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Abstract. Marketing scientists often estimate causal effects using data from pre/post test/
control quasi-experimental settings. We propose a new, easy-to-implement augmented dif-
ference-in-differences (ADID) method that complements existing approaches to estimate
the average treatment effect on the treated (ATT) from such data. Its advantage over the
difference-in-differences method is that it can better handle heterogeneity between treat-
ment and control units and, hence, requires a less stringent causal identification assump-
tion. Its advantages over more flexible approaches like the synthetic control method are
that it is easy to implement, provides easy-to-compute confidence intervals, and can be
applied to data where the synthetic control and related methods cannot be applied or may
not be well suited. Examples are data with short pre- and posttreatment periods or with a
large number of treatment and control units. Using analytical proofs, simulations, and nine
empirical applications, we document the attractive properties of ADID and provide guid-
ance on what method(s) to use when. With the addition of ADID in their toolkit, marketers
are better equipped to address important causal research questions in a wider range of
data structures.

History: Avi Goldfarb served as the senior editor and Sridhar Narayanan served as associate editor for
this article.
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1. Introduction
Addressing important managerial and public policy
questions often involves identifying the average treat-
ment effect on the treated (ATT) of programs and
interventions using quasi-experimental data. Recent
marketing examples include quantifying the effects
of opening brick-and-mortar showrooms on online
demand (Bell et al. 2018), of plain packaging on ciga-
rettes sales (Bonfrer et al. 2020), of soda taxes on soda
prices and sales (Kim et al. 2020), of legalizing medical
marijuana on opioid prescriptions (Cheon et al. 2021),
of using a social media platform on political donations
(Petrova et al. 2021), of adopting subscription pro-
grams on customer purchases (Iyengar et al. 2022),
and of adopting marketing analytics on revenue (Ber-
man and Israeli 2022).

The fundamental problem of causal inference in quasi-
experimental settings is that one wants to compare two
outcomes for the same observational unit when that unit
is exposed or not exposed to an intervention, yet can
observe only one outcome at any given time (Holland
1986). Many quasi-experimental methods, such as the
difference-in-differences (DID), synthetic control (SC),
modified synthetic control (MSC), andHsiao-Ching-Wan

(HCW) methods, are widely used to estimate causal
effects such as the ATT. Themost popular DIDmethod is
easy to implement and offers straightforward inference
but also has the most restrictive identifying assumption,
making it less suited to settings where there is heteroge-
neity between treatment and control units. Alternative
methods such as the SC, MSC, and HCW methods are
better able to handle heterogeneity between treatment
and control units. However, these more flexible methods
have their own limitations. For example, the HCW
method cannot be usedwhen the number of control units
is larger than the number of pretreatment time periods.
In addition, statistical inference is not as straightforward.
For example, the inference theory for the SC and MSC
methods does not exist when the data are nonstationary
and there are more control units than there are pretreat-
ment time periods.

We propose a new method, augmented difference-
in-differences (ADID). The basic idea is to control for
the differences in both intercept and slope between
treatment and control units in the pretreatment period
when calculating the counter-factual posttreatment
outcomes of the treated units, rather than controlling
for only the difference in intercept as DID does. ADID
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is among the class of flexible estimators that predict
counterfactual outcomes by estimating weights on
each control unit. ADID is more flexible than DID and
less flexible than SC or MSC. Whereas DID and ADID
share the simplicity of equal weights on control units,
ADID has additional flexibility to allow weights to
sum up to any value. This ability to scale the control
units up or down results in better predicting the coun-
terfactual outcomes. Even more flexible synthetic con-
trol methods estimate separate weights on each control
unit. ADID does not do this, making estimation and
inference straightforward.

ADID has three attractive properties. First, ADID is
easy to implement because it only requires estimating
two parameters (intercept and slope). Second, ADID
can be used in a wide variety of data structures. The
additional flexibility from including a slope adjustment
makes ADID applicable to situations with heterogene-
ous treatment and control units where the traditional
DID may be too restrictive, whereas the simplicity of
estimating only two parameters makes ADID applica-
ble to data structures where the SC, MSC, and HCW
methods cannot be applied or may not be well suited.
The third attractive property of ADID, shared only
with DID, is that users can conveniently compute confi-
dence intervals around the ATT point estimates. Conse-
quently, ADID is especially useful in situations where
DID is too restrictive but more flexible methods in the
synthetic control family are not suitable or lack infer-
ence theory.

We establish and illustrate these three attractive prop-
erties using analytical proofs, simulations, and nine
empirical applications. First, we prove that the ADID
method consistently estimates ATT in situations with (i)
long pre- and posttreatment time periods regardless of
the number of treatment and control units, or (ii) a large
number of treatment and control units regardless of the
number of pre- and posttreatment time periods. Second,
we develop ADID’s formal inference theory and prove
that its confidence intervals are easy to compute. Third,
using simulations with a variety of data structures, we
demonstrate that the ADID method works well in finite
samples, and we also compare ADID’s performance to
that of extant approaches. When the pre- and posttreat-
ment periods are very short, SC, MSC and HCW often
cannot be used, whereas ADID still works well and pro-
vides inference using a t-distribution. Finally, we present
three sets of empirical applications. The firstfive applica-
tions investigate the effects of exogenous price changes
by a major retail chain on product sales. The next two
applications examine howmarijuana legalization affects
cigarettes sales. The final two applications investigate
how opening an offline showroom affected the sales of
an online-first retailer.

This paper contributes to the growing literature
on quasi-experimental methods. We propose a new

estimator that is more flexible than DID but is simpler
to implement than SC, MSC, and HCW. We develop
ADID’s statistical inference theory and compare its
performance against that of four extant methods (DID,
SC, MSC, and HCW) in simulations and empirical
applications. We find that, as expected, ADID tends to
outperform the other estimators in bias, precision, or
both, in data structures with specific observable char-
acteristics, but tends to be dominated by at least one
alternative method in data structures with other spe-
cific observable characteristics. This shows that ADID
complements rather than replaces extant approaches.
Specifically, ADID tends to do especially well in data
structures with a large number of treatment and con-
trol units, with short pre- and posttreatment periods,
and with large amounts of heterogeneity where DID
and SC parallel trends are violated. Since our theoreti-
cal, simulation, and empirical analyses indicate that no
method is superior across all settings, we also provide
some guidance on when to use which method. With
the addition of ADID in their toolkit, marketers are bet-
ter equipped to address important causal research
questions in a wider range of data structures.

The remainder of the paper is organized as follows.
In Section 2, we introduce the augmented DID method
and the four extant methods we compare it to, focusing
on the single treatment unit case. Then, we discuss
causal identification assumptions and the relative mer-
its and limitations of different methods. In Section 3, we
develop the inference theory for the ADID estimator
under various data structures, and extend the results to
cases with multiple treatment units. In Section 4, we
report simulation results comparing mean squared
errors (MSEs) and coverage probabilities under differ-
ent data-generating processes. Section 5 presents three
sets of empirical applications. Section 6 concludes the
paper. Several web appendices provide the relevant
assumptions, derivations of the main results, additional
simulations, empirical results, and some further theo-
retical analyses.

2. Estimating ATTs
We discuss how to estimate the average treatment effect
on the treated (ATT) in quasi-experimental data settings
with pre/post intervention time periods and treatment/
control units. We consider five methods: difference-in-
differences (DID), augmented difference-in-differences
(ADID), synthetic control (SC), modified synthetic con-
trol (MSC), and the Hsiao-Ching-Wan (HCW) method.
Section 2.1 shows how to estimate the ATT using these
five methods and highlights the connections among
them. Section 2.2 discusses the assumptions needed for
causal identification using each of the fivemethods. Sec-
tion 2.3 discusses their advantages and disadvantages
and provides guidance on when to use which method.
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All these sections focus on the case where there is only
one treatment unit, and the extension to multiple treat-
ment units is postponed until Section 3.3.

2.1. Estimation Methods
We first introduce some general notation. Let y1it and y0it
denote unit i’s potential outcome in period t with and
without treatment, respectively. The treatment effect
to the ith unit at time t is defined as Δit � y1it − y0it. Since
one observes either y0it or y

1
it, but not both, the observed

data are of the following form:

yit � dity1it + (1− dit)y0it, i � 1, : : : ,N; t � 1, : : : ,T,

(2.1)

where dit � 1 if the ith unit receives a treatment at time
t and dit � 0 otherwise.

Since this section focuses on cases where only one
unit receives the treatment, we assume without loss
of generality that the first unit receives a treatment at
time T1 + 1 with 1 < T1 < T, while the remaining (N − 1)
units do not receive treatment throughout the sample
period. Therefore, y1t � y01t for t � 1, : : : ,T1, and y1t � y11t
for t ≥ T1 + 1, whereas yjt � y0jt for j � 2, : : : ,N and
t � 1, : : : ,T.

In order to estimate the ATT, we need to estimate
the treatment counterfactual, y01t, in the posttreatment
period, t ≥ T1 + 1. Let ŷ01t be a generic estimator of y01t.
The treatment effect at time t can then be estimated by
Δ̂1t � y1t − ŷ01t (for t ≥ T1 + 1) and the ATT estimator
that averages Δ̂1t over the posttreatment period is

Δ̂1 � 1
T2

∑T
t�T1+1

Δ̂1t, (2.2)

where T2 � T−T1 is the number of posttreatment time
periods.

2.1.1. The DID Method. DID is the most popular
method to estimate the ATT in pre/post and test/con-
trol observational designs. It is very easy to implement,
provides straightforward inference (standard errors
and confidence intervals), and can be applied regard-
less of the number of treatment and control units or the
number of pre- and posttreatment time periods.

For causal identification, the DID method relies on
the assumption that the sample paths of the treatment
unit (y1t) and of the average of the control units, ȳco,t �
1

N−1
∑N

j�2 yjt, are parallel in the absence of treatment. The
DIDmethod’s counterfactual outcome can be obtained
via the following regressionmodel (Web Appendix B):

y1t − ȳco,t � δ1 + e1t, t � 1, : : : ,T1: (2.3)

Estimating δ1 by the least-squares method yields δ̂1 �
T−1
1
∑T1

t�1(y1t − ȳco,t). The counterfactual outcome is then

estimated as ŷ01t,DID � δ̂1 + ȳco,t. The resulting DID ATT

estimator is Δ̂1,DID � T−1
2
∑T

t�T1+1(y1t − ŷ01t,DID).

2.1.2. The ADID Method. Like DID, ADID is easy to
implement, provides straightforward inference, and
applies to settings regardless of the number of treat-
ment and control units or the number of pre- and
posttreatment time periods. The ADID method has a
bit more flexibility than DID to satisfy the parallel
trends assumption.

The ADID method relies on a simple modification
to the DID method. We multiply ȳco,t by a slope
adjustment (a constant, δ2), which leads to the follow-
ing regression model:

y1t � δ1 + δ2ȳco,t + e1t, t � 1, : : : ,T1: (2.4)

Let δ̂ � (δ̂1, δ̂2)′ denote the least-squares estimator of
δ � (δ1,δ2)′ based on (2.4) using the pretreatment data.
We estimate y01t by ŷ01t,ADID � δ̂1 + δ̂2ȳco,t, and the ADID
ATT by

Δ̂1,ADID � 1
T2

∑T
t�T1+1

(y1t − ŷ01t,ADID): (2.5)

Forcing δ̂2 � 1 reduces ADID to DID.

2.1.3. The SC Method. Proposed by Abadie and Gar-
deazabal (2003) and Abadie et al. (2010), the synthetic
control (SC) method is another way to estimate ATTs.
The inference theory was developed recently by Li
(2020) and is much less straightforward than for DID
and ADID. Also, there is no inference theory for data
structures where there are more control units than pre-
treatment time periods and the data are nonstationary,
which makes SC unattractive to researchers working
with such data and interested in quantifying the uncer-
tainty around their point estimates.

The SC method computes counterfactuals by first
minimizing a constrained least-squares objective func-
tion. Define zt � (1,y2t, : : : ,yNt)′ and β � (β1,β2, : : : ,βN)′.
Let β̂SC denote the SC method estimated β. Then β̂SC
minimizes

∑T1

t�1
(y1t − z′tβ)2, (2.6)

subject to three constraints: (i) no intercept (β1 � 0), (ii)
slope coefficients sum to one, and (iii) all slope coeffi-
cients are nonnegative. There are at least three motiva-
tions for imposing these constraints. First, when the
number of control units (Nco) is larger than the number
of pretreatment time periods (T1), the least-squares
estimator of β is not defined. Imposing regularization
conditions identifies the estimator in such cases. Sec-
ond, many outcome variables tend to move together

Li and Van den Bulte: Augmented Difference-in-Differences
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across units (i.e., they are positively correlated), such
that imposing nonnegativity on the weights (βjs) is ex-
pected to result in narrower confidence intervals and
more accurate out-of-sample predictions. Third, when
the treatment and controls are random draws from a
common distribution, the constraint that the slope
coefficients sum to one is correct and imposing it can
help narrow the confidence intervals and boost the
out-of-sample prediction accuracy. With β̂SC defined
above, we obtain ŷ01t,SC � z′tβ̂SC. Therefore, the resulting

SC estimator of the ATT is Δ̂1,SC � T−1
2
∑T

t�T1+1(y1t−
ŷ01t,SC).

2.1.4. The MSC Method. Proposed by Doudchenko
and Imbens (2016), the modified synthetic control
(MSC) method is more flexible than the SC method,
as it dispenses with the constraints of β1 � 0 and∑N

j�2 βj � 1; that is, MSC only imposes the nonnegativ-
ity constraints on the weights βj for j ≥ 2 and there is no
restriction on the intercept β1. The inference theory
was developed by Li (2020) but is not available for data
structures where the number of control units is larger
than the number of pretreatment time periods and the
data are nonstationary.

The MSC method can be described as follows: Let
β̂MSC be the MSC estimator of β that minimizes

∑T1
t�1(y1t − z′tβ)2 subject to all the slope coefficients being

nonnegative (βj ≥ 0 for j � 2, : : : ,N). The resulting
MSC estimator of the ATT is Δ̂1,MSC � T−1

2
∑T

t�T1+1(y1t− ŷ01t,MSC)with ŷ01t,MSC � z′tβ̂MSC.

2.1.5. The HCW Method. Proposed by Hsiao et al.
(2012), the HCW method, which is also referred to as
the OLS method, is the most flexible of the five meth-
ods. The inference theory was discussed by Hsiao
et al. (2012) and expanded by Li and Bell (2017). The
HCW method is not feasible when the number of con-
trol units is larger than the number of pretreatment
time periods.

The HCW method uses each control unit as a sepa-
rate explanatory variable and estimates the following
regression model (by the least-squares method):

y1t � z′tβ + ε1t t � 1, : : : ,T1: (2.7)

Let β̂OLS denote the least-squares estimator of β based
on (2.7) using the pretreatment data. One estimates
the counterfactual outcome by ŷ01t,HCW � z′tβ̂OLS for
t � T1 + 1, : : : ,T. The resulting estimator of the ATT is
Δ̂1,HCW � T−1

2
∑T

t�T1+1(y1t − ŷ01t,HCW).

2.1.6. MechanicalRelationshipsAmongMethods. Figure
1 shows the connections among the five methods. The
βj in Figure 1 refer to the weights or slope coefficients

where j � 2, : : : ,N denotes a control unit. At the top is
the HCWmethod, which is the least restrictive. Impos-
ing the restriction that the weights (slope coefficients)
are nonnegative results in the MSC method. Addition-
ally imposing that the weights sum to one and the
intercept is zero results in the SC method. From the
MSC method, we arrive at the DID method by impos-
ing that the weights are all equal and sum to one. Start-
ing back on top with HCW and restricting all weights
to be equal results in the ADID. Further imposing that
the weights are positive and sum to one results in DID.
The equal weight restriction in the DID and ADID is
what makes these two methods parsimonious, which
in turn makes them easy to use and results in straight-
forward inference.

There are other, more sophisticated estimation meth-
ods to predict the counterfactual outcome ŷ01t for
t ≥ T1 + 1, including some machine learning tools (e.g.,
the LASSOmethod; see Mullainathan and Spiess 2017).
Examining the inferential theory of ATT estimators
based on machine learning techniques is beyond the
scope of this paper.

2.2. Causal Identification and Parallel Trends
Without random assignment of units to treatment, one
needs to rely on some assumptions to make causal
claims. In general terms, one needs to assume that the
control units’ outcomes can be used to determine what
the treatment units’ outcomes would have been in the
absence of treatment, which is the counterfactual. Dif-
ferent methods use different estimation techniques in
order to calculate this counterfactual of interest. Often,
the identifying assumption is expressed in terms of a
parallel trends.

Table 1 states the identifying parallel trends as-
sumption specific to each method (DID,1 ADID, SC,2

MSC, HCW). It is not possible to directly test the paral-
lel trends assumption because we do not observe the
counterfactual outcome. It is therefore useful to break

Figure 1. Mechanical Relationships AmongMethods

HCW

No intercept

MSC

SC

DID

ADID

≥ 0

∑ =1

equal

equal

∑ =1, ≥ 0equal, Add intercept
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down each parallel trends assumption into a testable
and a nontestable part. The testable part consists of the
general assumption at least holding in the pretreat-
ment period. The nontestable part is that the correla-
tion structure between the treatment and control units
in the pretreatment time period continues to hold in
the posttreatment time period in the absence of treat-
ment. Whereas one cannot check the latter condition
using the observed data, one can at least checkwhether
the former condition is satisfied. Beyond these
mechanical checks, Kahn-Lang and Lang (2020) recom-
mend also considering to what extent the treatment
and control units may differ in observable or nonob-
servable dimensions possibly associated with unac-
counted differences in baseline outcomes in the
absence of treatment, driving a wedge between the
true ATT and its statistical estimate. Note that, unlike
differences in baseline outcomes, differences in effect
size between treatment and control units do not affect
the true ATT.

2.3. Comparing the Different Methods
This section discusses the advantages and disadvan-
tages of the newly proposed augmented DID method
and the four extant ATT estimation methods (DID,
SC, MSC, and HCW). It also provides specific, if some-
what mechanical, guidance on when to use which
method.

The key advantages of DID are that it is very easy
to implement and is very efficient when valid. The
method is especially effective when there are large
numbers of treatment and control units over short
time periods. However, the DID method is also the
most restrictive because its parallel trends assumption
is more likely to be violated than those of other meth-
ods, especially when the treatment and control units
are heterogeneous, that is, have different pretreatment
patterns.

The SCmethod is more general than the DIDmethod
as it allows for different controls to have different
weights. The SC method imposes a zero intercept and
weights summing to one. When these restrictions hold,
the SC method provides large efficiency gains over
more flexible methods likeMSC andHCW.When these

restrictions do not hold, SC is likely to be biased. The
MSC method adds an intercept and removes the
weights summing to one restriction. Therefore, when
the SC parallel trends assumption is violated, the
MSC parallel trends assumption may still hold. When
it comes to inference, both SC and MSC have a disad-
vantage vis-à-vis DID and ADID. Because SC and
MSC involve constrained estimation, their point esti-
mates have nonstandard distributions, making infer-
ence much more complex than for DID and ADID (Li
2020). In addition, when the number of control units is
larger than the number of pretreatment time periods
and the data are nonstationary, there is no formal infer-
ence theory available at all for SC and MSC. Further-
more, simulation analyses reported in Section 4.4 show
that the MSC method performs poorly when the num-
ber of control units is much larger than the number of
pretreatment time periods, due to a large number of
parameters being estimated.

The HCW method has the most flexible weights. It
can be the preferred choice when the treatment and
control units are negatively correlated and the num-
ber of control units is small. However, when the num-
ber of control units is larger than the number of
pretreatment time periods, HCW is not feasible. When
the number of control units is smaller than the num-
ber of pretreatment time periods, but only slightly so,
the HCW method has the disadvantages of likely
overfitting the in-sample data and of being inefficient
because the large number of parameters (weights)
results in a large estimation variance.

The ADID method shares the parsimony, ease of
use, efficiency, and formal inference benefits of the
DID method. These benefits stem from the ADID’s
equal weight restriction but come at the risk of a bias
if the restrictions are invalid. Therefore, the more flexi-
ble MSC and the HCW method may perform better
in-sample, but not necessarily out-of-sample when
compared with ADID. Simulations reported in Section
4.2 show that the ADID estimates often have a smaller
mean squares error (MSE) than those obtained from
more flexible methods.

Balancing ease of use, bias, precision, and the abil-
ity to perform statistical inference, and taking into

Table 1. Identifying Parallel Trends Assumption by Method

Method Identifying parallel trends assumption

DID Treated unit’s outcome would have been parallel to the average control units’ outcomes in the absence of treatment
ADID Treated unit’s outcome would have been parallel to a slope-adjusted average of the control units’ outcomes in the

absence of treatment
SC Treated unit’s outcome would have been the weighted average of control units’ outcome in the absence of treatment
MSC Treated unit’s outcome would have been parallel to a linear combination with nonnegative weights of the control units’

outcome in the absence of treatment
HCW Treated unit’s outcome would have been parallel to a linear combination of control units’ outcome in the absence of

treatment
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account a variety of data structures, we propose the
following guidance on when to use what method(s):

• First, if the testable part of the DID parallel trends
assumption holds, then use the DID method. Other-
wise, or if a robustness check is desired, continue to the
next steps.

• Second, assess and possibly excludemethods based
on data structure.

− If the number of control units is larger than the
number of pretreatment time periods, then exclude
HCW because it is not feasible.

− If the number of control units is much larger
than the number of pretreatment time periods, then
exclude MSC because it cannot estimate the ATT
accurately.

− If the number of control units is larger than
the number of pretreatment time periods and the
data are nonstationary, then consider excluding
SC and MSC because inference theory does not
exist.

• Third, assess and exclude remaining candidate
methods based on the validity of their respective paral-
lel trends assumption.

− Check the testable part of the parallel trends
assumption of each remaining candidate method.

− Exclude any method for which the testable part
of the parallel trends assumption is not satisfied.

• Fourth, compare the ATTs of the remaining meth-
ods and consider the precision of the estimates.

− If the differences among the ATTs are small,
then choose the method with the most restrictive
assumptions (DID � SC : ADID � MSC � HCW)
because it tends to produce the most precise esti-
mates (narrowest confidence intervals).

− If the differences among the ATTs are large,
then calculate the prediction MSE (PMSE) for each
method and choose the method with the smallest
PMSE. For the definition and calculation of PMSE,
see the appendix.

Note, even if the first step suggests using DID as the
main method, it will often be sound practice to use one
or more additional methods as a robustness check. As
already noted above, sound practice also goes beyond
such mechanical rules and takes into consideration
institutional details of the research setting that may
drive a wedge between the true ATT and its estimate
(Kahn-Lang and Lang 2020).

3. Inference Theory
This section develops the inference theory for the
ADID method for both stationary and nonstationary
data. Sections 3.1 and 3.2 focus on the single-treatment
unit case, and Section 3.3 extends the results allowing
for multiple treatment units with either common or
staggered treatment timing.

3.1. Stationary Data
The proposed augmented DID estimator is consistent
for stationary data. That is, under mild conditions
stated in Web Appendix C, the ATT estimate con-
verges to the true ATT when the numbers of both pre-
treatment (T1) and posttreatment (T2) observations are
large. Though the consistency results rely on large
numbers of observations, simulations reported in Sec-
tion 4 suggest that even a moderate sample size of
(T1,T2) � (40,10) is large enough for the ADID method
to work well. Additional simulations reported in Web
Appendix E.4 suggest that the ADID method is still
useful when T1 and T2 are small (even T1 � T2 � 5) pro-
vided that one uses critical values from a tT1−2 distribu-
tion when computing confidence intervals.

Before the intervention, the outcome for the treat-
ment unit is

y01t � x′tδ + e1t, t � 1, : : : ,T1, (3.1)

where xt � (1, ȳco,t)′ and δ � (δ1,δ2)′. We interpret (3.1)
as a linear projection model, where e1t is the projection
error. Therefore, xt and e1t are uncorrelated by the def-
inition of a linear projection. After treatment occurs to
the first unit at time t � T1 + 1, the outcome is

y11t � x′tδ+Δ1t + e1t, t � T1 + 1, : : : ,T: (3.2)

As discussed above, ADID exploits the correlation
between the treatment unit’s outcome (y1t) and the
average of the control units’ outcomes (ȳco,t) to esti-
mate the counterfactual outcome for the treatment
unit. The identifying assumption is that the linear pro-
jection coefficient δ remains the same for the posttreat-
ment period in the absence of treatment; that is, the
correlation between y01t and ȳco,t (hence, xt) remains the
same during the posttreatment period in the absence
of treatment. Therefore, one can consistently estimate δ
using pretreatment data. Let δ̂ denote the least-squares
estimator of δ based on (3.1) using the pretreatment
data, and let Δ̂1 ≡ Δ̂1,ADID be the ADID ATT estimate
defined in (2.5). The following proposition presents the
large sample distribution of Δ̂1.

Proposition 3.1. Under Assumption C1 given in Web
Appendix C, we have

����
T2

√ (Δ̂1 − Δ1)=
���̂
Σ

√
→d N(0, 1), (3.3)

whereΔ1 � T−1
2
∑T

t�T1+1Δ1t and Σ̂ is defined in Appendix A.

Proposition 3.1 implies that for α ∈ (0, 1), the (1−α)
confidence interval of Δ1 is given by

Δ̂1 − z1−α=2
���̂
Σ

√
=

����
T2

√
, Δ̂1 − zα=2

���̂
Σ

√
=

����
T2

√[ ]
, (3.4)
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where zα is the αth quantile of a standard normal ran-
dom variable; that is, P(N(0, 1) ≤ zα) � α. For example,
for α � 0:10, the 90% confidence interval for Δ1 is
given by

Δ̂1 − 1:645
���̂
Σ

√
=

����
T2

√
, Δ̂1 + 1:645

���̂
Σ

√
=

����
T2

√[ ]
:

Our inference theory involving the standard normal
distribution requires that both T1 and T2 are large.
When T1 and T2 are small, we suggest using the tT1−2
distribution when conducting inference. The degrees
of freedom, T1 − 2, equal to the pretreatment sample
size (T1) minus the number of parameters (δ1, δ2). Sim-
ulations reported in Web Appendix E.4 show that
when T1 and T2 are small, the estimated confidence
intervals are more accurate based on the tT1−2 distribu-
tion than the N(0, 1) distribution.

3.2. Nonstationary Data
The augmented DID estimator is consistent for non-
stationary data, too. We first consider nonlinear trend
data. Suppose that in the absence of treatment, the
data are generated by the following process:

y0jt � aj + bj ft + ujt, j � 1, : : : ,N; t � 1, : : : ,T,

(3.5)

where aj and bj are finite constants, ft is a trend process,
and ujt is a zero mean weakly dependent stationary
process. We allow ft to be an arbitrary nonlinear trend
process. A simple example is a quadratic trend pro-
cess, ft � c0 + c1t+ c2t2. Proposition 3.2 below extends
Proposition 3.1 to allow for nonlinear trend outcome
variables.

Proposition 3.2. Assuming that yjt is generated by a
(linear or nonlinear) trend process defined in (3.5), under
Assumption C2 in Web Appendix C, we have

����
T2

√ (Δ̂1 − Δ1)=
���̂
Σ

√
→d N(0, 1), (3.6)

where Σ̂ is defined in Appendix A.

Proposition 3.2 states that the statistic
����
T2

√ (Δ̂1 −
Δ1)=

���̂
Σ

√
has the same standard normal distribution as

in the stationary data case. Note, one does not need
to know or estimate the specific nonlinear trend in
the outcome variable (yjt). When estimating the coun-
terfactual outcome, one regresses y1t on (1, ȳco,t), and
the calculations of Δ̂1 as well as Σ̂ remain the same
whether yjt is a stationary or a nonlinear trend
process.

Another type of nonstationary process is a unit-root
process, ft � ft−1 + ξt, where ξt is a zero mean, weakly
dependent stationary idiosyncratic error term. Assume
that in the absence of treatment, outcome variables are

generated by

y0jt � aj + bj ft + ujt with ft � ft−1 + ξt, (3.7)

that is, ft follows a drift-less unit-root process. Whereas
the common factor ft in (3.5) has a nonstationary (deter-
ministic) trend component, ft in (3.7) follows a driftless
(i.e., no intercept) unit-root process, and it does not
have a deterministic trend component.

The following proposition gives the asymptotic dis-
tribution theory for the ADID estimator with unit-root
nonstationary data.

Proposition 3.3. Assuming that yjt is generated by a
unit-root process as in (3.7), under Assumption C3 in Web
Appendix C, we have

����
T2

√ (Δ̂1 − Δ1)=
���̂
Σ

√
→d N(0, 1), (3.8)

where Σ̂ is defined in Appendix A.

Proposition 3.3 states that the statistic
����
T2

√ (Δ̂1 −
Δ1)=

���̂
Σ

√
has the same standard normal distribution as

in the stationary data case. The reason is similar to the
result that, when one estimates a cointegration rela-
tionship, a standardized t-statistic can have a standard
normal distribution under fairly general conditions,
even though the least-squares estimated coefficient
has an asymptotic nonnormal distribution (a distribu-
tion characterized by integration of Brownian mo-
tions). See Hayashi (2000, p. 658) and Hamilton (1994,
pp. 608–610) for detailed discussions.

Simulations reported in Section 4 show that the infer-
ence theories presented in Propositions 3.1–3.3 work
well for a variety of data-generating processes, including
stationary, nonlinear trend, and unit-root nonstationary
processes.

3.3. Multiple Treatment Units
We now extend the analysis to allow formultiple treat-
ment units. We use Ntr and Nco to denote the number
of treatment and control units. We first consider a sim-
ple case where all treatment units receive a treatment
at the same time and then deal with the more general
case where different treatment units receive treatment
at different times.

3.3.1. Common Treatment Timing. When all treatment
units receive a common treatment at the same time T1,
we can first average outcomes over the treatment and
control group separately to obtain ȳt,tr �N−1

tr
∑Ntr

i�1 yit,tr
and ȳt,co �N−1

co
∑Nco

i�1 yit,co , so that we have data sets for
two time series, one for the treatment and one for the
control group. We can then deal with this scenario as
consisting of only one treatment unit.
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We first consider the DID method. Under the DID
parallel trends assumption, the means of the sample
paths, ȳt,tr and ȳt,co, differ by a constant (say, δ1) in
the absence of treatment. Using the pretreatment data,
we estimate δ1 based on the intercept-only regression
model ȳt,tr � δ1 + ȳt,co + et (where et is a zero mean

error), which leads to δ̂1,DID � T−1
1
∑T

t�1(ȳt,tr − ȳt,co). The
counterfactual outcome is estimated by ŷ0t,tr,DID �
δ̂1,DID + ȳt,co, and the ATT estimate is given by

Δ̂DID � 1
T2

∑T
t�T1+1

(ȳt,tr − ŷ0t,tr,DID):

Similarly, for the ADID method, we estimate δ �
(δ1,δ2)′ from the regression model ȳt,tr � δ1 + δ2ȳt,co + et
for t � 1, : : : ,T1 by the least-squares method. If δ̂ �
(δ̂1, δ̂2)′ denotes the resulting estimate of δ, then the
ATT estimate is given by

Δ̂ADID � 1
T2

∑T
t�T1+1

(ȳt,tr − ŷ0t,tr,ADID), (3.9)

where ŷ0t,tr,ADID � δ̂1 + ȳt,coδ̂2. The inference theory for

Δ̂ADID is covered by Proposition 3.1 (for stationary
data) and Propositions 3.2 and 3.3 (for nonstationary
data), since we effectively deal with the same problem
as one treatment unit scenario (treating ȳt,tr as y1t in
Propositions 3.1–3.3).

The aforementioned ATT estimator allows Ntr=Nco

to be large or small. When Ntr and Nco are both large,
Web Appendix D.1 shows that Δ̂ADID converges to Δ �
1

NtrT2

∑Ntr
i�1

∑T
t�T1+1Δit at the rate of 1=( �����������������

T2(Ntr +Nco)
√ ).

Therefore, even when T2 is small, Δ̂ADID consistently
estimates Δ, provided thatNtr andNco are large. Simula-
tions in Section 4.4 confirm this convergence rate. Web
Appendix E.5 shows that the inference theory works
well also when Ntr and Nco are large but T2 is small.
When T1 is small as well, we suggest replacing stan-
dard normal distribution quantiles by t-distribution
(with T1 − 2 degree of freedom) quantiles. See simula-
tions reported in Web Appendix E.4 for supporting
evidence.

3.3.2. Staggered Treatment Timing. We now consider
the case where different treatment units receive the
treatment at different times. Suppose that the ith
treatment unit received treatment at time T1i + 1 for
1 < T1i < T; thus, posttreatment length is T2i � T−T1i

for i � 1, : : : ,Ntr. We use yit � yit,tr and yit,co to denote
treatment and control outcome variables, respectively.
Recall that xt � (1, ȳco,t)′, where ȳco,t �N−1

co
∑Nco

i�1 yit,co. For
the ith treatment unit during the pretreatment period,

we have

yit � x′tβi + eit, i � 1, : : : ,Ntr; t � 1, : : : ,T1i, (3.10)

where βi � (β1i,β2i)′. We estimate βi by β̂i � (X′
iXi)−1

X′
iYi, where Xi and Yi are T1i × 2 and T1i × 1 matrices

with typical rows given by x′t � (1, ȳco,t) and yit,
respectively.

As before, we estimate Δit �def y1it − y0it by Δ̂it � yit − ŷ0it
for t ≥ T1i + 1, where ŷ0it � x′tβ̂i. The ATT estimator for
the ith treatment unit is given by Δ̂i � T−1

2i
∑T

t�T1i+1 Δ̂it.
The average treatment effect over all the treated units
is obtained by averaging Δ̂i over i from 1 to Ntr:

Δ̂ � 1
Ntr

∑Ntr

i�1

1
T2i

∑T
t�T1i+1

Δ̂it: (3.11)

When both Ntr and Nco are fixed positive integers, the
asymptotic distribution of Δ̂ is given in the following
proposition.

Proposition 3.4. Suppose that Assumption C4 in Web
Appendix C holds, let T2 �N−1

tr
∑Ntr

i�1 T2i (the average of
T2is) and Δ̂ be defined as in (3.11), then we have

����
T2

√ (Δ̂ −Δ)=
������
Σ̂Ntr

√
→d N(0, 1),

where Δ �N−1
tr
∑Ntr

i�1 T
−1
2i
∑T

t�T1i+1Δit, and Σ̂Ntr is defined in
the Web Appendix C.5.

The proof of Proposition 3.4 is provided in Web
Appendix D.2.

Proposition 3.4 deals with the case where Ntr and
Nco are fixed, and T1 and T2 are large. The next propo-
sition covers the case where T1 and T2 are small, but
Ntr and Nco are large.

Proposition 3.5. Suppose that Assumption C5 in Appen-
dix C holds (a short panel with many treatment and control
units), and let Δ̂ be defined as in (3.11), then there exists a
positive constant C > 0 such that

MSE(Δ̂) ≤ C
1
Ntr

+ 1
Nco

( )
,

whereMSE(Δ̂) � E[(Δ̂ −Δ)2].
The proof of Proposition 3.5 is provided in Web

Appendix D.3. Proposition 3.5 implies that when Ntr

and Nco are both doubled, the mean squared error
(MSE) will be reduced by half. Simulations in Section
4.4 confirm thisMSE convergence rate.

Proposition 3.5 gives the MSE convergence of Δ̂ but
not the asymptotic distribution of Δ̂. We conjecture
that it may be possible to prove, under some regularity
conditions, that

�����
Ntr

√ (Δ̂ −Δ) has an asymptotic normal
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distribution with zero mean and a finite variance. We
leave verifying this conjecture to future research.

Finally, as with the DID method, one can easily
incorporate relevant covariates in the ADID estimation
procedure. Web Appendix C.6 discusses the specific
estimation steps when there are covariates.

4. Simulation Study
We now assess the performance of ADID by means of
simulation. Section 4.1 describes the design. The simu-
lation analysis covers cases where the treatment and
control units are either homogeneous or heterogene-
ous, that is, have the same or different pretreatment
patterns. The simulation also considers whether the
data are stationary or nonstationary. Section 4.2 com-
pares the performance of five different methods in
terms of their mean squared error (MSE), which cap-
tures the joint effect of bias and variance. Section 4.3
assesses the confidence intervals produced by the DID
and the ADID methods. Section 4.4, finally, examines
the case with multiple treatment units.

4.1. Simulation Design
The simulation manipulates to what extent the treat-
ment and control units have the same or different pre-
treatment patterns. In the first true data-generating
process, DGP1, the treatment and control units exhibit
the same patterns (homogeneous treatment and con-
trol units). In the other two data-generating processes,
DGP2 and DGP3, the treatment and control units
exhibit different patterns (heterogeneous treatment
and control units). In DGP2, the treatment unit’s slope
is greater than the control units’ slopes, such that the
treatment unit is outside the range of the control units.
In DGP3, the treatment unit’s slope is within the range
of the control units’ slopes. Consider a study in which
sales in different cities is the outcome variable. DGP1
reflects a scenario where the pretreatment sales evolu-
tion is similar between treatment and control units.
For example, if the treatment and control cities have
similar demographics, population growth, economic
development, and other sources of temporal variation,
then pretreatment sales growth will likely be similar in
treatment and control cities. For DGP2, in contrast,
the sales growth in the treatment unit is higher than
in the control units. For instance, larger cities may ex-
hibit higher sales growth (i.e., steeper upward trends)
because of higher rates of migration into larger cities or
because the demand for the product or service exhibits
positive network effects. If the treatment unit is a rela-
tively large city with an above-average sales growth
rate, then the pretreatment sales evolution will differ
between test and controls, as represented by DGP2.
Finally, for DGP3, the treatment unit’s sales growth
lies within range of growth rates in the control units.

An example would be the same scenario as for DGP2,
but with the treatment unit being an average-size city
and the control units consisting of both larger and
smaller cities.

Based on the pattern of each DGP, we have
some clear expectations about which methods should
be most suited and perform best in each. In DGP1, all
five methods (DID, ADID, SC, MSC, and HCW) are
applicable because the treatment and control units fol-
low the same patterns and the causal identification
assumption is met for each method. In DGP2, only
ADID, MSC and HCW are applicable because these
are the only methods to allow the treatment unit’s pre-
treatment pattern to be outside the range of the control
units. In contrast, DID and SC are not applicable
because their “weights summing to one” restriction is
valid only when the treatment unit is within the range
of the control units. In DGP3, where the pretreatment
trend of the treatment unit differs from that of the indi-
vidual controls yet lies within the range of the collec-
tive set, ADID, SC, MSC, and HCW are all suitable
because they have enough flexibility to accommodate
such a pattern. In contrast, DID should perform
poorly: imposing that the weights are equal and sum
to one is suitable only when the treatment’s trend is
equal to the average of the control units’ trends.

A convenient way to manipulate the treatment-
versus-control patterns in the pretreatment data is to
generate the outcome data using a factor model. Gener-
ating outcome variables using some common factors
results in outcomes of different units that are correlated
via the common factors.We generate theN × 1 vector of
outcome variables in the absence of treatment, y0t , using
the following factormodel with three factors:

y0t � a+Bft + ut, t � 1, : : : ,T, (4.1)

where y0t � (y01t,y02t, : : : ,y0Nt)′, a � (a1,a2,: : : ,aN)′, and ut �
(u1t,u2t,: : : ,uNt)′ are all N × 1 vectors. Moreover, B �
(b1,b2,: : : ,bN)′ is the N × 3 factor-loading matrix, where
bj is a 3 × 1 factor loading vector for unit j, and ft is a
3 × 1 vector of common factors. We choose the inter-
cept to be a constant of ones, (a1,a2, : : : ,aN) � (1, 1,
: : : , 1), and error to be distributed standard normal,
ujt is independent and identically distributed (i.i.d.)
N(0, 1).

By varying the factor loadings, we can create the
pattern for each DGP. To generate DGP1, where the
treatment and control units follow the same patterns,
we choose the same factor loadings for all units; that
is, bi � (1, 1, 1)′ for all i � 1, : : : ,N. To generate DGP2
and DGP3, where the treatment and control units fol-
low different patterns, we choose different factor load-
ings for the treatment and control units; that is, b1 ≠ bi
for i � 2, : : : ,N. In order to distinguish between DGP2
and DGP3, where the treatment unit is outside versus
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within the range of the control units, we allow the fac-
tor loadings on the control units to be different. We
split the control units into two groups, where the first
group has factor loading bi (for i � 2, : : : , (N − 1)=2)
that is different from the factor loading of the second
group bj ( j � (N + 1)=2, : : : ,N). We express the factor
loadings for the treatment unit and the two groups of
control units3 as follows:

b1 � c113×1,bj � c213×1, j � 2, : : : ,
N − 1
2

,bj � c313×1,

j �N + 1
2

, : : : ,N, (4.2)

where 13×1 � (1, 1, 1)′ is a 3 × 1 vector of ones.
To create the three DGPs, we simply use a specific

combination of cj, j � 1, 2, 3:

DGP1 : c1 � 1, c2 � 1, c3 � 1,
DGP2 : c1 � 1, c2 � −2, c3 � 0:5,
DGP3 : c1 � 1, c2 � 2, c3 � −0:5:

For each DGP, we further examine to what extent the
performance of different methods depends on the
data being stationary or not (specifically, unit-root or
nonlinear trend). We do so by generating outcome
variables using a different combination of the follow-
ing five factors: f1t � 0:8f1,t−1 + ε1t, f2t � −0:6f2,t−1 + ε2t+
0:8ε2,t−1, f3t � ε3t + 0:9ε3,t−1 + 0:4ε3,t−2, f4t � f4,t−1 + ε4t,
and f5t � 0:2t− 0:8

��
t

√ + 0:8f5,t−1 + ε5t, where εjt is i.i.d.
N(0, 1) for j � 1, : : : , 5. The first three factors are sta-
tionary and the last two factors are nonstationary.
Specifically, the first three factors are stationary AR(1),
ARMA(1,1), and MA(2) processes, respectively. The
fourth factor is a unit-root process, and the fifth factor
is a nonlinear trend process. We create three types of
trends for ft: (i) stationary: ft � ( f1t, f2t, f3t)′, (ii) nonsta-
tionary unit-root: ft � ( f4t, f2t, f3t)′, and (iii) nonstation-
ary nonlinear: ft � ( f5t, f2t, f3t)′.

4.2. Estimation MSE Compared Across Methods
In this section, we compare the ATT estimation mean
squared error (MSE) across five methods: DID, ADID,
SC, MSC, and HCW. The estimation MSE is computed
as MSE(Δ̂1) � 1

M
∑M

j�1 (Δ̂1,j −Δ1,j)2, where M � 10,000 is

the number of simulation replications, Δ̂1,j is the calcu-
lated Δ̂1 using the jth iteration of simulated data utiliz-
ing one of the five estimation methods, and Δ1,j is Δ1

computed employing the jth iteration of simulated
data. We also compute the variance and squared bias
defined by Var(Δ̂1) � 1

M
∑M

j�1 (Δ̂1,j −Δ1,j − (Δ̂1 −Δ1))2,
where Δ̂1 � 1

M
∑M

l�1 Δ̂1,j, Δ1 � 1
M
∑M

j�1Δ1,j, and Bias2(Δ̂1)
� (Δ̂1 −Δ1)2. It is easy to check that the standard MSE

decomposition MSE(Δ̂1) � Var(Δ̂1) + Bias2(Δ̂1) holds.
Note that the estimation MSE(Δ̂1) is unrelated to the
treatment effect, Δ1t. This is because Δ̂1 −Δ1 is unre-
lated to treatment effect Δ1t, as the treatment effect Δ1t

cancels out from Δ̂1 and Δ1, leading Δ̂1 −Δ1 to be unre-
lated to Δ1t. Therefore, we simply choose zero treat-
ment effect,Δ1t � 0, for t ≥ 1 in all simulations.

To aid a visual comparison of MSE performance
across methods, Figure 2 reports MSE ratios, bench-
marked against ADID’s MSE. It does so for each data
pattern (DGP) and for each trend structure (stationary,
unit-root, and nonlinear trend). The MSE ratios in
Figure 2 are defined as MSE of a given method (DID,
SC, MSC, or HCW) divided by the MSE of the ADID
method. For example, in the legend for Figure 2,
DID �def MSEDID=MSEADID. Therefore, a ratio greater
than one implies that the ADID method has a smaller
MSE than the given method. The bars in Figure 2 start
from one and go above or below one accordingly. The
vertical axis in Figure 2 is on a log scale. For Figure 2, we
choose T1 � 80 (number of pretreatment time periods)
and T2 � 20 (number of posttreatment time periods). We
also consider two values of N: n � 11 (1 treatment unit
and 10 control units) and n � 51 (1 treatment unit and 50
control units). The MSE tables are presented in Tables
9–11 in Web Appendix E.1, where we also report results
forN ∈ {21, 31} aswell as (T1,T2) � (40, 20).

We now discuss the results in Figure 2, starting with
DGP1, where the treatment and control units have the
same patterns. For all cases, the most flexible method
(HCW) does the worst, the simplest method (DID)
does quite well, but an intermediate method (SC) per-
forms very slightly better in terms ofMSE. This pattern
holds for stationary, unit-root and nonlinear trend
data, but the superiority of SC and DID over other
methods is more pronounced for nonstationary data
and especially for nonlinear trend data. This implies
that, provided that the causal identification assump-
tion holds, superfluous flexibility comes at a cost.
Investigating each contributor to the MSE separately
shows that, as expected, bias is negligible in DGP1.
Specifically, Bias2(Δ̂)= Var(Δ̂) ≤ 0:02 for all cases.

Next, we discuss the results for DGP2 where the
treatment and control units follow different patterns
and, specifically, the treatment is outside the range
of the control units. DID and SC are not applicable,
whereas ADID, MSC, and HCW are. Therefore, we
expect ADID, MSC, and HCW methods to perform
well and indeed they do. For n � 11, Figure 2 shows
that these three methods have rather similar MSEs (the
ratios are close to one), which are much lower than
those of DID and SC, especially in nonstationary data.
The DID method has the largest MSE, and the SC has
the second largest. For n � 51, ADID and MSC remain
the best performers, HCW loses some performance,
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and DID and SC remain the worst performers by a
wide margin. When T1 and T2 are doubled, the ADID,
MSC, and HCW (whenN is small) estimated MSEs are
all reduced by about 50%, indicating that these three
methods produce consistent ATT estimates (see Tables
9–11 inWebAppendix E.1).

Finally, for DGP3, where the treatment and control
units follow different patterns, but the treatment is
within the range of the control units, all methods
except for the DID are applicable on a priori grounds.
As expected, the DID method performs worst in term
of MSE due to its large estimation bias. Regarding the
other four methods, Figure 2 shows that, for almost all
cases, they perform quite similarly, though HCW per-
forms very slightly worse when n � 51.

With the exception of the HCWmethod, the estima-
tion MSEs are not particularly sensitive to different
values of N. For HCW, the number of estimated
parameters increases with N, which inflates its estima-
tion variances. Comparing the MSEs for (T1,T2) �
(40,10) and (T1,T2) � (80,20) shows that when the val-
ues for T1 and T2 are doubled, the MSEs are halved for
most methods (see Tables 9–11 in Web Appendix E.1
for these results). This is consistent with our theoretical

results that the estimated MSEs are proportional to
1=(T1 +T2).

4.3. Coverage Probabilities
Both DID and ADID provide easy-to-use and widely
applicable inference theory, unlike SC,MSC, andHCW.
Therefore, our analysis of the estimated coverage prob-
abilities considers only DID and ADID. To what extent
do the DID and ADID confidence intervals correctly
reflect the true variability across replications? The cov-
erage probability plots in Figures 3 and 4 provide the
answer, for different data patterns (DGPs and trend
structures). Each of the nine plots in these exhibits show
the nominal coverage rate of the confidence intervals on
the x-axis and the actual coverage rate of the confidence
intervals on the y-axis. We choose the nominal coverage
rate values, xi ∈ {0:01,0:02, : : : , 0:99}, and use 100,000
simulation runs to calculate the actual coverage rate, yi,
which is the proportion of estimated confidence inter-
vals that actually contain the true ATT. We then plot
{xi,yi}99i�1 as a dashed curve. If the actual and nominal
coverage rates are very close, then the {xi,yi}99i�1 (dashed)
curve will be close to the 45-degree solid line. On the

Figure 2. (Color online) Ratio of GivenMethod’s MSE over ADID’s MSE for Long Series (T1 � 80 and T2 � 20)
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other hand, if the actual and nominal coverage rates
diverge, then the dashed curve will deviate from the
45-degree line. Therefore, the plots indicate to what
extent the confidence intervals provide proper cover-
age, over-coverage, or under-coverage.

The dashed lines are very close to the 45-degree line
in each of the nine boxes in Figure 3. Hence, ADID has
excellent coverage in each of the nine cases spanning
different data patterns. Figure 4 shows the coverage
probability plots for the DID method. The conclusion
is as expected: DID has excellent coverage only for
DGP1, where the treatment and control units have the
same patterns, but does quite poorly for DGP2 and
DGP3, where the treatment and control units have

different patterns. Specifically, violation of the DID
parallel lines assumption results in pronounced under-
coverage. The problem is especially pronounced for
nonstationary data (unit-root and nonlinear trends). In
fact, for the nonlinear trend data, the under-coverage
is so severe that the coverage probability is zero, mak-
ing the dashed line overlapwith the x-axis.

4.4. Multiple Treatment Units
We now turn to comparing DID, ADID, SC, and MSC
estimates when the numbers of both treatment units
(Ntr) and control units (Nco) are large. For simplicity,
we consider the case where treatment is not staggered:
T1i � T1 for all i � 1, : : : ,Ntr so that T2i � T2 � T−T1 for

Figure 3. (Color online) ADID Coverage Probability Plots
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all i � 1, : : : ,Ntr. We fix (T1,T2) � (10, 4) and choose
Ntr �Nco ∈ {10,20,40, 80,160}. We do not consider the
HCW method because it breaks down in these data
settings where the number of regressors (Nco) is larger
than the pretreatment sample size (T1). We generate
the outcome variables under DGP1, DGP2, and DGP3
using stationary factors. The results using nonstation-
ary factors (unit-root and nonlinear trend) are qualita-
tively similar and appear in Web Appendix E. The
number of replications is 2,000 for all cases.

Figure 5 shows theMSE (multiplied by 1,000) for dif-
ferent methods when the time series are short. Unlike
Figure 2, it reports MSE values rather than MSE ratios.
It does so for two reasons. First, displaying the MSE

of ADID provides confirmation that it converges to
zero as (Ntr +Nco) increases (Proposition 3.5). Second,
displaying the MSE of MSC documents that it tends
to explode for large Ntr and Nco, as expected. The table
corresponding to Figure 5 appears inWebAppendix E.

The DID method works well for DGP1, where the
treatment and control units follow similar patterns.
Its MSE decreases as Ntr and Nco increases. However,
DID has large MSEs for DGP2 and DGP3, which is
expected because DID is not applicable. The SC
method accurately estimates the ATT for DGP1 and
DGP3, and its MSE decreases quickly as Ntr and Nco

increase. However, the SC method is not suitable for
DGP2 and has large MSEs due to bias.

Figure 4. (Color online) DID Coverage Probability Plots
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Somewhat surprisingly, the MSC method performs
poorly for all DGPs. Even for DGP1, where treatment
and control units have similar patterns, its MSE in-
creases withNtr andNco. Because MSC estimates many
parameters with a small sample size, the variance
becomes very large asNtr andNco increase. As a result,
MSC fails to reliably identify ATT when Ntr and Nco

are large.
ADID is the only method that performs well for

DGP1, DGP2, and DGP3. Its causal identification
assumption holds for all three types of data struc-
ture, even though it has only two parameters. The
MSE reduces by about one half every time Ntr and
Nco are doubled, consistent with Proposition 3.5.
Web Appendix E.5 presents additional simulation
results showing that the ADID ATT inference theory
presented in Section 3 works well for the large Ntr

and Nco case.

4.5. Conclusions from the Simulation
The main conclusions of the simulation analyses are
the following:

• When DID parallel trends hold and time series are
long, DID and SC tend to have the lowest MSE.

• When DID parallel trends hold and time series are
short, DID, ADID, and SC tend to have the lowestMSE.

•When DID parallel trends do not hold but the treat-
ment unit’s pretreatment trend is within the range of
the controls’ pretreatment trends, ADID and SC exhibit
the lowest MSE.

• When DID parallel trends do not hold and the
treatment unit’s pretreatment trend is outside the range
of the controls’ pretreatment trends, ADID tends to
exhibit the lowest MSE. This is especially so when there
is only one treatment unit.

• ADID confidence intervals provide proper cover-
age for all nine data structures considered.

Figure 5. (Color online) MSEs (Multiplied by 1,000) byMethod, for Different Large Values ofNco �Ntr and Short Series (T1 � 10
and T2 � 4; Stationary DGPs only)
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5. Illustrative Applications
We now illustrate the performance of ADID com-
pared with DID, SC, MSC, and HCW in nine applica-
tions spanning three distinct settings: (1) how a price
change affects sales of five different products in a
retail chain in Brazil (Fan et al. 2022); (2) how legaliz-
ing recreational marijuana impacts cigarettes sales in
two U.S. states (Bhave and Murthi 2020); and (3) how
opening a showroom affects sales at a digitally native
retailer in two U.S. cities (Bell et al. 2018, Li 2020).

In the first setting, the retailer randomly selected
cities to receive the treatment, which was a price
decrease for products I and II and a price increase for
products III, IV, and V. All stores located in the same
city were assigned to the same condition, though
assignment varied product by product. For each prod-
uct, we have daily data on quantity sold aggregated
across stores for each city. In the second setting, we
examine how legalizing recreational marijuana in two
states, California and Washington, impacted cigarette
sales in those states. We have weekly cigarettes sales
by state. California and Washington are the treatment
units, and 41 states that did not legalize recreational
marijuana are the control units. In the third setting, we
examine how opening a showroom in Boston, MA,
and Columbus, OH, impacted sales of a digitally
native retailer in those two cities.We haveweekly sales
in each city.

The data characteristics differ across these three
distinct settings in terms of the number of treatment
units, the number of control units, the number of pre-
treatment time periods (T1), and the number of post-
treatment time periods (T2). These features of the data
determine which methods (DID, ADID, SC, MSC, and
HCW) are suitable for which application, even before
estimating models and checking for parallel trends.
Table 2 summarizes the data characteristics across the
nine applications. Applying the HCWmethod requires
that the number of pretreatment time periods is greater
than the number of control units. HCW can therefore
be applied only to the showroom-opening applications.
These are also the only two applications allowing for

inference of the SC and the MSC estimates because the
inference theory for these two methods is not available
if the number of control units is greater than the num-
ber of pretreatment time periods and the data are non-
stationary. After excluding some methods from some
applications based on these a priori considerations, we
apply the remaining methods to each of the nine appli-
cations, check for additional identifying assumptions to
assess if the method is appropriate for the application,
and estimate the ATT, calculate its 95% confidence
interval, and compute the out-of-sample or prediction
MSE (PMSE).

The nine applications also differ in the potential for
endogeneity present in their respective settings. Since
assignment to treatment and control by the Brazilian
retailer was random, there are no endogeneity con-
cerns. The second and third setting, in contrast, offer
the traditional quasi-experimental design, and endoge-
neity may arise from the choice of treatment unit or the
timing of the intervention. In the case of recreational
marijuana legalization, state legislatures decided non-
randomly whether and when to pass legislation. Obvi-
ously, it is quite likely that whether a state legalized
marijuana and when it did somay have been chosen in
response to changing conditions or constituents’ pref-
erences. It is also conceivable that evolving conditions
and preferences somehow relate to systematic differ-
ences in how cigarette sales evolved, raising endogene-
ity concerns. Similarly in the last two applications,
endogeneity may arise from both the choice of treat-
ment unit and the timing of the intervention.

We are not aware why selection into treatment
beyond what can be detected through a violation of par-
allel trends would favor any one specific method we
consider over any other. Hence, for the purpose of com-
paring the relative performance of these methods in
terms of point estimates, width of confidence interval,
and out-of-sampleMSE, endogeneity concerns are likely
moot. This likely explains why prior methodological
contributions have deemed state-wide legislation and
showroom openings informative to illustrate the relative
merits of DID, SC, andMSC (Abadie et al. 2010, Li 2020).

Table 2. Data Characteristics of the Nine Applications

Application T1 T2

Number of
treatment units

Number of
control units

Price reduction for Brazil product I 248 14 110 328
Price reduction for Brazil product II 248 7 100 321
Price increase for Brazil product III 248 14 97 318
Price increase for Brazil product IV 248 7 102 321
Price increase for Brazil product V 248 14 106 309
Recreational marijuana legalization in Washington 40 30 1 41
Recreational marijuana legalization in California 40 30 1 41
Showroom opening in Boston 83 27 1 10
Showroom opening in Columbus 90 20 1 10
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Before delving into each application, we provide a
bird’s-eye view of how well ADID performs relative to
DID, SC, MSC, and HCW.We do so in terms of the out-
of-sample or prediction MSE.4 Figure 6 shows the
median PMSE ratio of eachmethod relative to ADID for
each the nine applications.5 A value greater than one
indicates that the ADID method outperforms the com-
peting method in out-of-sample prediction. In the first
five applications where randomization was achieved by
design and bias is likely nil, the DID, ADID, and SC
methods perform similarly, whereas the MSC method
performs poorly. In the four applications where the
design was only quasi-experimental, the ADID method
tends to outperform both the simpler DID and the more
complex SC, MSC, and HCW methods. The one excep-
tion is marijuana legalization inWashington.

5.1. Price Change and Product Sales
We assess the performance of DID, ADID, and SC in
investigations of how price affects sales for five prod-
ucts. We exclude HCW from consideration because it
is not applicable when the number of pretreatment
time periods is smaller than the number of control
units. We also exclude MSC because it has poor out-of-
sample prediction in these applications (Web Appen-
dix F.1). This poor performance is consistent with
simulation results where MSC has a large MSE when
the number of control units is large relative to the num-
ber of pretreatment time periods, as is the case for
these five applications.

The data set consists of daily prices and quantities
sold of five products by a major retail chain in Brazil.
The stores in the treatment cities all implement a price
decrease for products I and II and a price increase for
products III, IV, and V, while stores in the control cities
keep the price as it was. We average over the stores in
control versus treatment cities to calculate the average
treatment effects. Fan et al. (2022) used this data set to
examine heterogeneous treatment effects to each treat-
ment city over time. Here, our aim is different, and we

focus on the average change in sales across all stores in
treatment cities.

5.1.1. Treatment Effects. Because the assignment to
treatment is random, treatment and control units fol-
low similar pretreatment patterns. This scenario corre-
sponds to DGP1 in the simulation study, where DID,
ADID, and SC are all applicable and perform similarly
well. We therefore expect these three methods to per-
form well in these five applications, too, and indeed
they do. Even though the sales data display a highly
nonlinear pattern, DID, ADID, and SC all fit the pre-
treatment data quite well. Figure 7 shows the actual
and fitted/predicted sales for product I. The solid line
is the actual sales, and the dashed line is the fitted
sales in the pretreatment period and the predicted
counterfactual sales in the posttreatment period. Si-
milar figures for products II–V are presented in Web
Appendix F.1.

Table 3 reports the ATT estimates for the five prod-
ucts. They all have the expected sign (positive for the
price decreases and negative for price increases), and
the three methods produce similar point estimates for
each product, although with some exceptions. All
methods fit the in-sample data well, and they differ
only slightly in out-of-sample prediction performance
(Table 28 inWebAppendix F.1).

5.1.2. Confidence Intervals. Table 4 reports the 95%
confidence intervals (CIs) of the DID and ADID point
estimates, as well as the DID/ADID CI width ratio.
We exclude SC because there is no inference theory
when the number of control units is greater than the
number of pretreatment time periods and the data are
nonstationary. Except for product IV, both DID and
ADID indicate that price changes had a statistically

Figure 6. (Color online) Median PMSE Ratios, Showing Each
Method’s Median PMSE BenchmarkedAgainst ADID’s
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Table 3. Estimated ATT for Products I–V

ATT ATT%

Product DID ADID SC DID ADID SC

I 0.1735 0.0838 0.1162 79.24% 27.13% 33.35%
II 0.6933 0.7431 0.5651 35.41% 38.94% 23.57%
III −3.1193 −2.953 −3.270 −18.15% −17.35% −19.20%
IV −2.264 −3.327 −4.130 −7.221% −10.26% −10.48%
V −1.649 −1.773 −0.8453 −14.65% −15.58% −7.332%

Table 4. DID and ADID 95% CI for Products I–V

Product DID CI ADID CI CI width ratio

I [0.111, 0.259] [0.0117, 0.156] 1.03
II [0.0587, 1.33] [0.123, 1.36] 1.02
III [−3.69, −2.55] [−3.48, −2.42] 1.08
IV [−5.56, 1.03] [−5.84, −0.810] 1.31
V [−2.73, −0.566] [−2.84, −0.711] 1.02
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significant effect on product sales. For product IV,
only the ADID ATT is negative and significant at 5%.
Tables 3 and 4 indicate that the statistical insignifi-
cance of the DID estimate for product IV is due to
both a smaller point estimate and a wider CI. ADID

has much smaller prediction MSEs than DID for that
product as well (Table 28 in Web Appendix F.1).

In summary, for these five applicationswith an exper-
imental rather than merely quasi-experimental design,
DID, ADID, and SC perform about equally well. MSC

Figure 7. Sales of Product I

Notes. Top: DID. Middle: ADID. Bottom: SC.

Figure 8. Cigarette Sales in California

Notes. Left: DID. Right: ADID.
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performs poorly and HCW is infeasible. The main take-
away is that the additional flexibility of ADID vis-à-vis
DID does not come at the cost of reduced precision or
out-of-sample performance.

5.2. Marijuana Legalization and Cigarettes Sales
We now turn to how legalizing recreational marijuana
affected cigarettes sales in California and Washington.
Retail sales of recreational marijuana began in Califor-
nia on January 1, 2018, and in the state of Washington
on July 1, 2014. We have 70 weeks of cigarettes sales
data, with 40 weeks before and 30 weeks after treat-
ment. The controls are 41 states in the contiguous
United States that did not legalize the sale of recrea-
tionalmarijuana in our sample period.

5.2.1. Treatment Effects. Since there is no inference
theory for the SC and MSCmethods when the number
of control units is greater than the number of pretreat-
ment time periods and data are nonstationary, we
focus on the DID and the ADIDmethods. Web Appen-
dix F.2 reports the SC and MSC results. The HCW
method is again not applicable.

Figure 8 shows the actual and fitted/predicted sales
in California obtained using DID (left panel) and
ADID (right panel). The solid line is the actual sales,
and the dashed line is the fitted sales in the pretreat-
ment period and the predicted counterfactual sales in
the posttreatment period. In the pretreatment periods,
the downward DID trend is much less pronounced

than the actual trend. This likely results in an upward
bias of California’s DID counterfactual sales, and a
downward bias in the estimated negative ATT. The
DID method suggests that weekly sales of cigarettes
decreased by $79,000, or 1.57%, after recreational mari-
juana was legalized in California (Table 5). In contrast,
the right panel of Figure 8 shows that the ADID
method fits the pretreatment data well. The ADIDATT
is a negligible $20,212, or 0.41%, increase in weekly cig-
arettes sales. ADID likely outperforms DID, because
the pretreatment trend in California’s sales is outside
the range of the sales trends in the control states, the
scenario corresponding to DGP2 in the simulation.
ADID has the flexibility to accommodate this data pat-
tern, whereas DID does not.

Turning our attention to Washington state, we see
from Figure 9 that both the DID and ADID fit the pre-
treatment sales fairly tightly. Both methods perform
well because the pretreatment sales pattern in Wash-
ington is similar to the average pattern in the control
units, the scenario corresponding to DGP1 in the si-
mulation study. Cigarette sales decreased by about
4% after the legalization of recreational marijuana in
Washington (Table 5).

5.2.2. Confidence Intervals. Table 6 reports the 95%
confidence intervals, as well as the DID/ADID CI
width ratio. For California, the DID 95% CI suggests
that the ATT is negative and significant at the 5% level.
However, the distinct violation of the DID parallel
trends assumption in Figure 8 indicates likely bias. The
ADID 95% CI shows that the ATT is smaller in magni-
tude and not statistically different from zero at 5% sig-
nificance. For Washington, in contrast, both DID and
ADID indicate that legalizing recreational marijuana
caused a 4% decrease in cigarettes sales, significant at
the 5% level. Placebo tests reported in Web Appendix
F are consistent with these results. For Washington,
the DID parallel trends assumption seems to hold, and

Table 5. ATT and ATT% for DID and ADID for California
and Washington

ATT ATT%

State DID ADID DID ADID

California −78,899 20,212 −1.57 0.41
Washington −95,903 −84,757 −4.35 −3.86

Figure 9. Cigarettes Sales inWashington

Notes. Left: DID. Right: ADID.
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we therefore expect DID to be more precise than
ADID. The former indeed outperforms the latter in
out-of-sample prediction (Web Appendix F.2), but this
does not translate in a narrower confidence interval
(Table 6).

In summary, ADID performs better than DID for
California, and the two perform about equally well for
Washington. Unlike SC andMSC, both DID and ADID
provide easy-to-compute confidence intervals in these
two applications.

5.3. Showroom Opening and Sales
The last two applications use data from an online-first
vendor offering high-quality eyeglasses at lower prices
than typically encountered in the North American
market ($95 vs. upward of $300). The company opened
a showroom in Boston, MA, on September 22, 2011,
and another in Columbus, OH, on November 10, 2011.
We examine the effect of opening a brick-and-mortar
showroom in a city on the sales in that same city. For
the control group, we use the 10 largest markets by
population without showrooms: Chicago, Houston,
Portland, Seattle, Denver, Dallas, San Diego, Washing-
ton, Atlanta, and Minneapolis. The data include all
transactions that occurred in those 12 cities over the
110-week period from February 2010 to March 2012.
We aggregate data to the city-week level, and the
dependent variable is total sales in dollars.

5.3.1. Treatment Effects. The upward trend in pretreat-
ment sales is less steep in both Boston and Columbus

than in the control cities. This pattern corresponds to
DGP2 in the simulation study. Therefore, we expect
ADID, MSC, and HCW to perform well because they
are flexible enough to accommodate this data pattern,
whereas DID and SC are not flexible enough due to their
“summing to one restriction.”

Figure 10 shows the actual and fitted/predicted sales
for Boston using DID (left panel) and ADID (right
panel). The solid line shows actual sales, and the dashed
line shows the fitted sales in the pretreatment period
and the predicted counterfactual sales in the posttreat-
ment period. There are 83 pretreatment and 27 post-
treatment weeks. As expected, DID does not perform
well, whereas ADID does. In the pretreatment time
periods, the DID fitted curve has a steeper slope than
the actual sales data, which likely results in overesti-
mating the counterfactual sales and underestimating
the ATT. In contrast, ADID fits the pretreatment data
well. To save space, we present plots for the SC, MSC,
and HCW methods in Web Appendix F.3, and simply
note here that, as expected, SC has poor in-sample fit,
whereas MSC and HCW fit the in-sample data well.
Table 7 reports that the three methods suitable for the
data pattern in Boston produce similar point estimates
of the ATT of opening a showroom.

Next, we turn to the showroom opening in Colum-
bus. Figure 11 shows that ADID fits the pretreatment
data well, whereas DID does not. The figures for the
SC, MSC, and HCW methods are presented in Web
Appendix F.3, and visual inspection suggests that MSC
and HCW fit the pretreatment data well, whereas SC

Table 6. 95% CI for DID and ADID and DID/ADID CI Width Ratio for California and
Washington

State DID CI ADID CI CI width ratio

California [−138,646, −19,151] [−25,554, 65,979] 1.31
Washington [−113,410, −7,839] [−107,792, −6,172] 1.04

Figure 10. Sales in Boston
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does not. We therefore focus again on ADID, MSC, and
HCW in this application. The ADID estimate implies a
$705 increase (72.1%) in weekly sales after a showroom
is opened in Columbus (Table 7). MSC and HCW pro-
duce similar but slightly lower effect size estimates.

5.3.2. Confidence Intervals. Table 8 reports the 95%
confidence intervals for the ADID, MSC, and HCW
methods. The confidence intervals produced by MSC
andHCW are 38%–64%wider than those obtained from
ADID. This is expected because these two methods esti-
mate more parameters without providing a notably bet-
ter fit, resulting in greater estimation variances.

Overall, in these two final applications, ADID out-
performs DID and SC in terms of bias and outper-
forms MSC and HCW in terms of precision. Figure 6
above and Tables 31 and 32 in Web Appendix F.3.2
show that ADID also outperforms the other methods
(DID, SC, MSC, and HCW) in terms of prediction
MSE in both Boston and Columbus.

6. Conclusion
Marketing scientists often estimate causal effects in
pre/post test/control quasi-experimental settings. The
most popular method to do so, DID, is easy to imple-
ment and provides straightforward inference but relies
on a relatively restrictive assumption for causal identifi-
cation. Alternatives like the SC, MSC, and HCW meth-
ods are more flexible and better able to handle
differences in pretreatment trends between treatment

and control units. However, this additional flexibility
comes at the cost of lacking convenient inference theory
or of not being applicable at all in some data structures.
For example, if the number of control units is larger than
the number of pretreatment time periods, then HCW is
not feasible, and if the data are nonstationary in addi-
tion, then SC and MSC have no inference theory for
deriving confidence intervals.

This paper introduces a new estimator, the aug-
mented DID or ADID, that relaxes a key restriction of
DID while also being simpler to implement than SC,
MSC, and HCW. In addition, we develop ADID’s stat-
istical inference theory, which allows researchers to
conveniently calculate confidence intervals and test
hypotheses of substantive interest. Finally, we com-
pare ADID’s performance against that of DID, SC,
MSC, and HCW in simulations, manipulating both the
nature of heterogeneity across treatment and control
units and the nature of the trend in the data (stationary,
unit-root, and nonlinear), as well as in nine empirical
applications. We find that ADID tends to outperform
the other estimators in bias, precision, or both, in data
structures with specific observable characteristics, but
tends to be dominated by at least one alternative
method in data structures with other specific observ-
able characteristics. This shows that ADID comple-
ments rather than replaces extant approaches, and we
provide specific guidance on what method(s) to use
when. Specifically, ADID tends to be superior in data
structures with large numbers of treatment and control
units, with short pre- and posttreatment periods, and
with large differences in pretreatment between treat-
ment and control units. Simulations show that ADID
performs well in terms of point estimates and confi-
dence intervals for a wide range of data structures. The
empirical applications show that the additional flexi-
bility of ADID does not come at the cost of wider confi-
dence intervals compared with DID when the latter
is valid. With the addition of ADID in their toolkit,

Table 7. ATT and ATT% for Boston and Columbus by
Different Methods

ATT ATT%

City ADID MSC HCW ADID MSC HCW

Boston 946 940 973 65 64 68
Columbus 705 674 645 72 67 62

Figure 11. Sales in Columbus
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marketers are better equipped to address important
causal research questions in a wider range of data
structures.
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Appendix. Variance Estimator and Prediction MSE
Calculation

A.1. Variance Estimator
This appendix provides expressions of variance estimator Σ̂
under different conditions. Web Appendix C proves that,
for Proposition 3.1, the asymptotic variance of

����
T2

√ (Δ̂1 −Δ1)
consists of two parts: Σ � Σ1 +Σ2, where Σ1 is related to pre-
treatment estimation error and Σ2 corresponds to the post-
treatment idiosyncratic errors. We can consistently estimate
Σ1 and Σ2 by

Σ̂1 � (T2=T1)BV̂B, Σ̂2 � T−1
1

∑T1

t�1

∑T1

s�1, | s−t | ≤l2
ê1tê1s, (A.1)

where B � T−1
2

∑T
t�T2+1 x

′
t[T−1

1
∑T1

t�1 xtx
′
t]−1, V̂ � T−1

1
∑T1

t�1∑T1
s�1, | s−t | ≤l1 ê1tê1sxtx

′
s, ê1t � y1t − x′t δ̂ (δ̂ is defined below

(2.10)), l1 �O(T1=4
1 ) and l2 �O(T1=4

2 ).
If e1t only displays moving average correlation of order

q, that is, E(eite1s) � 0 if |t− s | > q, then, V̂ and Σ̂2 simplify
to V̂ � T−1

1
∑T1

t�1
∑

s, | s−t | ≤qê1tê1sxtx′s and Σ̂2 � T−1
1
∑T1

t�1
∑

s, | s−t | ≤q
ê1tê1s.

If e1t is serially uncorrelated, then V̂ and Σ̂2 further sim-
plify to V̂ � T−1

1
∑T1

t�1 ê
2
1txtx

′
t and Σ̂2 � T−1

1
∑T1

t�1 ê
2
1t.

For the DID ATT estimate, following the same steps in
the proof of Proposition 3.1 we can show that, if the DID
parallel trends assumption holds, then

����
T2

√ (Δ̂1,DID −Δ1)
=

�������
Σ̂DID

√
→d N(0, 1), where Σ̂DID � σ̂2

DID(T2=T1 + 1), σ̂2
DID � T−1

1∑T1
t�1 ê

2
1t,DID, ê1t,DID � y1t − ŷ01t,DID.

A.2. Prediction MSE
We compare the prediction performance of different meth-
ods using backdating (Li 2020, Abadie 2021). This method
uses the pretreatment data (t ≤ T1) and proceeds as if
the intervention occurred at an earlier time period, T0 + 1,
where 1 < T0 < T1. Therefore, the first T0 time periods make
up the new pretreatment period, and the remaining T1 −T0

time periods are the new posttreatment time period in this
backdating procedure. However, in actuality, there is no
treatment during the posttreatment time, and the predicted
counterfactual outcomes should be close to the actual out-
comes. As a metric of how close they are, we use the predic-
tion mean squared error (PMSE), which reflects the mean
squared difference between the actual outcomes and the
predicted counterfactuals over the last T1 −T0 time periods.
We first describe how to compute the PMSE when there

are multiple treatment units, Ntr > 1 (as with the Brazilian
product price changes). Because there is no treatment for
t ≤ T1, we can select a T0 ∈ {1, : : : ,T1 − 1} and treat T0 + 1 as a
pseudo treatment time and set T1 as the terminal period of
the sample. We then fit the model using pretreatment data
1 ≤ t ≤ T0 and predict the counterfactual outcome ȳ0t,tr �
N−1

tr
∑Ntr

i�1 yit,tr for t ∈ T0 + 1, : : : ,T1. Let ŷ0t,tr denote the pre-
dicted value of ȳ0t,tr. Since there is no treatment for t ≤ T1,
we actually observe ȳ0t,tr for t ∈ {T0 + 1, : : : ,T1}. Therefore, we
can compute predictionMSE (PMSE) by

PMSE � 1
T1 −T0

∑T1

t�T0+1
(ȳt,tr − ŷ0t,tr)2, (A.2)

Where ŷ0t,tr is one of the four predictors using the DID,
ADID, SC, and MSC methods. We use PMSEDID, PMSEADID,
PMSESC, and PMSEMSC to denote the resulting PMSEs.
For empirical applications with one treatment unit (Ntr � 1),

we use i � 1 to denote the treatment unit and need to replace
ȳ0t,tr and ŷ0tr,t above by y01t and ŷ01t, respectively. Then, PMSE �

1
T1−T0

∑T1
t�T0+1(y01t − ŷ01t). We also calculate the PMSE for a wide

range of values of T0. We choose the number of pretreatment
time periods (T0) to be greater than the number of posttreat-
ment periods (T1 −T0) and set the difference between the dif-
ferent values of the pretreatment time periods (T0) to be no

Table 8. 95% CI and CI Width Ratio for Boston and Columbus by Different Methods

95% CI CI width ratio

City ADID MSC HCW MSC/ADID HCW/ADID

Boston [661, 1,229] [632, 1,415] [507, 1,438] 1.38 1.64
Columbus [448, 961] [393, 1,087] [260, 1,030] 1.53 1.50
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larger than 10. Note that when T0 >Nco, we can also compute
PMSE for theHCWmethod.

Endnotes
1 Recently, Rambachan and Roth (2022) propose a robust inference
method for a DID estimator when the DID parallel trends assump-
tion is mildly violated. It may be possible to generalize Rambachan
and Roth’s (2022) result to cover the ADID ATT estimate when the
ADID’s parallel pretrend assumption is mildly violated. We leave
this interesting and challenging topic to a possible future research
topic.
2 Because the SC method does not include an intercept, it is not
enough to require that the treatment would have been parallel to
the weighted average of the control units’ outcomes. For simplicity,
we refer to the SC assumption as the SC parallel trends assumption,
although it is a much stronger assumption involving overlap.
3 Web Appendix E.3 reports additional simulations allowing factor
loadings bi, i ≥ 2, to be random draws from a nondegenerate distri-
bution, so that bi varies with i for i � 2, : : : ,N. Results show that the
ADID method leads to consistent estimation results. This further
documents that ADID allows the treatment and controls to follow
different patterns.
4 The MSE calculation in the simulation pertained to the difference
between the estimated and the true treatment effects. In the empiri-
cal applications where the true effect is unknown, the PMSE per-
tains to the difference between the predicted and observed sales
levels. We describe how we calculate PMSE in Appendix A.2 and
report the results in the tables in Web Appendix F.
5 Each PMSE ratio reported in Figure 6 is the median of several PMSE
ratios computed over different out-of-sample window widths. The
individual window-specific ratios are reported inWebAppendix F.
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