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ABSTRACT9

Recent work in forecast aggregation has demonstrated that paying attention to contrarian minorities among

larger groups of forecasters can improve aggregated probabilistic forecasts. In those papers, the minorities are

identified using ‘meta-questions’ that ask forecasters about their forecasting abilities or those of others. In the

current paper, we explain how contrarian minorities can be identified without the meta-questions by inspecting

the skewness of the distribution of the forecasts. Inspired by this observation, we introduce a new forecast

aggregation tool called Skew-Adjusted Extremized-Mean and demonstrate its superior predictive power on a

large set of geopolitical and general knowledge forecasting data.

10

1 Introduction11

This paper is motivated by the need to aggregate probabilistic forecasts of geopolitical events. More specifically,12

it is a response to the work of the Good Judgment Project (GJP) (e.g., Ungar et al. 2012). The GJP was conducted13

in collaboration with the United States’ Intelligence Advanced Research Projects Activity (IARPA) between14

2011-15 and centred around an empirical study of the forecasting abilities of a large cohort of individuals. One of15

the project’s core challenges to was to introduce effective methodology for communal or aggregated forecasting.16

Aggregation of dispersed information has been at the centre of statistical study since the inception of the17

discipline (e.g., Laplace 1774, Sheynin 1977, Galton 1907, Bates and Granger 1969, and many others; for18

comprehensive reviews, see Clemen 1989, Genest et al. 1986, and Zellner et al. 2021). Despite this long history,19

the topic continues to provide opportunities for new research. One popular direction has sought to identify and20

correct common biases in the individual forecasts or their simple aggregates such as the (equally-weighted)21

arithmetic mean. Indeed, the literature has long acknowledged that the aggregated forecasts in certain contexts can22
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be under-confident (e.g., Lichtenstein et al. 1977). Erev et al. (1994) show how under-confidence can arise from23

mismatches between forecaster and aggregator behaviour. Ranjan and Gneiting (2010) show both theoretically24

and empirically that the (weighted) arithmetic mean of forecasts is under-confident and lacks calibration. Satopää25

(2021) generalize this result to all univariate forecasts and all ‘means’, defined as aggregators that remain within26

the (open) convex hull of the individual forecasts.27

Such systematic errors offer an opportunity for improvement. In particular, if the aggregate is under-confident,28

its performance can be improved with a transformation that makes it more confident. In fact, the literature29

has demonstrated that significant improvements in forecast accuracy can be made when the arithmetic mean30

of forecasts is extremized – that is, adjusted in the direction of the nearest extreme value (Karmarkar, 1978;31

Lattimore et al., 1992; Baron et al., 2014; Satopää et al., 2014, 2016) or, more precisely, directly away from a32

prior probability (Satopää et al., 2017; Lichtendahl Jr et al., 2020). The amount of extremization is typically33

found by choosing the value that improves the chosen aggregator the most on historical forecasting data. Turner34

et al. (2014) provide a thorough comparison of several extremizing procedures and discuss their provenance in35

detail.36

Another popular direction of research involves ‘contrarian minorities’. In particular, Prelec et al. (2017),37

Martinie et al. (2020), and Palley and Satopää (2021) explain why contrarian minorities should receive more38

weight in the aggregate forecast. They demonstrate the success of this strategy in aggregating multiple answers39

to general knowledge (GK) questions, such as ‘What is the capital of Pennsylvania?’. Here the contrarian40

forecasters are identified via ‘meta-questions’ that ask for forecasters’ beliefs about the other forecasters’ likely41

answers. Specifically, the contrarian minority is formed of forecasters who believe that the majority will get the42

answer wrong. In this sense, the minority is then defined by its contrarianism, which is assumed to indicate better43

or ‘more informed’ forecasting.44

To the best of our knowledge, these two areas of forecast aggregation have so far remained separate. Motivated45

by this gap in the literature, the current paper seeks to connect the ideas of ‘extremization’ and ‘contrarian46

minorities’. Specifically, we explore the following two questions. First, can we identify contrarian minorities47

based on current forecasts of the event alone and without meta-questions or individual records of historical48

predictive skill? If so, can we significantly improve the accuracy of common extremization techniques by49

allowing them to account for contrarian minorities? In the remainder of the paper, we demonstrate that the50

answer to both of these questions is ‘Yes’.51

The rest of the paper is organized as follows. Section 2 provides a theoretical motivation for skew-adjustment52

and explains how it can be applied in aggregation of probability predictions of future events. Section 3 evaluates53

our skew-adjustment on geopolitical and general knowledge forecasting data and compares its performance54

against that of several commonly-used forecast aggregators. Section 4 concludes with a discussion of limitations55

and future research directions of our work.56
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2 Skew-adjusted Extremization57

2.1 Forecast Extremization58

Consider a population of forecasts, described by a probability density function π(X). Extremization is an

ex-post adjustment of an aggregate forecast directly away from a reference value. Even though, in principle,

extremization can be applied to any aggregate (Satopää, 2021), in this paper we focus on extremizing the mean

forecast µ = E[X ]. If we denote the reference value (e.g., the forecasters’ common prior mean) with µ0, then a

parsimonious extremization function is given by

µ0 +α(µ −µ0), (1)

where α ∈ [0,∞) determines the amount of extremization. In particular, if α > 1, then µ is transformed directly59

away from the reference value µ0; else if α ∈ [0,1), µ is ‘anti-extremized’ and shrank towards µ0.60

The form (1) is intuitive and highlights the mechanics of extremization. However, given that (1) is nothing

but a linear transformation of the mean aggregate µ , it can be expressed equivalently as

a+bµ, (2)

where a = µ0(1−α) and b = α . Form (2) is simpler than form (1). Furthermore, if we have access to a training61

set of past outcomes and their forecasts, then we can estimate the parameters a and b efficiently with the usual62

linear regression techniques (e.g., Ravishanker et al. 2002).63

2.2 Skewness and Contrarian Minorities64

Suppose that the population of forecasts is made up of two subpopulations described by probability density

functions π1(x) and π2(x). Assume that the moments of these distributions are well defined and denote the

mean and variance of subpopulation s ∈ {1,2} with E(X | X ∼ πs) = µs and var(X | X ∼ πs) = σ2
s . The density

function describing the whole population is given by the mixture

π(x) = w1π1(x)+w2π2(x), (3)

where w1 ≥ 0, w2 ≥ 0, and w1 +w2 = 1.65

The weights w1 and w2 represent the proportions of the two subpopulations in the whole population. In this66

paper, we are particularly interested in scenarios where one of the subpopulations is much smaller than the other.67

Definition 1 (Minority). The subpopulation with a smaller proportion in the whole population is called a68

minority.69

Without loss of generality, we can let the second subpopulation be the minority so that w1 > w2. In addition, we70

assume that the minority is contrarian; that is, their typical forecast is significantly different from the typical71

forecast among the majority.72
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Definition 2 (Contrarianism). Contrarianism implies that the distance between the typical forecasts of the two73

subpopulations is large relative to the standard deviations of the forecasts in each subpopulation. In other words,74

both (µ2 −µ1)
2/σ2

1 and (µ2 −µ1)
2/σ2

2 are large.75

Under the mixture distribution (3), the extremization transformation (2) becomes

a+bµ = a+bw1µ1 +bw2µ2. (4)

Given that the parameters a and b cannot affect the relative weight placed on the minority, this form of76

extremization cannot leverage the potential of informed minorities. To address this shortcoming, we first need to77

identify the direction in which the minority disagrees with the population. If this could be done, we could then78

shift the aggregate forecast in that direction, align the aggregate more closely with the minority, and effectively79

allocate more weight to it.80

The remainder of this subsection shows how the skewness of the population distribution can be used to

identify the direction of the minority’s disagreement. Intuitively, this is possible because a contrarian minority

makes one of the tails of the population distribution heavier and hence creates a skew in that direction. One of

the oldest and most popular quantifications of skewness is Pearson’s moment coefficient of skewness:

γ = skewness(X) = µ3/σ
3 ∈ R, (5)

where σ =
√

var(X) is the standard deviation and µ3 = E
[
(X −µ)3

]
is the central third moment of the forecast81

population. Although the statistics literature contains alternative quantifications of skewness (such as the quantile-82

based statistics discussed in Groeneveld and Meeden 1984), for the remainder of this paper, we will only consider83

(5) and refer to it simply as skewness. In Section 2.3, we extend (5) to a new quantity called the excess skewness,84

in analogy to Pearson’s excess kurtosis, which serves to quantify the departure of a distribution’s skewness from85

that of a central or benchmark value.86

The skewness of a mixture distribution (3) can be expressed analytically in terms of the moments of its87

components via a binomial expansion in the component moments. The resulting expressions, however, quickly88

become unwieldy as the number of components and moments increases. The expressions can be brought back89

under control by considering limits in which many terms in the expansion become negligibly small. The following90

theorem describes the skewness γ of the population mixture (3) when the minority is increasingly small and91

contrarian.92

Theorem 1. Consider the limit in which w2 becomes small and both (µ2 −µ1)
2/σ2

1 and (µ2 −µ1)
2/σ2

2 become

large. Under such an increasingly small and contrarian minority, the skewness of the mixture population of

forecasts (3) is

γ ≈ w2

(
µ2 −µ1

σ1

)3

. (6)
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Proof. See Appendix A.93

Expression (6) shows that when a minority disagrees with the majority, the skewness of the population of94

forecasts informs us about the product of the minority’s size and the direction and extent of its disagreement. In95

particular, if the skewness is positive (negative), then the minority believes that a positive event outcome is more96

(less, respectively) probable than the majority believes.97

By this observation, we can now extend the extremization function with a term that adjusts the relative weight

of the minority. In particular, motivated by Theorem 1, we add the cube-rooted skewness to the extremization

function (4):

a+bµ + cγ
1/3 ≈ a+bw1µ1 +bw2µ2 + cw1/3

2

(
µ2 −µ1

σ1

)
(7)

= a+b

(
w1 −

cw1/3
2

bσ1

)
µ1 +b

(
w2 +

cw1/3
2

bσ1

)
µ2 (8)

for some constant c. We call this transformation the skew-adjusted extremization. Contrast the form (8) with98

that of the non-adjusted extremization in (4). By changing the value of c, the skew-adjusted extremization can99

either elevate (c > 0) or reduce (c < 0) the authority of the minority. Given that the values of c and the other100

parameters a and b are estimated from historical forecasting data, the ultimate adjustment depends on whether in101

the past the minority has been more or less accurate than the majority. In this way, past data tell us whether the102

contrarian minority should be treated as well- or ill-informed.103

2.3 Probability Forecasts104

Our upcoming application to real world data (see Section 3) concerns probability forecasts of future events. To105

describe skew-adjusted extremization in this context, we must introduce some new notation. Suppose there are n106

forecasters predicting the probability of a future event. The event outcome is denoted with a binary variable Y107

that equals 1 if the event happens; else it equals 0. Forecaster i’s probability prediction pi ∈ [0,1] for the event108

{Y = 1} is a draw from a population of forecasts, described by the density function π(p) with mean µ , variance109

σ2, and skewness γ . Before we can apply the skew-adjusted extremized-mean to these forecasts, two practical110

issues must be addressed.111

First, Pearson’s moment coefficient of skewness (5) was constructed principally to quantify the asymmetry

of distributions on the whole real line. Given that in our application the forecasts represent probabilities, the

population distribution of forecasts is constrained to the unit interval [0,1]. The positions of the interval’s

boundaries relative to a distribution’s mean can impose an asymmetry in a way that is not related to the existence

of a minority of contrarians. To approximately account for this, we perform skew-adjusted extremization based

on excess skewness instead of skewness. The excess skewness subtracts from the skewness that which would be

expected from a Beta distribution with the same mean and variance. Specifically, given that this Beta distribution
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(c) µ = 0.3, γexcess =−0.75.

Figure 1. Population distributions with the same mean (µ = 0.3) but different excess skewness. The excess

skewness can quantify the size and location of the smaller mixture component relative to the larger one.

Explicitly, the positive and negative values in Figures 1b and 1c reflect the minority’s forecasts being higher and

lower, respectively, than those of the majority.

has skewness

γβ (µ,σ
2) =

2σ(1−2µ)

µ(1−µ)+σ2 , (9)

we define the excess skewness of the population distribution of forecasts π(p) as the difference between γ and

γβ (µ,σ
2):

γexcess := γ − γβ (µ,σ
2). (10)

Figure 1 describes three different mixture populations and illustrates how the excess skewness quantifies the112

relative size and location of a minority of contrarian forecasters. In Figure 1a, there is no contrarian minority, the113

mixture aligns with a Beta distribution, and there is no excess skewness. In Figures 1b and 1c, however, there are114

contrarian minorities that believe that the likelihood of the event is much higher or lower, respectively, than the115

typical belief of the population. Given that the mixture populations in all three subplots have the same mean116

(µ = 0.3), the mean forecast does not inform us about the presence or relative views of the minority groups. The117

excess skewness, however, does help us to identify such groups. In particular, it is positive when the minority’s118

forecasts tend to be higher than those of the majority (as in Figure 1b) and negative when they tend to be lower119

(as in Figure 1c).120

Second, directly extremizing the mean probability can exit the unit interval [0,1] and result in an aggregate121

forecast that cannot represent a probability. One solution is to map the probabilities to the unbounded real line122

with a transformation such as the logit or probit function, extremize the mean of the mapped values, and finally123

transform the result back to the probability scale. However, such transformations are problematic because often124

in practice we encounter extreme forecasts of 0 and 1 which would be mapped to −∞ and +∞, respectively. A125

typical way forward is to replace the extreme forecasts of 0 and 1 by, say, 0.01 and 0.99, respectively, before126
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mapping them to the real line. However, to the best of our knowledge, there is no principled way to choose127

the level of shrinkage. Therefore, to avoid modifying extreme forecasts, we extremize the logit of the mean128

probability instead of the mean of the logit-probabilities and then transform the result back to the probability129

scale.130

Putting this all together, our final formula for aggregating probablity predictions involves a linear combination

of the logit of the mean and cube root of the excess skewness of the population distribution of the probability

forecasts:

logit P(Y = 1 | a,b,c,µ,γexcess) = a+b logit(µ)+ cγ
1/3
excess, (11)

where logit(x) := log(x/(1− x)) denotes the log-odds of a probablity x ∈ (0,1). Estimating the true moments of

the population distribution with the sample moments gives us

logit P(Y = 1 | a,b,c,{pi}n
i=1)≈ a+b logit(µ̂)+ cγ̂

1/3
excess, (12)

where the estimated mean µ̂ and excess skewness γ̂excess are given by

µ̂ =
1
n

n

∑
i=1

pi, σ̂
2 =

1
n

n

∑
i=1

(pi − µ̂)2, µ̂3 =
1
n

n

∑
i=1

(pi − µ̂)3, (13)

γ̂ =
µ̂3

σ̂3 , γ̂excess = γ̂ − 2σ̂(1−2µ̂)

µ̂(1− µ̂)+ σ̂2 . (14)

The remaining parameters a, b, and c are estimated based on a training set of past event outcomes and their131

probability forecasts. Specifically, suppose we have a dataset of probability forecasts of K events whose outcomes132

are known. In these data, identities and numbers of forecasters of each event can be different. If µ̂k and γ̂excess,k133

are the estimated mean and excess skewness of forecasts of the kth event outcome Yk ∈ {0,1}, then the estimates134

â, b̂, and ĉ can be found by fitting a logistic regression model with {Yk}K
k=1 as the response variable and the135

corresponding estimated moment quantities {logit(µ̂k), γ̂
1/3
excess,k}

K
k=1 as the covariates. To aggregate forecasts of a136

new future event k∗, we estimate the mean µ̂k∗ and excess skewness γ̂excess,k∗ based on the individual forecasts137

and calculate the final skew-adjusted extremized-mean with logit−1(â+ b̂ logit(µ̂k∗)+ ĉγ̂
1/3
excess,k∗).138

3 Data Analysis139

3.1 Scoring and Competing Aggregators140

In this section, we test the efficacy of the skew-adjusted extremized-mean relative to a selection of its competitors.

Throughout we measure accuracy with the average Brier score (Brier et al., 1950). The average Brier score of a

forecaster who has predicted the chances of K events is

BrS
(
{Yk,qk}K

k=1
)
=

1
K

K

∑
k=1

(Yk −qk)
2,
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where Yk ∈ {0,1} is the outcome of the kth event and qk ∈ [0,1] is the forecaster’s probability prediction of the141

event Yk = 1. This score is negatively orientated, so that lower scores imply higher accuracy. A perfect forecaster142

receives a score of 0 and a constant forecast 0.5 receives a score of 0.25. Competent real-life forecasters are143

likely to have scores somewhere between 0 and 0.25.144

The aggregation formulae we investigate are:145

1. Mean: the equally-weighted arithmetic mean of the probability forecasts (Stone, 1961). Although this is146

arguably deprecated in the context of the GJP data in favour of the extremized-mean, it still provides a147

useful benchmark against which to judge improvements in predictive accuracy.148

2. S-trim: the symmetrically trimmed arithmetic mean of the probability forecasts (Jose et al., 2014). This149

aggregator is computed as the equally-weighted arithmetic mean of the central (1− 2κ)× 100% of150

forecasts, where κ ∈ [0,0.5] is the level of trimming. Preliminary analyses show that aggressive trimming151

with κ = 0.4 leads to the near-optimal average Brier scores for the trimmed mean. We use this value in the152

analyses below.153

3. HD-trim: the highest density trimmed arithmetic mean of the probability forecast. This aggregator154

is computed as the equally-weighted arithmetic mean of the forecasts that lie in the shortest interval155

containing a certain fraction of the forecasts. For the analyses below, we specify fractions of 50% and156

25%, which, according to preliminary calculations with the GJP and GK data, respectively, approximately157

optimize the performance of this aggregator. If S-trim is thought of as a compromise between the median158

and the mean, HD-trim can be thought of as a compromise between the mode and the mean. Further159

discussion of conceptual and computational properties of highest density regions can be found in Hyndman160

(1996).161

4. Votes: the equally-weighted arithmetic mean of fully extremized probability forecasts. To compute162

this aggregator, we first round each individual forecast to its nearest integer (0 or 1) and then calculate163

the arithmetic mean of these extremized values. The appeal of this procedure, which is investigated in164

greater generality in Turner et al. (2014), lies in its simplicity and its relationship to voting systems. In165

the comparison, it provides a benchmark in our progression to more sophisticated forecast aggregation166

procedures.167

5. Logit: the equally-weighted arithmetic mean of the logit-probabilities (Satopää et al., 2014). Given that168

the log-odds of extreme probablities 0 and 1 are infinite (recall Section 2.3), we must shrink extreme169

forecasts slightly towards 0.5 before calculating their logits. In this paper, we transform all forecasts170

linearly by shrinking the distance between each probability and 0.5 by 0.1%. The ith transformed forecast171

is p′i = 0.5+ 0.999(pi − 0.5). These forecasts are then translated to log-odds and averaged with the172

arithmetic mean. Finally, the average log-odds is mapped back to [0,1] with the inverse-logit function.173
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6. Sct-crowd: the equally-weighted arithmetic mean of forecasts from the best five participating forecast-174

ers.(Mannes et al., 2014). To calculate this select crowd aggregator, we rank the forecasters based on their175

average Brier scores on the training data.176

7. E-mean: the extremized arithmetic mean of the probability forecasts (Satopää et al., 2014; Baron et al.,177

2014). This aggregator arises from (12) by fixing c = 0 and hence represents our proposed aggregator178

without the skew-adjustment. It adjusts both the benchmark and the level of extremization (recall Section179

2.1) by estimating a and b from past forecasting data.180

8. SkE-mean: the skew-adjusted extremized arithmetic mean of the probability forecasts. This is our181

proposed aggregator whose computation is described at the end of Section 2.3.182

The parameters {a,b} for E-mean and {a,b,c} for SkE-mean are estimated from available forecasting183

data. However, using the same data in estimation and model evaluation is likely to result in over-fitting and184

underestimation of out-of-sample errors. A well-known solution is provided by cross-validation that splits the185

data into F approximately equal parts, known as folds. We separate one fold at a time, estimate the parameters186

from data in the other F −1 folds, and then, using the estimated parameters, record the accuracy of the aggregator187

in predicting the events in the separated fold. Cycling through all folds in this manner allows us to compute an188

out-of-sample error for all events in our dataset. In our analysis, we use F = 10 folds.189

3.2 Geopolitical Events190

The Good Judgment Project (GJP) data1 include probability forecasts of 462 geopolitical events. Around 20% of191

these events occurred, and each event was forecast by an average of around 500 individuals. For approximately192

91% of the questions, the equally-weighted arithmetic mean of the forecasts was on the correct side of 0.5.193

Extremizing the mean directly away from 0.5 for these cases would improve the Brier score. However, given194

that the Brier score penalizes larger errors more heavily, extremizing the mean all the way to the nearest integer195

(0 or 1) is not the overall most accurate strategy. Instead, in line with Baron et al. (2014), we observe that196

E-mean with an extremizing parameter of b ≈ 3 leads to better results and improves the average Brier score of197

the (un-extremized) mean aggregate by around 40%.198

Figure 2 presents violin plots of the Brier scores across all questions for each aggregation procedure. In199

particular, Figure 2a describes the raw Brier scores. To better visualize the differences, Figure 2b plots the200

log of (slightly) shifted Brier scores. In each plot, the white dots represent the median scores and the black201

rectangles inside the violin plots describe the interquartile ranges. The widths of the blue shapes are proportional202

to smoothed empirical densities of the scores.203

The results display an inverse relationship between mean and variance of the individual scores. In particular,204

the more accurate aggregators tend to make more extreme errors. This illustrates an inherent trade-off in205

1The data can be downloaded at https://dataverse.harvard.edu/dataverse/gjp.
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(a) Raw Brier scores
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(b) Brier scores transformed with the function log(x+0.01)

Figure 2. Violin plots of the Brier scores of different aggregators on the GJP forecasting data. The widths of the

blue shapes are proportional to smoothed empirical densities of the scores. The white dots mark the median

scores (for the means scores, see Table 2 in Appendix B) and black rectangles mark interquartile ranges.

probabilistic forecasting that often seeks to maximize sharpness (i.e., extremity) subject to calibration (i.e.,206

compatibility with the empirical frequency of the outcomes; Ranjan and Gneiting 2010). Such a strategy207

maximizes performance in terms of the Brier score but at the risk of occasionally making large errors. For208

instance, compare the following two calibrated forecasts: a naive forecast that is always equal to 0.5, and a209

well-informed forecast that alternates in equal proportion between 0.1 and 0.9. The error of the naive forecast is210

always 0.25. The error of the well-informed forecast is small 0.01 with 90% chance but large 0.81 with 10%211

chance. Even though the well-informed forecast occasionally makes large errors, it is generally considered more212

useful than the naive forecast because it can discriminate among the different outcomes of the event.213

Among all competing aggregators, E-mean and SkE-mean perform the best. Even though their median scores214

look almost identical, the interquartile ranges of their Brier scores reveal that SkE-mean achieves very low Brier215

scores more often than E-mean. In Appendix B we consider the mean Brier scores and show that the mean Brier216

score of SkE-mean (0.046) is approximately 25% smaller than the mean Brier score of E-mean (0.061). This217

difference is smaller than but of the same order of magnitude as the reduction from the mean Brier score of218

Mean (0.098) to that of E-mean. The Brier scores of E-mean and SkE-mean are smaller than those of Mean for219

approximately 85% and 90% of the GJP events, respectively.220

Table 1a presents the estimates of the model parameters used in E-mean and SkE-mean. The extremizing221

parameter in E-mean, namely the slope coefficient on logit(µ̂), is approximately 3.4. However, if we include222

the skew-adjustment and consider SkE-mean, this slope coefficient increases to 4.8. We can then extremize the223

logit of the mean probability more aggressively if the skewness of the population is accounted for. As intuition224

would suggest, when a well informed minority agrees with the majority, we ought to be more confident in that225
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(a) Good Judgment Project Data

Estimated Coefficients

Covariate E-mean SkE-Mean

Intercept −0.415∗∗ −0.162

(0.195) (0.233)

logit(µ̂) 3.442∗∗∗ 4.878∗∗∗

(0.371) (0.525)

γ̂
1/3
excess 3.080∗∗∗

(0.583)

Observations 462 462

Log Likelihood −91.765 −71.352

Akaike Inf. Crit. 187.529 148.704

(b) General Knowledge Data

Estimated Coefficients

Covariate E-mean SkE-Mean

Intercept −2.331∗∗∗ −1.780∗∗∗

(0.253) (0.282)

logit(µ̂) 4.432∗∗∗ 4.376∗∗∗

(0.401) (0.406)

γ̂
1/3
excess 1.706∗∗∗

(0.377)

Observations 500 500

Log Likelihood −163.548 −151.478

Akaike Inf. Crit. 331.096 308.956

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 1. Summary statistics of the fitted logistic regression models under the GJP and GK data. The values in

the parentheses are standard errors. The stars describe the p-values of hypothesis tests of the parameters being

exactly zero.

majority. Seen from another perspective, we can afford to be bolder with mean-extremization given that we have226

the skew-adjustment to temper its effects when the majority view is challenged by an informed minority.227

Table 1a also shows the estimated slope coefficient of γ̂
1/3
excess in SkE-mean. Depending on whether γ̂

1/3
excess is228

positive or negative, SkE-mean treats the minority as well- or ill-informed, respectively (recall end of Section229

2.2). Given that the estimate of this slope coefficient is positive and statistically significant, SkE-mean expects230

the minority in the GJP data to be well-informed. To illustrate the effect of this, Figure 3 presents forecast231

distributions for the 20 forecasting questions for which E-mean and SkE-mean differ the most. The questions232

themselves are listed in Table 6 in Appendix C. For many of these distributions E-mean is far from the realized233

outcome while SkE-mean is often, although not consistently, closer. Furthermore, many of the presented234

distributions are characterized by a spike at the side of the observed outcome. The spike can be taken to represent235

a contrarian minority that co-exists alongside a more diffuse majority. Given that SkE-mean treats the minority236

as well-informed, it allocates more importance to the minority. This often places it between E-mean and the237

consensus belief of the minority (consider, e.g., questions 1, 6, 7, or 8 in Figure 3). To the extent that the238

minority continues to be informed in future forecasting questions, this strategy will pay off and allow SkE-mean239

to outperform E-mean.240
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Figure 3. Forecast of the 20 GJP events for which E-mean and SkE-mean differ the most. In most cases

SkE-mean is closer to the observed outcome and between a contrarian minority and E-mean.

By placing relatively more weight on the minority, skew-adjustment is not merely adjusting the level of241

extremization. Instead, it can reverse the direction of extremization and point towards different outcomes242

altogether. To illustrate, Figure 4a describes all questions in the GJP dataset by circles whose coordinates are243

given by the logit of the mean logit(µ̂) and the cube-root excess skewness γ̂
1/3
excess of the forecasts. Assuming that244

type 1 and 2 errors are equally costly, the vertical and downward sloping lines show the decision boundaries245
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(a) Good Judgment Project
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(b) General Knowledge

Figure 4. Potential decision boundaries for the E-mean and SkE-mean. The lines show where the aggregators

predict a 50% chance of event occurrence. Any point on the right (left) hand side of a decision boundary would

then result in an aggregated forecast greater (lower, respectively) than 0.5. The red points to the right of the

downward sloping line but to the left of the vertical line represent the questions for which SkE-mean points to

the right answer when E-mean does not.

for E-mean and SkE-mean, respectively. Specifically, the lines show the values of logit(µ̂) and γ̂
1/3
excess for which246

the formulae would produce an aggregated forecast of 0.5. Any point on the right (left) hand side of a decision247

boundary would then result in an aggregated forecast greater (lower, respectively) than 0.5. The circles in the248

two wedges formed by the two decision boundaries represent questions for which E-mean and SkE-mean fall on249

different sides of 0.5 and hence point towards different outcomes. Looking at Figure 4a, the decision boundary of250

SkE-mean seems to do a better job at separating events that occurred from those that did not. In fact, E-mean and251

SkE-mean are on the ‘right’ side of 0.5 in 91% and 95% of the cases, respectively (see Tables 4–5 in Appendix B252

for the empirical results informing these values). Therefore, SkE-mean points towards the correct outcome more253

often and hence has the potential to improve decision making.254

3.3 General Knowledge Questions255

Martinie et al. (2020) consider 500 general knowledge statements and collect approximately 100 probabilistic256

forecasts of each statement being true.2 Half of the statements are true and for approximately 75% of them the257

mean probability forecast is on the correct side of 0.5. As to before, partial extremizing yields better accuracy258

than full extremization. Specifically, without considering skew-adjustment, the optimal level of extremizing is259

given by b ≈ 4.260

Figure 5 presents the violin plots of the average Brier scores for each aggregation procedure. In particular,261

2The data can be downloaded at https://doi.org/10.1371/journal.pone.0232058.s003
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(a) Raw Brier scores
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(b) Brier scores transformed with the function log(x+0.01)

Figure 5. Violin plots of the Brier scores of different aggregators on the GK forecasting data. The widths of the

blue shapes are proportional to smoothed empirical densities of the scores. The white dots mark the median

scores (for the means scores, see Table 3 in Appendix B) and black rectangles mark interquartile ranges.

Figure 5a plots the raw Brier scores and Figure 5b plots the log of (slightly) shifted Brier scores. Among all262

competing aggregators, SkE-mean performs best and E-mean performs second best in terms of median Brier263

score. In Appendix B, we present the mean Brier scores and show that the mean Brier score of SkE-mean (0.098)264

is approximately 10% smaller than the mean Brier score of E-mean (0.107). This reduction is smaller than that265

under the GJP data both in relative and absolute terms. The Brier scores of E-mean and SkE-mean are smaller266

than those of Mean for approximately 76% and 79% of the GK questions, respectively.267

Table 1b describes the estimates of the model parameters used in E-mean and SkE-mean. The estimates are268

similar to those under the GJP data (recall Table 1a). In fact, only the intercept terms are significantly different.269

Given that the intercept under the GK data is moderately large negative, the GK forecasts are systematically too270

high. In fact, close inspection of the data reveals that the mean forecast is greater than 0.5 for approximately271

75% of the questions. Given that only 50% of the statements are true, the forecasters exhibit a noticeable upward272

bias. A potential explanation is that the general knowledge statements were constructed by taking true facts273

and modifying, or negating, key words in a subset of them. As a consequence, the statements use credible,274

impressive-sounding terminology that may act as an informal proxy for truth among the forecasters. Several275

statements, however, have been subtly modified to make them false in a way that only an expert would identify.276

The reverse trick – constructing a silly or dubious statement which is nonetheless true – is harder to achieve when277

constructing questions. This may be why we see a greater proportion of forecasts at moderately high values. The278

negative intercept in both E-mean and SkE-mean tries to correct for this upward bias.279

The coefficient on the cube-root excess skew γ̂
1/3
excess is again positive and statistically significant, suggesting280

that the minority be deemed well-informed and an important contributor to the accuracy of the final aggregate281
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forecast. Even though this estimate is smaller than that under the GJP data, SkE-mean is still picking up on282

idiosyncratic characteristics that we associate with the contrarian minorities. To illustrate, Figure 6 presents283

forecast distributions for the 20 forecasting questions for which E-mean and SkE-mean differ the most. The284

tendency towards a contrarian minority is more visible in questions 3, 5, and 7.285

Martinie et al. (2020) rated their questions from level 1 to 5 in terms of difficulty. The easiest, level-1286

questions include statements such as ‘The moon shines at night because it reflects light from the sun,’ whereas the287

hardest, level-5 questions include statements such as ‘Microwaves contain more energy than visible light’. The288

questions for which E-mean and SkE-mean differ the most tend to be very difficult: among the 20 questions with289

the largest disagreement between these two aggregators, the average difficulty rating is 4.4. Indeed, a reasonable290

definition of a ‘difficult question’ in this context could require the presence of a poorly-informed majority and a291

well-informed contrarian minority.292

Finally, the vertical and downward sloping lines in Figure 4b present the decision boundaries for E-mean293

and SkE-mean, respectively. Again, the underlying assumption is that type 1 and 2 errors are equally costly so294

that 0.5 acts as a threshold between ‘action’ and ‘no action.’ Even though the decision boundary of SkE-mean295

is better at separating the true outcomes, the difference is not as large as it was under the GJP data: this time296

E-mean and SkE-mean are on the ‘right’ side of 0.5 in 85% and 86% of the cases, respectively.297

4 Discussion298

4.1 Theoretical Suggestions299

In this paper, we analyzed two data sets of contrasting forecasting problems and showed that the excess skewness300

of a distribution of forecasts is a significant positive predictor of event occurrence. The resulting skew-adjusted301

extremized-mean, i.e, SkE-mean outperforms its competitors, including the arithmetic mean, trimmed mean, mean302

of the five most accurate forecasters, and several other commonly used aggregators. To reinforce generalizability303

of our findings, we presented a theoretical argument for the excess skewness acting as a proxy for the presence304

of a question-specific minority of contrarian forecasters. Past outcomes and their forecasts are then used as305

training data to determine whether the minority should be given more or less relative weight in future aggregation306

problems. In both of our empirical studies, the minority was found to be informed, which aligns with the usual307

assumptions made in the ‘contrarian minority’ literature (Prelec et al., 2017; Martinie et al., 2020; Palley and308

Satopää, 2021). The empirical findings largely speak for themselves, and we encourage readers to perform their309

own analyses of the publicly available data to reconfirm them.310

The skew-adjustment appears to be advantageous for both geopolitical and general knowledge forecasting311

problems, albeit to different degrees. Furthermore, the optimal level of adjustment appears to be similar in the312

two cases, as can be observed from the similarity between the fitted logistic regression coefficients in Table 1 and313

the resulting decision boundaries in Figure 4. Whether or not this ought to be considered surprising is open to314

15/27

Electronic copy available at: https://ssrn.com/abstract=4004029



preprint draft - 7 Jan 2022

Powell, Satopää, MacKay, Tetlock: Skew-Adjusted Extremization

E−mean SkE−mean Outcome

1

p

D
en

si
ty

0.0 0.4 0.8

0
2

4
D

en
si

ty

5

p

D
en

si
ty

0.0 0.4 0.8

0
2

4
D

en
si

ty

9

p

D
en

si
ty

0.0 0.4 0.8

0
2

4
D

en
si

ty

13

p

D
en

si
ty

0.0 0.4 0.8

0
2

4
D

en
si

ty

17

p

D
en

si
ty

0.0 0.4 0.8

0
2

4
D

en
si

ty

Prob. forecast

2

p

D
en

si
ty

0.0 0.4 0.8

0
2

4
6

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

10

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

14

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

18

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

Prob. forecast

3

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

7

p
D

en
si

ty

0.0 0.4 0.8

0
2

4

11

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

15

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

19

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

Prob. forecast

4

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

8

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

12

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

16

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

20

p

D
en

si
ty

0.0 0.4 0.8

0
2

4

Prob. forecast

Figure 6. Forecast for the 20 GK questions for which E-mean and SkE-mean differ the most. In most cases

SkE-mean is closer to the observed outcome.

debate. On one hand, both contexts ask the forecasters to quantity their beliefs in terms of probability predictions.315

On the other hand, the latent mechanisms by which forecasters access and process data are likely to be different316

in the two contexts. We conjecture that in both geopolitical and general knowledge contexts the information317

needed to make accurate forecasts is ‘lumpy’ in nature. There are, for example, discrete conclusive pieces of318

evidence or revelatory concepts that are hard to access and hence are only held by a minority of forecasters.319
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The power of these pieces of information is enough to push forecasts deep into one of the tails of the forecast320

distribution, increasing the skew in that direction. Support for the existence and importance of such ‘threshold321

concepts’ or ‘eureka moments’ can be found in the psychology and educational literatures (e.g., Jones 2003322

and Land et al. 2008). Their relevance to forecast aggregation, however, is less developed. Similar levels of323

skew-adjustment being appropriate for both contexts suggests that the distributions of knowledge or information324

among the forecasters share similar properties, and any work to confirm or refute this empirically would be325

valuable. Of particular interest would be to investigate data with uninformed or misinformed minority groups.326

Such minorities could be inferred from negative estimates of the coefficient c in (12).327

Our SkE-mean is premised on the relevance of a non-trivial structural feature of the population of forecasters.328

Specifically, it relies on the existence of distinct subpopulations. One may ask why we have chosen to quantify329

this feature indirectly via skewness rather than employing more sophisticated statistical methodology to infer330

the parameters of the mixture distribution explicitly. Why, for example, did we not estimate the weights, means331

and variances in (3) using numerical Markov chain Monte Carlo (MCMC) methods developed for Bayesian332

inference? Our principal reason is computational tractability. The excess skewness of a sample is quick and333

easy to compute, whereas MCMC algorithms for mixture distributions are liable to become protracted as they334

jump (or, more problematically, do not jump) around the parameter space. Furthermore, such MCMC algorithms335

can be highly dependent on the likelihood functions for the latent parameters, which in our case would entail336

choosing precise specifications of the component distributions πs in (3). This is a specification that we anticipate337

most users in practice are reluctant to make.338

Our analysis only captures associations in the data. Therefore, it is possible that the empirically observed339

relationship between the excess skewness and event outcomes is not causally attributable to the presence of340

an informed minority. Given that the relationship can be verified and quantified with available data while the341

underlying cause, at least for now, cannot, we consider the relationship as the main focus of our work. Overall,342

we see the development of models for forecaster behaviour as one of the key drivers of predictive methods but343

not necessarily as the predictive methods themselves. For this reason, we are interested in experimenting with344

models of forecaster interdependence, such as the information diversity model of Satopää et al. (2016), the model345

of private and shared information of Lichtendahl Jr et al. (2020), and the Bayesian group belief model of Dietrich346

(2010). Such models can offer further insight and point towards other important summary statistics of observed347

forecaster behaviour.348

4.2 Practical Suggestions349

In terms of the log-odds, we recommend the aggregated forecast

logitP(Y = 1 | a,b,c,{pi}n
i=1) = a+b logit(µ̂)+ cγ̂

1/3
excess. (15)

The coefficients in (15) have simple interpretations: a determines the reference value for extremization (see350

Section 2.1) and corrects for populations of forecasters whose average member consistently produces forecasts351
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that are too high or too low; b controls the strength of extremization, so that b > 1 extremizes the mean away352

from the reference value, b = 1 results in the unadjusted mean, and 0 < b < 1 shrinks the mean towards the353

reference value; c controls the skew-adjustment, which we have argued may be a way to account for informed354

minorities, so that c > 0 effectively up-weights the minority, c = 0 leaves it unweighted, and c < 0 down-weights355

it. In particular, a = 0,b = 1,c = 0 reverts to the unadjusted mean probability. Even though coefficient values of356

a ≈−1, b ≈ 4 and c ≈ 2 are found to produce low Brier scores for the GJP and GK data, we strongly encourage357

users of SkE-mean to estimate context-specific coefficient values from historical forecast data wherever possible.358

4.3 Future Research359

One future research direction involves extending SkE-mean to a multivariate setting, where forecasters predict

events with M > 2 possible outcomes. If each forecaster i’s prediction pi is in the (M − 1)-simplex and the

event results in one of M outcomes Y ∈ {1, . . . ,M}, then one approach is to compute the mean, µ̂m, and excess

skewness, γ̂excess,m separately for the probabilities assigned to each potential outcome m ∈ {1,2, . . . ,M}, and

then calibrate their influence on the aggregated probability using a multinomial logistic regression model. For

each potential outcome m = 1, . . . ,M, the aggregated forecast then is

P(Y = m | a,b,c,{pi}n
i=1) =

exm

1+∑
M−1
j=1 ex j

, (16)

where x j = a+b logit(µ̂ j)+cγ̂
1/3
excess, j. This approach is appealing because it capitalizes on an assumed symmetry360

between the M potential outcomes and hence keeps the number of parameters to be estimated (i.e., a, b, and c in361

Eq. 16) low. It also preserves our rationale relating to contrarian minorities because we have, in a sense, reduced362

the multivariate problem to K −1 univariate problems with a form that we have already seen.363

Our goal in the present work was to show how E-mean could be usefully extended with the help of standard364

statistical modeling techniques, such as the logistic regression. SkE-mean, however, involves more parameters365

than E-mean. Given that accurate estimation of more complex models often requires more data, SkE-mean can366

be expected to outperform E-mean only if the training dataset is sufficiently large. Both data sets in the current367

paper feature large numbers of questions (with which to estimate extremization and skew adjustment parameters)368

and large numbers of forecasters per question (with which to estimate the excess skewness of the forecasts).369

As these numbers become small, estimation errors may adversely affect our proposed aggregation method. In370

Appendix E, we subsample both the GJP and GK data and consider the relative performance between E-mean371

and SkE-mean under different sample sizes. As a simple rule of thumb, our skew-adjustment is likely to improve372

E-mean as long as there are at least 30 events and 30 forecasts per event.373

Even though we do not consider these data requirements unreasonable, a future research project could look for374

ways to improve the performance of SkE-mean under small data. A solution is likely to employ procedures that375

shrink parameter estimates towards default values. Particularly relevant techniques are kernel density estimation376

and regularized logistic regression, which are described in Sections 6.6.1 and 4.4.4 of Hastie et al. (2001),377
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respectively.378
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A Appendix: A Limiting Form for the Skewness445

This appendix derives the approximate expression (6). First, the jth moment of a two-component mixture

distribution can be written as a double-sum, where the external sum marginalizes over the component distributions

and the internal sum expands differences from the distribution mean in terms of differences from the component

means. More precisely,

E[(X −µ) j] =
2

∑
s=1

wsE[(X −µ) j | X ∼ πs]

=
2

∑
s=1

wsE[(X −µs +µs −µ) j | X ∼ πs]

=
2

∑
s=1

ws

j

∑
k=0

 j

k

(µs −µ) j−k E[(X −µs)
k | X ∼ πs].

Given that the differences between the component means and the population mean can be written as µ1 −µ =

µ1 − (w1µ1 +w2µ2) = w2(µ1 −µ2) and µ2 −µ = µ2 − (w1µ1 +w2µ2) = (1−w2)(µ2 −µ1), we can express the

second and third central moments of the mixture distribution in terms of properties of the mixture components

only. Furthermore, we can investigate how these quantities behave as w2 becomes small. Denoting the first,

second, and third central moments of the subpopulation s by µs, σ2
s and µ3,s respectively, the third central

21/27

Electronic copy available at: https://ssrn.com/abstract=4004029



preprint draft - 7 Jan 2022

Powell, Satopää, MacKay, Tetlock: Skew-Adjusted Extremization

moment of the mixture distribution is given by

E[(X −µ)3] =
2

∑
s=1

ws
[
(µs −µ)3 +3(µs −µ)2E[(Xs −µs)]+3(µs −µ)E[(Xs −µs)

2]+E[(Xs −µs)
3]
]

=
2

∑
s=1

ws
[
(µs −µ)3 +3(µs −µ)σ2

s +µ3,s
]

=(1−w2)w3
2(µ1 −µ2)

3 +3(1−w2)w2(µ1 −µ2)σ
2
1 +(1−w2)µ3,1

+w2(1−w2)
3(µ2 −µ1)

3 +3w2(1−w2)(µ2 −µ1)σ
2
2 +w2µ3,2

=w2(µ2 −µ1)
3 +O(σ2

1 )+O(σ2
2 )+O(w2

2) as σ
2
1 → 0, σ

2
2 → 0, w2 → 0, (17)

where the products involving third central moments are subsumed into the O(σ2
s ) terms. This follows from

the expectations of the cubes of random variables in [0,1] being smaller than the expectations of their squares.

Similarly considering the second central moment of the mixture, we have

E[(X −µ)2] = σ
2
1 +O(w2) as w2 → 0. (18)

Under the assumption that |µ2 −µ1|> 0 and that w2 decreases faster than σ2
1 , equations (17) and (18) give

us the final limiting expression:

lim
σ2

1 →0,σ2
2→0,w2/σ2

1→0

E[(X −µ)3]

(E[(X −µ)2])3/2 =w2(µ2 −µ1)
3/σ

3
1 .

B Appendix: Tabulated Results446

Aggregator Mean S-trim Votes HD-trim Logit E-mean Sct-crowd SkE-mean

Average 0.098 0.084 0.080 0.073 0.063 0.061 0.054 0.046

Standard Deviation 0.095 0.118 0.122 0.171 0.117 0.169 0.133 0.159

Table 2. Summary statistics for the out-of-sample Brier scores achieved by different aggregators on the Good

Judgment Project data. For descriptions of the aggregators, see Section 3.1.

Aggregator Mean S-trim Votes HD-trim Logit E-mean Sct-crowd SkE-mean

Average 0.171 0.171 0.179 0.131 0.135 0.107 0.107 0.098

Standard Deviation 0.131 0.170 0.188 0.133 0.177 0.197 0.120 0.197

Table 3. Summary statistics for the out-of-sample Brier scores achieved by different aggregators on the general

knowledge forecasting data. For descriptions of the aggregators, see Section 3.1.
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E-mean right E-mean wrong

SkE-mean right 414 20

SkE-mean wrong 8 20

Table 4. Counts of Good Judgment Project questions for which E-mean and SkE-mean are on the right or

wrong side of 0.5.

E-mean right E-mean wrong

SkE-mean right 415 17

SkE-mean wrong 11 57

Table 5. Counts of general knowledge questions for which E-mean and SkE-mean are on the right or wrong

side of 0.5.
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C Appendix: Good Judgment Project Questions447

1 Will Fayez al-Tarawneh resign or otherwise vacate the office of Prime Minister of Jordan before 1 January

2013?

2 Will the sentence of any of the three members of the band Pussy Riot who were convicted of hooliganism be

reduced, nullified, or suspended before 1 December 2012?

3 Will Viktor Yanukovich vacate the office of President of Ukraine before 10 May 2014?

4 Will Christian Wulff resign or vacate the office of President of Germany before 1 April 2012?

5 Will Viktor Yanukovich vacate the office of President of Ukraine before 10 May 2014?

6 Will China officially announce a peak year for its carbon emissions before 1 June 2015?

7 Before 1 April 2014, will one or more countries impose a new requirement on travelers to show proof of a

polio vaccination before entering the country?

8 Will the official US Dollar to Venezuelan Bolivar exchange rate exceed 4.35 at any point before 1 April

2013?

9 Will the Malian government and Ansar Dine commence official talks before 1 April 2013?

10 Will a foreign or multinational military force fire on, invade, or enter Syria between 6 March 2012 and 31

December 2012?

11 Before 1 February 2014, will Iran officially announce that it has agreed to significantly limit its uranium

enrichment process?

12 Will the official US Dollar to Venezuelan Bolivar exchange rate exceed 4.35 at any point before 1 April

2013?

13 Will Goodluck Jonathan vacate the office of President of Nigeria before 10 June 2015?

14 Will Israel officially establish a date for early elections before 6 November 2012?

15 Will China conduct naval exercises in the Pacific Ocean beyond the first island chain before 1 June 2015?

16 Will the IMF officially announce before 1 January 2013 that an agreement has been reached to lend Egypt at

least 4 billion USD?

17 Will the IMF officially announce before 1 January 2013 that an agreement has been reached to lend Egypt at

least 4 billion USD?

18 Will Serbia be officially granted EU candidacy before 1 April 2012?

19 By 31 December 2011, will the World Trade Organization General Council or Ministerial Conference

approve the ’accession package’ for WTO membership for Russia?

20 Will the Israeli-Palestinian peace talks be extended beyond 29 April 2014?

Table 6. Questions used to elicit the forecasts shown in Figure 3
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D Appendix: General Knowledge Statements448

1 There are four covalent bonds involved in a methane molecule.

2 An increase in current through a wire exposed to a magnetic field will also increase the force experienced by

the wire.

3 Photosynthesis is an example of an endothermic reaction.

4 The first two electron shells in Neon are fully filled with electrons.

5 In physics, U-values measure how effective a material is an insulator.

6 Nitrogen can typically form up to two covalent bonds.

7 Knowing an appliance’s power consumption and potential difference would allow someone to calculate the

current.

8 Hedgehogs are nocturnal and hibernate during the winter.

9 In an ammonia molecule, hydrogen and nitrogen atoms share electrons.

10 As a substance changes state from liquid to gas, the amount of energy particles have increases.

11 The force experienced by a current-carrying wire can be reversed by reversing the direction of cur-

rent/magnetic field.

12 Isotopes have the same number of protons, but different number of neutrons.

13 Eye color is an example of continuous variation in a trait.

14 The last ice age occurred during the Jurassic period.

15 In a circuit, a fuse can be reset after it is triggered.

16 Sound waves and electromagnetic waves are examples of longitudinal waves.

17 Secondary industries dominate the market in emerging economies.

18 As the temperature increases, the solubility of gasses increases.

19 In physics, work done is equal to the force needed to move an object multiplied by the distance it moved.

20 If the voltage in a circuit remains constant but the resistance is increased, current decreases.

Table 7. General knowledge statements that were used to elicit the forecasts shown in Figure 6
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E Appendix: Sample Size Requirements449

Given that accurate estimation of more complex models often requires more data, SkE-mean can be expected to450

outperform E-mean only if the training dataset is sufficiently large. To understand the data requirements of our451

skew adjustment, we sub-sample the GJP and GK data and compare the performance of E-mean and SkE-mean452

given a smaller number of events/questions and forecasts per event.453

Figure 7 presents the results in a series of levelplots. In each levelplot, the x-axis represents the number of454

forecasters per event and the y-axis represents the number of events/questions in the training dataset. The left455

column considers GJP data, and the right column considers GK data. Figures 7a–7b in the top row present the456

average (out-of-sample) Brier scores of E-mean. The corresponding plots for SkE-mean are given by Figures457

7c and 7d in the middle row. Each value is an average (out-of-sample) score over 500 random partitions of the458

data into training data (with which to estimate the model parameters) and testing data (with which to compute459

out-of-sample Brier scores). Figures 7e–7f in the bottom row show the average Brier score of SkE-mean divided460

by the average Brier score of E-mean. Therefore, a value smaller (larger) than 1.0 indicates that SkE-mean461

performs, on average, better (worse, respectively) than E-mean.462

According to the results, both procedures perform poorly under a small number questions (e.g., 10 questions).463

This happens because if we randomly draw a small number of questions from the full data, the training data464

can end up being perfectly separated in the sense that the logit of the average probability always falls on the465

right side of some reference value µ0. Under such perfect separation, the most ‘extreme extremizing’ is the most466

appropriate (i.e., the optimal value of the extremization constant is α =+∞). However, if the testing data include467

events for which the average forecast is on the wrong side of the reference value, ‘extreme extremizing’ leads468

to correspondingly extremely wrong predictions and hence to poor out-of-sample accuracy. To alleviate this469

problem, it may be possible to regularize extremization with an appropriate constraint or Bayesian prior (Gelman470

et al., 2008).471

Even though both E-mean and SkE-mean face the dangers of over-fitting under small data, SkE-mean has472

one extra degree of freedom and hence can be more susceptible to overfitting. As a result, E-mean outperforms473

SkE-mean when both the number of questions and forecasts per event is small. However, as either dimension of474

the data increases, SkE-mean outperforms E-mean by an increasing margin. In particular, SkE-mean improves475

upon E-mean when the training data include at least 30 events and 30 forecasts per event.476
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(a) Average Brier scores of E-mean under GJP data.
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(b) Average Brier scores of E-mean under GK data.
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(c) Average Brier scores of SkE-mean under GJP data.
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(d) Average Brier scores of SkE-mean under GK data.
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(e) SkE-mean Brier scores as a fraction of E-mean Brier

scores under GJP data.
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(f) SkE-mean Brier scores as a fraction of E-mean Brier

scores under GK data.

Figure 7. Out-of-sample average Brier scores of E-mean and SkE-mean aggregators given differing quantities

of training data. The left column represents GJP data, and the right column represent GK data. Plots in the same

row do not have the same scale, except in Figures 7e and 7f that the present the relative Brier scores. In the

bottom row, values smaller (larger) than 1.0 show when SkE-mean performs better (worse, respectively) than

E-mean.
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