-to-efficiency ratio cK/e results in a higher threshold back-up g0

(for a given generation cost cQ). Conversely, a technology with a lower cK/e ratio results in a lower

g0. Lastly, note that a lower g0 means that the range of back-up costs for which the technology

is suitable g ∈ [g0,∞] is larger, when g0 is lower. In other words, a storage technology with lower

cost-to-efficiency ratio has more markets/scenarios in which it can be invested in profitably.

A.3 Proof of Theorem 3

The simplified full-discharge, monopoly objective function, per period, is:

ΠF (Q,K) =
g

Q

[
−
D2
H

2
− K2

2e
−KDH

]
+ g(DH +K)− cK/eK − cQQ. (20)

From this expression, we derive the first and second partial derivatives as follows:

∂ΠF (Q,K)

∂Q
=
g

Q2

[
D2
H

2
+
K2

2e
+KDH

]
− cQ,

∂2ΠF (Q,K)

∂2Q
=− g

Q3

[
D2
H +

K2

e
+ 2KDH

]
,

∂2ΠF (Q,K)

∂Q∂K
=
g

Q2

[K
e

+DH

]
,

∂ΠF (Q,K)

∂K
=
g

Q

[
−DH −

K

e

]
+ g − cK

e
,

∂2ΠF (Q,K)

∂2K
=− g

Qe
.

(21)
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From here, one can show that the Hessian is negative semi-definite:

H(ΠF (Q,K)) =

[
∂2ΠF (Q,K)

∂Q2
∂2ΠF (Q,K)
∂Q∂K

∂2ΠF (Q,K)
∂K∂Q

∂2ΠF (Q,K)
∂K2

]
,

∂2ΠF (Q,K)

∂2Q
<0,∣∣∣H(ΠF (Q,K))
∣∣∣ =

(
− g

Q3
[D2

H +
K2

e
+ 2KDH ]

)(
− g

Qe

)
−
(
g

Q2
[
K

e
+DH ]

)2

≥ 0,

g2

eQ4
D2
H(1− e) ≥ 0.

(22)

Hence, the objective function is globally concave over its domain, and we find the unique optimum

by setting the first partial derivatives equal to 0.

Q∗F =

√
g

cQ

[
D2
H

2
+

(K∗F )2

2e
+K∗FDH

]
,

K∗F = max

[
−DHe+Q∗F (e− cK

g
), 0

]
.

(23)

We can also express these in closed form, which results in slightly less readable expressions that

hold as long as g ≤
√

(2cKcQ + c2
Q)/e2 + (cK + cQ)/e. For values outside that range, the radicand

may become negative:

Q∗F =DHg

√
(−1 + e)e

c2
K − 2(cK + cQ)eg + e2g2

,

K∗F = max

[
−DHe+DH (ge− cK)

√
(−1 + e)e

c2
K − 2(cK + cQ)eg + e2g2

, 0

]
.

(24)

A.4 Proof of Theorem 4

A.4.1 Part 1 - g0

Using the full-discharge monopoly objective function’s partial derivative, w.r.t. K and the optimal

solution for generation without storage (Q∗|K=0), we find the threshold value for the backup cost g,

beyond which, the partial derivative becomes positive and the profit-maximizing monopolist would
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invest in a positive amount of storage. It can be easily verified that ∂ΠF (Q,K)
∂g > 0:

∂ΠF (Q,K)

∂K
=

g

Q

[
−DH −

K

e

]
+ g − cK

e
,

Q∗F (K = 0) =

√
g

cQ

D2
H

2
,

∂ΠF (Q∗(K = 0),K = 0)

∂K
=

g√
g
cQ

D2
H
2

[
−DH

]
+ g − cK

e
= 0,

−
√

2cQg + g − cK
e

= 0,

g = cQ +
cK
e

+

√
c2
Q +

2cQcK
e

, g0.

(25)

The profit of the tracking model and the full-discharge for a given Q and K are identical if

g < g0 (which implies K∗F = 0). We show this for the more general case of K ≤ DL in Part 3 of

this Theorem.

A.4.2 Part 2 - gF

We know

Q∗F =

√
g

cQ

[
D2
H

2
+

(K∗F )2

2e
+K∗FDH

]
,

K∗F = max

[
−DHe+Q∗F (e− cK

g
), 0

]
.

(26)

Note that both optimal capacities are weakly increasing in g, we thus aim to find the value for g

at which K∗F = DL. Substituting Q∗F into K∗F :

K∗F =−DHe+

√
g

cQ

[
D2
H

2
+

(K∗F )2

2e
+K∗FDH

]
(e− cK

g
),

(K∗F +DHe)
2

(e− cK
g )2

=
g

cQ

[
D2
H

2
+

(K∗F )2

2e
+K∗FDH

]
,

K∗F = DHe

(
−1 +

(
g − cK

e

)√ (−1 + e)e

c2
K − 2(cK + cQ)eg + e2g2

)
.

(27)
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Hence, we can check when K∗F = DL, which is when:

DL = DHe

(
−1 +

(
g − cK

e

)√ (−1 + e)e

c2
K − 2(cK + cQ)eg + e2g2

)
,

g =
(em+ 1)

(√
cQ (2cK(em(m+ 2) + 1) + cQ(em+ 1)2) + cQem+ cQ

)
+ cKem(m+ 2) + cK

e(em(m+ 2) + 1)
, gF ,

where m =
DH

DL
.

(28)

The profit of the tracking model and the full-discharge for a given Q and K are identical if

g ≤ gF (which implies K∗F ≤ DL). We show this in Part 3 of this Theorem.

A.4.3 Part 3 - Full-Discharge and Tracking Model Equivalence

The tracking model objective function is:

ΠTR(Q,K) =

g
T∑
t=1

(
min[qt, DH ] + min

[
xTRt−1, (DH − qt)+

]
+

min

[(
xTRt−1 + e(qt −DH)+ − (DH − qt)+

)+

,K,DL

])
− T cK

e
K − TcQQ

where xTRt =
(

min
[(
xTRt−1 + e(qt −DH)+ − (DH − qt)+

)+
,K
]
−DL

)+
.

(29)

When K ≤ DL, we have that xt = 0 and revenues in any period are stochastically identical and

independent from past events by construction, so the problem reduces to study the expected revenue

over one period. Since any storage up to DL will be discharged for sure to meet nightly demand,

the tracking model’s objective function is the same as the full-discharge model:

ΠTR (Q,K ≤ DL) = g E[min[qt, DH ] + min[e(qt −DH)+,K]]− cK
e
K − cQQ,

=ΠF (Q,K ≤ DL) =
g

Q

[∫ DH

0
q dq +

∫ Q

DH

DH dq +

∫ DH+K/e

DH

(q −DH) e dq +

∫ Q

DH+K/e
K dq

]
− cK

e
K − cQQ.

(30)

When K > DL (i.e. g > gF ), the profit is trivially larger in the full-discharge case, as we assume

any excess electricity up to storage capacity K, to be discharged. This can be seen if we consider

plugging in the tracking model’s optimal solution (Q∗TR,K
∗
TR > DL) in the full-discharge model.

Because the full-discharge model over-values storage, compared to the tracking model, increasing

storage capacity will marginally increase profit ΠF (Q∗TR,K
∗
TR+ε) > ΠF (Q∗TR,K

∗
TR). Furthermore,
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renewable generation is also marginally over-valued in the full-discharge model, compared to the

tracking model ΠF (Q∗TR + ε,K∗TR) > ΠF (Q∗TR,K
∗
TR). This can be seen by considering the three

cases of generation realization (qt) in a day. Case1: qt ≤ DH → Both models are identical; Case

2: 0 < e(qt − DH) ≤ K → In the full-discharge model all generated energy will be sold, in the

tracking model there is a chance that not everything will be sold; Case 3: e(qt − DH) > K →
The full-discharge model charges K units of generation and sells all, while the tracking model may

start the period with non-empty storage, thereby may not be able to charge as much energy and

may not be able to sell the entire charge. In sum, renewable generation is weakly more profitable

in the full-discharge model for a given K. Because the objective function is also globally concave

and both capacities are strategic complements over the entire parameter space, the full-discharge

model’s optimal solution will have higher capacities and higher profit than the tracking model’s

optimal solution.

A.5 Proof of Theorem 5

We start analogously to the full-discharge model by introducing the simplified objective function

and its first and second partial derivatives.

ΠP (Q,K) =DHg +DLg +
D2
HDLg

Q2
+

2D3
Lg

3e2Q2
+

2DHD
2
Lg

eQ2
− 2DHDLgK

eQ2
−
D2
HgK

Q2
− DLgK

2

e2Q2
+

gK3

3e2Q2
−
D2
Hg

2Q
− 2DHDLg

Q
−

2D2
Lg

eQ
+

2DLgK

Qe
+
DHgK

Q
− gK2

2Qe
− cQQ−

cK
e
K,

∂ΠP (Q,K)

∂Q
=−

2D2
HDLg

Q3
−

4D3
Lg

3e2Q3
−

4DHD
2
Lg

eQ3
+

4DHDLgK

Q3e
+

2D2
HgK

Q3
+

2DLgK
2

Q3e2
−

2gK3

3Q3e2
+
D2
Hg

2Q2
+

2DHDLg

Q2
+

2D2
Lg

eQ2
− 2DLgK

Q2e
− DHgK

Q2
+
gK2

2Q2e
− cQ,

∂2ΠP (Q,K)

∂2Q
=

6D2
HDLg

Q4
+

4D3
Lg

Q4e2
+

12DHD
2
Lg

Q4e
− 12DHDLgK

Q4e
−

6D2
HgK

Q4
− 6DLgK

2

Q4e2
+

2gK3

Q4e2
−

D2
Hg

Q3
− 4DHDLg

Q3
−

4D2
Lg

eQ3
+

4DLgK

Q3e
+

2DHgK

Q3
− gK2

Q3e
,

∂2ΠP (Q,K)

∂Q∂K
=

4DHDLg

Q3e
+

2D2
Hg

Q3
+

4DLgK

Q3e2
− 2gK2

Q3e2
− 2DLg

Q2e
− DHg

Q2
+
egK

Q2
,

∂ΠP (Q,K)

∂K
=− 2DHDLg

Q2e
−
D2
Hg

Q2
− 2DLgK

Q2e2
+
gK2

Q2e2
+

2DLg

Qe
+
DHg

Q
− gK

Qe
− cK

e
,

∂2ΠP (Q,K)

∂2K
=− 2DLg

Q2e2
+

2gK

Q2e2
− eg

Q
.

(31)
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Setting the first partial derivatives equal to 0 gives us the following candidate solution:

Q∗int(K) =
3

√
−d+

√
d2 + c3 +

3

√
−d−

√
d2 + c3, where

c =
g

3cQ

(
−
D2
H

2
− 2DHDL −

2D2
L

e
+ 2DLK +DHK −

K2

2e

)
,

d =
g

cQ

(
D2
HDL +

2D3
L

3e2
+ 2DHD

2
L −

2DHDLK

e
−D2

HK −
DLK

2

e2
+
K3

3e2

)
,

(32)

and

K∗int(Q) =DL +
1

2

(
Qe−

√
4(DL +DHe)2 − 4e(DL +DHe)Q+

e(4cK + eg)Q2

g

)
. (33)

It can be shown that only one interior solution exists through analyzing the Hessian numerically

(see Section B.3.3), but here we use geometric properties of the objective function to ensure that we

find the global optimum (i.e. profit-maximizing solution). This helps develop the intuition for the

problem and lets us highlight several key points around the interplay of storage and solar capacity.

Several of the results obtained in this proof will be used in other parts of the paper. We proceed by

first determining when the profit-maximizing solution is a border solution and where it is. When

the solution cannot be a border solution, we then know that it must be (Q∗int,K
∗
int), this being the

only interior critical point of the objective function.

In order to study the border solutions, it is convenient to show that both second partial deriva-

tives are negative across the relevant parameter space:

We start by showing this for the second partial derivative w.r.t. Q. We know K ≥ DL and

K ≤ Q−DH and Q ≥ DH + DL
e .

∂2ΠP (Q,K)

∂2Q
< 0,

6D2
HDLg

Q4
+

4D3
Lg

e2Q4
+

12DHD
2
Lg

eQ4
− 12DHDLgK

Q4e
−

6D2
HgK

Q4
− 6DLgK

2

Q4e2
+

2gK3

Q4e2
−

D2
Hg

Q3
− 4DHDLg

Q3
−

4D2
Lg

eQ3
+

4DLgK

Q3e
+

2DHgK

Q3
− gK2

Q3e
< 0,

6D2
HDL +

4D3
L

e2
+

12DHD
2
L

e
− 12DHDLK

e
− 6D2

HK −
6DLK

2

e2
+

2K3

e2
+

Q(−D2
H − 4DHDL −

4D2
L

e
+

4DLK

e
+ 2DHK −

K2

e
) < 0,

(34)

We will now show that the expressions in both rows are negative. We start by showing that the

expression multiplied by Q in the second row is negative.
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−D2
H − 4DHDL −

4D2
L

e
+

4DLK

e
+ 2DHK −

K2

e
< 0,

−D2
He− 4DHDLe− 4D2

L + 4DLK + 2DHKe−K2 < 0,

−D2
He− 4DHDLe− 4D2

L + 4DLK + 2DHKe−K2 = 0,

K = 2DL +DHe The derivative is positive only outside the parameter space we consider.

(35)

This cannot be optimal, as any excess charge in the model is lost after the second period and could

never be used.

Having established that this term is negative, we focus on the sum of the terms in the first row,

for which we show that there is no value K ∈
[
DL, 2DL + eDH

]
(the parameter space we consider

for the partial-discharge model) for which this expression is positive, while having K ≤ Q −DH ,

which trivially holds as a higher K would never be fully charged.

6D2
HDL +

4D3
L

e2
+

12DHD
2
L

e
− 12DHDLK

e
− 6D2

HK −
6DLK

2

e2
+

2K3

e2
= 0,

which has 3 roots:

K∗1 = DL −
√

3
√
D2
L + 2DHDLe+D2

He
2, K∗2 = DL,

K∗3 = DL +
√

3
√
D2
L + 2DHDLe+D2

He
2 = DL +

√
3(DL +DHe).

(36)

From the sign of the K3 term, we know that the expression is non-negative between the two

roots K∗2 and K∗3 and this range includes the entire parameter space we consider.

We now show that the second partial derivative w.r.t. K is also negative.

∂2ΠP (Q,K)

∂2K
< 0,

− 2DLg

Q2e2
+

2gK

Q2e2
− g

Qe
< 0,

∂2ΠP (Q,K)

∂2K
< 0 if K <

Qe

2
+DL and K∗ < that value.

(37)

Having shown that both second partial derivatives are negative across the parameter space, we

now turn to find possible candidates for a border solution. In particular, we now argue that the

profit-maximizing solution must belong to the set of points (Q,K) ∈
[
DL
e + DH ,M

]
×
[
DL,M

]
,

where M is an arbitrarily large number. Here is why: We only focus on cases with K ≥ DL as this

is the parameter space where the partial model is employed (else the full-discharge model yields

exact investment decisions). In that space, profit is strictly increasing in Q for Q < DL
e +DH , hence

we can ignore any lower Q. Note also that limQ→+∞
∂ΠP (Q,K)

∂Q < 0 and limK→+∞
∂ΠP (Q,K)

∂K < 0,
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hence the profit cannot be maximized when Q or K are too high. Formally:

WTS
∂ΠP (Q,K)

∂K
< 0, ifK →∞ :

∂ΠP (Q,K →∞)

∂K
= −2DHDLg

Q2e
−
D2
Hg

Q2
− 2DLgK

Q2e2
+
gK2

Q2e2
+

2DLg

Qe
+
DHg

Q
− gK

Qe
− cK

e

As Q > DH/e+K/e:

+ g − g − cK = −cK .

(38)

WTS
∂ΠP (Q,K)

∂Q
< 0, ifQ→∞ :

∂ΠP (Q→∞,K)

∂Q
= −cQ < 0.

(39)

It follows that if a border solution for the partial-discharge model exists, it must have either

Q = DL
e +DH and K > DL, or K = DL and Q > DL

e +DH . The former can be ruled out because

when Q = DL
e + DH there is never excess generation beyond nightly demand DL to be stored, so

profit decreases in K beyond DL. This means that if a border solution exists, it must be one with

K = DL, and such that ΠP
∂Q = 0. Let K = DL.

ΠP (Q,K = DL) = = DHg +DLg −
D2
Hg

2Q
− DHDLg

Q
−
D2
Lg

2eQ
− cQQ−DL

cK
e

(40)

∂ΠP (Q,K = DL)

∂Q
=
D2
Hg

2Q2
+
DHDLg

Q
+
D2
Lg

2eQ2
− cQ,

Q∗bor =

√√√√g(
D2

L
e + 2DHDL +D2

H)

2cQ
.

(41)

Hence, in the case we have the border solution K = DL, we know the optimal generation capacity

is Q∗bor.

We now show at which value g the interior solution equals the border solution. We then show

that the second derivative (differentiating first w.r.t. to K and then w.r.t. g) is strictly increasing

in g, which tells us that the parameter g can be used to judge which solution is optimal, the border

or the interior.
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We now study the first partial derivative w.r.t. K at the border K = DL.

WTS
∂ΠP (Q,K = DL)

∂K
> 0,

− 2DHDLg

Q2e
−
D2
Hg

Q2
−
D2
Lg

Q2e2
+
DLg

Qe
+
DHg

Q
− cK

e
> 0,

Q2 −Q(
DLg

cK
+
DHeg

cK
) +

2DHDLg

cK
+
D2
Heg

cK
+
D2
Lg

ecK
< 0,

g

2cK
(DL +DHe)−

√
(DL +DHe)2g(−4cK + ge)

4c2
Ke

< Q <

g

2cK
(DL +DHe) +

√
(DL +DHe)2g(−4cK + ge)

4c2
Ke

,

(DL +DHe)

2cK
(g −

√
g(ge− 4cK)

e
) < Q <

(DL +DHe)

2cK
(g +

√
g(ge− 4cK)

e
).

(42)

If the expression under the radical is negative, ∂ΠP (Q,K)
∂K < 0 whenever K = DL and it follows

from concavity w.r.t. K that (Q∗bor,K
∗
bor) maximizes profit. This happens when g < 4cK

e , g.

ge− 4cK < 0,

g < 4
cK
e

, g.
(43)

So for all values of g below the threshold g, we are certain to have the border solution (K = DL).

If instead the expression under the radical is positive, and setting Q = Q∗bor, we have:

(DL +DHe)

2cK
(g −

√
g(ge− 4cK)

e
) <

√√√√g
(
D2

L
e + 2DHDL +D2

H

)
2cQ

<
(DL +DHe)

2cK
(g +

√
g(ge− 4cK)

e
),

g >

(
2cQ(DL +DHe)

2 + cK
(
D2
L +DH(DH + 2DL)e

))2
2cQe(DL +DHe)2

(
D2
L +DH(DH + 2DL)e

) ,

=

(
cK + 2cKem(1 +m) + 2cQ(1 + em)2

)2
2cQe(1 + em)2(1 + 2em(1 +m))

, gP ,where m =
DH

DL
.

(44)

When g is larger than gP , we have
∂ΠP (Q∗bor,DL)

∂K > 0, hence profit increases at the border solution

when storage capacity is increased. Taking the derivative first w.r.t. K and then w.r.t. g confirms
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that the derivative w.r.t. K increases in g and thus gP is indeed a threshold.

∂2ΠP (Q,K)

∂K∂g
= −(2DL + (DHe−K))(DHe+K − eQ)

Q2e2
> 0.

The first term is positive and the second negative in the parameter space we consider:

(2DL + (eDH −K)) > 0 → K < 2DL +DHe.

Storage capacity larger than this would never be discharged in the partial model

(DH +K −Q) < 0 → Q > DH +K/e,

Any lower generation capacity would never allow to charge the storage capacity fully.

Lastly, it can easily be verified that ∂ΠP
∂K (K∗bor, Q

∗
bor, gP ) = 0. In conjunction with the fact that

the derivative w.r.t. K is increasing in g, this completes the proof. We thus have a unique threshold

to identify which of the two candidate solutions (border and interior) of the partial-discharge model

is profit optimal.

Thus, if g ≥ gP , we have the interior solution and if g ∈ (gF , gP ), we have the border solution.

A.6 Proof of Theorem 6

We begin the proof by relating the profits of the two models.

Π∗P = ΠP (Q∗P ,K
∗
P ) ≤ ΠTR(Q∗P ,K

∗
P ),

as the partial-discharge model underestimates profit relative to the tracking model

(because stored energy expires as per Assumption 2 and is employed sub-optimally as per

Assumption 3),

ΠTR(Q∗P ,K
∗
P ) ≤ ΠTR(Q∗TR,K

∗
TR) = Π∗TR,

as otherwise (Q∗TR,K
∗
TR) would not be optimal. Hence, the partial-discharge model

underestimates profit relative to the tracking model.

(45)

We continue the proof by showing that the partial-discharge model always under-predicts opti-

mal storage capacity compared to the tracking model, for a given level of generation capacity. We

achieve this by showing that a small increase in storage capacity is marginally less profitable in the

partial-discharge model in comparison to the tracking model. Formally, we aim to show that for

any given Q, the following holds:

∂

∂K
ΠTR(Q,K) ≥ ∂

∂K
ΠP (Q,K) ∀K. (46)

We proceed in 3 steps. In step 1, we re-introduce the models and explain the intuition behind the

proof. In step 2, we calculate the value of a marginal unit of storage capacity for both models per
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period, and in step 3, we compare the marginal value unit of storage capacity of both models and

generalize the finding to all periods.

Step 1. We first (re)-introduce the objective functions (for a detailed derivation of getting from

the tracking model to the partial-discharge model, please refer to Appendix B.1):

ΠTR(Q,K) =

g E
[ T∑
t=1

(
min[qt, DH ] + min[ xTRt−1, (DH − qt)+] + min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+, DL]

) ]
−

T
cK
e
K − TcQQ,

where xTRt = (min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+,K]−DL)+.

ΠP (Q,K) = g E
[ T∑
t=1

(
min[qt, DH ] + min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, xPt−1]

)]
−

T
cK
e
K − TcQQ,

where xPt = (min[e(qt −DH)+,K]−DL)+.

(47)

Note that the only source of uncertainty in the model comes from generation. Let ~q be a vector

of generation realizations over the T periods. We can then rewrite the profit of model m ∈ {P, TR},
Πm(Q,K), as

Πm(Q,K) =
T∑
t=1

E ~Q [πmt (~q,K)] , (48)

where πmt (~q,K) is the profit earned in period t under model m given a vector of generation

realizations ~q. Using this notation, note that:

∂

∂K
ΠTR(Q,K) ≥ ∂

∂K
ΠP (Q,K) , iff

∂

∂K
E ~Q

[
πTRt (~q,K)

]
≥ ∂

∂K
E ~Q

[
πPt (~q,K)

]
, ∀t , iff

∂

∂K

∫
~Q
πTRt (~q,K)f(~q) d~q ≥ ∂

∂K

∫
~Q
πPt (~q,K)f(~q) d~q , ∀t,

(49)

where ~Q = [0, Q]T here denotes the set of all possible vectors of generation realizations (~q ∈ ~Q)

and f(·) is the probability density function of ~q over ~Q.
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∂

∂K

∫
~Q
πTRt (~q,K)f(~q) d~q ≥ ∂

∂K

∫
~Q
πPt (~q,K)f(~q) d~q , ∀t, iff∫

~Q

∂

∂K
πTRt (~q,K)f(~q) d~q ≥

∫
~Q

∂

∂K
πPt (~q,K)f(~q) d~q , ∀t.

(50)

We use the Leibniz integral rule and remark that the limits of integration (a function of solar

capacity Q) are invariant to the derivative w.r.t. storage (K). Finally, we have

∫
~Q

∂

∂K
πTRt (~q,K)f(~q) d~q ≥

∫
~Q

∂

∂K
πPt (~q,K)f(~q) d~q,∀t , if

∂

∂K
πTRt (~q,K) ≥ ∂

∂K
πPt (~q,K) ∀t,∀~q.

(51)

Given that the profit in period t, πmt (~q,K), depends on ~q only through qt and xmt−1, we can thus

rewrite the above as:

∂

∂K
πTRt (~q,K) ≥ ∂

∂K
πPt (~q,K) ∀t,∀~q, iff

∂

∂K
πTRt (qt,K, x

TR
t−1) ≥ ∂

∂K
πPt (qt,K, x

P
t−1), ∀t,∀qt,∀xTRt−1,∀xPt−1, iff

lim
ε→0

[
πTRt (qt,K + ε, xTRt−1)− πTRt (qt,K, x

TR
t−1)

]
≥

lim
ε→0

[
πPt (qt,K + ε, xPt−1)− πPt (qt,K, x

P
t−1)

]
, ∀t,∀qt,∀xTRt−1,∀xPt−1.

(52)

Note that it is trivial to show that xTRt−1 ≥ xPt−1,∀~q (see Lemma 2 in Appendix B.1)

Step 2. We thus aim to show that (47) holds. In the interest of readability, we omit the expec-

tation operators in the remaining section. We start by looking at the tracking model.

πTRt (qt,K, x
TR
t−1) =

min[qt, DH ] + min[xTRt−1, (DH − qt)+] + min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+, DL],

= min[qt, DH ] + min[(min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K]−DL)+, (DH − qt)+]+

min[((min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K]−DL)+ + e(qt −DH)+ − (DH − qt)+)+, DL].

πTRt (qt,K + ε, xTRt−1) =

min[qt, DH ] + min[(min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K + ε]−DL)+, (DH − qt)+]+

min[((min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K + ε]−DL)+ + e(qt −DH)+ − (DH − qt)+)+, DL]

(53)
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We will solve for the difference directly, by focusing on cases where the added ε storage capacity is

used (i.e., part of the smallest element in the minimum). To this end, we analyze the case (qt ≥ DH)

and (qt < DH) separately. If qt < DH :

πTRt (qt,K + ε, xTRt−1|qt < DH)− πTRt (qt,K, x
TR
t−1|qt < DH) =

min[(min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K + ε]−DL)+, (DH − qt)+]−

min[(min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K]−DL)+, (DH − qt)+]+

min[((min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K + ε]−DL)+ − (DH − qt)+)+, DL]−

min[((min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K]−DL)+ − (DH − qt)+)+, DL]

= ε P [eqt−1 > K + eDH − xTRt−2]P [qt < DH +DL −K|qt < DH ]+

ε P [eqt−1 > K + eDH − xTRt−2]P [qt < DH + 2DL −K|qt < DH ],

= ε P [eqt−1 > K + eDH − xTRt−2](P [qt < DH +DL −K|qt < DH ] + P [qt < DH + 2DL −K|qt < DH ]).

(54)

So we are left with the case qt ≥ DH , for which the first two minima drop out when taking the

difference, as the first is not dependent on K and the second evaluates to 0.

πTRt (qt,K + ε, xt−1|qt ≥ DH)− πTRt (qt,K, x
TR
t−1|qt ≥ DH) =

min[((min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K + ε]−DL)+ + e(qt −DH)+)+, DL]−

min[((min[(xTRt−2 − (DH − qt−1)+)+ + e(qt−1 −DH)+,K]−DL)+ + e(qt −DH)+)+, DL]

= ε P [eqt−1 > K + eDH − xTRt−2]P [qt < DH + 2DL −K|qt ≥ DH ].

(55)

We proceed analogously for the partial-discharge model, by first presenting the two functions and

then taking the difference.

πPt (qt,K, xt−1) =

min[qt, DH ] + min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, (min[e(qt−1 −DH)+,K]−DL)+].

πPt (qt,K + ε, xPt−1) =

min[qt, DH ] + min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, (min[e(qt−1 −DH)+,K + ε]−DL)+].

(56)

When taking the difference, note that the first two minima are not dependent on the storage size

K, and thus drop out.

πPt (qt,K + ε, xPt−1)− πPt (qt,K, x
P
t−1) =

min[(eDH +DL − eqt)+, (min[e(qt−1 −DH)+,K + ε]−DL)+]−

min[(eDH +DL − eqt)+, (min[e(qt−1 −DH)+,K]−DL)+].

(57)

We also split this into two cases, to show that the case qt < DH leads to the same result for

both models and can be excluded from further analysis.
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πPt (qt,K + ε, xPt−1|qt < DH)− πPt (qt,K, x
P
t−1|qt < DH) =

ε P [eqt−1 > K + eDH ]P [qt < DH + 2DL −K|qt < DH ]
(58)

And now the case of qt > DH :

πPt (qt,K + ε, xPt−1|qt ≥ DH)− πPt (qt,K, x
P
t−1|qt ≥ DH) =

ε P [eqt−1 > K + eDH ]P [qt < DH +DL −K|qt ≥ DH ]
(59)

Step 3. Combining these pieces, we are left with the expression we set out to prove:(
πTRt (qt,K + ε, xTRt−1)− πTRt (qt,K, x

TR
t−1)

)
−
(
πPt (qt,K + ε, xPt−1)− πPt (qt,K, x

P
t−1)

)
=

P [qt < DH ] ε
[(
P [eqt−1 > K + eDH − xTRt−2](P [qt < DH +DL −K|qt < DH ]+

P [qt < DH + 2DL −K|qt < DH ])
)
−(

P [eqt−1 > K +DHe]P [qt < DH + 2DL −K|qt < DH ]
)]

+

P [qt ≥ DH ] ε
[(
P [eqt−1 > K + eDH − xTRt−2]P [qt < DH + 2DL −K|qt ≥ DH ]

)
−(

P [eqt−1 > K + eDH ]P [qt < DH + 2DL −K|qt ≥ DH ]
)]

>

P [qt < DH ] ε
[(
P [eqt−1 > K + eDH − xTRt−2]P [qt < DH + 2DL −K|qt < DH ]

)
−(

P [eqt−1 > K + eDH ]P [qt < DH + 2DL −K|qt < DH ]
)]

+

P [qt ≥ DH ] ε
[(
P [eqt−1 > K + eDH − xTRt−2]P [qt < DH + 2DL −K|qt ≥ DH ]

)
−(

P [eqt−1 > K + eDH ]P [qt < DH + 2DL −K|qt ≥ DH ]
)]

> 0

(60)

The first inequality in Equation (60) stems from the fact that we drop the probability term

P [eqt−1 > K + eDH − xTRt−2]P [qt < DH +DL −K|qt < DH ] for the tracking model.

The resulting expression is clearly larger than 0, as xTRt−2 ≥ 0. Thus, the partial-discharge model

underestimates the marginal value of storage capacity compared to the tracking model. Note that

xt−2 does not appear in the partial-discharge model expressions as it is assumed to be lost.

Note that this proof also works for the partial-discharge objective without the simplification

we introduce in Equation (89) in Appendix B.1. Without the simplification, all probabilities w.r.t.

qt are the same in the tracking and partial-discharge models, but the probabilities w.r.t. qt−1 are

still contingent on xTRt−2 in the tracking model, and independent of this term in the unsimplified

partial-discharge model. As explained above, given that xTRt−2 ≥ 0, this proves the lower marginal

benefit of storage in the ”unsimplified” partial-discharge model, compared to the tracking model.

Furthermore, note that the optimal solution of the partial-discharge model, K∗P , is constant

(K∗P = DL) for gF ≤ g ≤ gP , while the optimal tracking model storage capacity, K∗TR, is weakly
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increasing for g in this range and equal to DL at g = gF (as shown in Theorem 2). Thus, K∗TR ≥ K∗P
for gF ≤ g ≤ gP .

A.7 Proof of Theorem 7

We want to derive the optimal policy for the capacitated generator model. In Step 1 of this proof

we will thus first show that the value function is convex in the decision we make. We’ll show that

our decision can be represented by the end-of-storage charge xt. In Step 2 of this proof we will

show that if the value function is convex in this decision, one can find a cost-minimizing storage

charge x∗t with which to end the period, after having started the period with xt−1 and observed

generation realization qt. In Step 3 of this proof we will then lower-bound this optimal storage

charge x∗t in closed form. In Step 4 of this proof we will provide comparative statics of this optimal

storage charge x∗t .

A.7.1 Step 1: Proofing Convexity of the Value Function

In any period t, we observe initial charge xt−1, observe generation realization qt, and then need to

decide whether and by how much to run the generator in the day and at night (to meet demand

and potentially charge the storage). We now show that, rather than considering daily and nightly

backup generation GHt, GLt as separate actions every period, it is possible to focus on the period-

end-charge xt as the sole decision to be made, without loss of generality.

We proceed in the following four parts

Part 1: We show that the value function can be written using the end-of-period storage

charge xt as the sole decision, to capture backup generation decisions during day and at

night, without loss of generality.

Part 2: We show that the current period’s cost function is convex in xt−1 and xt.

Part 3: We show that the value function is convex in the initial storage charge, xt−1.

Part 4: We show that the un-minimized value function is convex in the end-of-period storage

charge decision, xt.

Part 1: Mapping end of period charge xt into Generator Decisions.

Let x+
t , min[(xt−1 + e(qt +G−DH)+ − (DH − qt −G)+)+,K] be the largest charge one can end

the day-sub-period with, for a given xt−1 and a given qt. Let ḠHt , min((K−xt−1−e(qt−DH)+ +

(DH − qt)+)+/e,G) be the minimum between the largest amount that the day-generator can be
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used before hitting the storage capacity limit at the end of the day sub-period and the generator

capacity. Note that this is the lowest amount of energy the day-generator must produce to reach

x+
t at the end of the day-subperiod. Let G̃Ht , min[ḠHt, (DH − qt)+] + e(ḠHt − (DH − qt)+)+ be

demand that the day-generator fulfils when generating ḠHt, plus any storage charge it adds.

We construct a cost-minimizing mapping between the generator decisions and an end-of-period

charge xt, given any combination of starting charge xt−1 and solar generation qt that are feasible8.

In general, there may be many combinations of generator decisions that reach the same charge xt

with various costs, and even many combinations that reach the same charge with minimal costs.

Among this latter group, we choose a mapping that aims to reduce day-time generation before it

reduces night-time generation, for expositional and analytical convenience. We first describe the

logic of our mapping and then show the resulting mapping.

The Focal Quantity Our mapping focuses on the most amount of energy one can have in

storage at the end of the day-subperiod (this is x+
t , which can be obtained by running the

day-time generator at least ḠHt) minus the desired charge at the end the period xt. We then

compare this possible excess charge against the nightly demand that cannot be met by the

generator DL −G (since G < DL). Together, this focal quantity is χ , x+
t − xt − (DL −G).

Note that this is equivalent to the definition presented in Section 3.3. In this proof, we will

mostly write χ explicitly as the sum of its parts, as we are interested in the dynamics around

the individual parts xt and xt−1(contained in x+
t ).

Priority 1: Avoiding Unmet Demand If x+
t −xt−(DL−G) < 0, we run the generator at night at

full capacity (serving one unit of otherwise unmet demand this way costs g and avoids unmet

demand costs αg) and the generator during the day as much as needed to avoid unmet demand,

without hitting the storage limit (serving one unit of otherwise unmet demand this way avoids

costs αg, and generates backup costs g if serving daily demand, which is preferable, and

backup costs g/e if serving nightly demand, since energy needs to be charged and discharged).

Doing so minimizes the amount of unmet demand, and further minimizes the generation costs

we incur to do so. Formally, if x+
t − xt − (DL −G) < 0 =⇒ ĜHt = ḠHt, ĜLt = G.

Employing Generators in the most cost-efficient way If x+
t −xt− (DL−G) ≥ 0, one can meet

all demand in a period (with enough backup generation), and it is always optimal to do so.

If x+
t − xt − (DL − G) > 0, one no longer needs all generation to fill up storage capacity to

achieve the end-of-period charge xt, and so the focus shifts from minimizing unmet demand

(previous case) to reaching xt at the lowest possible backup generation cost.

To this end, it is important to observe that when one unit of energy from the generator is

used to charge storage, a unit of energy yields e units of storage: In other words, increasing

storage by one unit costs g/e.

8I.e., there exists at least one pair of generator decisions with which one reaches xt
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By contrast, when one unit of energy from the generator is used to meet demand directly (and

thus prevent storage discharge), a unit of generator energy effectively yields 1 unit of storage:

In other words, increasing storage by one unit costs g. The latter use is more efficient.

Finally, when one unit of energy from the generator is used to charge storage during the day

and meet demand at night, a unit of energy achieves the same as e units of storage: here

again, increasing storage by one unit costs g/e.

With this in mind, let’s see how the optimal usage of the backup generator looks like.

Priority 2: Reducing Charging With Generator If x+
t − xt − (DL −G) ∈ (0, e(ḠHt − (DH −

qt)
+)+], we have more starting charge and solar than needed to meet all demand, and if

x+
t − xt− (DL−G) < e(ḠHt− (DH − qt)+)+ > 0, we also know that the generator is used to

create some charge for the storage at the end of the day sub-period. We thus use all available

excess energy x+
t −xt− (DL−G) to reduce the generator charging during the day by as much

as possible, while still reaching the xt target, which is results in Ḡ− (x+
t − xt− (DL−G))/e.

Formally, if x+
t − xt − (DL − G) ∈ (0, e(ḠHt − (DH − qt)+)+] =⇒ ĜHt = Ḡ − (x+

t − xt −
(DL −G))/e, ĜLt = G.

Priority 3: Reducing Regular Day-time Use of Generator If x+
t − xt − (DL −G) ∈ (e(ḠHt −

(DH − qt)
+)+, G̃Ht], we have so much starting charge and solar x+

t − xt − (DL − G) >

(e(ḠHt − (DH − qt)
+)+ that all generation during day and night is used to directly meet

demand in the same sub-period (i.e. the generator is not used to create a charge). In this

case, reducing generation during the night and during the day both save g, but our mapping

first uses any excess energy to reduce the daily generation. Formally, if x+
t −xt− (DL−G) ∈

(e(ḠHt − (DH − qt)+)+, G̃Ht] =⇒ ĜHt = G̃− (x+
t − xt − (DL −G)), ĜLt = G.

Priority 4: Reducing Regular Night-time Use of Generator Lastly if x+
t −xt− (DL−G) > G̃,

we have so much solar and starting charge that without running the generator during the

day we can meet all demand during the day, meet our target xt and use any spare energy to

reduce the generation at night. Formally, if x+
t − xt − (DL − G) > G̃ =⇒ ĜHt = 0, ĜLt =

(G− (x+
t − xt − (DL −G)− G̃)+.

Given the above steps, the policy achieves end-of-period charge xt at minimal cost by con-

struction, because it ranks all possible uses of generator’s units from the ones with the highest

net benefit down to the ones with the worst net benefit, and uses them in this order to achieve

the desired end-of-period storage level xt.

The optimal mapping, analogous to the optimal policy given in Theorem 7, is stated in Equation
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62.

1D ,

1 if x+
t − xt − (DL −G) < e(ḠHt − (DH − qt)+)+,

G̃Ht/ḠHt otherwise.

1X ,

1 if x+
t − xt − (DL −G) < e(ḠHt − (DH − qt)+)+,

e otherwise.

(61)

ĜHt ,
(
ḠHt1D − 1X

(x+
t − xt − (DL −G))+

e

)+
,

ĜLt , (G− (x+
t − xt − (DL −G)− G̃Ht)+)+.

(62)

For the following convexity proof it is useful to write-out the four separate cases that the two

indicator functions distinguish. We explicitly state all four cases in Equation 63, which allows the

reader to clearly see how the focal quantity x+
t − xt − (DL −G) impacts the generation decisions.

If x+
t − xt − (DL −G)



≤ 0

ĜHt = ḠHt

ĜLt = G

∈ (0, e(ḠHt − (DH − qt)+)+]

ĜHt = ḠHt − x+t −xt−(DL−G)
e

ĜLt = G

∈ (e(ḠHt − (DH − qt)+)+, G̃Ht]

ĜHt = G̃Ht − (x+
t − xt − (DL −G))

ĜLt = G

> G̃Ht

ĜHt = 0

ĜLt = (G− (x+
t − xt − (DL −G)− G̃Ht))+

(63)

Part 2: The Current Period t Cost function is Convex in xt and xt−1.

With this optimal mapping defined, we want to show the convexity of the cost function in xt and

xt−1 and start with the former.

Convexity of c(xt−1, qt, xt) in xt−1

Note that the conditions in Equation 63 are ordered based on the magnitude of x+
t −xt− (DL−G),

which is clearly decreasing in xt.

x+
t − xt − (DL −G) = min[(xt−1 + e(qt +G−DH)+ − (DH − qt −G)+)+,K]− xt − (DL −G),

∂x+
t − xt − (DL −G)

∂xt
< 0.

(64)

Increasing xt will thus decrease x+
t − xt − (DL −G) and for the different realizations of xt we

will analyze how further increasing xt impacts cost. Because we are only looking at cost in period
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t, aiming to end the period with a higher charge increases cost as we have to run the generator

more. Also, to analyze convexity, we assume qt and xt−1 are fixed.

xt



< x+
t −DL − G̃Ht =⇒ ĜHt = ĜLt = 0 =⇒ ∂(G−(x+t −xt−(DL−G)−G̃Ht)

+

∂xt
= 0 =⇒ ∂c(xt−1,qt,xt)

∂xt
= 0,

∈ (x+
t −DL − G̃Ht, x+

t −DL +G− G̃Ht] =⇒ ĜHt = 0, ĜLt ∈ (0, G],

=⇒ ∂(G−(x+t −xt−(DL−G)−G̃Ht))
+

∂xt
= 1 =⇒ ∂c(xt−1,qt,xt)

∂xt
= g,

∈ (x+
t −DL +G− G̃Ht, x+

t −DL +G− e(ḠHt − (DH − qt)+)+],

=⇒ ĜHt ∈ (0, ḠHt], ĜLt = G =⇒ ∂(G̃Ht−(x+t −xt−(DL−G))+

∂xt
= 1 =⇒ ∂c(xt−1,qt,xt)

∂xt
= g,

∈ (x+
t −DL +G− e(ḠHt − (DH − qt)+)+], x+

t −DL +G],

=⇒ ĜHt ∈ (0, ḠHt], ĜLt = G =⇒ ∂(ḠHt−
x+t −xt−(DL−G)

e
)

∂xt
= 1/e =⇒ ∂c(xt−1,qt,xt)

∂xt
= g/e,

> x+
t −DL +G =⇒ ĜHt = Ḡ, ĜLt = G =⇒ ∂c(xt−1,qt,xt)

∂xt
= αg or xt is not feasible.

(65)

We distinguish 5 ranges for xt:

i) If xt < x+
t −DL − G̃Ht, our starting charge and solar generation are such that we need to run

neither generator to meet all demands and reach xt. Marginally raising the end-of-storage goal xt

can still be met without using the generator, thus not impacting cost.

ii) If xt ∈ (x+
t −DL− G̃Ht, x+

t −DL+G− G̃Ht], raising xt means that we need to run the generator

at night more to meet demand, marginally costing g.

iii) If xt ∈ (x+
t −DL +G− G̃Ht, x+

t −DL +G− e(ḠHt − (DH − qt)+)+], there is enough starting

charge to cover nightly demand and xt, but raising xt means that we use the generator during the

day to serve an additional unit of demand that then does not have to be discharged during the day

and is available at the end of the night, thus increasing xt and marginally costing g.

iv) If xt ∈ (x+
t −DL + G − e(ḠHt − (DH − qt)+)+], x+

t −DL + G], the extra unit of xt has to be

generated by the generator during the day, requiring 1/e units of generator energy and marginally

costing g/e.

v) If xt > x+
t −DL + G, increasing xt means that there will more be more unmet demand as the

generator is already running at capacity day and night, marginally costing αg.

Since when increasing xt we either stay within a range or move to another range down the list

(e.g., we cannot go from range iii) to range ii) by increasing xt), then c(xt−1, qt, xt) is increasing

and convex in xt, which concludes the proof.

Convexity of c(xt−1, qt, xt) in xt−1

We now want to show the convexity of the cost function in xt−1. Note that the conditions in

Equation 63 are ordered ,based on the magnitude of x+
t − xt − (DL −G), which is clearly weakly
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increasing in xt−1.

x+
t − xt − (DL −G) = min[(xt−1 + e(qt +G−DH)+ − (DH − qt −G)+)+,K]− xt − (DL −G),

∂x+
t − xt − (DL −G)

∂xt−1
≥ 0.

(66)

Increasing xt−1 will thus increase x+
t −xt− (DL−G) until x+

t = K. After that, ∂x+
t /∂xt−1 = 0,

so in that case ∂c(xt−1, qt, xt)/∂xt−1 = 0. Intuitively, if the starting charge in the period becomes

so large, that without running the generator during the day the storage is at capacity at the end of

the day sub-period, further increasing the starting charge has no value. Because we are looking at

cost in period t for a given qt and xt, starting the period with a higher storage charge xt−1 (weakly)

reduces costs as we do not need to run generators as much to end the period with charge xt.

In the following, we will thus focus on the case where storage capacity is not limiting, without

impacting the convexity results (since c(xt−1, qt, xt) is increasing in xt−1). For the different real-

izations of xt−1 we will analyze how further increasing xt−1 impacts cost. For brevity, we will use

∆ , e(qt +G−DH)+ − (DH − qt −G)+.

xt−1



< xt +DL −G−∆ =⇒ ĜHt = Ḡ, ĜLt = G =⇒ ḠHt
∂xt−1

= 0 =⇒ ∂c(xt−1,qt,xt)
∂xt−1

= −αg,

∈ (xt +DL −G−∆, xt +DL −G−∆ + e(ḠHt − (DH − qt)+)+] =⇒ ĜHt ∈ (0, ḠHt], ĜLt = G,

=⇒ ∂(ḠHt−
x+t −xt−(DL−G)

e
)

∂xt−1
= −1/e =⇒ ∂c(xt−1,qt,xt)

∂xt−1
= −g/e,

∈ (xt +DL −G−∆ + e(ḠHt − (DH − qt)+)+, xt +DL −G−∆ + G̃Ht] =⇒ ĜHt ∈ (0, ḠHt],

ĜLt = G, =⇒ ∂(G̃Ht−
x+t −xt−(DL−G)

e
)

∂xt−1
= −1 =⇒ ∂c(xt−1,qt,xt)

∂xt−1
= −g,

∈ (xt +DL −G−∆ + G̃Ht, xt +DL −∆ + G̃Ht] =⇒ ĜHt = 0, ĜLt ∈ (0, G],

=⇒ ∂(G−(x+t −xt−(DL−G)−G̃Ht))
+

∂xt−1
= −1 =⇒ ∂c(xt−1,qt,xt)

∂xt−1
= −g,

> xt +DL −∆ + G̃Ht =⇒ ĜHt = 0, ĜLt = 0,

∂(G−(x+t −xt−(DL−G)−G̃Ht))
+

∂xt−1
= 0 =⇒ ∂c(xt−1,qt,xt)

∂xt−1
= 0.

(67)

We also distinguish 5 ranges for xt−1. Note that the order is reverse compared to xt as the effect

of starting with an extra unit of charge and needing an extra unit of charge are reversed:

i) If xt−1 < xt +DL −G−∆, increasing xt−1 means that we can meet previously unmet demand,

so the generator will run keep running at capacity day and night, but the extra charge marginally

saves αg.

ii) If xt−1 ∈ (xt +DL−G−∆, xt +DL−G−∆ + e(ḠHt− (DH − qt)+)+], the extra unit of charge

replaces 1/e units that the generator hat to produce during the day to create the same charge to

serve demand at night, thus the extra charge marginally saves g/e.
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iii) If xt−1 ∈ (xt +DL−G−∆ + e(ḠHt− (DH − qt)+)+, xt +DL−G−∆ + G̃Ht], the extra charge

allows the generator during the day to run less to meet demand during the day. Thus, the extra

charge marginally saves g.

iv) If xt−1 ∈ (xt +DL−G−∆ + G̃Ht, xt +DL−∆ + G̃Ht], an extra starting charge means that we

need to run the generator at night less to meet demand, thus the extra charge marginally saves g.

v) If xt−1 > xt +DL −∆ + G̃Ht, the starting charge and solar generation are such that we need to

run neither generator to meet all demands and reach xt. Further raising the start-of-period charge

does not change the generator decision. Thus, the extra charge has no impacting on cost.

Since when increasing xt−1 we either stay within a range or move to another range down the list

(e.g., we cannot go from range iii) to range ii) by increasing xt−1), then c(xt−1, qt, xt) is decreasing

and convex in xt−1, which concludes the proof.

We can thus succinctly write the objective function as a cost-to-go function, where the cost

from t to T are denoted as vt and expressed as the current-period cost ct plus the future cost-to-go-

function starting from the next period vt+1. Let v∗t (xt−1, qt) denote the optimal/lowest-achievable

cost for the current period t and all remaining periods, given a specific charge and generation

realization at time t. At the same time, c(xt−1, qt, xt) is the cost in period t starting with charge

xt−1, observing generation realization qt, and choosing a desired end-of-period-charge xt.

v∗t (xt−1, qt) = min
xt
{c(xt−1, qt, xt) + E[v∗t+1(xt, qt+1)]}

vt(xt−1, qt, xt) =c(xt−1, qt, xt) + E[v∗t+1(xt, qt+1)]
(68)

We will analyze this value function for the remainder of the proof.

Part 3: Value Function in period t is convex in xt−1.

In the tracking model, we assume that the storage charge at the end of the terminal period xT

neither has any value nor results in any cost, i.e. vT (xT−1, qT , xT ) = c(xT−1, qT , xT ). As shown in

Part 2, c(xT−1, qT , xT ) is convex in its xT and xT−1. So the value function in the final period T is

convex in its arguments.

Induction hypothesis: v∗t+1(xt, qt+1) = min
xt
{c(xt, qt+1, xt+1) + E[v∗t+2(xt+1, qt+2)]} is convex in xt.

WTS v∗t (xt−1, qt) = min
xt
{c(xt−1, qt, xt) + E[v∗t+1(xt, qt+1)]} is convex in xt−1.

(69)
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So, we have that

vt(xt−1, qt, xt) = c(xt−1, qt, xt) + E[v∗t+1(xt, qt+1)],

c(xt−1, qt, xt) is convex in xt and xt−1 as shown above,

v∗t+1(xt, qt+1) is convex in xt by induction assumption,

Since expectation preserves convexity,

vt(xt−1, qt, xt) is jointly convex in xt−1 and xt being sum of convex functions,

v∗t (xt−1, qt) is convex in xt−1 for the Theorem of convexity preservation under minimization.

(70)

Please refer to Hayman and Sobel (1984) for a proof on the Theorem of convexity preservation

under minimization invoked above.

Part 4: Un-minimized Value Function in period t is convex in xt.

As the last step, we want to show that the un-minimized value function is convex in xt, so that in

choosing xt there exists a unique minimum solution.

WTS vt(xt−1, qt, xt) = c(xt−1, qt, xt) + E[v∗t+1(xt, qt+1)] is convex in xt.

vt(xt−1, qt, xt) = c(xt−1, qt, xt) + E[v∗t+1(xt, qt+1)],

c(xt−1, qt, xt) is convex in xt and xt−1 as shown above,

v∗t+1(xt, qt+1) is convex as proven in Part 3,

c(xt−1, qt, xt) + E[v∗t+1(xt, qt+1)] is convex in xt since expectation preserves convexity,

→ vt(xt−1, qt, xt) is convex in xt.

(71)

A.7.2 Step 2: Characterization of Optimal Policy:

Now that we showed that the cost-function is convex in the arguments, we switch to the optimal

policy. Of the two state variables, actions under any policy can only impact the storage charge

xt which will be the focal dimension of our policy - generation is independent of our actions (i.e.

sunshine does not depend on our generator operation). We thus choose the generator operation in

this period GHt, GLt to reach a end-of-period-charge xt that minimizes the total cost.

Conceptually, the convexity of the cost-function w.r.t. the generator-decision GHt, GLt occurs,

because the cost for every unit of generation is constant and equal to g. Yet, the benefit (read:
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avoided cost) of lowering the future periods’ cost vt+1(xt(qt, xt−1, GHt, GLt), qt+1) by running the

generator to increase xt is weakly decreasing in the generation decision. If there is unmet demand

in the current period t, running the generator is optimal as α > 1. Once all unmet demand of the

current period is met, it may or may not be optimal to run the generator to create a buffer charge

for the next period, thus reducing the chance of unmet demand in the future.

Hence, there exists a cost-minimizing choice that balances the current-period’s generation cost

with the future periods’ cost of unmet demand, which is the optimal point we are looking for.

Because GHt and GLt both impact the future period’s cost through xt and cost the same (both

incur efficiency loss), we can condense the optimal decision to be the optimal charge to end a period

with, henceforth denoted with x∗t ).

Set x∗t , so that − ∂E[v∗t+1(xt, qt+1)]/∂xt = g/e. (72)

It may be that this optimal charge is 0, if even without any charge the probability weighted cost

for not meeting demand is lower than the generator cost (i.e. if −∂E[v∗t+1(0, qt+1)]/∂xt < g/e).9

Because of this characterization, the optimal policy is to run the generator, a) iff in the absence

of running the generator, the charge would fall under this threshold x∗t , and b) importantly also

entails to run the generator, such that the final charge equals x∗t , if possible. Conditional on having

established the optimal threshold x∗t , the optimal generator policy to determine the generator

quantities are:

G∗Ht
= min[(DH − xt−1 − qt)+ + (DL + x∗t −G−min[xt−1 − (DH − qt)+ + e(qt −DH)+,K]+)+/e,G]+,

G∗Lt
= min[DL + x∗t −min[xt−1 + e(qt +GHt −DH)+ − (DH − qt −GHt)

+,K]+, G]+

(73)

A.7.3 Step 3: Lower Bound the Optimal Threshold

While we are not able to characterize the value of x∗t in closed form, we now provide a way to

lower-bound it.

As mentioned earlier, x∗t is the amount of charge at which the cost of running the generator to

charge the battery g/e is equal to the marginal value of a unit of charge in storage. This value is

difficult to calculate as it depends on all future t + 1, ..., T periods, which includes T − t random

generation realizations. However, we can lower-bound the value of a charge by looking at the value

that charge has for a shorter horizon - to start we will investigate the marginal value of storage

9Imagine an α close to 1 and a large solar capacity Q, so that not meeting demand incurs a small penalty relative

to the generator cost and it is additionally unlikely to not fully meet demand through solar generation.
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when only looking one period ahead10. Looking one period ahead, the marginal value of storage

is equal to the probability of helping meet otherwise unmet demand. Let c1 denote the marginal

value of the xt unit of storage given a one-period-look-ahead. We explicitly include g from here on

again (i.e. stop assuming g = 1 as before), to emphasize the back-up cost relation of this decision.

However, because the cost of running the generator in c1 and the expected avoided cost of the

future both scale in generator cost, this term cancels out for the optimal policy. Hence, the optimal

policy, conditional on a given renewable and storage capacity Q and K is only dependent on the

efficiency e and the penalty for unmet demand α.

c1 = −
∂Eqt+1 [vt+1(xt, qt+1)]

∂xt
= αg

(
(DL−G−xt)+

e + (DH −G− (xt −DL +G)+)+

Qe

)+

. (74)

The numerator in Equation 74 captures the amount of demand that cannot be met through

the generator or storage at night (DL−G−xt)+/e after accounting for the existing storage charge

xt and the efficiency loss if demand at night is met through solar generation. To this quantity, we

add the amount of energy not met throughout the day (DH − G − (xt − DL + G)+)+ and then

divide this quantity by solar capacity adjusted by efficiency Qe to obtain the probability that the

marginal storage unit xt was used. Clearly, this probability is decreasing in charge, available solar

capacity and backup generator capacity.

Let x1
t denote the lower bound of x∗t that is found by using this one-period lower bound of

storage value. Set x1
t , so that c1 = g, as running the generator directly meets demand in the

sub-period and saves one unit of charge in storage. This is a lower bound, as the one-period look

ahead is a lower bound of the storage value, so x1
t ≤ x∗t . This can be done in closed-form, given

knowledge of the magnitude of several parameters, in particular the penalty of unmet demand α

and the storage efficiency e. We state the optimal solutions stratified by case below and note that

x∗t cannot exceed K −DL +G as a higher charge cannot be achieved at the end of period.:

x1
t =

min
[(
DL +DHe− (1 + e)G− Qe2

a

)+
,K −DL +G

]
,if a ≤ Qe

DH−G

min
[(
DL +DH − 2G− Qe

α

)+
,K −DL +G

]
,if a > Qe

DH−G

(75)

A.7.4 Step 4 - Comparative Statics of x∗t

Even though we cannot characterize the optimal policy x∗t in closed-form, we can use comparative

statics, to further understand the dynamics around this decision. We first re-state and briefly

re-organize the condition for x∗t .

10This approach is analogous to how we approximated the storage value in the partial-discharge model by looking

at two periods.
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x∗t :=
∂ − E[vt+1(xt, qt+1)]

∂xt
= g/e

∂E
[
c(xt, qt+1, xt) + vt+2(xt+1, qt+2)

]
∂xt

= −g/e

∂E
[
gGHt+1 + gGLt+1 + αg(DH −GHt+1 − ext − qt+1)+

]
∂xt

+

∂E
[
αg
(
DL −GLt+1 −min

[(
xt + e(−DH +GHt+1 + qt+1)+ − (DH −GHt+1 − qt+1)+

)+
,K
])+

.
]

∂xt
+

∂E
[
vt+2(xt+1, qt+2)

]
∂xt

= −g/e

(76)

As next period’s charge is weakly increasing in this periods’s charge ∂xt/∂xt−1 ≥ 0, any im-

pact of x∗t on next period’s cost c(xt, qt+1, xt), will directionally be the same as the impact on

vt+2(xt+1, qt+2).

As
∂xt+1

∂xt
≥ 0→ ∂c(xt, qt+1, xt)

∂xt

∂vt+2(xt+1, qt+2)

∂xt
≥ 0 (77)

For comparative statics, it is thus sufficient to verify the impact of any variable change on

∂c(xt, qt+1, xt)/∂xt, which we will subsequently investigate. The optimal x∗t directionally behaves

the same as when checking the condition in Equation 78.

−g
e

=
∂E
[
c(xt, qt+1, xt)

]
∂xt

,

−1

e
= α

∂E
[
(DH −GHt+1 − ext − qt+1)+

]
∂xt

+

α
∂E
[(
DL −GLt+1 −min

[(
xt + e(−DH +GHt+1 + qt+1)+ − (DH −GHt+1 − qt+1)+

)+
,K
])+

.
]

∂xt
.

(78)

Exogenous Choice of Q and K. We begin analyzing the comparative statics for a given choice

of capacity, i.e. Q and K are fix. Later, we will lift this assumption and investigate numerically

how the comparative statics look if Q and K are endogenous.
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Impact of α

∂ − 1/e

∂α
= 0, and as

∂E
[
c(xt, qt+1, xt)

]
∂xt

< 0→
∂2E

[
c(xt, qt+1, xt)

]
∂xt∂α

< 0

→ ∂x∗t
∂α
≥ 0.

(79)

Clearly, increasing α, the penalty for not meeting demand, increases the amount of cost saved by

an additional unit of storage charge. Thus, increasing α increases the optimal buffer charge x∗t .

Impact of e

− 1 = e
∂E
[
c(xt, qt+1, xt)

]
∂xt

,

e
∂E
[
c(xt, qt+1, xt)

]
∂xt

= −e2Pr[DH −GHt+1 − ext − qt+1 > 0]−

ePr[(xt + e(−DH +GHt+1 + qt+1)+ − (DH −GHt+1 − qt+1)+)+ < K∧(
DL −GLt+1 −min

[(
xt + e(−DH +GHt+1 + qt+1)+ − (DH −GHt+1 − qt+1)+

)+
,K
])+

> 0].

(80)

While the partial of the LHS does not change as efficiency changes (∂ − 1/∂e = 0), the impact

of changing efficiency on the RHS cannot generally be signed, so we need to add the following

condition to evaluate the comparative statics.

Let Pr(A) := Pr
[
DH −GHt+1 − ext − qt+1 > 0

]
,

Let Pr(B) := Pr
[
(xt + e(−DH +GHt+1 + qt+1)+ − (DH −GHt+1 − qt+1)+)+ < K∧(

DL −GLt+1 −min
[(
xt + e(−DH +GHt+1 + qt+1)+ − (DH −GHt+1 − qt+1)+

)+
,K
])+

> 0
]
,

∂2eE
[
c(xt, qt+1, xt)

]
∂xt∂e

= −e2∂Pr(A)

∂e
− 2ePr(A)− e∂Pr(B)

∂e
− Pr(B),

If − e2∂Pr(A)

∂e
− 2ePr(A)− e∂Pr(B)

∂e
− Pr(B) > 0 → ∂x∗t

∂e
≤ 0, else

∂x∗t
∂e

< 0.

(81)

Based on the condition established above, x∗t is either increasing or decreasing in efficiency e.

This trade-off occurs as more efficiency reduces the cost of serving energy through storage, but also

reduces the demand to be met by storage in the future as the same renewable power covers more

demand than before.

Impact of g Lastly, ∂x∗t /∂g = 0 as mentioned before. With given capacities, the magnitude of

the back-up cost is not relevant as one trades off running the generator now versus running it later.
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Endogenous Choice of Q and K. This brings us to the second set of comparative statics - how

does x∗t change as one allows renewable and storage capacity Q and K to change as well in response

to varying parameters. In the regular capacitated generator model we assume the capacities to

be given. An analytical derivation of the comparative statics while endogenizing the storage and

solar capacity is intractable. Consider for example, what happens if cQ is decreased, which would

increase Q. First, we would need to know, whether the rest of the parameters were such that storage

and solar are strategic complements or strategic substitute. Assuming they are complements, an

increase in Q would increase K as well. However, the effect of increasing storage and increasing

solar on x∗t is in different directions: ∂x∗t /∂Q < 0 and ∂x∗t /∂K > 0. More generation reduces x∗t as

there is less unmet demand in the future, while an increase in storage increases x∗t , as more energy

can be stored while excess renewables get lost less often.

We thus turn to investigate these numerically. We run each island’s data, for generator capacities

between 10% and 95% of daily demand, for both storage technologies, and with α values between

1.5 and 15. Based on these specifications, we tested the impact of α, e, cK , cQ, and g on x∗t . We

investigate over 1,300 scenarios (combination of parameter values) for each of the following results.

We start with the monotone findings:

Impact of α

∂x∗t
∂α
≥ 0. (82)

We were able to confirm the previous analytical insight. Raising α weakly increases investment

in generation and storage as well as the optimal buffer charge x∗t as not meeting demand becomes

more expensive.

Impact of cQ

∂x∗t
∂cQ

≥ 0. (83)

Increasing solar cost reduces solar capacity, which can increase or decrease storage capacity

and thus may have varying direct and indirect effects on x∗t . Yet, in all runs we performed, the

optimal buffer charge x∗t increased as solar costs increased. The buffer charge is a hedge against

the increased likelihood of not having sufficient generation in the coming periods.

Impact of cK

∂x∗t
∂cK

≤ 0. (84)
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Increasing storage cost reduces storage capacity, and in most cases increases generation capacity.

In all runs we performed, the optimal buffer charge x∗t decreased. Typically, storage capacity is not

binding for x∗t , so a higher cK lowers K, but rather although every periods now has slightly less

storage capacity, every period now also has more generation than before, thus overall reducing the

need for buffer capacity.

Impact of e

∂x∗t
∂e
≥ 0 for most parameter combinations ,

∂x∗t
∂e
≤ 0 if e . 1 ∧G . DH . (85)

We use . to indicate the LHS being close but not exactly equal to the RHS. Increasing efficiency

increases storage capacity and increases or decreases generation capacity. For almost all the runs,

increasing efficiency increased the optimal buffer charge x∗t , but for scenarios with high efficiency

values close to 1 and high back-up capacity generators, the optimal buffer charge did decrease.

More efficiency means more (effective) generation as less energy is lost when charging, thus making

future unmet demand less likely. In most cases this is more than compensated by the fact that an

increase in efficiency makes serving demand through storage cheaper.

Impact of g

∂x∗t
∂g
≥ 0 if g is small and

∂x∗t
∂g
≤ 0if g is large. (86)

If g is small, a marginal increase increases capacities (in both generation and storage) and x∗t

increases as not meeting demand is costly. At some point, if g becomes large enough, running the

generator becomes so costly that x∗t starts going down, while especially generation investment goes

up to multiples of needed demand.

Appendix B Detailed Derivations and Analysis

B.1 Getting from the Tracking Model to the Partial-Discharge Model

We will proceed in 3 steps. First, we write down the tracking objective function. Second, we

introduce the two changes required to transition from the tracking model to the partial model.

Third, we prove that after applying the two changes from step 2, the tracking model is equivalent

to the partial-discharge model.

Step 1. As introduced in section 3.1, the tracking model’s objective function is:
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ΠTR(Q,K) =

g E
[ T∑
t=1

(
min[qt, DH ] + min[xTRt−1, (DH − qt)+] + min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+,K,DL]

) ]
−

T
cK
e
K − TcQQ.

We assume that K ≥ DL :

ΠTR(Q,K) =

g E
[ T∑
t=1

(
min[qt, DH ] + min[ xTRt−1, (DH − qt)+] + min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+, DL]

) ]
−

T
cK
e
K − TcQQ,

where xTRt = (min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+,K]−DL)+.

(87)

Clearly, this objective function exhibits the Markov property, as at time t, the future states

are only dependent on the state variable/current charge xTRt and future generation realizations.

Furthermore, profit and xTRt+1 are both weakly increasing in xTRt .

Step 2. We now introduce the two changes required to get from the tracking model to the partial-

discharge model, in which storage cannot be carried further than 48 hours and most-recently gen-

erated energy is used first (Assumptions 2 and 3). One change is adapting the charge terms as

follows to reflect these assumptions:

xTRt = (min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+,K]−DL)+.

xPt = (min[e(qt −DH)+,K]−DL)+.
(88)

Note that in the partial-discharge model, storage at the end of period t, xPt , is not a function

of storage at the start of period t, xPt−1, because (i) the energy at the beginning of the period was

stored in period t−1 during daytime and therefore it expires before the end of period t, and (ii) the

energy at the beginning of the period is used to serve nightly demand only when all other energy

is depleted. Note also that:

Lemma 2. For any vector of generation realizations ~q = [q1, q2, ..., qT ], the charge in the tracking

model is always larger than in the partial-discharge model. Formally, xTRt ≥ xPt ∀t.

In addition, the second change we introduce is the following simplification to the objective

function that, in expectation, weakly decreases the charging terms (hence profit) and improves
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tractability. We replace:

min[xPt−1, (DH − qt)+] + min[(xPt−1 + e(qt −DH)+ − (DH − qt)+)+, DL],

with

min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, xPt−1].

(89)

Specifically, if qt ≥ DH , these two expressions are identical in expectation:

E[min[xPt−1, (DH − qt)+] + min[(xPt−1 + e(qt −DH)+ − (DH − qt)+)+, DL]],

= E[min[(xPt−1 + e(qt −DH))+, DL]],

= E[min[xPt−1, (DL − e(qt −DH))+] + min[e(qt −DH), DL]],

= E[min[e(qt −DH), DL] + min[(eDH +DL − eqt)+, xPt−1]].

(90)

If qt < DH , the simplification is weakly lower than the original expression, as it reduces one of

the values of the minima, but in doing so increases tractability.

E[min[xPt−1, (DH − qt)+] + min[(xPt−1 + e(qt −DH)+ − (DH − qt)+)+, DL]],

= E[min[xPt−1, (DH − qt)+] + min[(xPt−1 − (DH − qt)+)+, DL]],

= E[min[DH +DL − qt)+, xPt−1]],

> E[min[(eDH +DL − eqt)+, xPt−1]],

= E[min[0, DL] + min[(eDH +DL − eqt)+, xPt−1]],

= E[min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, xPt−1]].

(91)

In conjunction, making those two changes to the tracking model (different expression for xt and

the objective function simplification) leaves us with the following objective function that we denote

C for candidate:

ΠC(Q,K) =

g E
[ T∑
t=1

(
min[qt, DH ] + min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, xPt−1]

)]
− T cK

e
K − TcQQ,

where xPt = (min[e(qt −DH)+,K]−DL)+. Plugging this into the function results in:

g E
[ T∑
t=1

(
min[qt, DH ] + min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, (min[e(qt −DH)+,K]−DL)+]

)]
,

− T cK
e
K − TcQQ,

(92)

We will aim to show that this candidate objective function is equivalent to the partial-discharge

objective function. For now, notice that the candidate objective function has removed the intertem-

poral linkages between the periods as profit in period t only depends on the realization of qt and
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qt−1, but no state variable anymore. This sum over T periods is thus, on average, equivalent to

multiplying this one period T times.

In the next step, we will introduce a new expression (denoted with π(Q,K)) that represents

the expected quantity of renewable electricity sold from generation and storage during one period

t with capacities Q and K, so we can compare the candidate revenue with the partial-discharge

revenue. If the revenue is identical for each period, then the sum of revenues is also identical. We

abstract from the cost as they are the same in the all considered models. As introduced above, the

candidate model is independent of a state variable.

πC(Q,K) =

g E
[

min[qt, DH ] + min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, (min[e(qt −DH)+,K]−DL)+]
]
.

(93)

Step 3. We now want to show that the candidate objective function (the tracking model in

combination with the adjusted storage term and Assumptions 2 and 3), is equivalent to our partial-

discharge model in expectation (see Appendix A.5).

g E
[

min[qt, DH ] + min[e(qt −DH)+, DL] + min[(eDH +DL − eqt)+, (min[e(qt −DH)+,K]−DL)+]
]

=
g

Q

([∫ DH

0
q dq

]
+

[∫ DL
e

+DH

DH

DH + e(q −DH) dq

]
+

[∫ Q

DL
e

+DH

DL +DH dq

]
+

1

Q

∫ Q

0

∫ Q

DH+
DL
e

min[eq − eDH −DL,K −DL, (eDH +DL − eq2)+] dqdq2

)
.

(94)

As explained in Section 3.2.3, the tracking model, and by extension the candidate model, use a

supply perspective while the partial-discharge model uses a demand perspective. So in the candidate

model, revenue comes from selling today’s generation and yesterday’s stored excess generation, while

in the partial-discharge model it is today’s generation and today’s excess generation (multiplied

by the probability of discharge). To make the models comparable, we change the candidate’s

generation terms (the first two minima) from qt to qt−1. As each period has the same generation

distribution, this does not change the value of the objective function.

g E
[

min[qt−1, DH ] + min[e(qt−1 −DH)+, DL] + min[(eDH +DL − eqt)+, (min[e(qt−1 −DH)+,K]−DL)+]
]

=
g

Q

([∫ DH

0
q dq

]
+

[∫ DL
e

+DH

DH

DH + e(q −DH) dq

]
+

[∫ Q

DL
e

+DH

DL +DH dq

]
+

1

Q

∫ Q

0

∫ Q

DH+
DL
e

min[eq − eDH −DL,K −DL, (eDH +DL − eq2)+] dqdq2

)
.

(95)
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Note that E[min[qt−1, DH ]] = 1
Q

([∫ DH

0 q dq
]

+

[∫ DL
e

+DH

DH
DH dq

]
+

[∫ Q
DL
e

+DH

DH dq

])
.

Also note that E[emin[e(qt−1 −DH)+, DL] = 1
Q

([∫ DL
e

+DH

DH
e(q −DH) dq

]
+

[∫ Q
DL
e

+DH

DL dq

])
.

Which leaves us with:

E
[
min[(eDH +DL − eqt)+, (min[e(qt−1 −DH)+,K]−DL)+]

]
=

1

Q2
(

∫ Q

0

∫ Q

DH+
DL
e

min[eq − eDH −DL,K −DL, (eDH +DL − eq2)+] dqdq2).
(96)

Here qt−1 equals q and qt equals q2 and the expressions are equivalent. We have thus shown

how one can get from the tracking model to the partial-discharge model by changing the charging

term definition (xt) as well as making a small simplification for tractability.

For other derivations, it is useful to also define the expected quantity of renewable electricity

sold from generation and storage during one period t with capacities Q and K for the tracking

model, which additionally requires to specify the starting charge xt−1.

πTR(Q,K, xTRt−1) =

g E
[

min[qt, DH ] + min[xTRt−1, (DH − qt)+] + min[(xTRt−1 + e(qt −DH)+ − (DH − qt)+)+, DL]
]
.

(97)

B.2 Concavity of Tracking Model

In this section, we study the tracking model in more detail and proof global concavity of the

objective function for a subset of parameters. We also provide results regarding the distribution

of the end-of-storage charge xt. Remember that in the revenue function of the tracking model all

periods are linked through xt, which simultaneously impacts every period’s revenue.

ΠRev(Q,K) =E
[ T∑
t=1

(
min[qt, DH ] + min[xt−1, (DH − qt)+]+

min
[(
xt−1 + e(qt −DH)+ − (DH − qt)+

)+
,K,DL

] )]
,

xt =
(

min
[(
xt−1 + e(qt −DH)+ − (DH − qt)+

)+
,K
]
−DL

)+
.

(98)

In order to analyze the concavity of the tracking model (costs are linear in parameters so we

only focus on the revenue), we aim to study the Hessian of the objective function, for which we

need to know not just the sign, but also the magnitude of all second partial derivatives.

As the storage charge is contained in all derivatives, one cannot solve the derivatives of the

tracking model without knowing the distribution of xt. For that reason, we will use a Markov
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process approach to capture the probability to end the period with a certain storage charge xt.

Once we have the limiting distribution of that Markov process, we will be able to express the per-

period objective function of the tracking model in closed form for the case, when Q > DH + K/e

and DL ≤ K < 2DL + DH and e = 1. In this parameter space for Q and K, there is positive

probability in each period to fully charge or discharge the storage. We will then prove concavity of

the tracking model in that case.

B.2.1 Stationary Distribution of xt - General Case

We use P (l) to indicate the probability of ending the day with charge l ∈ [0,K − DL] and put

particular emphasis on the special cases of P (0) and P (K−DL), i.e. ending the day with an empty

charge and the highest possible charge. Note that, because nightly demand is always being served,

it is not possible to end with any charge higher than K −DL. We begin by writing the transition

probabilities between the different states in Table 5.

From (xt−1)

To (xt)
0 l K −DL,

0 DL/e+DH

Q
1
Qe 1− DH+K/e

Q

l DL/e+DH−l
Q


1
Q if lTo ∈ [0, l]

1
Qe if lTo ∈ [l,K −DL]

1− DH+(K−L)/e
Q

K −DL
DL(1+1/e)+DH−K

Q
1
Q 1− DH+DL/e

Q

Table 5: Transition Probabilities of storage charge xt−1 to xt

We can write them formally into the following system of equations relating the transition prob-
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abilities:

P (0) =
DL
e +DH

Q
P (0) +

DL(1+ 1
e ) +DH−K
Q

P (K−DL) +

∫ K−DL−ε

ε

DL/e+DH−x
Q

P (x)dx,

P (l) =
1

Qe
P (0) +

1

Q
P (K −DL) +

∫ l−ε

ε

1

Qe
P (x)dx+

∫ K−DL−ε

l

1

Q
P (x)dx,

P (K−DL) = 1−
DH + K

e

Q
P (0) + 1−

DH + DL
e

Q
P (K−DL) +

∫ K−DL−ε

ε
1−DH + (K − x)/e

Q
P (x)dx,

Simplifying:

P (0) =
DL/e+DH

Q
− 1

Q

∫ K−DL

0
xP (x)dx,

P (l) =
1

Q
+

1− e
Qe

∫ l−ε

0
P (x)dx,

P (K −DL) = 1− DH +K/e

Q
+

1

Qe

∫ K−DL

0
xP (x)dx.

(99)

In this general case, it is not possible to derive the limiting distribution of the states in closed form

based on these one-step transition equations. In the following, we assume e = 1, which results in

P (l) = 1
Q , ∀ l ∈ (0,K), which allows us to solve for the stationary distribution.

B.2.2 Stationary Distribution with e = 1

We write down the same distributions, but for the case of efficiency equal to 1:

P (0) =
DL +DH

Q
− 1

Q

∫ K−DL

0
xP (x)dx,

P (l) =
1

Q
,

P (K −DL) = 1− DH +K

Q
+

1

Q

∫ K−DL

0
xP (x)dx,

From here we can simplify P (0) and P (K −DL) to:

P (K −DL) =
[
1− DH +K

Q
+

(K −DL)2

2Q2

]
/
[
1− K −DL

Q

]
,

P (0) =
DL +DH

Q
− (K −DL)2

2Q2
−
[K −DL

Q

]
/
[
1− K −DL

Q

][
1− DH +K

Q
+

(K −DL)2

2Q2

]
.

(100)
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B.2.3 Derivative of xt w.r.t. storage decision K

From here, we can start tackling the derivative w.r.t. K - i.e., what is the effect that more storage

capacity would have on the steady-state distribution of the storage charge?

∂xt
∂K

=

1 if max{f |f ≤ t, xf = K −DL} > max{h|h ≤ t, xh = 0},

0 otherwise .
(101)

Trivially, if xt = K − DL, then storage capacity at the end of the day-sub-period was binding

and more storage would have increased the charge. If xt = 0, more storage capacity would not

have increased the charge. The more intricate behavior occurs, if the charge is between the two

bounds, i.e. xt ∈ (0,K − DL) at the end of period. In that case, more storage capacity has an

effect on the storage charge in period xt if the last period beforehand during which storage was

fully charged has been more recent than the last period during which storage was entirely empty

max{f |f ≤ t, xf = K −DL} > max{h|h ≤ t, xh = 0} (our definition from Equation 101).

We thus look for a general way to express the probability above ∀xt ∈ (0,K −DL). Note that,

no matter what the storage charge in the last period was, there is always exactly one generation

realization that gets us to a focal charge state l, l ∈ (0,K − DL) as can be seen by inspecting

Equation 102.

xt(e = 1) =
(

min
[(
xt−1 + qt −DH

)+
,K
]
−DL

)+
,

→ Pr[xt = l ∈ (0,K −DL)|xt−1]] =
1

Q
, ∀xt−1.

(102)

Conditional on arriving at particular charge xt = l ∈ (0,K −DL), the probability of having been

at a particular charge xt−1 in the previous period reduces to the stationary probabilities.

Pr[xt−1|xt = l ∈ (0,K −DL)] =
Pr[xt = l ∈ (0,K −DL)|xt−1]Pr[xt−1]

Pr[xt = l ∈ (0,K −DL)]
=

Pr[xt−1]

QPr[xt = l ∈ (0,K −DL)]

Leading to the following cases:

Pr[xt−1 = 0]

QPr[xt = l ∈ (0,K −DL)]
=

P (0)]

QPr[xt = l ∈ (0,K −DL)]
= P (0),

P r[xt−1 ∈ (0,K −DL)]

QPr[xt = l ∈ (0,K −DL)]
=

Pr(l)

QPr[xt = l ∈ (0,K −DL)]
= P (l),

P r[xt−1 = K −DL]

QPr[xt = l ∈ (0,K −DL)]
=

P (K −DL)]

QPr[xt = l ∈ (0,K −DL)]
= P (K −DL).

(103)

Because the probability of getting to a charge l ∈ (0,K −DL) is uniformly 1
Q for all prior states

(i.e. last period’s charges), conditional on being in state l at time t, the probability of having been

in a particular state at time t− 1 is equal to the long-term transition probabilities. As ∂xt
∂K is only

non-zero if the storage charge has hit the upper charge limit K − DL in the past first, we can
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calculate that probability as the following recursive sum:

∂xt = l ∈ (0,K −DL)

∂K
= Pr[max{f |f ≤ t, xf = K −DL} > max{h|h ≤ t, xh = 0}],

=
Pr[xt−1 = K −DL]

QPr[xt = l]
+
Pr[xt−1 ∈ (0,K −DL)]

QPr[xt = l]

Pr[xt−2 = K −DL]

QPr[xt−1 ∈ (0,K −DL)]
+ ...,

= P (K −DL) +
K −DL

Q
P (K −DL) +

(K −DL)2

Q2
P (K −DL) + ...,

= P (K −DL) + P (K −DL)

t−1∑
1

K −DL

Q
,

lim
t→∞

P (K −DL) + P (K −DL)
t−1∑

1

K −DL

Q
= P (K −DL)

[
1 +

(K −DL)/Q

1− K−DL
Q

]
,

=
D2
L − 2DLK +K2 − 2KQ+ 2Q(Q−DH)

2(Q+DL −K)2
.

(104)

Thus, we now have the stationary distribution of charging states and know ∂xt
∂K in the limit. Given

that the lifetime of our technology is typically on the order of tens of thousands of days, this limit

is very accurate.

B.2.4 Revenue Function and Derivatives

The revenue function of the tracking model with e = 1 is as follows:

ΠRev(Q,K, e = 1) =E
[ T∑
t=1

(
min[qt, DH ] + min[xt−1, (DH − qt)+] + min

[
(xt−1 + qt −DH)+ ,K,DL

] )]
xt =

(
min

[(
xt−1qt −DH

)+
,K
]
−DL

)+
,

We focus on an individual period t:

ΠPer(Q,K, e = 1) =E
[

min[qt, DH ] + min[xt−1, (DH − qt)+] + min
[
(xt−1 + qt −DH)+ ,K,DL

] ]
.

(105)

∂ΠPer(Q,K)

∂K
=

1

Q

∫ Q

0
Pr[xt−1 < DH − qt]E

[∂xt−1|xt−1 < DH − qt
∂K

]
dqt+

1

Q

∫ Q

0
Pr[DH < xt−1 ≤ DH +DL − qt]E

[∂xt−1|DH < xt−1 ≤ DH +DL − qt
∂K

]
dqt,

=
1

Q

∫ Q

0
Pr[xt−1 ≤ DH +DL − qt]E

[∂xt−1|xt−1 ≤ DH +DL − qt
∂K

]
dqt,

=

∫ K−DL

l=0
Pr[xt−1 = l]Pr[qt ≤ DH +DL − l]

∂xt−1 = l

∂K
dl.

(106)
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More storage capacity has a positive impact on revenue in period t, iff the combination of previous

period’s charge xt−1 and current periods generation qt is insufficient to meet demand and if addi-

tionally, more storage capacity would have led to a larger charge in xt−1, i.e., the condition from

Equation 101 is met for xt−1.∫ K−DL

l=0
Pr[xt−1 = l]Pr[qt ≤ DH +DL − l]

∂xt−1 = l

∂K
dl,

=P (0)
DH +DL

Q
0 + P (K −DL)

DH + 2DL −K
Q

1+∫ K−DL−ε

l=ε
Pr[xt−1 = l]Pr[qt ≤ DH +DL − l]

∂xt−1 = l

∂K
dl,

=
[
1− DH +K

Q
+

(K −DL)2

2Q2

]
/
[
1− K −DL

Q

]DH + 2DL −K
Q

+

1

Q

D2
L − 2DLK +K2 − 2KQ+ 2Q(Q−DH)

2(Q+DL −K)2

(K −DL)(DH + 1.5DL −K/2)

Q
,

=

(
(DL −K)2 + 2(DH + 2DL −K)Q

) (
(DL −K)2 − 2(DH +K)Q+ 2Q2

)
4Q2(DL −K +Q)2

=
∂ΠPer(Q,K)

∂K
,

∂ΠRev(Q,K)

∂K
= T

∂ΠPer(Q,K)

∂K
.

(107)

From here, we can easily obtain the following two second partial derivatives:

∂2ΠRev(Q,K)

∂2K
=

T
−(K −DL)4 + 4(K −DL)3Q− 2

(
2D2

H + 4DHDL + 5D2
L − 6DLK + 3K2

)
Q2 + 4(DH +K)Q3 − 2Q4

2Q2(DL −K +Q)3
,

∂2ΠRev(Q,K)

∂K∂Q
= T

(K −DL)5 − 4(K −DL)4Q+ 6(K −DL)3Q2

2Q3(DL −K +Q)3
+

T
2
(
2D2

H + 5DHDL +D2
L −DHK + 3DLK − 2K2

)
Q3 + 2(DH + 2DL −K)Q4

2Q3(DL −K +Q)3
.

(108)

B.2.5 Derivative of xt w.r.t. storage decision Q

We now turn back to the revenue function and investigate the first partial derivative w.r.t. to

generation capacity Q. What makes this an intricate derivative to calculate is the charge’s xt de-

pendence on generation capacity Q. An increase in generation capacity increases all past generation

realizations and thus weakly increases xt. We thus start by studying the impact of ∂xt−1/∂Q. One

further complexity is that the marginal effect of adding generation capacity Q is different in each

period based on the generation realization. q′t > qt”, =⇒ ∂q′t/∂Q > ∂qt”/∂Q. Conceptually, an

additional solar panel increases energy generation more on a sunny day than on a cloudy day.
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xt =
(

min
[(
xt−1 + qt −DH

)+
,K
]
−DL

)+
,

E
[∂xt
∂Q

]
=E
[ t∑
l+1

qt
Q

]
= E

[ 1

Q

t∑
l+1

qt, l = max{l|l ≤ t, xl ∈ {0,K −DL}}
]
,

∂xt
∂Q

=


0 if xt = 0,

1
Q

∑t
l+1 qt if xt ∈ (0,K −DL),

0 if xt = K −DL,

E
[∂xt
∂Q

]
=

∫ K−DL

l=0
Pr(xt = l)

∂xt = l

∂Q
= 0 + 0 +

∫ K−DL−ε

l=ε
Pr(xt = l)

∂xt = l

∂Q
=

1

Q

∫ K−DL−ε

l=ε

∂xt = l

∂Q
.

(109)

The impact on the charge in period t of raising generation capacity is that the charge increases

proportional to all the generation realizations from the period after the charge last hit the upper

capacity limit or was fully discharged. For that, we again need to resort to the conditional transition

probabilities (see Equation 103).

∂xt = l ∈ (0,K −DL)

∂Q
= E

[
qt/Q

]
+ E

[∂xt−1|qt
∂Q

]
,

=Pr(0)
l +DH +DL

Q
+ 0 + Pr(K −DL)

2DL +DH −K + l

Q
+ 0+∫ K−DL−ε

j=ε
Pr(j)

(DH +DL + l − j
Q

+
∂xt−1 = j

∂Q

)
dj,

=Pr(0)
l +DH +DL

Q
+ Pr(K −DL)

2DL +DH −K + l

Q
+

1

Q

∫ K−DL−ε

j=ε

DH +DL + l − j
Q

dj +
1

Q

∫ K−DL−ε

j=ε

∂xt−1 = j

∂Q
dj.

(110)

We now can go back to Equation 109 and integrate ∂xt = l ∈ (0,K−DL) / ∂Q over all realizations

of l ∈ (0,K −DL):

E
[∂xt
∂Q

]
=

1

Q

∫ K−DL−ε

l=ε

∂xt = l

∂Q
,

= Pr(0)
1

Q

∫ K−DL−ε

l=ε

l +DH +DL

Q
dl + Pr(K −DL)

1

Q

∫ K−DL−ε

l=ε

2DL +DH −K + l

Q
dl+

1

Q2

∫ K−DL−ε

l=ε

∫ K−DL−ε

j=ε

DH +DL + l − j
Q

djdl +
1

Q

∫ K−DL−ε

l=ε

1

Q

∫ K−DL−ε

j=ε

∂xt−1 = j

∂Q
djdl,

=
(K −DL)(2DH + 3DL −K)

2Q(DL +Q−K)
+
K −DL

Q
E
[∂xt−1

∂Q

]
,

=
(K −DL)(2DH + 3DL −K)

2(DL +Q−K)2
.

(111)
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With this derivative calculated, we can now turn to the entire revenue function and take the first

and partial derivatives w.r.t. Q:

ΠPer(Q,K, e = 1) = E
[

min[qt, DH ] + min[xt−1, (DH − qt)+] + min
[
(xt−1 + qt −DH)+ ,K,DL

] ]
,

= Pr(0)
1

Q

∫ Q

qt=0
min[qt, DH +DL]dqt + Pr(K −DL)

1

Q

∫ Q

qt=0
min[qt +K −DL, DH +DL]dqt+

1

Q2

∫ K−DL−ε

xt−1=ε

∫ Q

qt=0
min[qt + xt−1, DH +DL]dqtdxt−1,

=
(DH +DL)Q

DL −K +Q
−
(
D2
H + 2DHDL + 2D2

L − 2DLK +K2
)

2(DL −K +Q)
+

−
(K −DL)4 + 2(K −DL)

(
3D2

H + 6DHDL +D2
L + 4DLK − 2K2

)
Q

12Q2(DL −K +Q)
.

(112)

∂ΠRev(Q,K, e = 1)

∂Q
=T
(
− (K −DL)3

6Q3
−
(
2D2

H + 4DHDL +D2
L + 2DLK −K2

)
4Q2

+
(2DH + 3DL −K)2

4(DL −K +Q)2
,

∂2ΠRev(Q,K, e = 1)

∂2Q
=T

(
(K −DL)3

2Q4
+

2D2
H + 4DHDL +D2

L + 2DLK −K2

2Q3
− (2DH + 3DL −K)2

2(DL −K +Q)3

)
.

(113)

B.2.6 Hessian and Concavity of Revenue Function

Now that we obtained all the derivatives, we turn to the concavity result. To show concavity of

the objective function, the Hessian has to be negative semi-definite. It is easy to show that the

second partial derivatives w.r.t. to ∂2K and ∂2Q are both negative, so we focus on showing that

the determinant of the Hessian is always weakly positive.

WTS
∂2ΠRev(Q,K, e = 1)

∂K∂K

∂2ΠRev(Q,K, e = 1)

∂Q∂Q
− ∂2ΠRev(Q,K, e = 1)

∂Q∂K

2

≥ 0,

(DH +DL)2(−(K −DL)4 + 2(K −DL)3Q− 4(DH +DL)2Q2 + 2(2DH + 3DL −K)Q3)

2Q5(DL −K +Q)3
≥ 0,

− (K −DL)4 + 2(K −DL)3Q− 4(DH +DL)2Q2 + 2(2DH + 3DL −K)Q3 ≥ 0,

− 4(DH +DL)2Q2 + 2(2DH + 3DL −K)Q3 > 0,

− 2(DH +DL)2 + (2DH + 3DL −K)Q > 0, As we assume Q > DH +K and the LHS is increasing in Q :

− 2(DH +DL)2 + (2DH + 3DL −K)(DH +K) > 0,

(K −DL)(DH + 2DL −K) ≥ 0.

(114)
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This is a true statement for the parameter space of storage capacity we consider. We were thus

able to show that the revenue function of the tracking model for e = 1, DL < K < 2DL + DH

and Q > K +DH is concave. As the investment costs are linear and thus concave themselves, the

entire tracking objective function is a sum of concave elements and thus concave.

B.3 Partial Discharge Model

As introduced in Section 3.2.3, the objective function of the partial-discharge model is:

ΠP (Q,K) =
g

Q
(

[∫ DH

0
q dq

]
+

[∫ DL
e

+DH

DH

DH + e(q −DH) dq

]
+

[∫ Q

DL
e

+DH

DL +DH dq

]
+[∫ Q

DH+
DL
e

min(eq − eDH −DL, J)dq

]
1
Q

∫ Q
0

∫ Q
DH+

DL
e

min[eq − eDH −DL, J, (DH − q2)+ + (DL − e(q2 −DH)+)+] dqdq2∫ Q
DH+

DL
e

min[eq − eDH −DL, J ]dq
)−

cK
e
DL −

cK
e
J − cQQ.

(115)

where J = K −DL, e ∈ (0, 1], and where we restrict our parameter space to K∗F ≥ DL - since

outside of this space the full-discharge model is exact - and to Q ≥ DH + DL
e - which is equivalent

to assuming that generation capacity is not prohibitively expensive.

As previously mentioned, in Appendix B.1, we simplify the objective function by replacing this

term

1
Q

∫ Q
0

∫ Q
DH+

DL
e

min[eq − eDH −DL,K −DL, (DH − q2)+ +DL − e(q2 −DH)+)+] dqdq2∫ Q
DH+

DL
e

min[eq − eDH −DL,K −DL]dq

with this term

1
Q

∫ Q
0

∫ Q
DH+

DL
e

min[eq − eDH −DL,K −DL, (DL + eDH − eq2)+] dqdq2∫ Q
DH+

DL
e

min[eq − eDH −DL,K −DL]dq
.

(116)

This change further underpredicts storage profitability by reducing one of the values in the minimum

operator, and allows improved tractability. With this change, the partial-discharge model we utilize

in the paper is:
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ΠP (Q,K) =
g

Q

([∫ DH

0
q dq

]
+

[∫ DH+
DL
e

DH

DH + e(q −DH) dq

]
+

[∫ Q

DH+
DL
e

DL +DH dq

]

+

[∫ Q

DH+
DL
e

min(eq − eDH −DL, J)dq

]

=
g

Q

([∫ DH

0
q dq

]
+

[∫ DL
e

+DH

DH

DH + e(q −DH) dq

]
+

[∫ Q

DH+
DL
e

DL +DH dq

])
+

ge

Q2

(∫ Q

0

∫ Q

DH+
DL
e

min[q −DH −
DL

e
,
K

e
− DL

e
, (DH +

DL

e
− q2)+]dqdq2

)
− cK

e
DL −

cK
e
J − cQQ.

(117)

In order to proceed from here, we solve the double integral
∫ Q

0

∫ Q
DH+

DL
e

min[q−DH − DL
e ,

K
e −

DL
e , (DH + DL

e − q2)+]dqdq2 and show the geometric intuition below. The expression is solved by

accounting for all possible scenarios under which discharge could occur if one was not limited by

storage capacity and then deducting all cases that the storage capacity limitation prevents. Note

that this term only calculates energy discharged in the next period, while any discharging at night

in the same period where the charge occurred is already accounted for in the other terms of the

objective function.

For the unlimited storage case, we start by assuming Q > 2DH + 2DL
e , which simplifies the

exposition and show in graph 6a) how the discharge quantity (on the z-axis) depends on the

generation realizations q (x-Axis) and q2 (y-Axis) for some parameters. Two conditions for this

quantity to be positive is that 1) one has excess charge on the focal day (q > DH + DL/e) and

un-served demand in the following period (q2 < DH + DL/e). Lastly, note that the maximum

discharge quantity that can be used is DH + DL/e as we assume all unused charge to be lost at

the end of the second period. Consequently, the discharge quantity without storage limitation is

the combination of a pyramid with volume (DH +DL/e)
3/3 and a prism with volume (Q− 2DH −

2DL/e)(DH +DL/e)
2/2.

After establishing the unlimited discharge quantity, we investigate the effect that limited storage

capacity has on said quantity. Note that the integral contains K/e, which is the amount of energy

that can be discharged from the storage solution, before the entire expression gets multiplied by the

efficiency parameter e outside the parentheses to accounted for efficiency losses. A full discharge

of K/e times efficiency e meets K demand. In graph 6 b), we show the cases from graph 6 a) for

which the storage quantity was infinite, but now assume a K ≤ eDH +2DL → K/e ≤ DH +2DL/e.

Again, stored energy beyond this level is always assumed to be lost, thus storage capacity beyond

this level is not optimal in this model. The storage addition now limits the realizations on the

Z axis - the lower the capacity, the more of the pyramid and prism get “chopped off”. We thus
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subtract a small pyramid with volume (DH + 2DL/e − K/e)3/3 and a small prism with volume

(Q−2DH −2DL/e)(DH + 2DL/e−K/e)2/2 from the original expression. Hence, the original term

can be expressed and then expanded as shown in Equation (118).

=
ge

Q2

(∫ Q

0

∫ Q

DH+
DL
e

min[q −DH −
DL

e
,
K

e
− DL

e
, (DH +

DL

e
− q2)+]dqdq2

)
.

=
ge

Q2

((DH +DL/e)
3

3
− (DH + 2DL/e−K/e)3

3
+

(Q− 2DH − 2DL/e)(DH +DL/e)
2

2

− (Q− 2DH − 2DL/e)(DH + 2DL/e−K/e)2

2

)
.

=
ge

Q2

(
D2
HDL

e
−
D2
HK

e
+

2DHD
2
L

e2
− 2DHDLK

e2
− DHDLQ

e
+
DHKQ

e
−

3D2
LQ

2e2
+

2D3
L

3e3
− DLK

2

e3
+

2DLKQ

e2
− K2Q

2e2
+
K3

3e3

)
(118)

Even though this exposition assumed Q > 2DH + 2DL/e, if Q < 2DH + 2DL/e the expression

remains true as long as Q ≥ DH +K/e (smaller Q would make K sub-optimal as it could never be

fully charged) and K ≥ DL (by assumption), but the prism volumes switch their signs. Graphically,

the parts of the pyramid (parallel to the orange line in graph 6 a) get removed rather than added.

Another way to see this is to contemplate a new pyramid altogether.

(a) (b)

Figure 6: Discharge Quantity with (a) Infinite Storage Capacity and (b) Finite Storage Capacity

For the case, with Q < 2DH + 2DL/e, lets first consider the case with unlimited storage. We

will explain the cases with reference to the volumes of Figure 6 to show how the cases relate.

Excess generation on the focal day is always smaller than combined demand on the next day
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q−DH −DL/e ≤ DH +DL/e, so if q2 < 2DH +2DL/e−Q all excess generation will be discharged.

Graphically speaking this results in a prism with volume (Q−DH −DL/e)
2/2(2DL/e+ 2DH −Q),

corresponding to the prism with the yellow edge in Figure 6 a). Note that, relative to that graph,

the edge of the prisms turned by 90 degrees counterclockwise in this case, because the limiting

factor now is excess electricity from the focal day, not the discharge availability in the next day.

All other cases of discharge are contained in a pyramid (corresponding to the orange color pyramid

in Figure 6 a) with a volume of (Q −DH −DL/e)
3/3. If one includes limited storage, the purple

pyramid equivalent of Figure 6 b) in this case would have side-length Q − DH − K/e, because

K/e ≤ Q − DH are the only cases for which storage can ever be fully charged. This results in a

pyramid with volume (Q−DH −K/e)3/3. Lastly, the prism volume that has to be chopped off is

(Q−DH −K/e)2/2(2DH + 2DL/e−Q), analogous to the previous case.

We now juxtapose the combined expressions of both cases:

Combined expressions for Q > 2DH + 2DL/e :((DH +DL/e)
3

3
− (DH + 2DL/e−K/e)3

3
+

(Q− 2DH − 2DL/e)(DH +DL/e)
2

2
− (Q− 2DH − 2DL/e)(DH + 2DL/e−K/e)2

2

)
Combined expressions for Q < 2DH + 2DL/e :((Q−DH −DL/e)

3

3
− (Q−DH −K/e)3

3
+

(2DH + 2DL/e−Q)(Q−DH −DL/e)
2

2
− (2DH + 2DL/e−Q)(Q−DH −K/e)2

2

)

(119)

The sums of these expressions are equivalent and we thus continue using the expressions for

Q > 2DH + 2DL/e.

With this derivation completed, we can further collect and simplify terms in the objective

function.

ΠP (Q,K) =
g

Q

([∫ DH

0
q dq

]
+

[∫ DL
e

+DH

DH

DH + e(q −DH) dq

]
+

[∫ Q

DL
e

+DH

DL +DH dq

])
+

ge

Q2

(∫ Q

0

∫ Q

DH+
DL
e

min(q −DH −
DL

e
,
K

e
− DL

e
, (DH +

DL

e
− q2)+)dqdq2

)
− cKDL − cKJ − cQQ,

= DHg +DLg +
D2
HDLg

Q2
+

2D3
Lg

3e2Q2
+

2DHD
2
Lg

eQ2
− 2DHDLgK

eQ2
−
D2
HgK

Q2
− DLgK

2

e2Q2
+

gK3

3e2Q2
−
D2
Hg

2Q
− 2DHDLg

Q
−

2D2
Lg

eQ
+

2DLgK

Qe
+
DHgK

Q
− gK2

2Qe
− cQQ−

cK
e
K.

(120)

79

Electronic copy available at: https://ssrn.com/abstract=3761397



∂ΠP (Q,K)

∂Q
= −

2D2
HDLg

Q3
−

4D3
Lg

3e2Q3
−

4DHD
2
Lg

eQ3
+

4DHDLgK

Q3e
+

2D2
HgK

Q3
+

2DLgK
2

Q3e2
−

2gK3

3Q3e2
+
D2
Hg

2Q2
+

2DHDLg

Q2
+

2D2
Lg

eQ2
− 2DLgK

Q2e
− DHgK

Q2
+
gK2

2Q2e
− cQ,

= Q3 +Q(−
D2
Hg

2cQ
− 2DHDLg

cQ
−

2D2
Lg

ecQ
+

2DLgK

cQe
+
DHgK

cQ
− gK2

2cQe
)+

2D2
HDLg

cQ
+

4D3
Lg

3cQe2
+

4DHD
2
Lg

cQ
− 4DHDLgK

cQe
−

2D2
HgK

cQe
− 2DLgK

2

cQe2
+

2gK3

3cQe2
= 0,

c =
g

3cQ
(−
D2
H

2
− 2DHDL −

2D2
L

e
+ 2DLK +DHK −

K2

2e
),

d =
g

cQ
(D2

HDL +
2D3

L

3e2
+ 2DHD

2
L −

2DHDLK

e
−D2

HK −
DLK

2

e2
+
K3

3e2
),

→ Q∗P =
3

√
−d+

√
d2 + c3 +

3

√
−d−

√
d2 + c3.

(121)

∂2ΠP (Q,K)

∂2Q
=

6D2
HDLg

Q4
+

4D3
Lg

Q4e2
+

12DHD
2
Lg

Q4e
− 12DHDLgK

Q4e
−

6D2
HgK

Q4
− 6DLgK

2

Q4e2
+

2gK3

Q4e2
−

D2
Hg

Q3
− 4DHDLg

Q3
−

4D2
Lg

eQ3
+

4DLgK

Q3e
+

2DHgK

Q3
− gK2

Q3e
.

(122)

∂ΠP (Q,K)

∂K
=− 2DHDLg

Q2e
−
D2
Hg

Q2
− 2DLgK

Q2e2
+
gK2

Q2e2
+

2DLg

Qe
+
DHg

Q
− gK

Qe
− cK

e
,

→ K∗P =DL +
1

2

(
Qe−

√
4(DL +DHe)2g − 4e(DL +DHe)Q+

e(4cK + eg)Q2

g

)
.

(123)

∂2ΠP (Q,K)

∂2K
= −2DLg

Q2e2
+

2gK

Q2e2
− eg

Q
. (124)

∂2ΠP (Q,K)

∂K∂Q
=

4DHDLg

Q3e
+

2D2
Hg

Q3
+

4DLgK

Q3e2
− 2gK2

Q3e2
− 2DLg

Q2e
− DHg

Q2
+
egK

Q2
. (125)
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B.3.1 Derivative Proofs for Optimal Solutions

We know K ≥ DL and K ≤ Q−DH and Q ≥ DH + DL
e .

∂2ΠP (Q,K)

∂2Q
< 0,

6D2
HDLg

Q4
+

4D3
Lg

e2Q4
+

12DHD
2
Lg

eQ4
− 12DHDLgK

Q4e
−

6D2
HgK

Q4
− 6DLgK

2

Q4e2
+

2gK3

Q4e2
−

D2
Hg

Q3
− 4DHDLg

Q3
−

4D2
Lg

eQ3
+

4DLgK

Q3e
+

2DHgK

Q3
− gK2

Q3e
< 0,

6D2
HDL +

4D3
L

e2
+

12DHD
2
L

e
− 12DHDLK

e
− 6D2

HK −
6DLK

2

e2
+

2K3

e2
+

Q(−D2
H − 4DHDL −

4D2
L

e
+

4DLK

e
+ 2DHK −

K2

e
) < 0,

(126)

We first show that the expression multiplied by Q is negative:

−D2
H − 4DHDL −

4D2
L

e
+

4DLK

e
+ 2DHK −

K2

e
< 0,

−D2
He− 4DHDLe− 4D2

L + 4DLK + 2DHKe−K2 < 0,

−D2
He− 4DHDLe− 4D2

L + 4DLK + 2DHKe−K2 = 0,

K = 2DL +DHe The derivative is positive only outside the parameter space we consider.

(127)

This cannot be optimal, as any excess charge in the model is lost after the second period and could

never be used.

Having established that this term is negative, we focus on the sum of the other terms, for which

we show that there is no value K ∈ [DL, 2DL + DHe] for which this expression is positive, while

having Q ≥ DH +K/e, which we assume.

6D2
HDL +

4D3
L

e2
+

12DHD
2
L

e
− 12DHDLK

e
− 6D2

HK −
6DLK

2

e2
+

2K3

e2
= 0,

which has 3 roots:

K∗1 = DL −
√

3
√
D2
L + 2DHDLe+D2

He
2, K∗2 = DL,

K∗3 = DL +
√

3
√
D2
L + 2DHDLe+D2

He
2 = DL +

√
3(DL +DHe).

(128)

∂2ΠP (Q,K)

∂2K
< 0,

− 2DLg

Q2e2
+

2gK

Q2e2
− g

Qe
< 0,

∂2ΠP (Q,K)

∂2K
< 0 if K <

Qe

2
+DL and K∗ < that value.

(129)
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WTS
∂ΠP (Q,K)

∂Q
< 0, ifQ→∞,

∂ΠP (Q→∞,K)

∂Q
= −cQ.

(130)

WTS
∂ΠP (Q,K)

∂K
< 0, ifK →∞,

∂ΠP (Q,K →∞)

∂K
= −2DHDLg

Q2e
−
D2
Hg

Q2
− 2DLgK

Q2e2
+
gK2

Q2e2
+

2DLg

Qe
+
DHg

Q
− gK

Qe
− cK

e

As Q > DH/e+K/e:

+ g − g − cK = −cK .

(131)

B.3.2 Border Solutions

Q = M or K = M , where M is a larger number cannot be an optimal border solution as shown by

the second derivatives. Q = DH + DL
e and K > DL cannot be optimal as the storage will never be

charged. Hence, the only border solution we have to test is K = DL and Q > DH + DL
e .

ΠP (Q,K = DL) = = DHg +DLg −
D2
Hg

2Q
− DHDLg

Q
−
D2
Lg

2eQ
− cQQ−DL

cK
e
. (132)

∂ΠP (Q,K = DL)

∂Q
=
D2
Hg

2Q2
+
DHDLg

Q
+
D2
Lg

2eQ2
− cQ,

Q∗bor =

√√√√g(
D2

L
e + 2DHDL +D2

H)

2cQ
.

(133)
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Next, we investigate the partial derivative w.r.t. K at the border K = DL

WTS
∂ΠP (Q,K = DL)

∂K
> 0,

− 2DHDLg

Q2e
−
D2
Hg

Q2
−
D2
Lg

Q2e2
+
DLg

Qe
+
DHg

Q
− cK

e
> 0,

Q2 −Q(
DLg

cK
+
DHeg

cK
) +

2DHDLg

cK
+
D2
Heg

cK
+
D2
Lg

ecK
< 0,

g

2cK
(DL +DHe)−

√
(DL +DHe)2g(−4cK + ge)

4c2
Ke

< Q <

g

2cK
(DL +DHe) +

√
(DL +DHe)2g(−4cK + ge)

4c2
Ke

,

(DL +DHe)

2cK
(g −

√
g(ge− 4cK)

e
) < Q <

(DL +DHe)

2cK
(g +

√
g(ge− 4cK)

e
).

(134)

If the expression under the radical is negative, ∂ΠP (Q,K)
∂K < 0 whenever K = DL, it follows from

concavity w.r.t. K that (Q∗bor,K
∗
bor) maximizes profit. This happens when g < 4cK

e , gS .

Now, setting Q = Q∗bor =

√
g(

D2
L
e

+2DHDL+2D2
H)

2cQ
:

(DL +DHe)

2cK
(g −

√
g(ge− 4cK)

e
) <

√√√√g(
D2

L
e + 2DHDL +D2

H)

2cQ
<

(DL +DHe)

2cK
(g +

√
g(ge− 4cK)

e
),

g >

(
2cQ(DL +DHe)

2 + cK
(
D2
L + 2DH(DH +DL)e

))2
2cQe(DL +DHe)2

(
D2
L + 2DH(DH +DL)e

) ,

=

(
cK + 2cKem(1 +m) + 2cQ(1 + em)2

)2
2cQe(1 + em)2(1 + 2em(1 +m))

, gP ,where m =
DH

DL
.

(135)

When g is larger than gP , we have
∂ΠP (Q∗bor,DL)

∂K > 0, hence the maximum of the function

must necessarily be the interior solution (Q∗int,K
∗
int). Yet, when g ∈ (gF , gP ), we have the border

solution.

B.3.3 Concavity Proof Using Derivatives Directly

Here, we provide an alternative way of showing concavity of the partial-discharge model by directly

analyzing the derivatives, Hessian and their roots. We present this approach second as it does not

develop the same intuition about the problem as the geometric approach checking for the various

possible (border) solutions, but uses the standard second-partial-derivative test.
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ΠP (Q,K) = DHg +DLg +
D2
HDLg

Q2
+

2D3
Lg

3e2Q2
+

2DHD
2
Lg

eQ2
− 2DHDLgK

eQ2
−
D2
HgK

Q2
− DLgK

2

e2Q2
+

gK3

3e2Q2
−
D2
Hg

2Q
− 2DHDLg

Q
−

2D2
Lg

eQ
+

2DLgK

Qe
+
DHgK

Q
− gK2

2Qe
− cQQ−

cK
e
K.

(136)

Because cQ Q and cK/e K are concave functions in Q and K, we have to show concavity for the

rest of the objective function (see Equation 137). If we can show that, the sum of concave functions

results in a concave objective function.

ΠP excl. cost(Q,K) = DHg +DLg +
D2
HDLg

Q2
+

2D3
Lg

3e2Q2
+

2DHD
2
Lg

eQ2
− 2DHDLgK

eQ2
−
D2
HgK

Q2
−

DLgK
2

e2Q2
+

gK3

3e2Q2
−
D2
Hg

2Q
− 2DHDLg

Q
−

2D2
Lg

eQ
+

2DLgK

Qe
+
DHgK

Q
− gK2

2Qe
,

WLOG, we set g = 1, DL = 1 and DH = mDL,

ΠSimplified(Q,K) = m+ 1 +
m2

Q2
+

2

3e2Q2
+

2m

eQ2
− 2mK

eQ2
− m2K

Q2
− K2

e2Q2
+

K3

3e2Q2
− m2

2Q
− 2m

Q
− 2

eQ
+

2K

Qe
+
mK

Q
− K2

2Qe
.

(137)

With this formulation, Q and K are expressed as multiples of nightly demand, i.e. K = 2 would

be storage capacity equal to two nightly demand and Q = 3 + 2m would be generation equal to 3

times nightly demand and two times daily demand. With this re-formulation, we achieve a much

more succinct expression of the objective-function, which is helpful in attaining a Hessian that one

can analyze/work with. We continue by writing down the first and second partial derivatives for

this simplified objective function.

∂ΠSimplified(Q,K)

∂Q
=− 2m2

Q3
− 4

3e2Q3
− 4m

eQ3
+

4mK

eQ3
+

2m2K

Q3
+

2K2

e2Q3
−

2K3

3e2Q3
+

m2

2Q2
+

2m

Q2
+

2

eQ2
− 2K

Q2e
− mK

Q2
+

K2

2Q2e
,

∂ΠSimplified(Q,K)

∂K
=− 2m

eQ2
− m2

Q2
− 2K

e2Q2
+

K2

e2Q2
+

2

Qe
+
m

Q
− K

Qe
,

∂2ΠSimplified(Q,K)

∂2Q
=

6m2

Q4
+

4

e2Q4
+

12m

eQ4
− 12mK

eQ4
− 6m2K

Q4
− 6K2

e2Q4
+

2K3

e2Q4
− m2

Q3
− 4m

Q3
− 4

eQ3
+

4K

Q3e
+

2mK

Q3
− K2

Q3e
,

∂2ΠSimplified(Q,K)

∂2K
=− 2

e2Q2
+

2K

e2Q2
− 1

Qe
,

∂2ΠSimplified(Q,K)

∂K∂Q
=

4m

eQ3
+

2m2

Q3
+

4K

e2Q3
− 2K2

e2Q3
− 2

Q2e
− m

Q2
+

K

Q2e
.

(138)
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We have proven before (see Equations 34 and 37) that the second partial derivatives are concave,

so in order to proof concavity of this simplified objective function we now want to show that the

Hessian is negative semi-definite over the convex parameter space we consider.11

WTS
∂2ΠSimplified(Q,K)

∂2Q

∂2ΠSimplified(Q,K)

∂2K
−
∂2ΠSimplified(Q,K)

∂Q∂K

2

> 0,

− 8

e4Q6
+

8K

e4Q6
− 4K2

e4Q6
− 24m

e3Q6
+

16Km

e3Q6
− 8K2m

e3Q6
− 28m2

e2Q6
+

8Km2

e2Q6
− 4K2m2

e2Q6
− 16m3

eQ6
− 4m4

Q6
+

4

e3Q5
+

12m

e2Q5
+

2m2

e2Q5
+

10m2

eQ5
− 2Km2

e2Q5
+

2Km2

eQ5
+

4m3

Q5
− m2

Q4
+
m2

eQ4
> 0,

− 8 + 8K − 4K2 − 24em+ 16eKm− 8eK2m− 28e2m2 + 8e2Km2 − 4e2K2m2 − 16e3m3 − 4e4m4 + 4eQ+

12e2mQ+ 2e2m2Q+ 10e3m2Q− 2e2Km2Q+ 2e3Km2Q+ 4e4m3Q+ e3m2Q2 − e4m2Q2 > 0,

K2(−4− 8em− 4e2m2) +K(8 + 16em+ 8e2m2 − 2e2m2Q+ 2e3m2Q) + 8− 24em− 28e2m2

− 16e3m3 − 4e4m4 + 4eQ+ 12e2mQ+ 2e2m2Q+ 10e3m2Q+ 4e4m3Q+ e3m2Q2 − e4m2Q2 > 0,

K1 =
4−
√
−16(1+em)6+16e(1+em)5Q+(1−e)e3m2(4+em(8+m+3em))Q2+em(8+em(4−(1−e)Q))

4(1+em)2
,

K2 =
4+
√
−16(1+em)6+16e(1+em)5Q+(1−e)e3m2(4+em(8+m+3em))Q2+em(8+em(4−(1−e)Q))

4(1+em)2
.

(139)

We know that the Hessian is positive between K ∈ (K1,K2). It can be shown that K1 and

K2 each have unique, real solutions (i.e. a positive radicand), if m > 0, 0 < e ≤ 1 and Q is in

the aforementioned range. We thus first want to show that K1 < 0, so that the Hessian becomes

negative only for storage capacities which we don’t consider for the partial-discharge model. Note

that we assume for solar generation to cover at least demand in expectation, we haveQ > 2(m+1/e).

11As a reminder, for the partial-discharge model the parameter space we consider is: Storage capacity is between

nightly demand and two days worth of capacity (DL ≤ K ≤ 2DL + DHe) which in our re-formulation is equal to

(1 ≤ K ≤ 2 +me). Generation is at least large enough to cover demand in expectation (Q ≥ 2DL/e+ 2DH), which

in our re-formulation is equal to (Q ≥ 2/e+ 2m)
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K1 < 0,

4−
√
−16(1+em)6+16e(1+em)5Q+(1−e)e3m2(4+em(8+m+3em))Q2+em(8+em(4−(1−e)Q))

4(1+em)2
< 0,

4−
√
−16(1 + em)6 + 16e(1 + em)5Q+ (1− e)e3m2(4 + em(8 +m+ 3em))Q2+

em(8 + em(4− (1− e)Q)) < 0.

Clearly, the LHS is decreasing in Q, so we substitute the smallest Q possible of Q = 2m+ 2/e.

= 4−
√
−16(1 + em)6 + 16e(1 + em)5(2m+ 2/e) + (1− e)e3m2(4 + em(8 +m+ 3em))(2m+ 2/e)2+

em(8 + em(4− (1− e)(2m+ 2/e))) < 0,

= 4− (4 + 12em+ 2em2 + 10e2m2 + 2e2m3 + 2e3m3) + 8em− 2em2 + 6e2m2 − 2e2m3 + 2e3m3 < 0,

− 4em− 4em2 − 4e2m2 − 4e2m3 < 0.

(140)

Thus, K1 is always negative. We now want to show that K2 is suitably large, i.e. that K2 > 2+me

so that the Hessian is positive, as long as storage capacity is less than two days. As a reminder,

the partial discharge case assumes that all storage is lost after two days, so capacity in excess of

that would not be useful in our approximation.

K2 > 2 +me

4+
√
−16(1+em)6+16e(1+em)5Q+(1−e)e3m2(4+em(8+m+3em))Q2+em(8+em(4−(1−e)Q))

4(1+em)2
≥ 2 +me.

(141)

We show that the LHS in 141 is increasing in Q by showing that some of the positive parts of

the derivative are larger in magnitude than the negative parts of the derivative:

∂em(8 + em(4− (1− e)Q))

∂Q
= −(1− e)e2m2,

∂
√
−16(1 + em)6 + 16e(1 + em)5Q+ (1− e)e3m2(4 + em(8 +m+ 3em))Q2

∂Q

>
∂
√

(1− e)e3m2(4 + em(8 +m+ 3em))Q2

∂Q
= e1.5m

√
(1− e)(4 + em(8 +m+ 3em)).

Comparing the magnitudes of the derivatives:

|e1.5m
√

(1− e)(4 + em(8 +m+ 3em))| > | − (1− e)e2m2|,

e1.5m
√

(1− e)(4 + em(8 +m+ 3em)) > (1− e)e2m2,√
(1− e)(4 + em(8 +m+ 3em)) > (1− e)e0.5m,

(1− e)(4 + em(8 +m+ 3em)) > (1− e)2em2,

4 + 8em+ 3e2m2 > 0.

(142)
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Thus, K2 is increasing in Q and we again use the lowest possible value of Q = 2m + 2/e to proof

K2 ≥ 2 +me. Continuing from 141.

4+
√
−16(1+em)6+16e(1+em)5Q+(1−e)e3m2(4+em(8+m+3em))Q2+em(8+em(4−(1−e)Q))

4(1+em)2
≥ 2 +me,

4+
√
−16(1+em)6+16e(1+em)5(2m+2/e)+(1−e)e3m2(4+em(8+m+3em))(2m+2/e)2+em(8+em(4−(1−e)(2m+2/e)))

4(1+em)2
≥ 2 +me,

4+(4+12em+2em2+10e2m2+2e2m3+2e3m3)+8em−2em2+6e2m2−2e2m3+2e3m3

4(1+em)2
≥ 2 +me,

8 + 20em+ 16e2m2 + 4e3m3

4(1 + em)2
≥ 2 +me,

2 + em ≥ 2 +me.

(143)

Thus, the simplified objective function’s is negative semi-definite across the parameter space and

thus a concave function. In combination with the concave (linear) cost terms, the objective function

of the partial discharge model is thus concave.

B.4 Full Discharge Model

ΠF (Q,K) =
g

Q
[

∫ DH

0
q dq +

∫ Q

DH

DH dq +

∫ DH+K/e

DH

(q −DH) e dq +

∫ Q

DH+K/e
K dq]− cK

e
K − cQQ,

=
g

Q
[
DH

2

2
+ (Q−DH)DH +

K2

2e
+ (Q−DH −

K

e
)K]− cK

e
K − cQQ,

=
g

Q
[−
D2
H

2
− K2

2e
−KDH ] + g(DH +K)− cK

e
K − cQQ.

(144)

∂ΠF (Q,K)

∂Q
=
g

Q2
[
D2
H

2
+
K2

2e
+KDH ]− cQ,

→ Q∗F =

√
g

cQ
[
D2
H

2
+
K∗

2

F

2e
+K∗FDH ],

→ Q∗F,K=0 =

√
g

cQ

D2
H

2
.

(145)

∂2ΠF (Q,K)

∂2Q
=− g

Q3
[D2

H +
K2

e
+ 2KDH ]. (146)

∂2ΠF (Q,K)

∂Q∂K
=
g

Q2
[
K

e
+DH ]. (147)
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∂ΠF (Q,K)

∂K
=
g

Q
[−DH −

K

e
] + g − cK

e
,

→ K∗F = max[−DHe+Q∗F (e− cK
g

), 0].
(148)

∂2ΠF (Q,K)

∂2K
=− g

Qe
. (149)

B.5 Additional Analysis of the Quality of the Partial- and Full-discharge Ap-

proximations

Below, we discuss the results presented in Table 3 from Section 5.1 in more detail and present

additional results on how good both models approximate the tracking model as we vary different

parameters of the model.

The first and most important observation is that profit-wise, the partial-discharge model is

very accurate, and only a few percentage points off relative to the tracking model, with worst-case

deviations being only -6% and -2% for Thermal and Battery technologies, respectively. The full-

discharge model is not nearly as good, with average deviations around 40-50%. The direction of

these deviations is consistent with our analytical findings.

Stepping back, we also observe that overall, the partial-discharge model is much closer to the

tracking model than the full-discharge model. This suggests that the full-discharge model, despite

being exact for a certain range of game parameters (as per Theorem 3), becomes fairly imprecise

outside of that range.

The accuracy of the partial-discharge model carries over from profit to generation, with average

and median deviations from the tracking model on the order of 1% to 2%, and worst-case deviation

of -8% and -1% for Thermal and Battery technologies, respectively. Gaps increase for storage

decisions, with average and median around -30% for Thermal and -2% to -3% for Battery, and

worst-case deviations of -35% and -24% respectively. Taken together, these findings point to the

partial-discharge model as being more accurate than the full-discharge model.

Next, we look at the impact of individual parameters on the approximation quality of our

models. Figures 7 and 8 show the model comparison results for La Palma, the largest of the three

islands (results for the other markets are similar). Varying the storage and generation costs in

Figure 7 confirms that, for a large range of parameters, the partial-discharge model is closer to the

simulation results (tracking model) than the full-discharge model.

Figures 8a and 8b demonstrate, once again, the good approximation quality of the partial-

discharge model, this time varying the backup cost and demand ratio (DH/DL) respectively. All

these observations also confirm that the partial- and full-discharge models provide a lower and

upper bound, respectively, for the tracking model’s storage capacity investment, as discussed in

Theorems 4 and 6.
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(a) (b)

Figure 7: Storage and Generation Capacity Investment Decisions Under the Partial- and Full-

discharge Models, Compared to the Tracking Model, as a Function of Storage Cost (a) and Gener-

ation Cost (b)

(a) (b)

Figure 8: Storage and Capacity Investment Decisions Under the Partial- and Full-discharge Models,

Compared to the Tracking Model, as a Function of Backup Cost (a) and Demand Ratio (b)

B.6 Decreasing Generation and Storage Cost

Given the consistent decrease in solar generation and storage costs over the past several years, it

would be interesting to find out how much cheaper solar generation and storage would need to

become in order for a certain fraction of all electricity to be generated from fossil-free sources in a

given market.
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To this end, we project the current cost-reduction rates of 7% per year for solar and 8% for

storage going forward,12 and analyze how long it would take to profitably reach 70%, 80%, and 90%

of renewable generation (i.e., only using the backup for 30%, 20%, or 10% of demand, respectively).

Our investigation should therefore yield reasonably good predictions on the evolution of renewable

generation rates on islands, in the absence of governmental intervention.

Figure 9: Time Until a Percentage of Renewable Generation Becomes Profitable

Figure 9 shows three core findings under a conservative assumption of zero carbon tax. First, at

the comparatively high, unsubsidized electricity prices of the islands, 80% of renewable penetration

would already be profitable today. Second, with subsidies, we are five years away from seeing 70%

of generation being met by solar and thermal storage (10+ years with batteries). The third, and

potentially most important long-term insight, is that while 70-80% penetration may be right around

the corner, moving renewable penetration closer to 100% will instead take a considerable amount of

time, with or without subsidies. Achieving 95% of renewable generation is multiple decades away

in said markets and even at the unsubsidized prices will take more than a decade, depending on

technology. This pattern showcases the increasing difficulty of fully replacing the flexible, fossil

backup even at very high levels of renewables and storage.

12Using historical cost reductions is the best proxy for future cost reductions (while we acknowledge that these

reduction rates might not persist exactly at these levels, it should be noted that the overall downward trend for costs

has been stable and consistent for more than a decade).
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