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Language can provide important insights into people, and culture more generally. Further,
the digitization of information has made more and more textual data available. But by itself,
all that data are just that: data. Realizing its potential requires turning that data into insight.
We suggest that automated text analysis can help. Recent advances have provided novel and
increasingly accessible ways to extract insight from text. While some psychologists may be
familiar with dictionary methods, fewer may be aware of approaches like topic modeling,
word embeddings, and more advanced neural network language models. This article pro-
vides an overview of natural language processing and how it can be used to deepen under-
standing of people and culture. We outline the dual role of language (i.e., reflecting things
about producers and impacting audiences), review some useful text analysis methods, and
discuss how these approaches can help unlock a range of interesting questions.

Public Significance Statement

This article offers an integrative discussion of how automated text analysis can be used
to shed light on people and culture. It reviews recent methods and explains how they can
be applied by nonspecialists to answer a range of research questions.

Keywords: natural language processing, automated text analysis, language, cultural success, culture

Supplemental materials: https://doi.org/10.1037/amp0000882.supp

Language is everywhere. It is how people express
thoughts, communicate with others, and consume news, sto-
ries, and information. It is how parents parent, leaders lead,
and salespeople sell. Language is how doctors communicate
with patients, researchers communicate with study partici-
pants, and policymakers persuade the public.

Not surprisingly then, language has the potential to tell us
a lot about people and culture. It can provide insight into
who people are (e.g., personality), how they are feeling, and
their attitudes, opinions, and reactions. Further, when aggre-
gated across individuals, language can shed light on differ-
ences between groups or sociocultural contexts, and why
some things (e.g., products or ideas) catch on.

But realizing that potential requires the right tools. The
digitization of information has made more and more textual
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(i.e., language) data available. People write reviews, post
online, and chat with friends, all of which provide informa-
tion on people and the prevalence of stereotypes, innova-
tions, and ideas. Books, songs, news articles, and movies
provide a wealth of information on various cultural phe-
nomena (e.g., Berger & Packard, 2018; Michel et al., 2011;
Reagan et al., 2016).

By itself, though, all this data is just that—data. For this
data to be useful, researchers must be able to parse it to
extract insight.

This is where natural language processing (NLP) comes
in. Automated text analysis is a computer-assisted NLP
approach to quantify the information contained in text. These
methods allow researchers to not only track the presence or
prevalence of particular terms and ideas, but also to measure
relationships between them, and how those relationships
change over time. In short, natural language processing pro-
vides a powerful tool to help understand people and culture.

This article provides an overview of natural language
processing and how it can be used to deepen understanding.
First, we delineate the dual role of language and how it both
reflects and impacts. Second, we review automated methods
for extracting insight from text. While some psychologists
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may be familiar with dictionary-based methods (e.g., Lin-
guistic Inquiry and Word Count; Pennebaker et al., 2015),
newer methods from computer science and statistics (e.g.,
topic modeling, embeddings, and neural network language
models) have received less attention.! We explain these
methods and how they might be used by nonspecialists.
Along the way we discuss how these approaches can be
applied to address a range of interesting questions.

Note that complete detail on how to do textual analysis
is beyond the scope of this article. Many important topics
should be carefully considered when acquiring textual
data (e.g., how to scrape data from websites), cleaning
and organizing it (e.g., tokenization, stemming, and
removing stop words; Kern et al., 2016), and analyzing it
(e.g., multiple hypothesis testing). While these topics are
increasingly accessible to nonspecialists, they require
more space than is available here, though see the online
supplemental materials for some relevant resources.

The Dual Role of Language

Language serves a dual role: It both (a) reflects things
about the person or people that produced it and (b) impacts
or influences the audience that consumes it.

Language Reflects the Producer

Language can be viewed like a signature or fingerprint
(Pennebaker, 2011). Different people use words differently
and language can provide insight into the attentional focus
of language producers (Boyd & Schwartz, 2021) as well as
their states, traits, values, and personality (Boyd et al.,
2020; Pennebaker et al., 2003). Language use differs by

gender (Mehl & Pennebaker, 2003), age (Sap et al., 2014),
and political affiliation (Sterling et al., 2020), for example,
and can even signal things like an impending breakup (Seraj
et al., 2021).

As a result, the language produced by a group or socio-
cultural context reflects or indicates things about the group
or context that produced it (e.g., Holtgraves & Kashima,
2008; Morling & Lamoreaux, 2008).2 Consistent with
cross-cultural variation in the value of harmony and differ-
entiation, for example, Korean advertisements emphasize
conformity, while American ads emphasize uniqueness
(Kim & Markus, 1999). Consistent with social class differ-
ences in the meaning of choice, the words used in car adver-
tisements targeting working class individuals emphasize
connecting with others, while ads targeting middle class
individuals emphasize differentiation (Stephens et al.,
2007).

Because people and cultures change over time, language
also provides dynamic insight. At the individual level, this
manifests through psychological states, such as how some-
one is feeling (Schwartz et al., 2014), but aggregated across
people, analyzing language over time can provide insight
into if, and how, cultures are changing. When referencing
the two sexes, for example, news articles and books tend to
put men before women (e.g., “men and women” rather than
“women and men”), though this has reduced over time
(Kesebir, 2017). Other work has used language to examine
misogyny in music (Boghrati & Berger, 2020) and social
class (Kozlowski et al., 2019).

In summary, because language reflects things about the
people and groups that produce it, analyzing language can
not only provide insight into individual differences and psy-
chological states, but also sociocultural differences and how
culture and cultures change over time (i.e., cultural
analytics).

Language Impacts the Audience

Beyond reflecting things about its producers, language
also impacts the audience that is exposed to it. At the

! While some cognitive scientists have used these tools (e.g., Huth et al.,
2016; Polyn et al., 2009; Steyvers et al., 2006) they have seen less
widespread attention across areas of psychology.

2 Cultural items play a critical role in the mutual constitution of culture
and self (Markus & Hamedani, 2019). People learn norms, practices, and
ways of being through social ties, but also through books, songs, and other
cultural items. Because such items are shaped by the sociocultural context
in which they are created, they carry meaning, reinforcing and propagating
ways of being. American children’s books, for example, tend to reflect
American values and biases. Consequently, American children are more
likely to be exposed to, and adopt, sociocultural consistent values and
stereotypes, and pass them on to others.

3 Rescarch in the digital humanities has also applied methods from
computational linguistics to study cultural artifacts (e.g., Moretti, 2013).
For surveys of the literature, see Jinicke et al. (2015), Underwood (2015),
Gold (2012), Berry (2012). Also see Bail (2014) and Kozlowski et al.
(2019) for recent discussions of extracting cultural insight from text.
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individual level, words, phrases, and other linguistic aspects
can shape everything from memory and sustained attention
to evaluation and social transmission. Phrases that relate to
senses in metaphoric ways (e.g., cold person) are easier to
remember (Akpinar & Berger, 2015), for example, and
uncertain language increases attention (Berger et al.,
2021). Questions shape interpersonal evaluations (Huang
et al., 2017) and disgust and other high arousal emotions
increase sharing (Berger, 2011; Berger & Milkman, 2012;
Heath et al., 2001).

Consequently, at the collective level, language can shape
whether cultural items (e.g., books or ideas) succeed or fail.
Just as natural selection shapes evolution and success in the
biological world, some (e.g., Dawkins, 1976; Heath et al.,
2001) have suggested that processes of variation and selec-
tion shape cultural success. Some stories are longer while
others are shorter. Some narratives are more circuitous
while others are more direct. Some songs are thematically
typical while others are more atypical.

The success of these different variants depends, in part, on
how they fit with people. Sociocultural background shapes
individual-level psychological process (e.g., cognition & attri-
bution; Markus & Kitayama, 1991), but the reverse is also
true. When shared across individuals, psychological processes
can act as a selection mechanism, shaping the content of col-
lective culture (Heath et al., 2001; Kashima, 2008; Schaller &
Crandall, 2004). Processes of evaluation, memory, and trans-
mission shape which items are liked, retained, and shared, and
as a result, which items become popular and how culture
evolves. More communicable traits, for example, are more
likely to persist in ethnic stereotypes (Schaller et al., 2002)
and minimally counterintuitive narratives are more popular

(Norenzayan et al., 2006). Ideas are more successful in times
when they are cued more frequently by the environment, and
ideas with more prevalent habitats (i.e., more frequent cues),
are more successful overall (Berger & Heath, 2005). More
disgusting urban legends are more widely distributed (Heath
et al., 2001) and news articles that evoke high arousal emotion
are more likely to go viral (Berger & Milkman, 2012).

Taken together, research on language’s impact suggests
ways to encourage attention, persuasion, or memory. Fur-
ther, it sheds light on cultural success. Because language
impacts the audience that consumes it, items that include
certain types of language may be more successful.

Unlocking the Potential of Text

Whether studying what language reflects, or how it
impacts, two key shifts have greatly facilitated work in this
space. The first is access to data. Technological changes
have made it faster and easier to access a wealth of lan-
guage-related data (see online supplemental materials). Mil-
lions of reviews, messages, and other content is posted
online (Kern et al., 2016). Movie scripts, song lyrics, books,
newspaper articles, and other content have been digitized,
enabling researchers to comb hundreds of millions of words
from millions of texts. Even everyday conversations can be
recorded and turned into data.*

But parsing this data can be challenging. Manually read-
ing content and coding the presence of words or themes
used to be the main approach. But manual methods are diffi-
cult to scale. Having individuals read stories takes time and
twice the number of stories takes twice as long. Further,
because manual coding relies on human judgment, it is sus-
ceptible to bias.

Automated textual analysis, however, can help address
these challenges. Below we review several useful techni-
ques including dictionaries, topic modeling, embeddings,
and more advanced neural network language models.

Dictionaries

Dictionaries are a simple way to begin to extract features
from language data. This approach takes a predefined lexi-
con, or list of words, and searches texts for their presence.5

Some dictionaries count words in a category. Linguistic
Inquiry and Word Count (LIWC; Pennebaker et al., 2015),
one of the most well-known dictionaries, scores texts on

4 This shift has been particularly beneficial for cultural analytics (e.g.,
why some things catch on). Surveys are difficult to collect over decades.
Further, it can be challenging to measure key features of cultural items (i.e.,
how much emotion they evoke). Natural language processing tools,
combined with the digitization of content, have made it easier to measure
the prevalence of cultural items (e.g., stereotypes) and how they change
over time. Further, it has facilitated feature extraction from those items to
help understand why some items may be more successful.

3 Links to several dictionaries used for automated text analysis are
provided in the online supplemental material.
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over 50 dimensions (e.g., pronouns and cognitive proc-
esses). The sentence “He is hungry now” would receive a
25% score on the pronoun dimension, for example, because
one of the four words in the sentence is a pronoun (i.e.,
“he”). Each dimension is made up of a list of relevant words
determined by judges and prior research. LIWC has been
used to explore subjects like interracial feedback (Harber et
al., 2019), self and other focus (Barasch & Berger, 2014),
and racial disparities in police language (Voigt et al., 2017).
Other word count-based dictionaries have been used to
measure things like warmth and competence (Nicolas et al.,
2021), gender stereotypes (Gaucher et al., 2011), references
to nature (Kesebir & Kesebir, 2017), and liberal and con-
servative language (Neiman et al., 2016).

Other dictionaries use a more continuous approach.
Rather than focusing on the count or percentage of words in
a category, words are continuously scored on a particular
dimension (e.g., love is a more positive word than hate).
Brysbaert et al. (2014), for example, had participants rate
40,000 English words based on how abstract or concrete
they were. Words like pitbull were rated as more concrete
than words like essentialness. Similar approaches have been
used to measure features such as dominance (Warriner et
al., 2013) and attitude extremity (Rocklage et al., 2018).

Researchers can also create custom dictionaries. Given a
particular concept and context, one can specify words or
phrases that seem relevant, find synonyms, and use off the
shelf packages, simple coding, or even spreadsheet software
to measure their presence (Humphreys & Wang, 2018). Pre-
viously validated dictionaries increase validity, but they
may miss some important words in a particular context, so
some customization may be beneficial.

Dictionaries can be used to study both what language
reflects and how it impacts. On the reflection side, diction-
aries have been used to understand whether someone might
be depressed (Eichstaedt et al., 2018), going through a
breakup (Seraj et al., 2021), or whether cultural items from
different sociocultural contexts vary on key dimensions
(e.g., Kim & Markus, 1999; Snibbe & Markus, 2005). On
the impact side, dictionaries have been used to understand
gender differences in entrepreneurial fund raising (Huang
et al., 2020) and how psychological processes (e.g., arousal)
shape what content goes viral (Berger & Milkman, 2012).

Dictionaries can also be used as inputs to other methods.
Once particular words have been quantified, they can be
used to help calculate the similarity between texts (or parts
of them). Linguistic style matching, for example, measures
verbal coordination by analyzing how frequently different
people use different types of function words (e.g., pro-
nouns). Conversation partners tend to stylistically match
one another (Niederhoffer & Pennebaker, 2002) and lin-
guistic style matching predicts group cohesion (Gonzales et
al., 2010), relationship stability (Ireland et al., 2011), and
negotiation success (Taylor & Thomas, 2008).

Similar approaches can be applied more broadly.
Danescu-Niculescu-Mizil et al. (2013) examined user life-
cycles and linguistic change in online communities. They
examined language use over time, and by measuring lin-
guistic distance (i.e., similarity between new users’ and
community’s language), investigated patterns of encultura-
tion. While users initially adopted community language,
eventually most stopped doing so as the community and its
norms kept evolving. Further, linguistic distance predicted
future engagement (i.e., whether the user stayed engaged in
the community or left).

Srivastava et al. (2018) used a similar approach to exam-
ine enculturation in organizations. Analyzing over 10 mil-
lion internal company emails showed a link between
cultural adaptation and occupational outcomes. Employees
with better cultural fit (i.e., more similar linguistic style to
others in the firm) were more likely to be promoted, while
those who were slower to enculturate (i.e., adapt others’ lin-
guistic style) were more likely to be fired. Employees who
adapted initially but diverged later on were more likely to
end up quitting.

These examples highlight some intriguing aspects of
what words reflect. First, just as groups have behavioral
norms, they have linguistic norms as well. Aggregated to-
gether, the words used by group members provides insight
into how that group tends to communicate. Second, norm
adherence can be measured through linguistic similarity, or
the distance between any given individual and the group.
Third, such distance provides insight into one’s integration
into the group, valuation by the group, and likely engage-
ment with the group in the future.

Measuring similarity opens up a range of avenues for
future research. Researchers can compare the distance
between people, groups, or sociocultural contexts, and how
they change over time (see Bail et al., 2019). Linguistic
similarity predicts friendship, for example, and friends also
exhibit linguistic convergence (Kovacs & Kleinbaum,
2020). Comparing the language used in children’s books
from different countries, or the themes discussed in differ-
ent literary genres, may provide insight into which are more
similar and why.

Topic Modeling

Dictionaries can be useful, but topic modeling, or topic
extraction, takes a more bottom up approach. Rather than
relying on a prespecified list of words or phrases (i.e.,
closed vocabulary), topic modeling uses the structure of the
data to identify the main themes in a body of text (i.e., open
vocabulary, Eichstaedt et al., 2021; Kern et al., 2016). Simi-
lar to how factor analysis identifies underlying groupings
among survey items by measuring the co-occurrence of
words within and across texts, topic modeling identifies the
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Figure 1
Simplified Illustration of How Topic Modeling Works

Step 1. Topic modeling
finds word co-occurences

within and across texts.
Words or word stems in bold or
underline depict co-occurences within

and across texts that will be discussed
in Step 2 in relation to Topics 1 & 2*

Step 2. Each word is assigned a
probabilistic association with each of N
topics the model is asked to produce.

Because love and you tend to co-occur (e.g., Songs A
& B), they appear as high probability words in a topic
the researcher has called “Love.” Because baby and
car tend to co-occur (e.g., Songs B & C), they appear
in a “Girls & Cars” topic. Dream appears in both

Step 3. Each text is described according
to how much of its content is associated
with each of the N topics.

Song A is mostly about the topic “Love”, while Song C is
more about “Girls & Cars.” Song B appears to be a mixture
of these topics. The researcher would likely ask the model
to generate many more topics. By doing so, the model
might uncover topics that seem to capture different facets

- topics because it appears in both Songs A & C, but of love or different stereotypes about gender.
< | ! will always love you. has a different probability of appearing in each topic.
oo | |hope life, treats you kind.
S And | hope that you have all Texts
| that you ever dreamed of (...) Topic 1: “Love” Topic 2: “Girls & Cars” -
7 Topics Song A Song B Song C
love 65% baby 52%
o | Baby, you can drive my car. you 57% 49% 1 "Love" 68% 39% 8%
Eo Yes, I'm gonna be a star. 52% car 42% 2 "Girls & Cars" 1% 43% 52%
G | Baby, you can drive my car, 51% drive 34% 3
“ | ‘and maybe I'll love you (... 7 dream  35% 33% o
32% 33% N %
16% 26% 100% 100% 100%
© | Getoutta my dreams. 12% 17%
?:D Get in to my car. 9% dream 4%
8 Get outta my dreams. / P Statistics in this figure are for demonstrative purposes only (i.e., hypothetical).
f *There would be hundreds or thousands of texts. Only three are depicted here.
Get into the back seat ba_b! ()7 \_/ \/ / Songs: A. | Will Always Love You by Whitney Houston; B. Baby You Can Drive My

Car by The Beatles; C. Get Outta My Dreams, Get Into My Car by Billy Ocean.

latent themes or topics being discussed, and the words that
make up each theme or topic (e.g., Wilson et al., 2016).°

Take song lyrics. While one could use dictionaries to
measure how concrete a song’s lyrics are, or whether the
song uses many social words, those may or may not be the
most relevant features. Instead, topic modeling starts with
the data to discover the latent themes.

See Figure 1 for a simplified illustration of how topic
modeling works. Given a set of texts (e.g., songs), Latent
Dirichlet Allocation (LDA; Blei et al., 2003), a common
topic modeling approach, uses machine learning to identify
words that co-occur (i.e., appear together) both within and
across texts. Songs that contain the word love, for example,
may also tend to include words like you. Songs that contain
the word car may also tend to contain words like baby.
Based on co-occurrences, different clusters of words would
be probabilistically assigned to different topics, with words
more strongly associated with that topic receiving a higher
weight. Finally, each text (i.e., song) is scored based on
how much of each topic it contains.

Once topics have been identified, several questions can
be asked. Researchers interested in what language reflects
could compare what topics different types of people are
talking or writing about, or analyze cultural items from dif-
ferent sociocultural contexts to shed light on differences
between them. Analyzing song lyrics, for example, shows
that while Dance and Rock songs talk a lot about fiery love,
Pop songs talk more about uncertain love (Berger &

Packard, 2018). Alternatively, one could examine variation
over time (e.g., whether certain topics wax or wane in song
lyrics and what that may indicate about cultural change).
By allowing the themes to emerge from the data, rather than
predetermining categories (i.e., using dictionaries), one may
identify differences or changes that may not have been
anticipated in advance.

Researchers can also use these tools to understand what
becomes popular and why. Given American values of inde-
pendence, for example, songs that talk more about independ-
ence may be more popular. Similarly, social media content is
more likely to generate comments if it combines conversational
themes that are not usually discussed together (Bail, 2016).

Once calculated, topics can also be used as inputs to mea-
sure similarity. Similar to groups, genres or categories have
norms. Consequently, norm adherence can be used to
understand why some things succeed or fail. Berger and
Packard (2018) used topic modeling to identify the main
themes in song lyrics, and how similar a given song is to its
genre. Even controlling for a host of other things, more
atypical songs ranked higher on the Billboard charts.

Similar approaches could be applied to other domains.
Do successful movies tend to be similar or different from
their genres? Are academic articles cited more if their mix

S While topic models are commonly run using off-the-shelf packages in
R or Python, free online resources (e.g., http://textanalyzer.org/) permit less
technical users to simply upload a text file and generate LDA results.
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Figure 2

Finding Relationships in Semantic Space With Word Embeddings

[
Friendly

Note.

of themes is more similar to or different from other articles
published in the same journal?

This raises the broader question of when similarity or dif-
ference should be beneficial. The value of novelty (Berlyne,
1970), and drive for stimulation (Zuckerman, 1979), sug-
gests that atypicality should boost success. Exposure can
lead to liking (Zajonc, 1968), however, and there are also
benefits of familiarity (Kunst-Wilson & Zajonc, 1980). So
which should dominate?

Some of this may depend on the domain. While atypical
songs were generally more successful, this effect disap-
peared among Pop songs, a genre that is almost by defini-
tion more about mainstreaming than differentiation (Berger
& Packard, 2018). One could imagine similar effects among
movies or books. While atypicality may increase success
overall, adhering to conventions may be more beneficial in
some genres (e.g., action movies or romance films).

Successful cultural items may also mix and match, simulta-
neously similar in some respects (e.g., musical chords) and dif-
ferent in others (e.g., lyrics; see Berger et al., 2012, for related
ideas). Being similar enough to evoke the warm glow of famil-
iarity but differentiated enough to feel new and exciting.

Embeddings

Advances in computer science have provided even richer
ways to measure similarity. Rather than comparing the
prevalence of words or themes across documents, these
approaches capture the relationship or distance between
contextually related words or larger chunks of text.

Which is more related to grapefruit: kiwi, orange, or
tiger? While this question is easy for people to answer, dic-
tionaries or topic models may struggle. If there was a dic-
tionary for fruit, it would be clear that tiger is not a
member, while orange and kiwi are, but that would not sug-
gest which of these two fruits are more related to grapefruit.
Topic modeling also tends to be rather binary. If grapefruit
and orange or kiwi often co-occur across documents, they
may be included in the same topic. But if none of them
appear in the same topic, it is hard to know which are more
related. Further, simpler measures of word co-occurrence

Barki.ng I\:Ieowing

N ® Meowed
Barked

Distances depicted are for illustrative purposes only.

within a large document (e.g., Latent Semantic Analysis,
LSA) may miss some nuance.” Two words that appear in
close proximity (e.g., the same clause or paragraph) are
probably more related than two words that appear in com-
pletely different sections of a document.

A computational linguistics approach called word embed-
dings addresses some of these issues (e.g., Word2vec,
Mikolov et al., 2013 and GloVe, Pennington et al., 2014).
Similar to Firth’s (1957) famous suggestion that “you shall
know a word by the company it keeps” (i.e., the distribu-
tional hypothesis), this neural network framework takes a
corpus of text (e.g., books), and uses the local context in
which words appear to determine how semantically related
they are (see Eichstaedt et al., 2021, for a recent discussion
in psychology). Just as people who hang out more often
tend to live closer in geographic space, and social network
analysis places people who have the same friends closer to-
gether in network space, word embeddings use word co-
occurrence, distance between words, and word appearance
in similar contexts across different texts to continuously
position words in relation to one another in a multidimen-
sional semantic space. By incorporating the distance
between words within documents, word embeddings are
able to achieve greater relational insight.

If the phrase “dogs are friendly” appears more frequently
in a corpus of news articles than “cats are friendly,” for
example, the words “dog” and “friendly” would be seen as
more related and would be located slightly closer together
in space (Figure 2A). Beyond just co-occurrence, though,
how closely words appear to one another also matters. The
phrases dogs are friendly and “dogs love running and are
also friendly” both contain the words dog and friendly, but

7Latent Semantic Analysis (i.e., LSA; Foltz, 2007; Graesser et al.,
2004) analyzes the relationship between sentences, paragraphs, or whole
texts by counting how many times different words appear in each. By
constructing a matrix in which rows are unique words (or word stems) and
columns are each document, it measures the similarity between documents
by calculating the angle between their vectors. LSA has been used to
measure the distance between adjoining paragraphs of books (e.g., Foltz,
1998) and the semantic evolution of thoughts to predict creativity (Gray et
al., 2019).
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the first phrase has them closer together, which would lead
the two words to be placed closer together. Words do not
even have to necessarily co-occur; a word’s presence across
similar contexts helps shape that word’s positioning in
space. If the phrases “dogs are animals” and “animals are
friendly” both appear frequently, the words dog and
friendly would be placed closer together (than would, e.g.,
“cat” and “friendly”), even if the two words never directly
co-occurred.

Because semantically related words are plotted closer to-
gether, one can measure the relationship between words by
the distance between them. Consequently, embeddings can
be a powerful tool to study people and culture. Examining
the distance between different occupations and male and
female words, for example, found that news articles exhibit
strong gender stereotypes (Bolukbasi et al., 2016). Women
were more likely to be associated with occupations like
homemaker and receptionist, while men were more likely to
be associated with occupations like captain or boss.

The same approach can be used to compare sociocultural
contexts. Consistent with the principle of linguistic relativ-
ity, for example, women are more likely to be more associ-
ated with negatively valanced words in gendered languages
(DeFranza et al., 2020).

Embeddings can also be used to help explore linguistic
analogues by uncovering parallels in semantic space. For
example, one can apply algebraic equations to embeddings
to discover analogues for how people talk about a particular
idea (e.g., dogs or cats) moderated by some other construct
of interest (e.g., age or time; “dog minus old” may return
“puppy,” Figure 2B; “barking minus is” may return
“barked,” Figure 2C), although accuracy for predicting
semantic and morphological analogues varies (Gladkova et
al., 2016). Similar embedding equations for cat-related
ideas may produce results that are mathematically, and
semantically, parallel to those for the dog-related terms
(Figure 2B and 2C).

Word embeddings are particularly useful for examining
such shifts, and consequently, they can be used to study
change. Garg et al. (2018), for example, analyzed the evolu-
tion of gender stereotypes and attitudes toward ethnic
minorities over the past 100 years by tracking changes in
distance between different adjectives, occupations, and
words related to gender and ethnic groups. They found that
linguistic shifts closely tracked demographic and occupa-
tional shifts. Analyzing 100 years of books shed light on
how discussions of social class have shifted over time (Koz-
lowski et al., 2019).

More Advanced Neural Network Language Models

Dictionaries, topic modeling, and word embeddings can
be quite useful for studying individual words, how culture
influences their meanings, and the associations they elicit.

But for more complex expressions of language, more accu-
rate models of language may be valuable. Books, songs,
movies, and other cultural artifacts can be distinguished
from other forms of natural language by their structure,
long-distance relationships between constituent parts (i.e.,
the meaning of a word or sentence often depends on the lan-
guage that came before it), and other higher-order statistical
features that word-level models do not capture well.

Fortunately, the last several years have seen the rapid de-
velopment of neural network language models (e.g., BERT,
Devlin et al., 2019; ELMo, Peters et al., 2018; and GPT-3,
Brown et al., 2020) that vastly outperform prior approaches
on a range of benchmarks. Language models are statistical
tools that can predict language by mapping the probability
with which particular words follow other words. If the word
“wild” is often followed by the word “roses,” for example,
the model might use the incidence of the former in a text to
predict that the latter is more likely to appear. This same
type of analysis can then be applied to sentences or even
entire paragraphs, allowing the model to predict how likely
a given sentence is to follow a previous one. These models
can help autocomplete sentences, answer questions, sum-
marize documents, correct audio recordings, improve
machine translation, and even generate novel content.

These approaches also have distinguishing features that
make them particularly useful for analyzing complex lan-
guage. First, they generate state-of-the-art results approach-
ing human-level performance. These models have an
unprecedented capacity to model the statistical structure of
things like conversations, news articles, poems, and songs.
When given a reading comprehension task, for example,
GPT-3 performed almost as well as people (Brown et al.,
2020). Similarly, when given a short prompt, GPT-3 was
able to write high-quality news articles from scratch that
were difficult to distinguish from those written by humans
(Brown et al., 2020).

Second, they can do so even in settings that involve zero-
or few-shot learning. Prior approaches were often pretrained
on a large corpus (e.g., all Wikipedia articles) and then fine-
tuned on whichever specific task they were being applied to
(e.g., question answering). Such fine-tuning often required
thousands or hundreds of thousands of task-specific exam-
ples, however, and requiring such large supervised training
made these approaches difficult to apply. But by including
many more machine learning parameters (e.g., 175 billion),
and training on billions of words or tokens, recent models
have been able to achieve so called “metalearning” such
that they do not need to be retrained to perform a more spe-
cific task. Rather than requiring thousands of labeled exam-
ples, GPT-3 is able to perform quite well on many tasks
with just a task description and prompt (and in some cases,
a few examples). No fine-tuning required.

Third, these approaches take context into account. Sim-
pler approaches often treat words as the unit of analysis.
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Figure 3
Simplified Illustrations of Features of Semantic Progression
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Note. Dots represent different points or “chunks” of discourse. Pacing captures how
quickly things move in a single period. Circuitousness captures how directly or indirectly a
narrative travels between the same points. Volume captures how much ground is covered.

The word “bank,” for example, might appear in a dictionary
of financial terms, and topic modeling might group it with
words like money, teller, or check. But the same word can
mean different things in different contexts. The word bank,
can refer to a financial institution, for example, or the side
of a river. Consequently, ignoring the broader context in
which individual words are situated can lead to imprecise
inferences. By taking context into account, however, and
doing so across longer spans of text, these newer neural net-
work language models more accurately represent the mean-
ing of language. Because they capture long-distance
dependencies, these models may be particularly useful for
understanding things like narrative or discourse structure
and the meaning of longer cultural artifacts (e.g., novels or
movies) in their entirety. Given the breadth of data on
which these models are trained, one could even argue that
the semantic space they delineate captures the culture of the
current world.

Researchers are just beginning to leverage these tools, but
one useful application may be quantifying discourse struc-
ture. Literary theorists have long argued that stories have
common shapes (Freytag & MacEwan, 1900), but little em-
pirical work has tested this possibility (Boyd et al., 2020).
Further, while some work has begun to examine narratives
using manual coding (McLean et al., 2020) or dictionary-
based methods (Berger et al., 2021; Boyd et al., 2020; Rea-
gan et al., 2016), less is known about how aspects of seman-
tic progression may shape success (i.e., evaluations or
sales).

Neural network language models may be able to provide
insight. Just as embeddings can be used to measure similar-
ity between words, larger chunks of text (i.e., sentences or

paragraphs) can be represented as points in a multidimen-
sional space, and more advanced tools can estimate how
likely one chunk is to follow another. Then, by characteriz-
ing the relationship between adjoining points, or the set of
points as a whole, one can extract features of narrative
progression.

Take pacing, or how fast a narrative or discourse is mov-
ing. Adjacent chunks of discourse (i.e., adjoining para-
graphs of a book or scenes of a movie) tend to be more
semantically related than chunks that are further apart
(Foltz, 2007; Toubia et al., 2021). A scene about two people
getting married, for example, tends to be followed by a
related scene (e.g., the afterparty) rather than a completely
unrelated one (e.g., different characters robbing a bank).
But while adjacent chunks tend to be more semantically
related, how related varies across narratives (Foltz, 1998).
Some narratives stick on a particular idea or theme for a
while, while others move more quickly from one idea to the
next (i.e., faster semantic progression, Figure 3). By meas-
uring the average semantic similarity between adjoining
passages of text, one can measure the speed of semantic
progression (Laurino Dos Santos & Berger, 2020).

Similarly, looking at a sequence of chunks of a text can
shed light on whether it takes the most direct path between
different points or a more circuitous route (see Figure 3;
Toubia et al., 2021). A story that goes from a wedding to
the afterparty to different characters robbing a bank, for
example, takes a more direct route than one that goes from
the wedding to different characters robbing a bank, and
then back to the afterparty.

Finally, by wrapping a shape around the set of points, one
can measure volume or how much ground a discourse
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covers (Toubia et al., 2021). Does it focus only on a small
set of things that are closely related (i.e., lower volume), or
does it cover a wider set of ideas that may be less closely
related (i.e., higher volume; Figure 3)?

Pacing, volume, and circuitousness are just a few features
of semantic progression, but the ability to quantify such
aspects opens up a range of interesting questions. Research-
ers could test whether narratives or texts that move more
quickly are more successful, for example, because they pro-
vide more stimulation. Other work could test whether the
link between volume and success depends on the length of
the narrative. Covering a lot of ground may be good for a
longer narrative (e.g., movie), for example, but detrimental
for shorter ones (e.g., TV show). Similarly, while circui-
tousness may be bad in some cases, it may be good in
others. More circuitous academic papers may be cited
more, for example, because they make it easier to integrate
disparate information (Toubia et al., 2021).

Similar ideas could be applied to characters. Are books
and movies more successful, for example, when the main
characters undergo significant changes throughout the
course of the narrative? And if so, are certain types of shifts
more well received? Tracking the language used by, and
around, different characters over the course of a story may
provide insight.

Discussion

Language is pervasive. Hardly a waking hour goes by
where people are not creating or consuming language in
some shape or form. Language reflects things about the peo-
ple and socioeconomic context that produce it and impacts
the audiences that consume it. Consequently, language has
the potential to shed light on both people, and culture more
generally.

Realizing that potential though, requires the right tools.
That is where natural language processing comes in. Not
only can these approaches parse features of language, and
do so in a relatively objective way, but they can do so at
scale. Consequently, these methods can shed light on a
range of interesting questions.

Directions for Future Work

Given pronouns shift people’s perceptions of relatedness
(Fitzsimons & Kay, 2004), self and identity researchers
might analyze pronoun use to understand variation in self-
concepts and how people manage their self (“I”) versus
social (“we”) identity. Motivation researchers could exam-
ine how employees talk about affiliation or achievement to
understand what drives career aspirations and success. And
construal level researchers could use dictionaries related to
concreteness or specificity (e.g., Coltheart, 1981; Li & Nen-
kova, 2015) to better understand psychological distance
(e.g., Snefjella & Kuperman, 2015).

Researchers studying attitudes and persuasion could use
topic modeling to understand the main themes used in per-
suasive speech, and whether certain themes are more
impactful. Researchers studying motivation could use topic
modeling to examine the themes or approaches people use
to discuss self-regulation, and how they differ across people
or over time.

Embeddings offer similar possibilities. Emotion research-
ers could use embeddings to test the structure of emotion
(see Jackson et al., 2019) and whether or how appraisals of
discrete emotions shift across situations. Cognitive psychol-
ogists could use embeddings to capture perceptions of risk
(Bhatia, 2019) and judgments of meaning, relatedness, and
probability (see Bhatia et al., 2019, for a review). Because
embeddings represent how information is organized and
retrieved, memory and information processing researchers
could use this approach to explore how certain ideas
become linked in memory (Bhatia & Walasek, 2019).

The methods discussed here should also be useful for
assessing temporal trends and historical roots of psycholog-
ical phenomena. While surveys and experiments can cap-
ture what people think and feel now, they cannot be used
retroactively. It is impossible to go back in time and survey
people 10 years ago, for example, or before and after a
major social or political event. But like insects preserved in
amber, by analyzing language created at previous time
points, it is possible to get some sense of attitudes, cogni-
tions, and other aspects, and how they vary over time. Psy-
chologists are just beginning to tap historical databases, and
the new field of “historical psychology” (e.g., Muthukrishna
et al., 2021) uses historical texts and artifacts to understand
and explain changes in the drivers of cognition and behav-
ior. Natural language processing allows researchers to parse
this relatively unstructured data in a quantitative manner to
extract psychological insights.

Language may be particularly useful when trying to mea-
sure attitudes, stereotypes, and biases that are otherwise
challenging to capture. Researchers have long been inter-
ested in implicit attitude measures because they capture
things that traditional self-report measures might not. Using
automated text analysis to examine produced language may
provide an alternative approach. Even if people do not
make explicitly racist statements, word associations can
provide evidence of biases (Caliskan et al., 2017).

This discussion begs the broader question of when lan-
guage-based measures are more versus less useful. Lan-
guage may be particularly useful in cases where other
measures are difficult to collect (e.g., capturing things that
have occurred in the past), people have less insight into
their attitudes or preferences, or response bias may lead to
inaccurate or false answers in undisguised measures (e.g.,
trait or state scales). That said, using the right language
measures remains important. People who are depressed, for
example, may not directly say so, but analyzing their
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language may provide useful signals of this condition (Eich-
staedt et al., 2018).

Limitations

While automated text analysis has many valuable aspects,
it also has limitations. As with most methods, age-old ques-
tions of sampling, validity, and reliability arise. Survivor
bias is a form of selection bias that arises when failures are
ignored, and successes are oversampled. If researchers
focus on the lyrics of culturally successful songs because
they are easier to access, this could generate misleading
inferences. They may end up reaching conclusions that do
not apply to the general population (all song lyrics). Simi-
larly, different word embedding methods can yield different
vectors for complete words versus word stems, and many
methods involve multiple choice points that may shape the
results (e.g., number of topics to choose in LDA).

Using field data alone can also make it challenging to get
at causality. A textual feature may be correlated with an
outcome, but is it truly causing that outcome? One solution
is to pair text analysis of field data with experimental meth-
ods to identify causality. When examining the meaning of
happiness, Mogilner et al. (2011) analyzed millions of
blogs, finding that the language linked to happiness shifts
over one’s lifetime. They then turned to experiments to test
causality and shed light on what was driving the effect.

Natural experiments, or other approaches to causal infer-
ence in field data, can also be useful. Berger and Packard
(2018) found that atypical songs are more popular, but to
test causation, they looked at songs that charted in multiple
genres (e.g., a song that appeared on both the country and
hip-hop charts). This ensured that all other aspects of the
song (e.g., music artist, lyrics, and release date) were identi-
cal, and provided a stronger causal test of whether songs are
more popular when they are more differentiated from their
genre.

Another limitation is the degree to which language fully
represents people and culture. Beyond words, people also
communicate through paralanguage (e.g., pitch, tone, or
body language). Similarly, images reflect the cultures in
which they are produced (Masuda et al., 2008). Visual and
auditory modalities may convey the same information as
text, or something different. Tools like Praat (Boersma &
Weenink, 2018) can be used to extract pitch and tone from
audio files (e.g., Van Zant & Berger, 2020) and research
has started to use computer vision to extract features from
images (Li & Xie, 2020; Zhang et al., 2017). While there
has been less work in these areas than in text analysis,
emerging approaches will hopefully enable better analysis
of these important information channels.

Finally, it is important to recognize how the type of data
analyzed may shape the language it contains. Books are lon-
ger than articles, which are longer than text messages.

Online reviews are (mostly) created by individuals, but
movies and news articles are created by groups or larger
institutions. Social media posts broadcast online are more
likely to be driven by self-presentation than everyday con-
versations between friends (Barasch & Berger, 2014). The
motivations behind content creation, affordances of a given
medium, and other features combine to shape the nature of
the text. Just as language reflects things and the person or
group that produced it, the content of different cultural
items should reflect aspects of their creation.

Conclusion

In conclusion, technological advances have opened excit-
ing new avenues to study people and culture. Natural lan-
guage processing allows researchers to ask new questions
and study age-old topics in new ways. Hopefully, more psy-
chologists will adopt these tools and begin to extract wis-
dom from words.
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