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Abstract

Online service platforms enable customers to connect with a large population of independent

servers and operate successfully in many sectors, including transportation, lodging, and deliv-

ery, among others. We study how prices are chosen and fees are collected on the platform. The

platform could assert full control over pricing despite being unaware of the servers’ costs (e.g.,

ride sharing). Or the platform could allow unfettered price competition among the servers (e.g.,

lodging). This choice influences both the amount of supply available and the overall attractive-

ness of the platform to consumers. When the platform collects revenue via a commission or a

per-unit fee, neither price delegation strategy dominates the other. However, the platform’s best

payment structure is simple and easy to implement - it is merely the combination of a commis-

sion and a per-unit fee (which can be negative, as in a subsidy). Furthermore, this combination

enables the delegation of price control to the servers, which may assist in the classification of

the servers as contractors rather than employees. A similar approach can be used to maximize

profits by fully disintermediated platforms (i.e., no central owner), such as those enabled by

blockchain technology.

1 Introduction

Online service platforms establish marketplaces to match independent service providers with poten-

tial customers. They have been established in many domains, including ride sharing (e.g., Uber),
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food delivery (e.g., DoorDash), freelance labor (e.g., TaskRabbit), handmade and vintage products

(e.g., Etsy), accommodations (e.g., AirBnB), mobile phone applications (e.g., App Store), etcetera.

Pricing is a critical function for a platform’s success, both who selects prices and how revenue is

generated. On some platforms, servers post their desired fee. We refer to this as server pricing. On

others, the platform directly selects the price for the servers, which we refer to as platform pricing.

The platform can collect revenue with a commission on the sales price, or with a per-unit fee, or

some other, more elaborate, structure. There is little guidance in the literature to choose among

these options.

Although many platforms have only operated with a single pricing structure, most participate

in evolving markets and are experiencing a number of potentially significant shocks that could force

changes. For example, there is considerable regulatory debate in the gig-economy over the classifica-

tion of its workers. Are they independent contractors or employees? Most online platforms, such as

Uber and Lyft, treat workers as independent contractors, but they are facing sustained regulatory

pressure to reclassify their workers, due to the amount of centralized control they exert over them.

In California, for instance, a law (AB5) was recently passed that emphasizes a contractor’s freedom

to do its business without a platform’s control and direction. Freedom in setting prices has notably

been considered a pre-requisite of this description (Bhuiyan 2020), and some argue that granting

price freedom to drivers is a necessary measure for ride-sharing platforms to continue to classify

their drivers as contractors (Paul 2016).1 In the United Kingdom, a recent court ruling granted

ride-sharing drivers employee status because of the platform’s control over fares and the contractual

terms it enforces on the drivers (O’Brien 2021).

Technology presents another potential shock to platform pricing. In particular, distributed ledger

technologies, such as blockchain, have enabled new companies to establish disintermediated markets

in which there is no centralized agent and therefore no central control over pricing. Examples include

Arcade City and Drife in ride-sharing space, Dtravel in house-sharing, and Filecoin and Storj in the

market for data storage. A common justification touted across these new platforms is that they take

control/power away from central entities, and place it back in the hands of the service providers

and platform users. It is not clear whether or how this improves the functioning of these markets.

To address the issue of pricing control and regulation on a platform, we consider a platform
1The subsequent passage of a superseding bill in California, in 2020, Proposition 22, temporarily swung the

pendulum back towards allowing gig workers to be classified as independent contractors, but less than a year later,

the bill was ruled unconstitutional and unenforceable by a California Superior Court Judge (Lyons 2021). Similarly,

in Massachusetts, Bill HD2582, which has been called a Proposition 22 “clone”, has been met with fierce opposition

by drivers (Ongweso 2021).
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with the following characteristics: (i) a large number of independent agents, who we refer to as

servers, offer their services, (ii) servers have private knowledge of their heterogeneous costs, (iii)

servers self-schedule their work on a short term basis (i.e., the platform cannot dictate when to

work or how much to work), (iv) all participants on the platform choose actions to maximize their

objective, correctly anticipating the actions of the other participants, and (v) the consumer choice

process is influenced both by the overall attractiveness of the platform as well as the specific price

of the server with whom the consumer is matched.

From the first characteristic, it follows that each server is a small portion of the platform,

and they know that they individually have no ability to influence the aggregate outcomes on the

platform. However, they are sophisticated enough to respond to what happens on the platform in

a manner that is best for them (characteristic four).

Server costs’ (second characteristic) include both out-of-pocket explicit costs as well as opportu-

nity costs, which can vary considerably (Chen et al. (2019)). For example, a server may have explicit

expenses related to the service offered, but also incurs a cost to dedicate time to the platform that

could be used for other activities that either yield explicit income (e.g., another paid job) or utility

(e.g., leisure). Further, because there is a large number of servers and the relationship with servers

is relatively short term, the platform is unable to affordably learn a server’s operating cost (i.e., a

server’s cost is private information to the server). The lack of cost visibility poses a challenge for the

platform to make decisions that accommodate servers’ heterogeneous preferences, especially given

that servers control when and how much they work (third characteristic). For example, Filippas

et al. (2021) empirically show that platform pricing harms server participation in a vehicle rental

platform due to its inability to fully account for the servers’ costs.

The fifth characteristic is distinctive to platforms. Servers provide the explicit task that con-

sumers desire, but consumers are also drawn by the overall performance of the platform. For

example, a platform known to have high prices is less likely to be chosen if a customer is aware of

more economical alternatives, including potentially forgoing the service altogether. This is true no

matter who sets prices. Consequently, a server’s demand on a platform comes from two sources.

The first is the platform’s attractiveness which influences the total demand on the platform. Due to

their small size, individual servers have no ability to directly influence the platform’s attractiveness.

However, the second source of a server’s demand depends on the degree of server competition on

the platform. The more aggressive server competition is on the platform, the more any one server

can influence their own share of total demand. Combining the two effects, platform attractiveness

determines the total size of the demand pool and platform competitiveness determines a server’s
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portion of that pool.

For the designer of the platform, the appropriate control and regulation of pricing depends on

the tension between letting servers set prices that are suitable given their own costs and the need

for an appropriate level of prices across the platform. The limitation of "one size fits all" pricing is

that inevitably the platform’s price is too high for some servers (those with low costs) and too low

for other servers (those with high costs), thereby restricting supply. However, server pricing relies

on prices set by individual servers who know they have no power to influence aggregate outcomes.

Consequently, competition among servers could lead to prices that are undesirably too high or too

low, depending on how easy it is for a server to adjust its share of platform demand. This potential

downside of server control over pricing remains even in the fully disintermediated setting where the

central firm designing the platform is removed and replaced by a blockchain-based smart contract.

The ideal platform design (i) is responsive to server cost heterogeneity, (ii) properly manages the

competition among servers, (iii) is relatively simple to explain and implement, and (iv) delegates

pricing control to the servers to enable the classification of servers as contractors (if desired). We

show that such a design exists. In fact, it is merely the combination of two simple payment fees.

The first is the commonly observed commission per unit based on the price. For example, a server

might pay the platform 20% of the selling price per unit. The second is a per-unit fee. Either fee can

be negative, which is better described as a subsidy from the platform to the servers. Neither of the

two payment fees on its own performs well in all situations, especially when price control is given

to the servers (i.e., server pricing). But joining them together allows the firm owning the platform

to maximize its profit even when servers choose their own prices. This is achieved because the

commission plus per-unit fee enables the platform to fully regulate competition among the servers.

For example, when competition is insufficient, the platform subsidizes low-cost servers to deliver

more quantity and lower prices. However, when unregulated competition would be destructive, the

platform tempers the aggressiveness of the low-cost servers to encourage more supply to participate

on the platform. This recipe for the payment structure is sufficiently effective that the platform

need not consider more elaborate payments structures.

In sum, through a properly designed and simple fee structure a platform can delegate control of

pricing to servers while also receiving the maximum profit possible. To the best of our knowledge,

we are the first paper that characterizes whether and how a platform can optimally delegate pricing

decisions to a continuum of competing servers with private cost information.
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2 Literature Review

This work is related to research on (i) ownership and contracts in supply chains, (ii) price delegation,

(iii) platform management, and (iv) the design of decentralized markets through distributed ledger

technology.

The structure of a service platform resembles that of a traditional supply chain. There is a

single firm (the platform or supplier) that sells a good or service that is distributed through a large

number of independent, self-interested, agents (e.g., servers, retailers, distributors).

Pricing control is well studied in supply chains. Identified early on, the double marginalization

effect establishes that a retailer chooses a price which is higher than the supplier desires (Spengler

(1950)): all else equal, the supplier always prefers the retailer to set a lower price to increase demand.

However, lower retail prices also dampen the incentive for retailers to provide costly sales effort that

could increase demand, and to stock an ample supply of inventory. Consequently, a supplier may

attempt to regulate prices through contractual terms and/or restraints on retail business practice

(e.g. Dixit 1983, Rey and Tirole 1986, Deneckere et al. 1996, Padmanabhan and Png 1997, Dana

and Spier 2001, Cachon and Lariviere 2005, Song et al. 2008). Direct control of retail prices is

legally risky, and so suppliers generally avoid it. But such control is an available option to firms

creating platforms.

Asymmetry in cost information complicates the coordination of a supply chain. A number of

settings with bilateral relationships have been investigated (e.g. Corbett and De Groote (2000), Ha

(2001), Corbett et al. (2004), Mukhopadhyay et al. (2008), Yao et al. (2008), Xie et al. (2014), Ma

et al. (2017)) and some with a finite number of competing agents (e.g., Cachon and Zhang (2006)),

but none with a large number of small agents.

Throughout the supply chain literature, the competing agents (usually considered to be retailers)

always prefer the other agents to raise their prices. One retailer never benefits from a second

retailer’s price reduction. However, this need not be true on a platform. Because there are a large

number of agents on a platform, no single agent has significant influence over the market. Yet, the

attractiveness of the platform as a whole is influenced by their collective actions. Consequently,

an agent might prefer that all other agents lower their prices so as to attract more demand to the

platform. We account for this in our model.

The price delegation literature considers how much control over pricing should a principal assign

to an agent. The prototypical setting is a firm deciding the degree of pricing authority to give its

salesforce. Initial work debated the value of delegated pricing control (e.g., Weinberg (1975)), and
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concluded that delegation is better when the agent has better information about demand (e.g.,

Lal (1986), Joseph (2001), Bhardwaj (2001). Subsequent analysis demonstrates that (due to the

revelation principle, Myerson (1981)) there is in fact no inherent advantage of delegation even when

the agents have better information as long as the principal is not constrained in the contract that

can be offered (Mishra and Prasad (2004, 2005)). A creative principal can allow the agent to choose

the price fully knowing that the agent will choose the price that maximizes the principal’s objective.

This finding somewhat moves the question of who controls prices into the philosophical realm - do

agents in fact have pricing control if they choose the prices that the principal knows they will choose,

given the principal’s payment structure? However, in practice, and to a layperson, the definition

of who has price control follows common sense - if the agent directly posts the price, even if the

platform designs the agent’s compensation, then the agent has control, and if the agent does not

explicitly select a price, then the platform has control over pricing. We adopt this straightforward

definition of price control.

There has been some empirical work on price delegation. For example, in the auto loan industry,

Philipps et al. (2015) finds that giving agents price discretion increases profit relative to centrally

chosen prices because the centrally chosen prices are not the best prices given the available infor-

mation. In our model all agents fully optimize their actions given available data and we do not

consider issues related to learning demand.

Our work departs from the price delegation literature in several ways. First, the price delegation

literature has not extensively considered the issue of competition among agents. Mishra and Prasad

(2005) models the competition between two agents, but each agent works exclusively for a single

platform. Hence, there is no notion of a large number of independent agents whose collective actions

determines the overall attractiveness of the platform. Second, in the price delegation literature

agents select costly effort to increase sales (or to learn about demand, as in Atasu et al. (2021)) and

they have homogeneous marginal costs. We do not include costly effort and agents in our model

have heterogeneous costs.

There is a growing literature specifically focused on the management of platforms. Some studies

only consider fixed prices and focus on the matching process that occurs among the platform par-

ticipants (Arnosti et al. (2021), Feng et al. (2017), Afèche et al. (2018), Hu and Zhou (2016), Ozkan

and Ward (2016), Halaburda et al. (2018)). Others consider revenue maximizing pricing and fee

structures given platform control of pricing, i.e. without consideration of server pricing: Riquelme

et al. (2015), Gurvich et al. (2016), Cachon et al. (2017), Bai et al. (2018), Taylor (2018), Hu and

Zhou (2019), Benjaafar et al. (2021), Bimpikis et al. (2016), Ma et al. (2020), Besbes et al. (2021),
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Castilllo et al. (2017), Hu et al. (2021).

There is some work that considers only server pricing on a platform in which servers always

prefer competitors to be less competitive (Allon et al. (2012), Birge et al. (2020), Ke and Zhu

(2021)).

Feldman et al. (2019) studies both platform and server prices in a food-delivery platform, but

they do not consider competition among servers.

Lobel et al. (2021) evaluates a platform’s optimal mix of employees and contractors in a market

with uncertain demand but with an exogenous price. Their results demonstrate the value of classi-

fying servers as contractors. Our results address the profit implication if a market legally requires

server pricing to continue the use of contractors.

Some work considers platforms that can operate with different types of technologies (e.g., human

drivers and autonomous vehicles, Siddiq and Taylor (2019), Lian and van Ryzin (2021)) or platforms

in which agents can choose to be a server or a customer (e.g., peer-to-peer sharing in which agents

choose to own or rent a vehicle, Benjaafar et al. (2019)). In our platform, the servers operate only

with a single technology and agents do not choose to be on the demand or supply side of the market.

Several papers explicitly consider competition among platforms. Liu et al. (2019) find that

server retention can be increased by paying discounts along with a commission contract. We do not

consider server retention. In Ahmadinejad et al. (2019), ride-sharing platforms compete for drivers

and riders. Platforms seek to maximize throughput (number of rides) rather than profit, so the

payment structure between drivers and the platform is not considered. Lian et al. (2021) consider

a market with multiple platforms that seek to attract a pool of servers, but pricing to consumers

is exogenous. Cohen and Zhang (2017) consider pricing both for customers and servers, but do not

consider server pricing.

There is work that considers the allocation of decision rights across agents in a market or

platform. Hagiu and Wright (2015) and Hagiu and Wright (2018) consider marketing actions other

than pricing. In Hagiu and Wright (2019) there is competition across agents, but it does not impact

total demand. They use double sided moral hazard and non-contractible actions to explain the price

delegation decision, neither of which is required in our analysis.

Growth of distributed ledger technologies is facilitating the operation of completely decentral-

ized platforms, i.e., platforms without even a central firm owning the platform. Aymanns et al.

(2020) consider how such a change affects consumer welfare. Others consider various operational

controls within blockchain-based decentralized platforms (Benhaim et al. (2021), Chen et al. (2020),

Tsoukalas and Falk (2020), Cong et al. (2020), Gan et al. (2021b)). The extant literature, to the best
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of our knowledge, has not addressed the issue of who should retain pricing control in the presence

of market-level and individual-level competition effects. Further, work in this area often highlights

the advantages of decentralization but does not consider how the lack of a central firm could reduce

value in the system.

3 Model

We model a platform that mediates transactions between customers and a large population of

independent servers.

Servers differ in their marginal cost to provide service (e.g., as empirically observed in Filippas

et al. (2021)). In particular, there is a unit mass of servers and a server’s per-unit-of-demand cost

c, is uniformly distributed on the [0, 1] interval.

A server with price p serves q(p, p) units of demand when the average price paid on the platform

is p (with the usual constraint that demand cannot be negative),

q(p, p) = 1− βp+ γ(p− p). (1)

Each server’s demand depends on two factors that separately account for market-level and individual-

level competitive effects.

The first factor, βp, reflects the platform’s overall attractiveness relative to other (external)

options customers may have to fulfill their needs. Hence, we refer to this as the platform attractive-

ness effect and the parameter β measures its strength, with 3/2 < β.2 For example, if a platform is

known to have a low average price compared to the broader market, then this helps to attract de-

mand to the platform. However, if the platform’s average price is known to be high, then customers

tend to avoid it, leaning towards other options to meet their needs. Consequently, we consider the

platform attractiveness effect to operate on time horizons of weeks, months or longer. Furthermore,

the platform attractiveness effect is based on the sales-weighted average price on the platform, p

(formally defined by (3)), because that is the price a customer can expect to actually pay. Conse-

quently, extremely high prices have little impact on demand if customers rarely pay those prices,

and low prices with ample demand are given proportionally more importance.

The second factor in a server’s demand is the server’s own price relative to the average price paid

on the platform, γ(p− p). Once customers seek service from the platform, they naturally gravitate

more towards servers with lower prices (or tend to be matched with lower priced servers). We refer
2The lower bound ensures the (realistic) situation in which the highest cost server does not participate even if the

platform charges no fees.
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to this as the server competition effect. The parameter γ > 0 measures the degree to which internal

competition can shift the allocation of demand among servers. Large values of γ reflect a market

in which consumer demand readily flows to the lowest price options on the platform. However,

in practice, consumers of service platforms value other dimensions beyond price, suggesting more

moderate values for γ. Put another way, servers provide differentiated products, and due to diverse

tastes and needs, price is an important, but not the exclusive, deciding factor when choosing a

server.

A server’s demand is naturally always decreasing in their own price, p. But servers are of two

minds with respect to the average price paid on the platform, p. From the point of view of platform

attractiveness, each server wishes for the average platform price to be low. That will attract many

customers to the platform, and, all else equal, a server prefers to participate in a platform with more

customers. However, a platform with plenty of demand is of little use to a server with a high price if

little demand is matched with the server. In other words, a server’s demand increases if their price

looks good relative to the average price on the platform. And because of that, the server might

prefer that the platform have a higher average price to make the server’s own price more enticing.

For a server, the balance of the platform attractiveness and the server competition effects depends

on the β and γ parameters. When β < γ, the server’s demand is more impacted by competition

with other servers than the attractiveness of the platform. In this case, as is typical in competitive

settings, each server prefers less competition (i.e., other servers choose high prices). However, when

γ < β, a server’s demand is influenced more by with overall platform attractiveness than with

internal server competition. This means that the server actually prefers for the other servers to act

more aggressively (i.e., lower their prices). This is possible because consumers first decide whether

to patronize the platform and then choose servers within the platform. If the platform decision

looms large, then for a server it can be more important to be part of an attractive platform (ample

demand due to a low average price) than to be able to capture share of that demand from other

servers, especially if demand is relatively evenly distributed among the servers.

The situation in which the platform attractiveness effect is larger than the server competition

effect (γ < β) is distinct to service platforms. For example, it is generally assumed (and empirically

observed) that retailers always prefers their competitors to raise their prices. It is fully expected

that a retailer’s demand only can decrease when other retailers lower their prices. However, the

unexpected can occur with a platform because the agents on a platform are small relative to the size

of the market. Consequently, consumer decisions are less focused on the attributes of the particular

agents/servers and can be governed to some extent by the characteristics of the overall platform.
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Figure 1 displays the sequence of actions. The firm owning/designing the platform first estab-

lishes who sets prices and how fees are collected from the servers. (We refer to this firm as "the

platform".) The platform’s fees can be based on the prices charged or the quantities served or a

combination of both. One simple fee commonly observed in practice is a commission fee in which a

server pays φp per unit to the platform, where φ ≤ 1 is a fixed commission rate and p is the server’s

price. Typical commission rates range from about 15% in lodging to 25% in ride-sharing. Another

simple fee commonly observed in practice is a per-unit fee in which a server pays a fixed w per unit

to the platform. (In the context of a traditional supply chain, a per-unit fee is usually referred to

as a "wholesale price".) When the platform combines commissions with per-unit fees, then one of

them can be negative, meaning it is better described as a subsidy rather than a fee.

Next, servers observe the payment terms, their own private cost and their expectation for the

average price in the market. Based on that information, the servers decide whether to participate in

the market or not. They participate whenever their expected profit exceeds their outside opportunity

cost, which we normalize to zero (without loss of generality). In fact, this is their only decision if the

platform controls pricing. If the platform allows server pricing, the servers also choose their prices

to maximize their individual profit (given, of course, the information they know). Finally, given

prices and market entry decisions, demand occurs, revenue is earned, and the platform collects its

share of revenue according to its payment terms.

Servers recognize that they are small actors in this platform, meaning that the action of a

single server has no meaningful impact on market outcomes. However, collective actions clearly do

influence market outcomes. A price expectations equilibrium occurs when the servers’ expectation

for the average price is consistent with the actual average price, p. Similar methods have been used

in the literature in the context of static non-atomic games (Aumann 1964, Schmeidler 1973, Ostroy

and Zame 1994) and dynamic mean field games (Lasry and Lions 2007, Olszewski and Siegel 2016,

Carmona and Wang 2021, Light and Weintraub 2022).

With platform pricing, the platform directly controls prices. Given that the platform cannot

distinguish among the servers with low or high costs, with this option the platform selects a single

price that applies to all servers. This is the typical approach in the ride-sharing industry. Consumers

observe a single price for service within a local market at a moment in time (which is what is modelled

here). The only decision for servers is whether to participate in the market or not. The platform

can influence that decision, and thus total supply, through the price selected and the fee structure

offered.

With server pricing, servers directly select their own price they offer customers on the platform.
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This is the typical arrangement observed in room-sharing or work-for-hire platforms.3 Now the

servers choose whether to participate and their posted price. This leads to heterogeneous prices on

the platform. In addition to the platform’s fee structure, this decision is influenced by the degree

of competition among the servers.

All information is common knowledge with the exception that each server’s cost is private

information (as already mentioned). For example, the distribution of server cost is commonly known

and all prices and quantities are observable. All agents maximize their expected profit/earnings (i.e.,

all are risk neutral) and in equilibrium have valid expectations for future events.

t = 1

Platform announces

the pricing policy,

payment terms (e.g., φ, w)

and possibly pricey

Servers observe the pricing

policy, payment terms,

their own cost c,

and their expectation

for the average pricey
t = 2

Servers make

participation and possibly

price decisionsy

Customers

receive service

and payments

are madey

Figure 1: Sequence of events

4 Platform Pricing

When platform pricing is implemented, the platform selects a single price, p, for all servers. Con-

sequently, a unique price expectations equilibrium exists: each server correctly expects p to be the

average price on the platform, p = p.

Platform pricing eliminates the server competition effect - without the ability to select their own

price, servers are unable to control the amount of demand they take from other servers. As a result,

the platform’s demand is equally shared among the servers who participate even though they have

heterogeneous costs. Furthermore, the absence of server competition means the platform directly

regulates the platform’s overall attractiveness to consumers (i.e., total demand) via its selection of

the average price, p.

Given that there is a single price on the platform, for any commission, there exists an equivalent

per-unit fee, w = φp. Hence, all results with the commission payments can be exactly replicated

with per-unit fees.
3Some platforms attempt a intermediate pricing policy in which prices are suggested to servers while the servers

retain control over pricing. This remains server pricing in our model because the platform’s suggestion provides no

additional information and servers have the skills required to maximize their profit.
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A server with cost ci earns a profit πi(p),

πi(p) = q(p, p)((1− φ)p− ci), (2)

where each server’s price is the average price, p. A server’s profit is decreasing in cost. So only

servers with sufficiently low cost expect to earn a non-negative profit and participate. Let ch be the

largest cost among the servers who participate, i.e., πh(p) = 0. The platform’s expected profit is

ΠP(p, φ) = φ

ch∫
0

q(p, p)p dc.

Proposition 1 identifies the commission fee that maximizes the firm’s profit.

Proposition 1. With platform pricing and a commission fee, there exists a unique optimal price

and commission rate for the platform: p = 2/(3β) and φ = 1/2. Table 1 summarizes the optimal

payment terms and several market metrics with platform pricing.

As expected, the service competition parameter, γ, does not influence the outcomes because

platform pricing eliminates competition among the servers. Servers earn some profit (one third of

the total, to be precise) because cost heterogeneity among the servers prevents the platform from

earning all of the profit in the system.

Platform pricing,

commission or

per-unit fee

Server pricing,

commission and

per-unit fee

Server pricing,

commission only

Server pricing,

per-unit fee only

Platform’s profit, Π
1

27β2
1

24β2
9

8

(
γ

(2β + γ)3

)
1

3

(
γ

β(2β + γ)2

)
Servers’ total profit, π

1

54β2
1

48β2
9

16

(
γ

(2β + γ)3

)
2

3

(
γ

(2β + γ)3

)
Average market price, p

2

3β

2

3β

2

2β + γ

6β + γ

3β(2β + γ)

Server prices, p(c)
2

3β

4γ − β
6γβ

+
βc

γ

3

2(2β + γ)
+ c

5β + γ

3β(2β + γ)
+
c

2

Total quantity served
1

9β

1

8β

9

8

(
γ

(2β + γ)2

)
γ

(2β + γ)2

Table 1: Equilibrium market characteristics under the four fee structures (commission and per-use)

and pricing policies (platform or server pricing).
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5 Server Pricing

With server pricing, servers set their own prices to maximize their profit given their expectation

for the average price on the platform, pe. Let p(c, pe) be the price of a server with cost c and the

expectation pe. Let R(pe, p) be the total revenue on the platform given the price expectation of the

servers and the actual average price, p:

R(pe, p) =

1∫
0

q(p(c, pe), p)p(c, pe)dc.

Let Q(pe, p) be the total quantity served:

Q(pe, p) =

1∫
0

q(p(c, pe), p)dc.

The actual average price on the platform is the ratio of total revenue to total quantity. In a price

expectations equilibrium, the actual average price on the platform matches the servers’ expected

average price, pe = p:

p =
R(p, p)

Q(p, p)
=

1∫
0

q(p(c, p), p)p(c, p)dc

1∫
0

q(p(c, p), p)dc

. (3)

The existence and uniqueness of a price expectation equilibrium is not assured: expectations are used

to select each server’s price, and the collection of prices then must yield an aggregate revenue and

quantity such that the realized average price matches the original expectation. However, according

to Proposition (2), there exists a unique price expectation equilibrium within a broad class of useful

payment terms.

Proposition 2. Consider the class of payment terms in which the servers pay the platform a

commission, φ, (i.e., a φp fee per unit when the price is p) and/or a per-unit fee, w, for each

unit of demand served. Within this class of payment terms, there exists a unique price expectations

equilibrium when server pricing is implemented.

We next evaluate actions and performance when the platform implements a commission and

per-unit fee together and individually.
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5.1 A Commission Plus Per-unit Fee

With server pricing implemented, say the platform charges a commission, φ, plus a per-unit fee, w.

A server with cost ci that selects price p and has an average price expectation p earns πi(p, p):

πi(p, p) =
(
1− βp+ γ(p− p)

)
((1− φ)p− ci − w). (4)

Let p(c, p) be the optimal price for a server with cost c and price expectation p:

p(c, p) =
1

2

(
1− (β − γ)p

γ
+
c+ w

1− φ

)
. (5)

Only servers with sufficiently low costs participate. Let ch be the highest cost server that chooses

to participate on the platform,

ch = ch(φ,w, p) =
(1− φ)(1− (β − γ)p)

γ
− w. (6)

The platform’s profit is

ΠS(φ,w) = (φp+ w)

ch(φ,w,p)∫
0

(1− βp+ γ(p− p(c, p))) dc.

With server pricing, because servers have different costs, they post different prices, i.e., there

is no single price on the platform. The particular price a server posts, (5), depends on three

components. The first is the base amount of demand available to the server, 1 − (β − γ)p. This

impacts all servers equally. The second component is the combination of a server’s own cost and

the commission. Lower cost servers apply smaller markups than high cost servers:

∂2p(c, p)

∂φ∂c
=

1

2

1

(1− φ)2
> 0.

Prices are least responsive to costs when the platform does not use a commission (i.e., φ = 0) and

become more responsive as the platform uses the commission more assertively (either positive or

negative φ). The third component that influences prices is the per-unit fee. Like the base amount

of demand, all servers apply the same markup due to the per-unit fee. Hence, the dispersion of

prices on the platform is exclusively regulated with the commission.

The level of prices in equilibrium (i.e., the average price paid) is

p =
2

2β + γ
+

(
γ

2β + γ

)(
w

1− φ

)
.

The commission influences the level of prices, but the platform cannot use the commission on its

own to regulate the level of prices. In contrast, the per-unit fee regulates the price level. Thus,
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the commission plus per-unit payment structure gives the platform effectively two different tools to

adjust prices, one to adjust price dispersion (the commission) and the other to set the overall level

(per-unit). Having both tools is useful for the platform. According to Proposition 3, the platform

(generally) uses the combination of a commission and a per-unit fee to maximize its profit.

Proposition 3. With server pricing and a commission plus per-unit fee structure, there exists a

unique commission rate and a per-unit fee that maximizes the platform’s profit, φ = 1 − γ/(2β),

w = (γ − β)/(3β2). (See Table 1 for additional details.)

Although the platform uses a commission and a per-unit fee to maximize its profit, it does not

always charge actual fees. When γ < β, server competition is weak leading to high prices. Something

is needed to lower prices on the platform. For the platform, that something is a negative per-unit

fee, which is better described as a subsidy for each unit served. The subsidy in effect lowers each

server’s cost, which causes the servers to lower their prices, all by the same amount. The subsidy is

obviously costly, but the platform makes up for it with a higher commission. Even with a subsidy,

on net the servers pay the platform (otherwise the platform would not earn revenue). But this does

not require that all servers on net pay. The platform prefers to subsidize the lowest-cost servers

because they serve the most customers and therefore have the largest influence on the average price.

When the service competition effect is particularly weak (γ < 2β/5), these servers are allowed to

keep all of their revenue and then are, in fact, paid an additional amount. Although the platform

loses money on these servers, the lower prices they create makes the platform more attractive and

allows the platform to make up for these losses through the fees earned on the higher cost servers.

The platform may also use subsidies at the other extreme of server competition. When 2β < γ

service competition is aggressive resulting in prices that are too low. To increase prices, the platform

implements a large positive per-unit fee, which raises all prices by the same amount. But all else

equal, this means the high-cost servers are less able to pay the fee and earn a profit. To keep enough

of them in the market, the platform "charges" a negative commission, i.e., a commission subsidy,

which proportionally is more advantageous in absolute terms to high cost servers because they have

higher prices. Nevertheless the platform earns something from every server (i.e., there is no server

for which the total commission subsidy is greater than the total per-unit payment.)

With intermediate levels of competitiveness, β < γ < 2β, the platform continues to use the two

different levers of commissions and per-unit, but neither needs to be implemented to the degree that

they turn into a subsidy.

As with platform pricing, the platform earns two thirds of total profit and neither the platform’s

nor the servers’ profit depends on the level of server competition, γ. The combination of a properly
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chosen commission and per-unit fee is able to neutralize the server competition effect (on profits,

with the optimal payment terms).

The platform uses the commission and the per-unit fee to counteract each other - when one

is increased, the other is decreased. Consequently, there are two special situations in which the

combination of a commission and a per-unit fee is not needed. When γ = β, the average price, p,

has no impact on server demand. With no need to regulate the average price, the platform does

not need to use a per-unit fee. When γ = 2β, the platform only needs to manage the average price

level and the commission is not needed (φ = 0 is optimal).

Although price dispersion exists, the average price paid by customers is the same as what the

platform would choose with platform pricing. However, despite the same average price, the total

quantity served is greater, because the price dispersion generates more participation.

5.2 Just a Commission

A platform could choose to charge a commission and nothing else. In this case, server earnings,

optimal prices and entry decisions follow (4), (5), (6) respectively with w = 0. The platform’s profit

is

ΠSC(φ) = φp

ch(φ,0,p)∫
0

(1− βp+ γ(p− p(c, p)))dc.

The commission on its own cannot regulate the average price level on the platform. It does

affect the total revenue (decreasing in φ), and, obviously, the platform’s share of revenue (increasing

in φ). Consequently, according to Proposition 4, the platform selects a commission, φ = 1/2, to

balance this tension.

Proposition 4. With server pricing and a commission fee there exists a unique commission rate

that maximizes the platform’s profit, φ = 1/2. (See Table 1 for additional details.)

The platform continues to earn two thirds of total profit. However, this is generally two thirds

of less-than-optimal profit. When both a commission and per-unit fee are used, the platform char-

acteristics (β and γ) influence how much server prices respond to their costs:

∂p(c, p)

∂c
=
β

γ
.

But with just a commission, the platform is unable to regulate how prices adjust to costs as the

platform characteristics vary (γ and β):

∂p(c, p)

∂c
= 1.
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Consequently, the average price on the platform, p, can be higher or lower than ideal. The same is

true for the total quantity served. Hence, unless the platform operates in the special situation in

which platform attractiveness and server competition cancel each other (γ = β), the platform earns

less with just the use of a commission.

5.3 Just a Per-unit Fee

Another option for a simple fee structure is to charge only a per-unit fee. In this case the server

earnings, optimal prices and entry characteristics follow (4), (5), (6) respectively with φ = 0. Given

these, the platform’s profit is

ΠSU (w) = w

ch(0,w,p)∫
0

(1− βp+ γ(p− p(c, p)))dc.

With per-unit fees the platform is primarily concerned with total demand (i.e., it does not charge

a percentage of revenue). A higher fee increases earnings for the platform per unit but also reduces

demand. Proposition 5 reports the per-unit fee that best manages this tension.

Proposition 5. With server pricing and a per-unit fee there exists a unique fee that maximizes the

platform’s profit, w = 1
3β . (See Table 1 for additional details.)

A per-unit fee reduces the breadth of server participation in the market (reduces ch) but also

raises prices. This combination is helpful for the platform when the service competition effect is

moderately strong because dampening excessive server competition is actually beneficial. Conse-

quently, the platform earns the highest profit with per-unit fees when γ = 2β. In that special case,

the average market price matches the one achieved with platform pricing or server pricing with also

a commission.

The platform’s share of total profit is

2 + γ/β

3 + γ/β
,

which is at least two thirds and is increasing in the level of server competition, γ. However, it is a

small consolation to earn a large share when total profit is very low. As with just the commission,

server pricing is insufficiently adaptive to the platform characteristics (γ and β):

∂p(c, )

∂c
=

1

2
.

The resulting quantity served is always insufficiently low.
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6 Selection of the Pricing Policy and Structure

Which among the pricing policies (platform or server) and structures (commission and/or per-unit)

should the platform select? According to Figure 2, if the goal is to maximize the platform’s profit,

then the answer is simple. The platform is always better off with server pricing and the commission

plus per-unit fees (ΠS).

Platform pricing (ΠP) is robust to variations in the server competition effect (γ), but so is server

pricing with commission plus per-unit fees (ΠS), and the latter generates 12.5% higher revenue for

the platform than platform pricing. Platform pricing addresses the issue of server competition with

a blunt instrument, i.e., it eliminates all price dispersion. But this restricts the ability of some

higher cost servers to participate on the platform, which is a lost opportunity that can be recovered

with server pricing (and a commission plus per-unit fee).

Platform pricing is simple, and it can fare well against the basic versions of server pricing. If the

platform constrains itself to only a commission (ΠSC) or only a per-unit fee (ΠSU ), then it becomes

vulnerable with server pricing when the server competition effect is either weak (low γ) or strong

(high γ). With either extreme the simple server pricing structures can be arbitrarily bad relative

to platform pricing because they are unable to sufficiently regulate the prices on the platform and

earn the platform a suitable profit. However, for a considerable range of moderate levels of server

competition (intermediate γ), the platform prefers one of the versions of server pricing over platform

pricing. In these situations the price dispersion of server pricing allows servers to cater their prices

to their costs, and this is desirable for the platform. Corollary 1 formally states these results.

Figure 2: The platform’s and servers’ profits under platform pricing (dotted line), server pricing

with commission (solid line) and server pricing with unit fee (dot-dashed line), as a fraction of their

profits under server pricing with commission and per-unit fee (dashed line scaled to 1) for β = 2.

Corollary 1. The platform’s profit is 12.5% greater with server pricing and the commission plus

18

Electronic copy available at: https://ssrn.com/abstract=3957209



per-unit fee than with platform pricing. The maximum profit with server pricing is achieved without

a per-unit fee when γ = β, and without a commission when γ = 2β. The platform prefers server

pricing with a commission over platform pricing if and only if 0.54β < γ < 1.78β. The platform

prefers server pricing with a per-unit fee over platform pricing if and only if β < γ < 4β.

A platform may also have an interest in server welfare because this can influence its ability to

recruit servers and could be of interest to regulatory agencies. The right panel of Figure 2 displays

the servers’ total profit with the considered pricing policies and payment terms. The servers’ profit

tends to closely mirror the platform’s profit. For example, as with the platform’s profit, the servers’

earnings are invariant to the level of server competition (γ) either with platform pricing (because

the single price eliminates server competition) or server pricing with the commission plus per-unit

fees. Servers’ earnings can be arbitrarily bad with server pricing and either of the basic server

pricing payment terms. With just a commission, the servers’ earnings peak at the same point as the

platform, i.e., when the platform attractiveness effect and server competition effects cancel out so

that the average price does not matter (γ = β). That is also the point at which total server earnings

peak, but this is achieved with just the per-unit fee. Corollary 2 formalizes these observations.

Corollary 2. Total server profit is higher with server pricing with a commission and per-unit fee

than platform pricing and server pricing with commission only. Servers prefer server pricing with

a commission and per-unit fee over server pricing with per-unit fee only if γ < 0.47β or γ > 2β.

Consumers are another stakeholder. Without an explicit utility model for consumers, it is not

possible to directly measure consumer welfare. However, consumers tend to prefer lower prices and

more quantity, all else equal. Based on Corollary 3, server pricing can also be good for consumers.

Corollary 3. Server pricing with commission plus per-unit fee gives the same average price as

platform pricing and a higher number of customers served.

7 Optimal Mechanism

It is useful to identify the platform’s optimal mechanism (i.e., pricing policy and terms) among

the set of all possible payment terms the platform could use. According to the revelation principle

(Myerson (1981)), the optimal mechanism resides within the set of truth-inducing mechanisms. With

those mechanisms, the platform announces a menu that maps each possible server cost into a price

and fee. Servers report a cost (which need not be their true cost) and prices and fees are determined

based on the announced menu and the resulting demands across the servers. This mechanism is

19

Electronic copy available at: https://ssrn.com/abstract=3957209



truth inducing if (i) it is optimal for each server to report their cost truthfully (assuming all other

servers do so as well) and (ii) a server’s earnings from participation in the platform is at least equal

to the server’s best outside option. The first requirement is referred to as the incentive compatibility

constraint and the second is referred to as the individual rationality constraint.

Let p(c) be the price the platform assigns to server c and f(c) be the fee collected. The com-

bination of p(c) and f(c), is the menu in the platform’s mechanism. Let π(c, p(c̃)) be a server’s

earning with cost c that reports costs c̃:

π(c, p(c̃)) = (1− βp+ γ(p− p(c̃)))(p(c̃)− c)− f(c̃).

In any optimal mechanism there exists a ch such that all servers with costs c ≤ ch participate on

the platform whereas all servers with costs c > ch do not. (If a server with cost c did not participate

but there were a server with a higher cost that did participate, then the server with cost c would be

better off reporting a higher cost.) Hence, the platform’s optimal mechanism can be found through

the following optimization problem:

max
p(c),f(c),ch

Π =
ch∫
0

f(c) dc

s.t. π(c, p(c)) ≥ π(c, p(c̃)) ,∀c ∈ (0, ch), ∀c̃ ∈ (0, ch)

π(c, p(c)) ≥ 0 ,∀c ∈ (0, ch)

Eq. (3).

There are several challenges to find the optimal mechanism. First, there is no constraint on the

form of the fee structure, f(c). A contract with commission and per-unit fee is one form, but surely

not the only form. Second, a server’s profit depends on all of the prices in the market through

the average price, p. Hence, the platform’s mechanism must have consistent expectations such that

given the expected cost reports, the assigned prices are such that the average price leads to the

expected quantities and profit. Finally, the relationship between server payoffs and the individual

prices are non-linear.

Proposition 6. The following mechanism maximizes the platform’s revenue: p(c) = 2
3β −

1
6γ + β

γ c,

f(c) = a0 + a1c+ a2c
2, with a0 = 1

24

(
5
β −

2
γ

)
, a1 = 2

3

(
β
γ − 1

)
, a2 = β

2

(
1− 2β

γ

)
.

Proposition 6 identifies the optimal mechanism. Server prices are linearly increasing in the

servers’ costs, which means that price dispersion is good for the platform. Thus, platform pricing

cannot be optimal (because it lacks price dispersion). Payments to the platform are quadratic in

server costs, so the optimal mechanism is clearly not a two-part tariff: the heterogeneity in server

costs limits the effectiveness of a two-part tariff.
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Although the mechanism described in Proposition 6 is optimal, it does not seem practical. With

this mechanism servers report their costs, the platform chooses all of the prices, and the servers make

payments via a non-linear payment structure. Instead, it would be preferred to identify a mechanism

that involves server pricing and linear payments based on observable metrics. Fortunately, according

to Proposition 7, such a mechanism exists and it has already been identified.

Proposition 7. Server pricing with a commission plus per-unit fee payment structure is an optimal

mechanism.

Although the commission and per-unit fees are each alone (generally) insufficient to yield the

optimal profit for the platform, together, they work well to stay responsive to the servers’ cost

heterogeneity and to also regulate the average price. Through appropriately chosen commission

and per-unit fees, a platform can achieve the same performance as the optimal mechanism without

explicitly controlling the prices or requiring servers to report their costs.

8 Extensions and Robustness

In this section, we discuss several extensions to our model. Section 8.1, explores a market that

uses distributed ledger technology (e.g., smart contracts on blockchain platforms) to eliminate the

central coordinator (i.e., a platform). Section 8.2 explores a market in which servers have limited

capacity. Section 8.3 considers non-uniform distributions for the servers’ cost. Section 8.4 allows

the platform to maximize throughput rather than profit. In sum, the primary insights from the

main model continue to hold in all of these additional circumstances.

8.1 Disintermediated Pricing using Blockchain-Based Smart Contracts

The platform’s primary focus is to maximize its own profit, rather than the total value in the system,

which also includes the servers’ total profits. Consequently, total system value may increase if the

platform could be removed and control transferred to the servers. In principle, this may be feasible

via smart contracts, enabled by blockchain technology.

Beyond the integrity of transactions, needed to create a viably functioning market, we presume

smart contracts can potentially establish a set of observable and enforceable transfers among the

servers while also allowing them to have full control over their pricing. Given that, Proposition

8 identifies an optimal disintermediated mechanism that (i) does not include a platform and (ii)

maximizes total server profits.
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Proposition 8. Without a central platform earning a profit, the servers’ profits can be maximized

in equilibrium when a server with cost c selects price p(c) = 2
3β −

1
6γ + β

2γ c, and the server contributes

an amount f(c) to the system, where f(c) = a0+a1c+a2c
2, with a0 = 1

12

(
1
β −

1
γ

)
, a1 = 1

3

(
β
γ − 1

)
,

a2 = β
4

(
1− β

γ

)
. If f(c) is negative, then the server receives a subsidy. This mechanism is budget

balancing, i.e., there is a zero net flow of subsidy transfers.

The mechanism described in Proposition 8 is incentive compatible, i.e., no server wishes to

choose a different price conditional that all other servers are following the mechanism and the

subsidy transfers are credibly administered. This holds even though some servers select prices that

force them to relinquish some of their earnings (when f(c) is positive) and others select prices that

allows them to earn a bonus beyond their own earnings (when f(c) is negative).

Similar to the optimal profit-maximizing mechanism, the optimal disintermediated mechanism

can be implemented through a commission and per-unit fee structure in which some servers make

contributions, others receive contributions, and the net contribution in the system is zero.

The optimal disintermediated contract is simple to characterize, but it may be difficult to im-

plement in practice. First of all, it implies that not all servers will retain all of their earnings.

The system of transfers may be viewed as unnatural, or inconsistent with the philosophy behind

a disintermediated market. It is also not clear how the specific functional forms for the subsidies

would be modified if market conditions change (e.g., shifts in γ or β), and it is not clear that the

data collection and computational requirements could be practically satisfied.

A simpler alternative to the optimal mechanism is a market that allows all servers to set their

own prices, retain their entire revenue, and distributed ledger technology is merely used to ensure

the integrity of all transactions. We refer to this benchmark as "disintermediated server pricing".

It is equivalent to the server pricing setting from Section 5, but with commission and fees of

φ = 0, w = 0. (7)

Under this setting, the equilibrium is characterized by Equations (3), (5), (6) and (7).

In practice, there are markets in which platforms take no commission, as is displayed in Table 2.

However, a direct comparison between centralized and decentralized platforms is difficult, because

decentralized platforms rely on alternative monetization mechanisms that may proxy for commission

fees, such as stake retention in Initial Coin Offerings (Gan et al. 2021a,b), and a tokenized economy

(Cong et al. 2020, Tsoukalas and Falk 2020). Our analysis in this section can thus be interpreted

as a “best case scenario” for blockchain-based platforms. We show that even under this best-case

assumption, blockchain may not always prevail as the preferred mode of adoption.
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Centralized φ Decentralized φ

Uber 25% Drife 0%

Lyft 20% Arcade City 0%

AirBnB 15% Dtravel 7%*

UberEats 22% Filecoin 0%

Grubhub 25% Storj.io 0%

Median 20% Median 0%

Table 2: Typical commission fees per transaction, on centralized vs. decentralized platforms.
*Dtravel commission fee is recycled back into the platform ecosystem.

Proposition 9. With disintermediated server pricing (i.e., no platform, servers set their prices and

retain all earnings), there exists a unique price equilibrium among the servers. There exists γl < β

and β < γh such that the total server profits under disintermediated server pricing is higher than

server pricing with a commission and per-unit fee when γl < γ < γh, and lower otherwise.

Figure 3: Total system profits with respect to the server competition parameter, γ, for β = 2 under

disintermediated server pricing (dot-dashed line) and disintermediated optimal mechanism (solid

line), as a fraction of total profit with the platform’s optimal mechanism (server pricing with a

commission and per-unit fee) (dashed line scaled to 1).

As displayed in Figure 3, the optimal disintermediated mechanism generates 33.3% more total

system profit than the platform’s optimal mechanism. This increase is attributed to higher retained

earnings by servers, which promotes participation. Under this mechanism, the customers are also

better off, with the same average market price and higher quantity served.

Recall, the optimal disintermediated mechanism requires transfers among the servers. When

these transfers cannot be implemented, the potential upsides to disintermediation can be large, but

this is limited to specific cases. According to Proposition 9, only for intermediate values of server
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competition, disintermediated server pricing can increase total system profits. In this case, the

platform’s profit-seeking behavior destroys more value than its price coordination generates. This

is not to suggest a platform can or should be be replaced by a disintermediated alternative. A plat-

form may pursue other objectives that are better aligned with servers’ objectives (e.g. maximizing

throughput) or provide other value added activities that is not captured in the model. In those

markets, centralized platforms can exhibit profit-maximizing behavior while maintaining servers’

total profits at a desired level (see Appendix, page 59), making it difficult for a disintermediated

alternative to provide additional value.

In sum, disintermediation can increase total system value. However, if the optimal disinterme-

diated contract is not practically implementable, a simpler alternative is to merely let the servers

price on their own and retain all of their earnings. While this can still increase total system value

(by eliminating the distortions associated with the platform’s profit-seeking motive), it retains lim-

ited control over the level of pricing competition among the servers. Hence, just as in the market

regulated by a platform, it is possible that total system value can be reduced via disintermediation,

especially if the server competition effect is particularly strong or weak.

8.2 Capacity Constraints

Our primary model presumes that demand constrains the quantity of service provided. However,

it is possible that servers may not be able to serve all of the customers that could be allocated to

them. This external capacity restriction influences decisions, regardless of who is setting prices or

the payment terms. When the platform is in control, it needs to set the platform price sufficiently

high to ensure that no demand is left unserved. Similarly, when servers set the price, each individual

server wants to extract the maximum profit from the customers and prefers to leave no customer

unserved. Proposition 10 characterizes the equilibrium behavior of the optimal mechanism given

capacity constraints.

Proposition 10. In the presence of capacity constraints, the platform’s optimal policy is server

pricing with a commission and per-unit fee, φ = 1 − γ
2β , w =

(
4t2−6t+3

1−t

)(
γ−β
6β2

)
, where t is the

capacity of each server.

The presence of capacity constraints imposes some changes to the platform’s optimal contract

parameters, but not to the contract structure. The platform’s optimal commission is unchanged,

but the per-unit fees are now monotone decreasing in t. Because servers have no incentive to cut

their prices once their demand matches their capacity, the platform counteracts elevated prices by
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decreasing server fees across the board.

With either of the simpler payment structures (e.g. only a commission or only a per-unit fee),

capacity constraints can be advantageous to the platform. When competition across servers is

strong, the platform is better off when servers are moderately limited by capacity. In those cases,

capacity constraints dampen the excessive competition between servers, so the platform does not

have to try to do so.

8.3 Alternative Cost Distribution Assumptions

The uniform distribution facilitates analytical results and yields an optimal mechanism that can

be implemented with a relatively simple structure. For other server cost distributions, prices are

non-linear in the servers’ costs in the optimal mechanism. Furthermore, the optimal mechanism

cannot be implemented with just commission and per-unit fees. Nevertheless, the optimal version

of server pricing with commissions plus per-unit fees may perform well.

In this section, we consider a Beta(α1, α2) distribution with α1 = α2 = α, which implies the

mean is a constant 0.5 and the density function is symmetric about the mean. We evaluate 400

scenarios using the following parameters: γ ∈ {0.1, 0.2, ..., 10}, β ∈ {2}, and α ∈ {2, 3, ..., 5}. For

each scenario, we compare the optimal non-linear mechanism with the optimal linear mechanism

involving server pricing, commission and per-unit fees. We find that the optimal linear mechanism

performs very well: it yields on average 99.98% of the optimal profit for the platform and no less

than 99.9%.

8.4 Throughput Maximization

Platforms that are in earlier stages of their life-cycle may believe it is more important to grow than

to be profitable. Those platforms may prioritize maximizing throughput over profits, which has

been considered in other models: e.g. Ahmadinejad et al. (2019), Castro et al. (2020), Yan et al.

(2020)). As profit is the product of quantity and margin, maximizing throughput (i.e., quantity)

is not a radically different objective. Hence, our main findings continue to hold qualitatively (see

Appendix, page 70).

9 Conclusion

Who should control pricing on a service platform and how should fees be collected? Servers know

their own costs to participate, so they are best able to tailor their price to their circumstance. A rigid
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price set by the central platform is likely to exclude some servers who otherwise could contribute.

However, servers are small actors. Each knows that they can only respond to the market given to

them and this has significant implications for the dynamics on the platform. In particular, there

are two effects that need to be regulated. A server can lower their price to take a larger share of

the platform’s demand. This server competition effect can lead to prices that are destructively too

low, limiting revenue potential through less supply (high cost servers drop out) and lower prices.

In contrast, there is a platform attractiveness effect - total demand on the platform depends on the

average price. Consequently, a server may actually prefer other servers to cut their prices - doing

so makes it harder to steal share from them (the typical competition effect) but it also expands

the total demand on the platform. Due to each server’s limited power, they collectively have little

control to balance these effects properly. This creates a value-added opportunity for the platform

to regulate pricing.

Commissions and per unit-fees are simple to explain and administer, but both lack precision on

their own. This can lead to either prices that are too low due to excessive competition or prices that

are too high due to insufficient competition. Consequently, while platform pricing is not ideal in all

situations, it performs reasonably well in all cases because when the platform takes full control of

pricing it is able to avoid the adverse scenarios of server pricing.

Fortunately, it is possible to combine the robustness of platform pricing with the advantages

of decentralization. When servers left on their own are too price aggressive, something is needed

to calm them. When independent servers are too timid, something is needed to motivate them

to cut their prices. By simply adjusting its commission and per-unit fees to account for server

heterogeneity, the platform can realize the maximum profit in all situations. However, in extreme

cases this can actually require converting one of the fees into a subsidy.

So the question for a service platform is not so much who should control pricing, but how they

do it. For example, server pricing may be necessary to classify servers as contractors rather than

employees. Although that classification has implications for who is willing to work on a platform

and the costs of their work, it may be possible to give servers full pricing control and yet correct

for the potentially negative consequences of doing so. This is a particularly important lesson for

platforms that are attempting to use distributed ledger technology (e.g., blockchain) to eliminate

any central agent. Such technologies may bring advantages to the market, but without addressing

the negative tendencies of server pricing, they face a potentially negative drag on performance.
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Appendix

Proof of Proposition 1. In platform pricing, there exists a single price in the market. The

average market price is equivalent to the price set by the platform. Let p be the price set and φ be

the portion of revenue retained. Conditional on participation, a server with cost ci earns

πi(p) = q(p, p)((1− φ)p− ci)

= (1− βp)((1− φ)p− ci).

Server profits are decreasing in cost, ci, and therefore there exists a threshold cost, ch, for which

server with cost c participates if and only if c ≤ ch. The highest cost that participates is

ch = (1− φ)p,

which leads to zero profit.

Platform’s profit maximization problem is

max
p,φ

ΠP(p, φ) = φp
ch∫
0

(1− βp) dc

= φp
(1−φ)p∫

0

(1− p) dc

= φ(1− φ)p2(1− βp).

The platform’s solution is unique. It’s defined by the first order conditions:

∂ΠP(p, φ)

∂p
= p(1− φ)φ(2− 3βp) = 0,

∂ΠP(p, φ)

∂φ
= p2(1− βp)(1− 2φ) = 0,

giving the solution

p =
2

3β
,

φ =
1

2
.

Platform’s profit is

ΠP = φ(1− φ)p2(1− βp) =
1

27β2
.

The highest cost that participates is

ch = (1− φ)p =
1

3β
.
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Total quantity of customers served in the market is

Q =

ch∫
0

(1− βp) dc

= (1− φ)p(1− βp)

=
1

9β
.

Servers’ total profits is

πP =

(1−φ)p∫
0

(1− βp)((1− φ)p− c) dc

=
1

2
(1− βp)p2(1− φ)2

=
1

54β2
.

(8)

Proof of Proposition 2. Let us consider a broad class of payment structures for which there

indeed exists a unique price expectations equilibrium: a server pays the firm a fee consisting of

three components: (i) a unit fee, w, per unit served; and (ii) a commission per unit, φp, where φ is

the fixed commission rate and p is the server’s price. In total a server with price p and quantity q

served pays the firm

q (w + φp) .

The commission rate does not exceed 100%, i.e., φ < 1. The fixed per-unit fee, w, can be negative,

meaning that it is actually a per unit subsidy.

A server’s quantity is
q(p, p) = 1− βp+ γ (p− p)

= 1− (β − γ) p− γp

where p is the (demand weighted) average price.

Let server costs be uniformly distributed on the interval [0, 1]. A server with cost ci earns a

profit:

πi(p, p) = q(p, p) (p− ci − w − φp)

= q(p, p) ((1− φ) p− ci − w)

= (1− βp+ γ (p− p)) ((1− φ) p− ci − w)

= (1− φ) (1− βp+ γ (p− p))
(
p− ci+w

1−φ

)
.
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The server’s profit is strictly concave when φ < 1,

∂πi(p,p)
∂p = −γ ((1− φ) p− ci − w) + q(p, p) (1− φ)

= γ (1− φ)
(
−
(
p− ci+w

1−φ

)
+ 1

γ q(p, p)
)

∂2πi(p,p)
∂p2

= −2γ (1− φ)

The server with cost c has optimal price and quantity

p∗ (c, p) = (1−φ)(1−(β−γ)p)+γ(c+w)
2γ(1−φ)

= 1
2

(
1−(β−γ)p

γ + c+w
1−φ

)
,

q(p∗(c, p), p) = 1− βp+ γ (p− p∗(c, p))

= 1
2γ
(
1−(β−γ)p

γ − c+w
1−φ

)
.

Define c0 to be the cost such that q(p∗(c0, p), p) = 0 for a given expectation for the average price, p,

c0 = (1− φ)

(
(1− (β − γ) p)

γ
− w

1− φ

)
. (9)

Begin with the special case β = γ. In this situation the demands and prices of the servers do not

depend on the average price. Hence, for whatever prices and quantities are selected, there exists an

average price, p. This is consistent with their expectation and choices, because their choices do not

depend on it. Partial participation in the platform requires 0 < q(p∗(0, p), p) and q(p∗(1, p), p) < 0,

which can be expressed as
1

β
− 1

1− φ
<

w

1− φ
<

1

β
.

Now consider γ 6= β.
q(p, p) = 1− βp+ γ (p− p)

= 1− (β − γ) p− γp.

Using (9), define pe (c0) as the average price such that q(p∗(c0, p), p) = 0 when pe (c0) is the

expectation for the average price,

pe (c0) =
1

β − γ

(
1− γ

(
c0 + w

1− φ

))
.

pe (c0) is linear in c0, increasing if β < γ and decreasing if γ < β:

dpe (c0)

dc0
=

γ

(γ − β) (1− φ)
.

In equilibrium, assuming there exists a server with 0 demand, there exists c0 mass of participating

servers in the market. If all servers have non-zero demand, then all of the servers in the market

participate. The highest cost server that participates is

ch = min {c0, 1} .
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The total quantity on the platform is

∫ min{c0,1}

0
q(p∗(c, p), p)dc =


γ

4(1−φ)c
2
0 , c0 < 1,

γ(1−2c0)
4(φ−1) , 1 < c0.

The total revenue on the platform is

∫ min(c0,1)

0
q(p∗(c, p), p)p∗ (c, p) dc =


γ

4(1−φ)2 c
2
0

(
2
3c0 + w

)
, c0 < 1,

γ(3c20+6c0w−(1+3w))
12(1−φ)2 , 1 < c0.

Define pa (c0) as the actual average price given c0

pa (c0) =

∫ min{c0,1}
0 q(p∗(c, p), p)p∗ (c, p) dc∫ min{c0,1}

0 q(p∗(c, p), p)dc
=

ph (c0) , c0 < 1,

pl (c0) , 1 < c0,

where

ph (c0) =

(
1

1− φ

)(
2

3
c0 + w

)
,

pl (c0) =
−3c20 − 6c0w + (1 + 3w)

3(φ− 1)(2c0 − 1)
.

pa (c0) is continuous, differentiable, increasing, linear for c0 < 1 and strictly concave for 1 < c0:

dpa (c0)

dc0
=


2

3(1−φ) , c0 < 1,

2
3(1−φ)

(
1−3c0+3c20
(2c0−1)2

)
, 1 < c0.

Note that

pl (1) = ph (1) ,

which implies that pa (c0) is a continuous function.

The average price p is a candidate equilibrium if there exists a c0 such that

p = pe (c0) = pa (c0) .

If β > γ, then pe (c0) is strictly decreasing in c0 while pa (c0) is strictly increasing. Thus, there

exists a unique c0 that leads to a candidate equilibrium. If β < γ, then both pe (c0) and pa (c0) are

increasing in c0. Because for all c0,

dpa (c0)

dc0
<
dpe (c0)

dc0
,

there exists a unique c0 for the candidate equilibrium p.
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A candidate interior equilibrium satisfies

p = pe (c0) = ph (c0)

and that solving for c0 and p yields

c0 =
3 ((1− φ)− βw)

2β + γ
(10)

p =
2 (1− φ) + γw

(1− φ) (2β + γ)
. (11)

The stability conditions for the candidate equilibrium to be interior is

0 < c0 < 1,

0 < p.
(12)

In any equilibrium where the platform earns non-zero profits, a necessary and sufficient condition

for the candidate equilibrium to be stable and interior is

c0 < 1 ⇐⇒ 1 >
3(1− φ− wβ)

2β + γ
. (13)

It is straightforward to see that, if 1 ≤ 3(1−φ−wβ)
2β+γ , then by Equation (10), we have c0 ≥ 1. That

is, all servers participate. We just need to show that, if platform’s terms satisfy 1 > 3(1−φ−wβ)
2β+γ ,

then in any equilibrium where the platform earns non-zero profits, all stability conditions in (12)

are satisfied.

For the rest of the proof, assume Equation (13) holds.

In order to prove c0 > 0 is satisfied for any equilibrium with non-zero profits, let us assume for

contradiction that c0 ≤ 0 and the platform earns non-zero profits. By Equation (10), this implies

that

c0 ≤ 0 ⇐⇒ w

1− φ
≥ 1

β
. (14)

Since platform earns non-zero profits, there also exists a non-zero mass of servers in the market.

The quantity and the profits of servers are monotone decreasing functions of c. As non-zero

mass of servers are in the market, there exists a ch ∈ [0, 1] such that

q(p∗(c, p), p) > 0, ∀c ∈ [0, ch). (15)

Since the average price in the market is strictly between the highest price in the market and

lowest price in the market (and that the prices are monotone) there exists a server with some cost

ca such that

p(ca, p) = p, (16)
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that is the average price is attained by a server with some cost ca < ch. This server earns non-

negative margins:

(1− φ)p(ca, p)− ca − w ≥ 0 =⇒ p(ca, p) = p ≥ ca + w

1− φ
. (17)

The quantity served by this server is strictly positive:

0 < q(p∗(ca, p), p)

= 1− βp+ γ(p− p∗(ca, p))

= 1− βp

≤ 1− β
(
ca + w

1− φ

)
≤ 1− β

(
w

1− φ

)
≤ 0.

(18)

First line follows from the fact that the server has cost ca < ch and Equation (15). Third line follows

from Equation (16). Fourth line follows from Equation (17). Fifth line follows from the fact that

ca ≥ 0. Last line follows from Equation (14).

Equation (18) defines a contradiction (0<0). Hence, our assumption is incorrect. We cannot

simultaneously have c0 ≤ 0 and the platform earn non-zero profits. If w/(1 − φ) > 1/β, the

platform’s fees are too high and no server can add its markup and still retain positive demand. In

equilibrium, 0 mass of servers enter and platform earns 0 profits (e.g. there is no market). Since

its possible for the platform to earn non-negative profits through other contracts, the platform will

never choose a contract that satisfies w/(1− φ) > 1/β.

Now, to prove p > 0 is satisfied for any equilibrium with non-zero profits, let us assume for

contradiction that p ≤ 0 and the platform earns non-zero profits. By Equation (11), this implies

that

p ≤ 0 ⇐⇒ −2

γ
≥ w

1− φ
.

As the platform earns non-zero profits, there exists a non-zero mass of servers in the market. By

definition, all participating servers serve non-negative demand. Similarly, by definition, the platform

and all participating servers earn non-negative profits.
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Total value generated is the sum of these two profits (and is non-negative):

0 <

c0∫
0

q(p∗(c, p), p)(φp∗(c, p) + w) dc+

c0∫
0

q(p∗(c, p), p)((1− φ)p∗(c, p)− c− w) dc

=

c0∫
0

q(p∗(c, p), p)(p∗(c, p)− c) dc

=

c0∫
0

q(p∗(c, p), p)p∗(c, p) dc−
c0∫
0

q(p∗(c, p), p)c dc

≤
c0∫
0

q(p∗(c, p), p)p∗(c, p) dc

=p

c0∫
0

q(p∗(c, p), p) dc

≤0.

(19)

The last equality follows from the definition of p:

p =

c0∫
0

q(p∗(c, p), p)p∗(c, p) dc

c0∫
0

q(p∗(c, p), p) dc

.

Last line follows from our knowledge that q(p∗(c, p), p) > 0 for all participating servers and that

p ≤ 0.

Equation (19) defines a contradiction. Hence, our original assumption is incorrect. We cannot

simultaneously have p ≤ 0 and the platform earn non-zero profits. If − 2
γ ≥

w
1−φ , no profit can be

generated in the market. Therefore, the platform will never sets its terms such that − 2
γ ≥

w
1−φ

holds.

Hence, we conclude that for any equilibrium where the platform earns non-zero profits, the

equilibrium is interior and satisfies all the stability conditions in (12) if and only if the platform sets

its terms such that

1 >
3(1− φ− wβ)

2β + γ
.

With server pricing with commission only, we have w = 0. Condition (13) is satisfied everywhere

if and only if

1 >
3(1− φ)

2β + γ
,∀φ ∈ [0, 1].
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The right hand side is monotone decreasing in φ and is maximized at φ = 0 (platform doesn’t

choose φ < 0, otherwise it earns negative profits). Then, we need to impose the condition

1 >
3(1− φ)

2β + γ
≥ 3

2β + γ
.

A sufficient condition is β > 3/2.

With server pricing with unit fee only, we have φ = 0. Condition (13) is satisfied everywhere if

and only if

1 >
3wβ

2β + γ
, ∀w > 0.

We want this to be true for all w values, that the platform never runs into boundary condition no

matter what fee it chooses. Recall that we have c0 > 0 in any profitable equilibrium where platform

earns non-zero profits. By Equation (10), this implies

c0 =
3((1− φ)− βw)

2β + γ
=

3(1− βw)

2β + γ
> 0 =⇒ w <

1

β
.

So, in any profitable equilibrium, platform cannot set its wage higher than 1/β. This means that, re-

stricting our attentions to those equilibrium where the platform earn non-zero profits, our condition

becomes

1 >
3

2β + γ
.

A sufficient condition is β > 3/2.

Proof of Proposition 3. By Proposition 2 the uniqueness of consistent expectations equilibrium

of the average price is guaranteed when platform operates with a commission and/or per-unit fees.

Throughout the proofs, due to equivalency of the expected average price, pe, and realized average

price, p, we don’t make the distinction between the two throughout the proofs.

In server pricing with commission fees, conditional on participation, a server with cost ci and

price p earns

πi(p, p) = (1− βp+ γ(p− p))((1− φ)p− ci − w).

Server’s profit depends on individual price, p, and also the average market price, p, which is

characterized in the equilibrium. Since each server is small, the price set by an individual server

does not influence the average market price.
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Server with cost c has the following pricing problem:

max
p

(
1− βp+ γ(p− p)

)
((1− φ)p− c− w).

A server’s optimal price is uniquely defined and is characterized by the first order condition.

Server with cost c has an optimal price:

p∗(c, p) =
1

2γ

(
1 + (γ − β)p+ (c+w)γ

1−φ

)
. (20)

Server i earns

πi(p
∗(ci, p), p) =

(1− φ− p(1− φ)(β − γ)− (ci + w)γ)2

4γ(1− φ)
.

Server profits are decreasing in cost, ci, and therefore there exists a threshold cost, ch, for which

server with cost c participates if and only if c ≤ ch. The highest cost that participates is

ch =
(1− φ+ (γ − β)(1− φ)p)

γ
− w, (21)

which leads to zero profit.

The average market price is defined in the equilibrium as a weighted average of all prices set

in the market. In line with the mean-field approach, the average price that occurs by the server’s

optimal decisions is consistent with their expectation of the average price. By Equation (3):

p =

ch∫
0

q(p∗(c, p), p)p∗(c, p) dc

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
p∗(c, p) dc

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
dc

=
2(1 + (γ − β)p)

3γ
+

w

3(1− φ)
,

where the last line follows by plugging in expressions for p∗(c, p) in Equation (20) and ch in Equation

(21).

Solving for p, we have

p =
2(1− φ) + wγ

(2β + γ)(1− φ)
. (22)

Platform’s profit maximization problem is:

max
φ

ΠS(φ,w) = (φp+ w)
ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc

=
9γ(βw + φ− 1)2(w(γ − 2β(φ− 1))− 2(φ− 1)φ)

4(φ− 1)2(2β + γ)3
.
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.

The platform’s solution is unique. It’s defined by the first order conditions:

∂ΠS(φ,w)

∂φ
−

9γ(βw + φ− 1)
(
βw2(β(−φ) + β + γ) + βw(φ− 2)(φ− 1) + (φ− 1)2(2φ− 1)

)
2(φ− 1)3(2β + γ)3

= 0,

∂ΠS(φ,w)

∂w
=

9γ(βw + φ− 1)
(
−6βφ2 + φ

(
8β + γ − 6β2w

)
+ (2β + γ)(3βw − 1)

)
4(1− φ)2(2β + γ)3

= 0,

giving the solution

φ = 1− γ

2β
,w =

γ − β
3β2

.

Platform’s profit is

ΠS =
9γ(βw + φ− 1)2(w(γ − 2β(φ− 1))− 2(φ− 1)φ)

4(φ− 1)2(2β + γ)3
=

1

24β2
.

The highest cost that participates and the average market price are

ch =
1

2β
,

p =
2

3β
.

Total quantity of customers served in the market is

Q =

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc

=
1

8β
.

Servers’ total profits ard

πSC =

ch∫
0

(1− φ− p(1− φ)(β − γ)− (ci + w)γ)2

4γ(1− φ)
dc

=
9γ(βw + φ− 1)3

4(φ− 1)(2β + γ)3

=
1

48β2
.

(23)
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Proof of Proposition 4. In server pricing with commission fees, conditional on participation, a

server with cost ci earns

πi(p(ci), p) = (1− βp+ γ(p− p(ci)))((1− φ)p(ci)− ci).

Server’s profit depends on individual price, p(ci), and also the average market price, p, which

is characterized in the equilibrium. Since each server is small, the price set by an individual server

does not influence the average market price.

Server with cost c has the following pricing problem:

max
p

(
1− βp+ γ(p− p)

)
((1− φ)p− c).

A server’s optimal price is uniquely defined and is characterized by the first order condition,

giving the solution

p∗(c, p) =
1

2γ

(
1 + (γ − β)p+ cγ

1−φ

)
. (24)

Server i earns

πi(p
∗(ci), p) =

(1− φ− p(1− φ)(β − γ)− ciγ)2

4γ(1− φ)
.

Server profits are decreasing in cost, ci, and therefore there exists a threshold cost, ch, for which

server with cost c participates if and only if c ≤ ch. The highest cost that participates is

ch =
(1− φ)(1 + (γ − β)p)

γ
, (25)

which leads to zero profit.

The average market price is defined in the equilibrium as a weighted average of all prices set

in the market. In line with the mean-field approach, the average price that occurs by the server’s

optimal decisions is consistent with their expectation of the average price. By Equation (3):

p =

ch∫
0

q(p∗(c, p), p)p∗(c, p) dc

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
p∗(c, p) dc

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
dc

=
2(1 + (γ − β)p)

3γ
,

where the last line follows by plugging in expressions for p∗(c, p) in Equation (24) and ch in Equation

(25).
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Solving for p, we have

p =
2

2β + γ
. (26)

Platform’s profit maximization problem is:

max
φ

ΠSC(φ, 0) = φp
ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc

=
9γ(1− φ)φ

2(2β + γ)3
.

.

The platform’s solution is unique. It’s defined by the first order conditions:

∂ΠSC(φ, 0)

∂φ
=

9γ(1− 2φ)

2(2β + γ)3
= 0,

giving the solution

φ =
1

2
.

Platform’s profit is

ΠSC =
9γ(1− φ)φ

2(2β + γ)3
=

9

8

(
γ

(2β + γ)3

)
.

The highest cost that participates and the average market price are

ch =
3

2(2β + γ)
,

p =
2

2β + γ
.

Total quantity of customers served in the market is

Q =

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc

=
9

8

(
γ

(2β + γ)2

)
.

Servers’ total profits is

πSC =

ch∫
0

(1− φ− p(1− φ)(β − γ)− cγ)2

4γ(1− φ)
dc

=
9γ(1− φ)2

4(2β + γ)3

=
9

16

(
γ

(2β + γ)3

)
.

(27)

43

Electronic copy available at: https://ssrn.com/abstract=3957209



Proof of Proposition 5. In server pricing with per-unit fees, conditional on participation, a

server with cost ci earns

πi(p(ci), p) = (1− βp+ γ(p− p(ci)))(p(ci)− ci − w).

Server’s profit depends on individual price, p(ci), and also the average market price, p, which

is characterized in the equilibrium. Since each server is small, the price set by an individual server

does not influence the average market price.

Server with cost c has the following pricing problem:

max
p

(
1− βp+ γ(p− p)

)
(p− c− w).

A server’s optimal price is uniquely defined and is characterized by the first order condition,

giving the solution

p∗(c, p) =
1

2γ
(1 + (γ − β)p+ (c+ w)γ) . (28)

Server i earns

πi(p
∗(ci), p) =

(1− p(β − γ)− (ci + w)γ)2

4γ
.

Server profits are decreasing in cost, ci, and therefore there exists a threshold cost, ch, for which

server with cost c participates if and only if c ≤ ch. The highest cost that participates is

ch =
(1 + (γ − β)p)

γ
− w, (29)

which leads to zero profit.

The average market price is defined in the equilibrium as a weighted average of all prices set

in the market. In line with the mean-field approach, the average price that occurs by the server’s

optimal decisions is consistent with their expectation of the average price. By Equation (3):

p =

ch∫
0

q(p∗(c, p), p)p∗(c, p) dc

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
p∗(c, p) dc

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
dc

=
2(1 + (γ − β)p) + γw

3γ
,

where the last line follows by plugging in expressions for p∗(c, p) in Equation (28) and ch in Equation

(29).
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Solving for p, we have

p =
2 + γw

2β + γ
. (30)

Platform’s profit maximization problem is:

max
w

ΠSU (0, w) = w
ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc

=
9γw(1− βw)2

4(2β + γ)2
.

.

The platform’s problem is quasi-concave. The solution is unique. It’s defined by the first order

conditions:
∂ΠSU (0, w)

∂φ
= 9γ(1−βφ)(1−3βφ)

4(2β+γ)2
= 0,

giving the solution

φ =
2

3β
.

Platform’s profit is

ΠSU =
9γw(1− βw)2

4(2β + γ)2
=

(
γ

3β(2β + γ)2

)
.

The highest cost that participates and the average market price are

ch =
2

(2β + γ)
,

p =
6β + γ

3β(2β + γ)
.

Total quantity of customers served in the market is

Q =

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc

=

(
γ

(2β + γ)2

)
.

Servers’ total profits is

πSU =

ch∫
0

(1− p(β − γ)− (c+ w)γ)2

4γ
dc

=
9γ(1− βw)3

4(2β + γ)3

=
2

3

(
γ

(2β + γ)3

)
.

(31)
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Proof of Corollary 1. The platform’s profits under server pricing with per-unit fee is maximized

at γ = 2β and is equal to 1/(24β2).

The ratio of platform’s profits under server pricing with per-unit fee and platform pricing,

evaluated for the parameters gamma, beta is:

ΠSU

ΠP
(γ, β) =

1

3

(
γ

β(2β + γ)2

)
1

27β2

= 9

(
β2γ

β(2β + γ)2

)
.

The platform prefers server pricing with unit fee over platform pricing if

ΠSU

ΠP
(γ, β) > 1 ⇐⇒ β < γ < 4β.

The platform’s profits under server pricing with per-unit fee is maximized at γ = β and is equal

to 1/(24β2).

The platform prefers server pricing with commission over platform pricing if

ΠSC

ΠP
(γ, β) > 1 ⇐⇒ 0.539β < γ < 1.785β.

Proof of Corollary 2. The ratio of servers’ total profits under server pricing with two components

and platform pricing is:
πS

πP
(γ, β) =

1
48β2

1
54β2

=
9

8
> 1.

Servers always collectively prefer server pricing with both components over platform pricing.

The ratio of servers’ total profits under server pricing with two components and server pricing

with commission is:
πS

πSC
(γ, β) =

1
48β2

9γ
16(2β+γ)3

=
(2β + γ)3

27γβ2
≥ 1.

Servers always collectively prefer server pricing with both components over server pricing with

commission.

The ratio of servers’ total profits under server pricing with two components and server pricing

with per-unit fee is:
πS

πSU
(γ, β) =

1
48β2

2γ
3(2β+γ)3

=
(2β + γ)3

32γβ2
.

Servers collectively prefer server pricing with both components over server pricing with unit fee

if
πS

πSU
(γ, β) > 1 ⇐⇒ 0.472β < γ < 2β.
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Proof of Corollary 3. Both platform pricing and server pricing with two components yield

the same average price, p = 2/(3β). The ratio of quantity served under server pricing with two

components and platform pricing is:

QS

QP
(γ, β) =

1
8β
1
9β

=
9

8
> 1.

Proof of Proposition 6. Let us assume that under the platform’s optimal mechansim, there

exists a unique average price, p, that satisfies consistent expectations equilibrium. In the optimal

mechanism, let p(c) be the price the platform assigns to server c and f(c) be the fee collected. Let

π(c, p(c̃)) be a server’s earning with cost c by reporting cost c̃:

π(c, p(c̃)) = (1− βp+ γ(p− p(c̃)))(p(c̃)− c)− f(c̃).

Let

u(c, p(c̃)) = (1− βp+ γ(p− p(c̃))) (p(c̃)− c).

Then, server’s net earnings is

π(c, p(c̃)) = u(c, p(c̃))− f(c̃).

Notice that marginal utility from higher p(c̃) is increasing with cost c. Specifically,

∂2π(c, p(c̃))

∂c∂p(c̃)
=

∂

∂c

(
∂π(c, p(c̃))

∂p(c̃)

)
=

∂

∂c
(γ(c+ p− 2p(c̃))− βp+ 1) = γ > 0. (32)

The Individual Rationality (IR) and the Incentive Compatibility (IC) constraints are:

π(c, p(c)) ≥ 0,

π(c, p(c)) ≥ π(c, p(c̃)),

for all c ∈ C, c̃ ∈ C, where C is the set of server costs that participate in equilibrium.

By IC constraints,

π(c, p(c)) ≥ π(c, p(c̃)) = (1− βp+ γ(p− p(c̃))) (p(c̃)− c)− f(c̃)

> (1− βp+ γ(p− p(c̃))) (p(c̃)− c̃)− f(c̃) = π(c̃, p(c̃))

for all c̃ > c. Therefore, server earnings are strictly decreasing in cost. This implies there will exists

a cost ch such that a server with cost c participates if and only if c ≤ ch. Furthermore„ the server
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with cost ch will earn 0 profits under the optimal mechanism. Otherwise, platform can uniformly

increase the fee, f(c̃), for all participating servers, increasing its profit.

By IR constraints, we can alternatively formulate a server’s earnings as

π(c, p(c̃)) = π(c̃, p(c̃))− u(c̃, p(c̃)) + u(c, p(c̃)).

The pair of inequalities IC constraints imposes for servers with costs c and c̃ are:

π(c, p(c)) ≥ π(c, p(c̃)) = π(c̃, p(c̃))− u(c̃, p(c̃)) + u(c, p(c̃)),

π(c̃, p(c̃)) ≥ π(c̃, p(c)) = π(c, p(c))− u(c, p(c)) + u(c̃, p(c)).

These inequalities can be combined:

u(c̃, p(c))− u(c, p(c)) ≤ π(c̃, p(c̃))− π(c, p(c)) ≤ u(c̃, p(c̃))− u(c, p(c̃))

⇐⇒
c̃∫
c

∂u(ck, p(c))

∂ck
dck ≤ π(c̃, p(c̃))− π(c, p(c)) ≤

c̃∫
c

∂u(ck, p(c̃))

∂ck
dck,

(33)

where ∂u(ck,p(c̃))
∂ck

is the partial derivative of u with respect to its first argument evaluated at the

point (ck, p(c̃)).

Ignoring the middle term, Equation (33) implies

0 ≤
c̃∫
c

∂u(ck, p(c̃))

∂ck
dck −

c̃∫
c

∂u(ck, p(c))

∂ck
dck

=

c̃∫
c

p(c̃)∫
p(c)

∂2u(ck, p(cz))

∂ck∂p(cz)
dp(cz) dck.

(34)

By Equation (32), the cross-partial derivative of u is non-negative everywhere. Given c̃ ≥ c, the

expression above implies p(c̃) ≥ p(c) for all c̃ > c. In an incentive compatible scheme, a lower cost

server cannot have a higher price than a higher cost server. If platform sets p(c̃) = p(c), then

u(c, p(c̃)) = u(c, p(c)),

u(c̃, p(c)) = u(c̃, p(c̃)),

which then implies

π(c̃, p(c̃))− π(c, p(c)) = u(c̃, p(c̃))− u(c, p(c)) ⇐⇒ f(c) = f(c̃).

By fixing one end point (i.e., c or c̃) and letting the other converge towards it in Equation

(33), we can also infer that π(ck, p(ck)) is continuous with respect to the Lebesgue measure, and is

differentiable almost everywhere. The derivative is

dπ(c, p(c))

dc
=
∂u(c, p(c))

∂c
,
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where dπ(c,p(c))
dc is the total derivative of π with respect to c evaluated at (c, p(c)) and ∂u(c,p(c))

∂c is

the partial derivative of u with respect to its first argument evaluated at the point (c, p(c)). Then,

π(c, p(c)) +

c̃∫
c

∂u(ck, p(ck))

∂ck
dck = π(c̃, p(c̃)).

Setting c̃ = ch, the equation simplifies to

π(c, p(c)) = −
ch∫
c

∂u(ck, p(ck))

∂ck
dck,

which is equivalent to

f(c) = u(c, p(c)) +

ch∫
c

∂u(ck, p(ck))

∂ck
dck. (35)

Equation (35) ensures that each server’s pay-off is non-negative:

π(c, p(c)) = u(c, p(c))− f(c) = −
ch∫
c

∂u(ck, p(ck))

∂ck
dck > 0,

since
∂u(ck, p(ck))

∂ck
< 0 for all ck.

Our analysis so far indicates that monotonicity of p(c̃) and Equation (35) are necessary conditions

implied by IC. We can also show that they are sufficient conditions. With that aim, let us assume

Equation (35) holds. If c̃ > c, we have

π(c, p(c̃)) = u(c, p(c̃))− f(c̃)

= u(c, p(c̃))− u(c̃, p(c̃))−
ch∫
c̃

∂u(ck, p(ck))

∂ck
dck

= u(c, p(c̃))− u(c̃, p(c̃))−
ch∫
c

∂u(ck, p(ck))

∂ck
dck +

c̃∫
c

∂u(ck, p(ck))

∂ck
dck

= −
c̃∫
c

∂u(ck, p(c̃))

∂ck
dck −

ch∫
c

∂u(ck, p(ck))

∂ck
dck +

c̃∫
c

∂u(ck, p(ck))

∂ck
dck

= −
c̃∫
c

(
∂u(ck, p(c̃))

∂ck
− ∂u(ck, p(ck))

∂ck

)
dck −

ch∫
c

∂u(ck, p(ck))

∂ck
dck

= −
c̃∫
c

p(c̃)∫
p(ck)

∂2u(ck, p(cz))

∂ck∂p(cz)
dp(cz) dck + π(c, p(c)) ≤ π(c, p(c)),
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where the inequality follows from Equation (34). If c̃ < c, we have

π(c, p(c̃)) = u(c, p(c̃))− f(c̃)

= u(c, p(c̃))− u(c̃, p(c̃))−
ch∫
c̃

∂u(ck, p(ck))

∂ck
dck

= u(c, p(c̃))− u(c̃, p(c̃))−
c∫
c̃

∂u(ck, p(ck))

∂ck
dck −

ch∫
c

∂u(ck, p(ck))

∂ck
dck

=

c∫
c̃

∂u(ck, p(c̃))

∂ck
dck −

c∫
c̃

∂u(ck, p(ck))

∂ck
dck −

ch∫
c

∂u(ck, p(ck))

∂ck
dck

= −
c∫
c̃

(
∂u(ck, p(ck))

∂ck
− ∂u(ck, p(c̃))

∂ck

)
dck −

ch∫
c

∂u(ck, p(ck))

∂ck
dck

= −
c∫
c̃

p(ck)∫
p(c̃)

∂2u(ck, p(cz))

∂ck∂p(cz)
dp(cz) dck + π(c, p(c)) ≤ π(c, p(c)),

where the inequality follows from Equation (34). Hence, the conditions above are sufficient for IC.

The platform’s problem is to choose p(c), f(c) and ch to maximize total profits subject to IR

and IC constraints, and the natural restriction that the equilibrium demand of a server needs to be

non-negative:

max
p(c),f(c),ch

ch∫
0

f(c) dc

s.t. π(c, p(c)) ≥ π(c, p(c̃)),∀c ∈ (0, ch),∀c̃ ∈ (0, ch)

π(c, p(c)) ≥ 0,∀c ∈ (0, ch)

Eq. (3)

= max
p(c),f(c),ch

ch∫
0

f(c) dc

s.t. p′(c) ≥ 0, ∀c ∈ (0, ch)

f(c) = u(c, p(c)) +
ch∫
c

∂u(ck, p(ck))

∂ck
dck, ∀c ∈ (0, ch)

1− βp+ γ(p− p(c)) ≥ 0,∀c ∈ (0, ch)

Eq. (3)

= max
p(c),ch

ch∫
0

(
u(c, p(c)) +

ch∫
c

∂u(ck, p(ck))

∂ck
dck

)
dc

s.t. p′(c) ≥ 0, ∀c ∈ (0, ch)

1− βp+ γ(p− p(c)) ≥ 0,∀c ∈ (0, ch)

Eq. (3).
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By integration by parts,

ch∫
0

 ch∫
c

∂u(ck, p(ck))

∂ck
dck

 dc =

 ch∫
c

∂u(ck, p(ck))

∂ck
dck

 c

ch
0

−
ch∫
0

(
−∂u(c, p(c))

∂c

)
c dc

=

ch∫
0

∂u(c, p(c))

∂c
c dc.

(36)

The platform’s problem converts to

max
p(c),ch

ch∫
0

(
u(c, p(c)) +

∂u(c, p(c))

∂c
c

)
dc

s.t. p′(c) ≥ 0, ∀c ∈ (0, ch)

1− βp+ γ(p− p(c)) ≥ 0,∀c ∈ (0, ch)

Eq. (3)

= max
p(c),ch

ch∫
0

(
(1− βp+ γ(p− p(c)))(p(c)− c)− (1− βp+ γ(p− p(c)))c

)
dc

s.t. p′(c) ≥ 0, ∀c ∈ (0, ch)

1− βp+ γ(p− p(c)) ≥ 0,∀c ∈ (0, ch)

Eq. (3)

= max
p(c),ch

ch∫
0

(1− βp+ γ(p− p(c)))(p(c)− 2c) dc

s.t. p′(c) ≥ 0, ∀c ∈ (0, ch)

1− βp+ γ(p− p(c)) ≥ 0,∀c ∈ (0, ch)

Eq. (3).

Let us re-formulate this as a problem of quantities. Let q(c) be the demand platform attains

to server with cost c. By Equation (1), we can find a one-to-one equivalence between price and

quantity:

p(c) =
1 + (γ − β)p− q(c)

γ
.

The average price in Equation (3) can also be formulated as function of quantities:

p =

∫ ch
0

q(c)(1+(γ−β)p−q(c))
γ dc∫ ch

0 q(c) dc

=

∫ ch
0

q(c)(1−q(c))
γ dc∫ ch

0 q(c) dc
+ p

(
1− β

γ

)
,

which simplifies to

p =

∫ ch
0 q(c) (1− q(c)) dc

β
∫ ch
0 q(c) dc

. (37)
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Platform’s optimal quantity-choice problem is

max
q(c),ch

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− 2c

)
dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)

Eq. (37).

(38)

We can further simplify the objective function. Notice that Equation (37) implies:

p

∫ ch

0
q(c) dc =

1

β

∫ ch

0
q(c) (1− q(c)) dc.

Using this relationship, the platform’s objective function can be reformulated as

Π =

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− 2c

)
dc

=

ch∫
0

q(c)

(
1− q(c)

γ
− 2c

)
dc+

(
γ − β
γ

)
p

ch∫
0

q(c) dc

=

ch∫
0

q(c)

(
1− q(c)

γ
− 2c

)
dc+

(
γ − β
γ

)
1

β

∫ ch

0
q(c) (1− q(c)) dc

=

ch∫
0

(
q(c)

(
1− q(c)

γ
− 2c

)
+

(
γ − β
γ

)
1

β
q(c) (1− q(c))

)
dc

=

ch∫
0

q(c)

(
1− q(c)

β
− 2c

)
dc.

(39)

The problem terms no longer depend on the average price and we can drop Equation (37) from

the constraints. Problem is re-formulated:

max
q(c),ch

ch∫
0

q(c)

(
1− q(c)

β
− 2c

)
dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch).

Holding ch constant and relaxing the first constraint, we can decompose the problem into indi-

vidual sub-problems for all servers:

max
q(c)

q(c)

(
1− q(c)

β
− 2c

)
dc

s.t. q(c) ≥ 0.
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This is the maximization of a simple quadratic function with a linear constraint. The optimal

quantity is:

q∗(c) = max

{
0,

1

2
− βc

}
.

The objective values of the sub-problems are always strictly positive for all servers with positive

quantities. Therefore, platform is always better off hiring more server as long as there is a server in

the market that can generate non-negative demand:

ch = min{1,max{c : q∗(c) ≥ 0}} =⇒ ch = min

{
1,

1

2β

}
.

This solution also satisfies:

q∗′(c) = max{−β, 0} ≤ 0.

Therefore, the solution our relaxed problem is also optimal for the platform’s optimal mechanism.

If β ≥ 1
2 , then only a subset of servers participate in the equilibrium. Instead, if β < 1

2 , platform

hires all the servers in the market. The average market price is:

p =

∫ ch
0 q∗(c) (1− q∗(c)) dc

β
∫ ch
0 q∗(c) dc

=

 2
3β , if β ≥ 1

2 ,

3−4β2

6β−6β2 , if β < 1
2 .

Other equilibrium characteristics are as follows:

p∗(c) =
1 + (γ − β)p− q∗(c)

γ

=

 2
3β −

1
6γ + cβ

γ , if β ≥ 1
2 ,

β2(−4β+4γ+3)−3γ
6(β−1)βγ + cβ

γ , if β < 1
2 ,

f∗(c) = u(c, p∗(c)) +

ch∫
c

∂u(ck, p
∗(ck))

∂ck
dck

=


c2
(
β(γ−2β)

2γ

)
+ 2c

3

(
β
γ − 1

)
+ 1

24

(
5
β −

2
γ

)
, if β ≥ 1

2 ,

βc2

2

(
1− 2β

γ

)
+ c

6γ

(
(4β2−3)(β−γ)

1−β

)
+ 1

12βγ

(
β(β(β(6γ−4)−8γ+3)+6γ)−3γ

β−1

)
, if β < 1

2 .

The platform earns

Π =
ch∫
0

q∗(c)

(
1− q∗(c)

β
− 2c

)
dc

=


1

24β2 , if β ≥ 1
2 ,

1
12

(
4β + 3

β − 6
)

, if β < 1
2 .
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By Proposition 3, the optimal mechanism is equivalent to server pricing with commission and

per-unit fee, for which Proposition 2 guarantees the uniqueness of consistent expectations average

price equilibrium.

Total quantity of customers served in the market is

Q =
ch∫
0

q∗(c) dc

=

 1
8β , if β ≥ 1

2 ,

1−β
2 , if β < 1

2 .

Servers’ total profits is

π =

ch∫
0

((1− βp+ γ(p− p∗(c)))(p∗(c)− c)− f∗(c)) dc

=


1

48β2
, if β ≥ 1

2 ,

1
4 −

β
3 , if β < 1

2 .

Proof of Proposition 7. Notice that platform’s profits under server pricing with a commission

and per-unit fee, ΠS = 1/(24β2) is equivalent to its profits under the optimal mechanism, π =

1/(24β2). Hence, platform can replicate its optimal performance through server pricing.

Proof of Proposition 8. Let p(c) be the price the platform assigns to server c and f(c) be the fee

charged to server c to participate in the market. Unlike the centralized mechanism, the fee collected

is not necessarily retained by the platform. Instead, f(c) functions as a re-allocation lever that

re-distributes wealth among servers. Since additional money cannot be injected into the system,

total fee charged should be equal to 0:

ch∫
0

f(c) dc = 0.

As a consequence of this f(c) can take either negative or positive values, meaning some servers

may retain more money than they generate, and others retain less money than they generate.

By Proposition 6, the monotonicy of prices, p(c), and Equation (35) are necessary and sufficient

conditions for servers’ IR and IC constraints. Then, the equilibrium fees charged to server c is
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characterized as

f(c) = u(c, p(c)) +

ch∫
c

∂u(ck, p(ck))

∂ck
dck.

The total system profits generated is

ch∫
0

q(p(c), p)(p(c)− c) dc.

The optimal truth-inducing contract that maximizes total system profits is characterized through

the following problem:

max
p(c),ch

ch∫
0

(1− βp+ γ(p− p(c)))(p(c)− c) dc

s.t. p′(c) ≥ 0, ∀c ∈ (0, ch)

f(c) = u(c, p(c)) +
ch∫
c

∂u(ck, p(ck))

∂ck
dck,∀c ∈ (0, ch)

ch∫
0

f(c) dc = 0

1− βp+ γ(p− p(c)) ≥ 0,∀c ∈ (0, ch)

Eq. (3).

Let us relax the second and third constraints, and similar to the proof of Proposition 6, charac-

terize the platform’s problem as a function of quantities.

max
q(c),ch

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− c
)
dc

s.t. q′(c) ≤ 0, ∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)

Eq. (37).

We can further simplify the objective function. Notice that Equation (37) implies:

p

∫ ch

0
q(c) dc =

1

β

∫ ch

0
q(c) (1− q(c)) dc.

Using the relationship, the platform’s objective function can be reformulated as
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Π =

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− c
)
dc

=

ch∫
0

q(c)

(
1− q(c)

γ
− c
)
dc+

(
γ − β
γ

)
p

ch∫
0

q(c) dc

=

ch∫
0

q(c)

(
1− q(c)

γ
− c
)
dc+

(
γ − β
γ

)
1

β

∫ ch

0
q(c) (1− q(c)) dc

=

ch∫
0

(
q(c)

(
1− q(c)

γ
− c
)

+

(
γ − β
γ

)
1

β
q(c) (1− q(c))

)
dc

=

ch∫
0

q(c)

(
1− q(c)

β
− c
)
dc.

We can drop Equation (37) from the constraints. Problem is re-formulated:

max
q(c),ch

ch∫
0

q(c)

(
1− q(c)

β
− c
)
dc

s.t. q′(c) ≤ 0, ∀c ∈ (0, ch)

q(c) ≥ 0, ∀c ∈ (0, ch).

Holding ch constant and relaxing the first constraint, we can decompose the problem into indi-

vidual sub-problems for all servers:

max
q(c),ch

q(c)

(
1− q(c)

β
− c
)
dc

s.t. q(c) ≥ 0,∀c ∈ (0, ch).

This is the maximization of a simple quadratic function with a linear constraint. The optimal

quantity is:

q∗(c) = max

{
0,

1

2
(1− βc)

}
.

The objective values of the sub-problems are always strictly positive for all servers with positive

quantities. Therefore, platform is always better off hiring more server as long as the server has

non-negative demand:

q∗(ch) = 0 =⇒ ch =
1

β
.

Assuming an interior equilibrium (ch < 1), the average price is

p =

∫ ch
0 q∗(c) (1− q∗(c)) dc

β
∫ ch
0 q∗(c) dc

=
2

3β
.
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The optimal price for server with cost c is

p∗(c) =
1 + (γ − β)p− q∗(c)

γ

=
2

3β
− 1

6γ
+

β

2γ
c.

The subsidy a server with cost c contributes to the system is

f∗(c) = u(c, p∗(c)) +

ch∫
c

∂u(ck, p
∗(ck))

∂ck
dck

=
1

12

(
1

β
− 1

γ

)
+

1

3

(
β

γ
− 1

)
c+

(
β(γ − β)

4γ

)
c2.

This solution also satisfies:

q∗′(c) = max

{
−1

2
β, 0

}
≤ 0

and
ch∫
0

f∗(c) dc = 0.

Therefore, the solution our relaxed problem is also feasible for the optimal mechanism.

Total value generated under optimal mechanism is

Π + π =

ch∫
0

q∗(c)

(
1− q∗(c)

β
− c
)
dc

=
1

12β2
.

With server pricing, let the platform sets its terms,

φ = 1− γ

β
, w =

2(γ − β)

3β2
,

and assume servers expect an average price of

p =
2

3β
.

A server with cost c has a profit-maximizing problem of

max
p

(1− βp+ γ(p− p))((1− φ)p− c− w),

giving an optimal price of

p∗(c, p) =
1

2

(
1− (β − γ)p

γ
+
c+ w

1− φ

)
=

4γ − β + 3β2c

4βγ
.
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Let ch be the highest cost server that can participate with non-negative demand:

q(p∗(ch, p), p) = 0 =⇒ ch =
1

β
.

The realized average price is consistent with expectation

p =

ch∫
0

q(p∗(c, p), p)p∗(c, p) dc

ch∫
0

q(p∗(c, p), p) dc

=
2

3β
,

consistent with expectation.

The platform’s profit is

Π =

ch∫
0

q(p∗(c, p), p)(φp∗(c, p) + w) dc

= 0.

The servers’ total profits is

π =

ch∫
0

q(p∗(c, p), p)((1− φ)p∗(c, p)− c− w) dc

=
1

12β2
.

Total value generated is

Π + π =
1

12β2
,

same as the optimal mechanism.

Proof of Proposition 9. The equilibrium is defined similar to server pricing with φ = 0, w = 0.

Server i chooses a price

p∗(ci) =
1

2γ

(
1 + (γ − β)p+

ciγ

1− φ

)
=

3

2(2β + γ)
+

1

2
ci

and earns

πi(p
∗(ci), p) =

(1− p(β − γ)− ciγ)2

4γ
.
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Highest cost that participates in the market is

ch =
1 + (γ − β)p

γ
.

The average market price is

p =
2

2β + γ
,

equivalent to server pricing φ = 0, w = 0.

The total system profits is

ΠDS + πDS =

ch∫
0

q(p∗(ci), p)(p
∗(ci)− ci) dci

=
9

4

(
γ

(2β + γ)3

)
.

The ratio of total system profits under disintermediated server pricing and server pricing with

commission and per-unit fee is:

ΠDS + πDS

ΠS + πS
(γ, β) =

9

4

(
γ

(2β + γ)3

)
3

48β2

=
36β2γ

(2β + γ)3
.

The ratio of prices is increasing in γ for γ < β and decreasing for γ > β. Therefore, the ratio

of prices are quasi-concave in γ and is maximized at γ = β, where it takes a value of 4/3. At two

extremes, where γ approaches 0 or infinity, the ratio converges to 0. Then, by intermediate value

theorem, there exists some 0 < γl < β and γh > β such that

ΠDS + πDS

ΠS + πS
(γl, β) = 1,

ΠDS + πDS

ΠS + πS
(γh, β) = 1.

By quasi-concavity, we can further conclude that:

ΠDC + πDC

ΠS + πS
(γ, β) > 1 ⇐⇒ γl < γ < γh.

Extension of Platform’s Optimal Contract with a Total Server Profits Target. Following

the proof of Proposition 6, the platform’s optimal mechanism design problem is defined by Equation
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(38), with the added constraint that the total profits earned by servers is equal to or exceeds some

k:
ch∫
0

π(c, p(c)) dc =

ch∫
0

u(c, p(c)) dc−
ch∫
0

f(c) dc

=

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− c
)
dc−

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− 2c

)
dc

=

ch∫
0

q(c)c dc ≥ k.

The platform’s problem is

max
q(c),ch

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− 2c

)
dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)

ch∫
0

q(c)c dc ≥ k

Eq. (37).

The third constraint is not binding for k ≤ 1
48β2 , as that’s the total profit servers earn under

the optimal mechanism. Similarly, the maximum profits servers can earn in the system is 1
12β2 .

Therefore, our problem is feasible and bounded by profit constraint if and only if k ∈
[

1
24β2 ,

1
12β2

]
.

In that case, the platform’s problem is

max
q(c),ch

ch∫
0

q(c)

(
1 + (γ − β)p− q(c)

γ
− 2c

)
dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)

ch∫
0

q(c)c dc = k

Eq. (37).

Following the same steps as Equation (39), we can transform the objective function such that

it doesn’t depend on p:
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max
q(c),ch

ch∫
0

q(c)

(
1− q(c)

β
− 2c

)
dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)

ch∫
0

q(c)c dc = k.

Let us fix ch, relax the first two constraints. We can use calculus of variations to solve this

problem. The Lagrangian is

L =
ch∫
0

q(c)

(
1− q(c)

β
− 2c

)
dc+ λ

(ch∫
0

q(c)c dc− k
)
.

The Euler-Lagrange equation is

∂

∂q(c)

(
q(c)

(
1− q(c)

β
− 2c

)
+ λq(c)c

)
= 0, ∀c ∈ (0, ch).

This gives

q∗(c) =
1

2
−
(

1− λ

2

)
βc ∀c ∈ (0, ch). (40)

We plug this into the constraint to find λ. We get a single solution

ch∫
0

q∗(c)c dc = k ⇐⇒ λ =
4βc3h − 3c2h + 12k

2βc3h
.

This gives an optimal objective of

ch∫
0

q∗(c)

(
1− q∗(c)

β
− 2c

)
dc =

c4h + 24c2hk − 48k2

16βc3h
− 2k.

To show that this maximizer is a global maximizer, let us consider any feasible deviation z(c)

from the optimal solution. In order to remain feasible, the deviation, z(c), needs to satisfy:

ch∫
0

z(c)c dc = 0.
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The new objective is:

ch∫
0

(q∗(c) + z(c))

(
1− (q∗(c) + z(c))

β
− 2c

)
dc =

c4h + 24c2hk − 48k2

16βc3h
− 2k

−
(
c2h(3− 4βch)− 12k

)
2βc3h

ch∫
0

z(c)c dc− 1

β

ch∫
0

z(c)2 dc

=
c4h + 24c2hk − 48k2

16βc3h
− 2k − 1

β

ch∫
0

z(c)2 dc

≤
c4h + 24c2hk − 48k2

16βc3h
− 2k.

This means, any feasible deviation from the optimal q∗(c) defined above makes the objective

worse off. Hence, Equation (40) defines the optimal solution to the relaxed quantity choice problem.

Notice that the resulting objective function is monotone increasing in ch and it satisfies the first

inequality. However, for sufficiently large ch values, some of the quantities can be negative. More

specifically, that occurs if ch > 2
√

3
√
k. We will now show that, in the non-relaxed problem, the

optimal quantity will be equal to Equation (40) for those with non-negative q(c) and 0 otherwise.

As a result platform’s profit will be √
k√

3β
− 2k.

First, recall that a server’s profit under relaxed problem is strictly increasing in ch. This means

that, as long as the highest cost participant has positive demand, platform is better off hiring more

servers. There cannot be an equilibrium where the highest cost participate servers strictly positive

demand. What is not clear is whether it is indeed optimal for platform to set quantities of 0 for

servers with cost higher than 2
√

3
√
k. To see this is true, let us look at what happens if the platform

deviates from that solution by some function z(c) such that:

1∫
0

z(c)c dc = 0,

z(c) ≥ 0, ∀c > 2
√

3
√
k.
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The new objective is:

1∫
0

(q(c) + z(c))

(
1− (q(c) + z(c))

β
− 2c

)
dc =

2
√
3
√
k∫

0

(q(c) + z(c))

(
1− (q(c) + z(c))

β
− 2c

)
dc

+

1∫
2
√
3
√
k

z(c)

(
1− z(c)

β
− 2c

)
dc

=

√
k√

3β
− 2k −

1∫
2
√
3
√
k

(
2βc− 1

β

)
z(c) dc− 1

β

1∫
2
√
3
√
k

z(c)2 dc

−
(
c2h(4βch − 3) + 12k

)
2βc3h

2
√
3
√
k∫

0

z(c)c dc− 1

β

2
√
3
√
k∫

0

z(c)2 dc

=

√
k√

3β
− 2k +

1∫
2
√
3
√
k


(

6−
√
3c√
k

)
6β

 z(c) dc− 1

β

1∫
0

z(c)2 dc

≤
√
k√

3β
− 2k.

Any deviations from the solution we found makes the platform worse off. The platform’s profit

under this mechanism is

Π =

√
k√

3β
− 2k.

The platform can earn non-negative profits for all feasible values of k ∈
[
0, 1

12β2

]
.

Proof of Proposition 10. Let us assume that servers have a capacity of t customers.

Under platform pricing, let us continue from the proof of proposition 1. The highest number of

customers a server serves is

q(p, p) = 1− βp =
1

3
.

The capacity is binding if and only if t ≤ 1
3 . In this case, if platform sets a price p, the profit of a

server with cost c is

πi(p) = t((1− φ)p− ci).

The highest cost that participates is

πh(p) = 0 =⇒ ch = (1− φ)p.
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The platform’s profits is:

ΠP(p, φ) =

ch∫
0

t((1− φ)p) dc

= tφp(1− φ)p.

(41)

It’s monotone increasing in p. So, the platform never chooses a price below the amount that sets

its demand to t. It also cannot set its price above that, since that means that the capacity is not

binding, in which case our optimal solution from the unconstrained problem hold. So, the optimal

price in a capacity constrained setting is the one that sets the demand of each server exactly equal

to their capacity:

q(p∗(c, p), p) = 1− βp+ γ(p− p) = t =⇒ p =
1− t
β

.

For a given p, the platform’s optimal commission is given by the FOC:

∂

∂φ
(tφp(1− φ)p) = tp(1− 2φ)p = 0 =⇒ φ =

1

2
.

Platform’s optimal profit is

ΠP =
t(1− t)2

4β2
.

Under server pricing with commission fees, let us continue from the proof of proposition 4. Since

the equilibrium demand is monotone decreasing in cost, the highest number of customers a server

serves is

q(p∗(0, p), p) = 1− βp∗(0, p) + γ(p− p∗(0, p)) =
3γ

4β + 2γ
.

The capacity is binding if and only if t ≤ 3γ
4β+2γ . In this case, the servers need to incorporate

the capacity constraint in their pricing decision. A server’s profit conditional on participation is

πi(p(ci), p) = min{(1− βp+ γ(p− p(ci)), t}((1− φ)p(ci)− ci).

Server c sets the price that maximizes their own profits:

max
p

min{(1− βp+ γ(p− p), t}((1− φ)p− c).

Without the capacity constraints, server’s problem is concave in its decision variable. The

optimal price is unique:

p∗(c, p) =
1

2

(
− c

φ− 1
+

1

γ
− βp

γ
+ p

)
.

This is equivalent to a quantity of

q(p∗(c, p), p) =
1

2

(
cγ

φ− 1
+ p(γ − β) + 1

)
.
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If a server is capacity constrained (t < q(p∗(c, p), p)), then a server’s profit is increasing in own

price. So, a server never sets a price lower than the amount that sets its demand equal to the

capacity. Hence, the optimal price of a server that is constrained by capacity is:

p∗(c, p) =
−βp+ γp− t+ 1

γ
.

The quantity served is decreasing in costs. The lowest cost server that is not capacity constrained

has exactly a demand of t units.

q(p∗(c̃, p), p) = t =⇒ c̃ =
(φ− 1)(p(β − γ) + 2t− 1)

γ
.

Servers’ equilibrium prices are

p∗(c, p) =


−βp+γp−t+1

γ , c ≤ c̃,
1
2

(
− c
φ−1 + 1

γ −
βp
γ + p

)
, c̃ < c ≤ ch.

Servers with cost higher than ch cannot profitably participate.

The average market price is defined in the equilibrium as a weighted average of all prices set

in the market. In line with the mean-field approach, the average price that occurs by the server’s

optimal decisions is consistent with their expectation of the average price. By Equation (3):

p =

ch∫
0

q(p∗(c, p), p)p∗(c, p) dc

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
p∗(c, p) dc

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
dc

=

c̃∫
0

tp∗(c, p) dc+
ch∫̃
c

(
1− βp+ γ(p− p∗(c, p))

)
p∗(c, p) dc

c̃∫
0

t dc+
ch∫̃
c

(
1− βp+ γ(p− p∗(c, p))

)
dc

=
3(p(γ − β) + 1)2 + 6t(p(β − γ)− 1) + 4t2

3γ(p(γ − β)− t+ 1)
.

There is a single feasible equilibrium average price

p =

√
−12β2t2 + 12βγt2 + 9γ2(t− 1)2 + 6β(t− 1)− 3γ(t− 1)

6β(β − γ)
. (42)

Platform’s profit maximization problem is:

max
φ

ΠSC(φ, 0) = φp
ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc

=
t
(
−t
√
−12β2t2+12βγt2+9γ2(t−1)2+

√
−12β2t2+12βγt2+9γ2(t−1)2+2βt2+3γ(t−1)2

)
6β2γ

(1− φ)φ.
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.

The platform’s solution is unique. It’s defined by the first order conditions and is equal to

φ =
1

2
.

Platform’s profit is

ΠSC(φ, 0) =
t
(
−t
√
−12β2t2 + 12βγt2 + 9γ2(t− 1)2 +

√
−12β2t2 + 12βγt2 + 9γ2(t− 1)2 + 2βt2 + 3γ(t− 1)2

)
24β2γ

.

Under server pricing with per-unit fees, let us continue from the proof of proposition 5. Since

the equilibrium demand is monotone decreasing in cost, the highest number of customers a server

serves is

q(p∗(0, p), p) = 1− βp∗(0, p) + γ(p− p∗(0, p)) =
γ

2β + γ
.

The capacity is binding if and only if t ≤ γ
2β+γ . In this case, the servers need to incorporate the

capacity constraint in their pricing decision. A server’s profit conditional on participation is

πi(p(ci), p) = min{(1− βp+ γ(p− p(ci)), t}(p(ci)− ci − w).

Server c set the price that maximizes their own profits:

max
p

min{(1− βp+ γ(p− p), t}(p− c− w).

Without the capacity constraints, server’s problem is concave in its decision variable. The

optimal price is unique:

p∗(c, p) =
γ(c+ p+ w) + β(−p) + 1

2γ
.

This is equivalent to a quantity of

q(p∗(c, p), p) =
1

2
(γ(−(c+ w)) + p(γ − β) + 1).

If a server is capacity constrained (t < q(p(c, p), p)), then a server’s profit is increasing in own

price. So, a server never sets a price lower than the amount that sets its demand equal to the

capacity. Hence, the optimal price of a server that is constrained by capacity is:

p∗(c, p) =
−βp+ γp− t+ 1

γ
.

The quantity served is decreasing in costs. The lowest cost server that is not capacity constrained

has exactly a demand of t units.

q(p∗(c̃, p), p) = t =⇒ c̃ =
−βp+ γp− 2t− γw + 1

γ
.
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So, servers’ equilibrium prices are

p∗(c, p) =


−βp+γp−t+1

γ , c ≤ c̃,
γ(c+p+w)+β(−p)+1

2γ , c̃ < c ≤ ch.

Servers with cost higher than ch cannot profitably participate.

The average market price is defined in the equilibrium as a weighted average of all prices set

in the market. In line with the mean-field approach, the average price that occurs by the server’s

optimal decisions is consistent with their expectation of the average price. By Equation (3):

p =

ch∫
0

q(p∗(c, p), p)p∗(c, p) dc

ch∫
0

q(p∗(c, p), p) dc

=

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
p∗(c, p) dc

ch∫
0

(
1− βp+ γ(p− p∗(c, p))

)
dc

=

c̃∫
0

tp∗(c, p) dc+
ch∫̃
c

(
1− βp+ γ(p− p∗(c, p))

)
p∗(c, p) dc

c̃∫
0

t dc+
ch∫̃
c

(
1− βp+ γ(p− p∗(c, p))

)
dc

= −3t(2p(β − γ) + γw − 2) + 3(p(β − γ)− 1)(p(β − γ) + γw − 1) + 4t2

3γ(p(β − γ) + t+ γw − 1)
.

There is a single feasible equilibrium average price

p = −
√
−12β2t2 + 12βγt2 + 9γ2(t+ βw − 1)2 − 3γ(t− 1) + 3β(2t+ γw − 2)

6β(β − γ)
.

The capacity is binding, c̃ > 0, if and only if platform sets its wage such that w ≤ 3γ−4βt−2γt
3βγ .

The platform never sets w > 3γ−4βt−2γt
3βγ . That’s because, as long as t ≤ γ

2β+γ , the platform’s doesn’t

achieve the optimal at a point where capacity is not binding. Setting w > 3γ−4βt−2γt
3βγ leads to a

non-capacity binding equilibrium, which is strictly worse than the optimal.

Platform’s profit maximization problem is:

max
φ

ΠSU (0, w) = w
ch∫
0

(1− βp+ γ(p− p∗(c, p))) dc =
tw
(√
−12β2t2+12βγt2+9γ2(t+βw−1)2−3γ(t+βw−1)

)
6βγ

s.t. w ≤ 3γ − 4βt− 2γt

3βγ
.

The objective function is quasi-concave in w. The platform’s solution is unique. It’s defined by

the first order conditions and is equal to

w = 4β2t2−4βγt2−3γ2(t−1)2
6βγ2(t−1) .
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Platform’s profit is

ΠSU =
−4β2t3 + 4βγt3 + 3γ2(t− 1)2t

12β2γ2
.

Under the optimal mechanism, let us continue from the proof of proposition 6. Since the

equilibrium demand is monotone decreasing in cost, the highest number of customers a server

serves is q∗(0) = 1/2.

The capacity is binding if and only if t ≤ 1
2 . If the capacity is binding, the platform’s optimal

decisions will change.

Our analysis for the optimal mechanism in Proposition 6 hold true for the capacity constrained

model up until Equation (9). The capacity constraints add an additional constraint to the platform’s

optimization problem

Problem is re-formulated:

max
q(c),ch

ch∫
0

q(c)

(
1− q(c)

β
− 2c

)
dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)

q(c) ≤ t,∀c ∈ (0, ch).

Holding ch constant and relaxing the first constraint, we can decompose the problem into indi-

vidual sub-problems for all servers:

max
q(c),ch

q(c)

(
1− q(c)

β
− 2c

)
dc

s.t. q(c) ≥ 0,∀c ∈ (0, ch)

q(c) ≤ t,∀c ∈ (0, ch).

This is the maximization of a simple quadratic function with two linear constraints. The optimal

quantity is:

q∗(c) = min

{
t,max

{
0,

1

2
− βc

}}
.

The objective values of the sub-problems are always strictly positive for all servers with positive

quantities. Therefore, platform is always better off hiring more server as long as the server has

non-negative demand:

q∗(ch) = 0 =⇒ ch =
1

2β
.

This solution also satisfies:

q∗′(c) = max{−β, 0} ≤ 0.
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Therefore, the solution our relaxed problem is also optimal for the platform’s optimal mechanism.

Assuming an interior equilibrium (ch < 1), the average market price is:

p =

∫ ch
0 q∗(c) (1− q∗(c)) dc

β
∫ ch
0 q∗(c) dc

=
4t2 − 6t+ 3

3β − 3βt
.

The platform earns

Π =
ch∫
0

q∗(c)

(
1− q∗(c)

β
− 2c

)
dc

=
t
(
4t2 − 6t+ 3

)
12β2

.

With server pricing, let the platform sets its terms,

φ = 1− γ

2β
, w =

(
4t2 − 6t+ 3

)
(β − γ)

6β2(t− 1)
,

and assume the servers expect an average price of

p =
4t2 − 6t+ 3

3β(1− t)
.

Without capacity restrictions, a server with cost c has a profit-maximizing problem of

max
p

(1− βp+ γ(p− p))((1− φ)p− c− w),

giving an optimal price of

p∗(c, p) =
1

2

(
1− (β − γ)p

γ
+
c+ w

1− φ

)
=

3β − 6β2c+ 6β2ct− 6γ + 8βt2 − 8γt2 − 9βt+ 12γt

6βγ(t− 1)
.

(43)

Let ct be the highest cost server that is bounded by capacity:

q(p∗(ct, p), p) = t =⇒ ct =
1− 2t

2β
.

All servers with cost less than ct set a price that makes its demand exactly equal to t,

p∗(ct, p) =
1− (β − γ)p− t

γ
=
−3γ + βt2 − 4γt2 + 6γt

3βγt− 3βγ
,

others will set the price as defined in Equation (43).

Let ch be the highest cost server that can participate with non-negative demand:

q(p∗(ch, p), p) = 0 =⇒ ch =
1

2β
.
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The realized average price is consistent with expectation:

p =

ct∫
0

tp∗(ct, p) dc+
ch∫
ct

q(p∗(c, p), p)p∗(c, p) dc

ct∫
0

t dc+
ch∫
ct

q(p∗(c, p), p) dc

=
4t2 − 6t+ 3

3β(1− t)
.

The platform earns

Π =

ct∫
0

t(φp∗(ct, p) + w) dc+

ch∫
ct

q(p∗(c, p), p)(φp∗(c, p) + w) dc

=
t
(
4t2 − 6t+ 3

)
12β2

,

same as the optimal mechanism.

Extension with Throughput-Maximization. In the quantity maximizing optimal contract,

let p(c) be the price the platform assigns to server c and f(c) be the fee collected. By Proposition

6, the monotonicity of prices, p(c), and Equation (35) are necessary and sufficient conditions for

servers’ IC constraints. The equilibrium fees charged to server c is characterized as

f(c) = u(c, p(c)) +

ch∫
c

∂u(ck, p(ck))

∂ck
dck.

The total quantity served in the market is

ch∫
0

q(c) dc =

ch∫
0

(1− βp+ γ(p− p(c))) dc.

The optimal truth-inducing contract that maximizes total quantity served subject to non-

negative profit constraint is characterized through the following problem:
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max
p(c),ch

ch∫
0

(1− βp+ γ(p− p(c))) dc

s.t. p′(c) ≥ 0,∀c ∈ (0, ch)

1− βp+ γ(p− p(c)) ≥ 0, ∀c ∈ (0, ch)

f(c) = u(c, p(c)) +
ch∫
c

∂u(ck, p(ck))

∂ck
dck,∀c ∈ (0, ch)

ch∫
0

f(c) dc ≥ 0

Eq. (3)

= max
p(c),ch

ch∫
0

(1− βp+ γ(p− p(c))) dc

s.t. p′(c) ≥ 0,∀c ∈ (0, ch)

1− βp+ γ(p− p(c)) ≥ 0, ∀c ∈ (0, ch)
ch∫
0

(1− βp+ γ(p− p(c)))(p(c)− 2c) dc ≥ 0

Eq. (3),

where the equivalence of the fourth constraints follow from Equation (36).

We reformulate the problem as a function of quantities:

max
q(c),ch

ch∫
0

q(c) dc

s.t. q′(c) ≤ 0, ∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)
ch∫
0

q(c)
(
1+(γ−β)p−q(c)

γ − 2c
)
dc ≥ 0

Eq. (37).

Following the same steps as Equation (39), we transform the objective function such that it

doesn’t depend on p:

max
q(c),ch

ch∫
0

q(c) dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)
ch∫
0

q(c)

(
1− q(c)

β
− 2c

)
dc ≥ 0.

Let us look at a complimentary problem, where the platform maximizes its earning subject to

71

Electronic copy available at: https://ssrn.com/abstract=3957209



a fixed cap on total quantity served:

max
p(c),ch

ch∫
0

q(c)

(
1− q(c)

β
− 2c

)
dc

s.t. q′(c) ≤ 0,∀c ∈ (0, ch)

q(c) ≥ 0,∀c ∈ (0, ch)
ch∫
0

q(c) dc = k,

where k is some non-negative number. Let us relax the first two constraints and solve the problem

by calculus of variation. We will solve the problem sequentially. First, let us look at the quantity

choice game. The Lagrangian is

L = q(c)

(
1− q(c)

β
− 2c

)
+ λq(c).

The Euler-Lagrange equation is

∂

∂q(c)

(
q(c)

(
1− q(c)

β
− 2c

)
+ λq(c)

)
= 0, ∀c ∈ (0, ch).

This gives

q∗(c) =
β − 2βcλ+ λ

2λ
, ∀c ∈ (0, ch). (44)

We plug this into the constraint to find λ. We get a single solution

ch∫
0

q∗(c) dc = k ⇐⇒ λ =
βch

βc2h − ch + 2k
.

This gives an optimal objective of

ch∫
0

q∗(c)

(
1− q∗(c)

β
− 2c

)
dc =

βc3h
12

+
k(ch − k)

βch
− chk.

To show that this maximizer is a global maximizer, let us consider any feasible deviation, z(c),

from the optimal solution we found above. For feasibility, the deviation needs to satisfy

ch∫
0

z(c) dc = 0.

72

Electronic copy available at: https://ssrn.com/abstract=3957209



The new objective is:

ch∫
0

(q∗(c) + z(c))

(
1− (q∗(c) + z(c))

β
− 2c

)
dc =

βc3h
12

+
k(ch − k)

βch
− chk −

(
ch −

ch − 2k

βch

) ch∫
0

z(c) dc

− 1

β

ch∫
0

z(c)2 dc

=
βc3h
12

+
k(ch − k)

βch
− chk −

1

β

ch∫
0

z(c)2 dc

≤
βc3h
12

+
k(ch − k)

βch
− chk.

This means, any feasible deviation from the optimal q∗(c) defined in Equation (44) makes the

objective worse off. Hence, Equation (44) defines the optimal solution to the relaxed quantity choice

problem. Notice that the resulting objective function is monotone increasing in ch and it satisfies

the first inequality. However, for sufficiently large ch values, some of the quantities can be negative.

More specifically, that occurs if ch >
√

2
√

k
β . We will now show that, in the non-relaxed problem,

the optimal quantity will be equal to Equation (44) for those with non-negative q(c) and 0 otherwise.

As a result platform’s profit will be
k

β
− 4
√

2k3/2

3
√
β

.

First, recall that a server’s profit under relaxed problem is strictly increasing in ch. This means

that, as long as the highest cost participant has positive demand, platform is better off hiring more

servers. There cannot be an equilibrium where the highest cost participate servers strictly positive

demand. What is not clear is whether it is indeed optimal for platform to set quantities of 0 for

servers with cost higher than
√

2
√

k
β . To see this is true, let us look at what happens if the platform

deviates from that solution by some function z(c) such that:

1∫
0

z(c) = 0,

z(c) ≥ 0, ∀c >
√

2

√
k

β
.
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The new objective is:

1∫
0

(q∗(c) + z(c))

(
1− (q∗(c) + z(c))

β
− 2c

)
dc =

√
2
√

k
β∫

0

(q(c) + z(c))

(
1− (q(c) + z(c))

β
− 2c

)
dc

+

1∫
√
2
√

k
β

(z(c))

(
1− z(c)

β
− 2c

)
dc

=
k

β
− 4
√

2k3/2

3
√
β
−

1∫
√
2
√

k
β

(
2βc− 1

β

)
z(c) dc− 1

β

1∫
√
2
√

k
β

z(c)2 dc

−

(
2
√

2
√
β
√
k − 1

)
β

√
2
√

k
β∫

0

z(c) dc− 1

β

√
2
√

k
β∫

0

z(c)2 dc

=
k

β
− 4
√

2k3/2

3
√
β
−

1∫
√
2
√

k
β

(
c−
√

2
√
k√

β

)
z(c) dc− 1

β

1∫
0

z(c)2 dc

≤ k

β
− 4
√

2k3/2

3
√
β

.

That is, any feasible deviation from the optimal quantity allocation makes the platform worse

off. The highest profit platform can earn while ensuring total demand is equal to some k is:

ch∫
0

q∗(c)

(
1− q∗(c)

β
− 2c

)
dc = k

(
1

β
− 4

3

√
2

√
k

β

)
.

The profit of the firm is non-negative if and only if

k ≤ 9

32β
.

Hence, the highest total demand the platform can achieve without earning negative profits is

k = 9
32β .

In the optimal mechanism, the highest cost that participates and the average market price are:

p =
1

2β
,

ch =
3

4β
.

Total quantity of customers served in the market is

Q =
9

32β
,
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The fee platform charges to a server is

f∗(c) =
(γ − 2β)(4βc− 3)(4βc− 1)

32βγ
.

With server pricing, let the platform sets its terms,

φ = 1− γ

2β
, w =

γ − 2β

4β2
,

and assume servers expect an average price of

p =
1

2β
.

A server with cost c has a profit-maximizing problem of

max
p

(1− βp+ γ(p− p))((1− φ)p− c− w),

giving an optimal price of

p∗(c, p) =
1

2

(
1− (β − γ)p

γ
+
c+ w

1− φ

)
=

2γ − β + 4β2c

4βγ
.

Let ch be the highest cost server that can participate with non-negative demand:

q(p∗(ch, p), p) = 0 =⇒ ch =
3

4β
.

The realized average price is consistent with expectation

p =

ch∫
0

q(p∗(c, p), p)p∗(c, p) dc

ch∫
0

q(p∗(c, p), p) dc

=
1

2β
,

consistent with expectation.

The platform’s profit is

Π =

ch∫
0

q(p∗(c, p), p)(φp∗(c, p) + w) dc

= 0.

Total quantity served in the market is

Q =

ch∫
0

q(p∗(c, p), p) dc

=
9

32β
,

same as the optimal mechanism.
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