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Abstract: We explore a potential unintended consequence of research and development (R&D) 
teams involving star inventors. While the innovation process often requires experimentation and 
even questioning conventional wisdom, collaborators of star inventors may instead exhibit 
deferential behavior to stars and follow stars’ proven knowledge to mitigate uncertainty in the 
innovation process. This may lead to homogenized team knowledge, and this convergent rather 
than divergent exploration process toward stars’ knowledge may be ultimately detrimental to 
organizational innovation due to knowledge obsolescence. Within the context of startup inventors 
in the evolving fabless semiconductor industry, which experienced technological shifts during our 
period of study (1975-2020), we provide supportive empirical evidence based on a difference-in-
differences design. We conclude with managerial implications of this research. 
 
Managerial summary: While the conventional wisdom is that stars can benefit organizations 
through both their direct knowledge and their spillover effect on co-workers, we investigate a 
potential downside. We find that junior research and development (R&D) team members, when 
staffed with star inventors, subsequently exhibit knowledge investment behavior convergent with 
that of stars. This process may be antithetical to organizational environments best suited for 
innovation. We find evidence consistent with these ideas in the setting of startups in the fabless 
semiconductor industry. The results have implications for designing corporate R&D teams. 
 
Keywords: star inventors; knowledge convergence; innovation performance; fabless 
semiconductor industry; technology startups.  
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1. INTRODUCTION 

Scientific stars are those who have shown exceptional performance in inventions and scientific 

discoveries, reflecting their unique intellectual assets (Azoulay et al., 2010; Zucker & Darby, 1996). 

The traditional view in the literature is that these stars benefit organizations via their own 

contributions as well as through their positive idea spillovers to others in the organization. As a 

result, researchers have examined the organizational conditions under which stars maintain their 

productivity, particularly as they move across organizations (e.g., Groysberg et al., 2008; Huckman 

& Pisano, 2006). However, prior studies predominantly document positive knowledge spillovers 

between stars and others in the academic context and pay less attention to the collaborators of 

stars, particularly in the organizational enterprise setting (Chen & Garg, 2018; Oettl, 2012). 

 We contend that star inventors in firms may lead to negative knowledge spillover effects 

on their non-star collaborators. The negativity comes from star inventors homogenizing non-star 

inventors’ knowledge toward that of stars after their collaboration. Homogenized knowledge 

between inventors may be antithetical to innovation, especially in rapidly moving environments 

(Teodoridis et al., 2019) and within emerging enterprises, undermining the quality of non-stars’ 

subsequent innovation after interacting with stars in the same team. Hence, we suggest that the 

traditional account of positive star collaborator effects (e.g., Azoulay et al., 2010) may be more 

nuanced within an organizational (not academic institution) context. 

To test these hypotheses, we examine fabless startups in the semiconductor industry. These 

firms specialize in semiconductor chip designs without having capital-intensive manufacturing 

facilities, thus lowering the entry barrier for startups. In this setting, intangible human capital 

knowledge assets (rather than manufacturing capability) are a key resource. The industry also 
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experienced substantial technological changes, moving from traditional chip designs (e.g., central 

processing units, CPUs) to new applications (e.g., customizable chips for the Internet of Things).  

Based on 372 startups, 18,621 inventors, and innovation outcomes from 1975 to 2020, we 

find supporting evidence for our arguments. After interacting with stars in the team, non-star 

inventors’ knowledge becomes about 10% more similar to stars’ knowledge (doubled for novice 

inventors). Non-star inventors experiencing knowledge homogenization during their team 

interaction experience 38% lower innovation quality on average as measured by citation counts 

(with a further 18 percentage point decline if the star had obsolete knowledge).  

Our findings have a number of implications. When designing R&D teams, firms should be 

cautious about heavily imbalanced team composition. Attention to team behaviors based on 

composition is important, akin to considering individual experience or expertise in forming teams. 

In addition, it is important to factor in the likely change in the technology environment, compared 

to knowledge bases that are or will be possessed by inventing teams. For the academic literature, 

we emphasize the consideration of team and organizational boundaries that may modify inferences 

in generalizing from prior research for which such boundaries are not as salient – as is the case in 

comparing our results to the academic institution context in which teams are largely self-assembled 

and an “invisible college” mentality makes organizational boundaries arguably less important.  

2. BACKGROUND, LITERATURE, AND HYPOTHESES  

2.1. Background 

Based on the observation that typically, a small percentage of individuals account for an outsize 

share of a field’s overall output (e.g., Lotka, 1926), the literature has examined star researchers. 

For example, Zucker et al. (1998) find that at the birth of the biotechnology industry, new ventures 

are much more likely to geographically co-locate proximately to the most productive scientists 
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(i.e., stars). This suggests that before specialized knowledge is codified, accessing leading 

scientists’ tacit knowledge is particularly important for commercial enterprises utilizing new 

technology. Management scholars also examine the degree to which star employees operate at high 

levels, even across organizational contexts, with the finding that organizational and team 

conditions shape star performance (e.g., Groysberg et al., 2008; Huckman & Pisano, 2006).  

There is also increasing interest in how stars influence their collaborators, which is the 

antecedent to our study. Azoulay et al. (2010), studying life science stars in academia (not in firms), 

find that they bring unique research ideas to their collaborative relationships, which is irreplaceable 

when the stars unexpectedly perish. With attention to how stars might impact organizational 

innovation more generally, Kehoe & Tzabbar (2015) find that biotechnology R&D teams 

involving star inventors may limit the emergence of their collaborators as innovation leaders 

(operationalized as the number of subsequent patents that do not involve the star). Left unaddressed 

is a more fulsome analysis of collaborators’ behaviors and innovation outcomes (e.g., Oettl, 2012).  

A final relevant strand of prior work increasingly recognizes that the way teams are 

composed within organizations more generally can shape innovation outcomes. For example, even 

holding constant individual technical experience, alternative team compositions can shape 

different trajectories of organizational innovation (Aggarwal et al., 2020; Chang, 2023). This 

literature does not consider the R&D team behavior and outcomes associated with star-collaborator 

team compositions, however, which we do here.  

2.2. Knowledge homogenization between star and non-star inventors  

When star and non-star inventors interact in an inventing team under knowledge asymmetry, the 

flow of knowledge influence is likely unidirectional, from stars to non-stars. A key premise of prior 

research on team collaboration is that high-performing employees are more likely to influence 
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low-performing employees, such as “star-centric” interactions (Chen & Garg, 2018). The low 

performers have much to learn from the high performers, and the high performers tend to have 

stronger authority in team decision-making, particularly in technology-intensive environments 

(Astley & Sachdeva, 1984; Burke et al., 2007). 

In addition to the authority-based explanation of knowledge direction, uncertainty in 

innovation tasks plays a critical role in shaping such unidirectional knowledge influence. The 

underlying uncertainty in the innovation process may drive stars to over-rely on exploiting their 

previously successful knowledge trajectories (Audia & Goncalo, 2007; Staats et al., 2018), 

establishing traditional knowledge within the existing dominant design (Suarez & Utterback, 

1995). Although non-stars face lower switching costs to new technologies compared to stars 

(Jovanovic & Nyarko, 1996), non-stars are tempted to follow the proven knowledge of stars rather 

than engage in unchartered exploration. Thus, both stars and non-stars tend to focus on utilizing 

stars’ traditional knowledge domain during their collaboration, making their knowledge bases 

more similar after the team interaction. This motivates our first hypothesis: 

Hypothesis 1 (H1): After interacting with star inventors in a team, non-star inventors’ 

knowledge becomes homogenized toward stars’ traditional knowledge domain.  

2.3. Non-stars’ innovation performance after knowledge homogenization  

We further argue the homogenized knowledge of non-stars toward stars’ traditional knowledge 

undermines the quality of non-stars’ subsequent innovation. Stars’ traditional knowledge faces the 

issue of knowledge obsolescence over time. The knowledge obsolescence problem has been 

studied at the level of organization (Leonard‐Barton, 1992; Sørensen & Stuart, 2000) and invention 

(Capaldo et al., 2017; Jain, 2016), and we apply the implications to individual inventors equipped 

with a specific set of knowledge domains. Although stars’ traditional knowledge contributed to 
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their stardom, such knowledge tends to lose its power and impact, especially under rapid 

technological advances.  

Also, non-stars suffer from knowledge misfit between their existing non-traditional 

knowledge and the absorbed knowledge from stars. Non-stars’ different knowledge backgrounds 

may prevent them from making the best use of traditional knowledge, due to inventor knowledge 

dissimilarity (Carnabuci & Operti, 2013; Dougherty, 1992). The mere absorption of knowledge 

driven by the unidirectional influence may not lead to a complete integration of knowledge due to 

the absence of mutual contributions and proactive discussions (Gardner et al., 2012; Vestal & 

Danneels, 2023). Thus, we make a theoretical prediction that non-stars homogenized toward stars’ 

traditional knowledge are associated with diminished innovation quality (see Appendix 1 for an 

analytical model based on these concepts), motivating the second hypothesis:  

Hypothesis 2 (H2): After interacting with star inventors in a team, non-star inventors’ 

innovation quality is diminished. 

3. DATA AND METHODS 

3.1. Empirical setting 

The empirical setting is fabless startups in the United States (US). Fabless is an industry segment 

in the semiconductor industry where firms specialize in semiconductor chip design by delegating 

the production of chips to manufacturing-focused firms, called “foundries” (Macher et al., 1998).1 

The fabless startup context is a good one for testing our hypotheses for two key reasons. First, 

fabless startups are knowledge-based ventures where the interaction of ideas between inventors 

plays a critical role. The lower entry costs based on specialization in chip design enable fabless 

 
1 Fabless firms emerged around the mid-1980 when the design of integrated circuits became standardized across firms 
through Design Rule Checking (DRC), and the introduction of Electronic Design Automation (EDA) enables firms to 
store their chip design blueprints electronically and transfer them to other firms (Kapoor, 2013). 
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startups to focus on fostering their innovative ideas. In addition, knowledge exchange and 

influence between stars and non-stars become more direct and intense due to the limited number 

and size of inventing teams in fabless startups compared to incumbent counterparts. 

Second, the fabless segment experienced substantial technological changes. In the early 

generation, fabless startups designed traditional integrated circuits and developed programmable 

logic technology (e.g., CPU chip design), much like their incumbent counterparts (Kapoor, 2013). 

However, fabless startups in the late generation innovate for different types of chip designs, used 

for diverse end-products beyond the traditional semiconductor market, such as Internet of Things- 

(IoT) or artificial intelligence (AI)-embedded devices (Flynn et al., 2017). Recent technological 

advances made after 2000, such as the reconfigurable computing features in Field-Programmable 

Gate Arrays (FPGAs), are key enablers of flexible and unique chip designs, customizable for 

various products (Compton & Hauck, 2002).  

3.2. Data source and sample 

We use data from Pitchbook to identify fabless startups among venture capital-backed firms in the 

US. We first filter by keywords associated with fabless startups: “fabless,” “semiconductor,” “chip,” 

and “circuit.” We then manually investigate whether the descriptions correctly refer to the 

characteristics of fabless firms that specialize in chip design, which results in 638 venture-backed 

fabless startups (see Appendix 2 for details about fabless identification).  

We use US Patent and Trademark Office (USPTO) data to track inventors’ innovation 

outcomes records, as patenting is customary in the semiconductor industry (Hall and Ziedonis, 

2001). We first fuzzy match the Pitchbook fabless startups to the USPTO assignees by their names 

and manually verify the potential matches (Wasi & Flaaen, 2015). For the matched firms, we 

further retrieve their granted patents in the US to identify co-patenting teams and associated 
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inventors. We collect the inventors' patenting history before and after joining fabless firms. This 

process results in 372 startups, 18,621 inventors, 27,727 inventing teams, and innovation outcomes 

between 1975 and 2020 (see Appendix 2 for details about sample selection and matching). 

3.3. Dependent variables  

As the outcome variable to test H1, we use Knowledge Similarity by investigating whether an 

inventor’s knowledge becomes similar to a star inventor’s knowledge in the team after their 

interaction. For all inventors in a team, we calculate the cosine similarity in each inventor dyad 

before and after the team interaction by using the two inventors’ patent applications (which were 

eventually granted) in each year (see Appendix 2 for details about variable construction). We use 

the Cooperative Patent Classification (CPC) codes in patents to characterize each inventor’s 

knowledge domain in vector space. 

The outcome variables to test H2 are Scaled Citation, Generality, and Originality to see 

how the quality of non-stars’ inventions changes after interacting with star inventors (see Appendix 

2 for details about pre- vs. post-team windows). Forward citation count is a proxy of value and 

novelty of innovation (Trajtenberg, 1990), and we use Scaled Citation that adjusts the raw citation 

count by considering the year and category fixed effects to control for patent citation and 

technological category trends (Trajtenberg et al., 1997). We further examine two additional 

measures of innovation quality. Generality measures the diversity of patent classes in future 

inventions that build upon the focal patent, and Originality captures the diversity of patent classes 

the focal patent relies on. Both are constructed using patent class Herfindahl indices (Hall et al., 

2001; Trajtenberg et al., 1997). As the three innovation quality measures are at the patent level, we 

average them to construct inventor-year level observations.  

3.4. Independent variables  
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In testing H1 where the unit of analysis is at the team inventor dyad-year level, Post Team 

Interaction is a binary time indicator of whether an observation is after the team interaction 

(defined as two years before the team patent application), and Star in Dyad is a binary treatment 

indicator of whether a dyad includes a star. Consistent with prior literature (e.g., Kehoe and 

Tzabbar, 2015), stars are defined by the top five percent inventors among all fabless inventors in 

each fabless joining year cohort, and the ranking is determined by the number of patents applied 

before joining the fabless firm, weighted by those patents’ citation count.2  

The independent variables to test H2 are constructed at the inventor-year level. Star in 

Team is a treatment indicator of whether a team includes a star. For the mechanism test, we further 

differentiate stars by the time gap between stars’ emergence year (i.e., fabless joining year) and the 

team interaction year.3 Compared to the team interaction year, stars on average emerged four years 

earlier (min: -21, max: 0). For teams having a larger (smaller or equal) year gap than the average, 

we assign a value of one to Past Star in Team (Contemporary Star in Team).  

Table 1 shows summary statistics and the correlations of the variables. Note that there are 

two different datasets: Panel A shows the team inventor dyad-year-level dataset to test H1, whereas 

Panel B shows the inventor-year-level dataset to test H2. Star inventors are excluded in Panel B 

because H2 investigates the innovation performance changes of non-star inventors.4  

3.5. Estimation strategy 

We adopt a staggered difference-in-differences (DID) design to test H1 and H2 as follows: 

 
2 In addition to this main treatment variable, we also include additional treatment variables for robustness checks: 
Star-Star Dyad, Star-Middle Dyad, Star-Novice Dyad, and Novice in Dyad. Novice inventors are those who have two 
or fewer pre-fabless patents (about 66% of the inventors), and middle inventors are those who are neither star nor 
novice inventors. 
3 If there is more than one star in a team, we take an average of their emergence years. 
4 See Appendix 2 for details about sample restrictions.  
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 H1:	𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒	𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦!,# = 𝛽$ + 𝛽%𝑃𝑜𝑠𝑡	𝑇𝑒𝑎𝑚	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛!,# +

𝛽&𝑃𝑜𝑠𝑡	𝑇𝑒𝑎𝑚	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛!,# × 𝑆𝑡𝑎𝑟	𝑖𝑛	𝐷𝑦𝑎𝑑!,# + 𝛾' + 𝛿( + 𝜃! + 𝜇) + 𝜎* + 𝜀!,# 

 H2:	𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛	𝑄𝑢𝑎𝑙𝑖𝑡𝑦+,# = 𝛽$ + 𝛽%𝑃𝑜𝑠𝑡	𝑇𝑒𝑎𝑚	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛+,# +

𝛽&𝑃𝑜𝑠𝑡	𝑇𝑒𝑎𝑚	𝐼𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛+,# × 𝑆𝑡𝑎𝑟	𝑖𝑛	𝑇𝑒𝑎𝑚+,# + 𝛾' + 𝛿( + 𝜌+ + 𝜇) + 𝜎* + 𝜀+,# 

where 𝑖: inventor dyad, 𝑗: inventor, 𝑡: time before and after team interaction, 𝛾': firm fixed effects, 

𝛿(: team fixed effects, 𝜃!: dyad fixed effects, 𝜌+: inventor fixed effects, 𝜇): team formation year 

fixed effects, 𝜎*: year fixed effects, 𝜀: the error term. Standard errors are clustered at the dyad level 

in H1 and the inventor level in H2.5 For both H1 and H2, 𝛽& is the key estimator of interest.  

 Although the DID design addresses some empirical confounds, it may still suffer from 

selection issues because firms do not randomly assign their inventors to teams, especially their star 

inventors. We use multiple fixed effects in the model specification to mitigate this issue (see 

Appendix 3 for discussions about endogenous selection). We cannot leverage inventors’ time-

varying covariates as they are mostly correlated with either innovation performance or team 

selection, violating DID design prerequisites (Freedman et al., 2023). 

In addition, we apply coarsened exact matching (CEM) in H2 where the performance 

measure is the dependent variable in an effort to further mitigate remaining selection issues that 

may threaten the parallel pre-trend assumption (Bessen et al., 2023; Burford et al., 2022). Based 

on inventors’ pre-fabless patent count and years of patenting experience, we one-to-one match our 

treated sample with the most comparable set of counterfactual inventors.6  

4. RESULTS 

 
5  The estimation for H1 is weighted by the minimum value of each inventor’s patent count in each dyad-year 
observation, which prevents a dyad with too few patents from overinfluencing the estimates. The coefficients of Star 
in Dyad and Star in Team are omitted due to the dyad and team fixed effects, similar to a two-way fixed effects setting. 
6 The matching is conducted at the team-inventor level because an inventor can be associated with more than one team. 
The team and inventor fixed effects address any different dynamics in multiple teams.  
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4.1. Main results 

Table 2 shows supporting evidence for H1. Columns (1)-(3) show the estimates with different fixed 

effects, and the estimates of Post Team Interaction × Star in Dyad are statistically significant in 

all three columns. On average, an inventor interacting with a star in a team tends to have about 10% 

more similar knowledge to the star after the interaction, compared to another inventor who does 

not interact with a star in a team. Columns (4)-(6) test how the knowledge homogenization effect 

differs by the focal inventor type. If the focal inventor is also a star, there is no knowledge 

homogenization, whereas the homogenization is strongest if the focal inventor is a novice inventor 

(16% more similar). One might believe novice inventors are malleable and prone to be affected by 

any (more senior) inventors, but Columns (7)-(8) show novice inventors do not show knowledge 

homogenization when exposed to other non-star inventors.  

The results in Panel A in Table 3 support H2. Columns (1)-(2) use Scaled Citation as the 

innovation quality measure. Column (1) shows the estimate in the full sample, while the estimate 

in Column (2) reflects the CEM-adjusted sample. The key estimates of Post Team Interaction × 

Star in Team are statistically significant in both columns. On average, a non-star inventor who 

interacts with a star inventor in a team is associated with a 38% reduction in subsequent patent 

quality as compared to another non-star inventor who does not interact with a star inventor in a 

team. We validate the parallel pre-trends between the treatment and control groups in the temporal 

DID estimates and find a significant drop in Scaled Citation appears in t+7, linked with the fact 

that Knowledge Similarity takes about six years to increase (see Figure A1 in Appendix 3).  

The other specifications in Panel A use alternative innovation quality measures (following 

the same specification structure as above). Columns (3)-(4) use Generality as the quality measure, 

while Columns (5)-(6) use Originality as the quality measure. The former group of results suggests 
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that non-stars’ previous exposure to stars is correlated with a reduced span of technologies building 

on the focal innovation (i.e., Generality), while the latter group of results suggests no change in 

Originality associated with star exposure. 

4.2. Testing mechanisms for innovation quality 

The primary driver of the main results in H2 is the obsolescence of stars’ knowledge under the 

rapid pace of technological changes in the fabless industry. To validate it, we first explore the 

technological trends in fabless. Panel A in Figure 2 shows the distribution of fabless startups by 

founding years and their association with emerging technologies at the time of founding.7 The 

number of new fabless startup foundings peaks around 2000 and decreases gradually after that, 

while the percentage of fabless firms targeting emerging technologies surges after 2000.8 These 

patterns suggest a rapid pace of technological change among fabless ventures in the sample. 

 We further investigate whether stars’ knowledge becomes obsolete over time with industry 

technological changes. To do so, we compare knowledge that star versus novice inventors bring to 

their fabless enterprises (their pre-fabless knowledge). For stars who joined fabless before 2000, 

we find the top 10 most common knowledge domains in their pre-fabless patents. We also identify 

the top 10 most common knowledge domains of novice inventors who joined fabless after 2010 to 

enhance the comparison (see Table A1 in Appendix 3 for the lists). For each knowledge domain, 

we track its citation count trend in the entire patent space. The yearly raw citation count of each 

knowledge domain is divided by the number of all citations made in each year, yielding an adjusted 

citation index, which we use to control for time-based citation trends. Panel B in Figure 2 shows 

 
7 We define a fabless startup’s founding as associated with emerging technologies if its industry vertical is related to 
machine learning, virtual reality, autonomous cars, big data, cryptocurrency, digital health, IoT, robots, drones, or 
wearables. 
8 The line indicating the percentage of fabless startups’ associated with emerging technologies is created by locally 
weighted scatterplot smoothing. 
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the adjusted citation index of knowledge domains, comparing stars to novice inventors. Stars’ 

knowledge domains initially have much higher citation indices, but novices’ knowledge domains 

catch up and eventually exhibit higher indices in later periods. This suggests the stars’ knowledge 

tends to lose value over time, with the opposite pattern for novice inventors’ knowledge.  

 To formally test the role of knowledge obsolescence in undermining non-stars’ innovation 

quality, we include additional variables that consider the time gap between stars’ emergence and 

team interaction (i.e., Past Star in Team and Contemporary Star in Team). Panel B in Table 3 shows 

that the major part of non-stars’ reduced innovation quality is from past stars (56% reduction in 

Scaled Citation and 16% reduction in Generality). Interaction with past stars even reduces 

Originality (10% reduction), which does not show significant results when all stars are considered. 

These additional results validate the main findings and corroborate our theoretical expectations.  

5. DISCUSSION AND CONCLUSION 

We present evidence that star inventors in an inventing team homogenize non-star inventors' 

knowledge, and the knowledge homogenization undermines the quality of non-stars' subsequent 

innovation. These findings suggest that stars may not always provide positive knowledge 

spillovers to non-stars; instead, the relationship may depend on inventor behavior, intra- versus 

inter-organizational boundaries of exposure, as well as the pace of technological change in a given 

industrial setting relative to stars’ knowledge recency and relevance (e.g., Teodoridis et al., 2019).  

This research contributes to the literature on team-level innovation and knowledge sharing. 

Research on team-level innovation tends to focus on either team members' performance 

differences or knowledge domain differences. Instead, we explore the behavior and innovation 

consequences of intra-organizational R&D teams composed of star and non-star inventors. Our 
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knowledge homogenization results run counter to the conventional wisdom of positive knowledge 

spillovers, which have mainly been explored in the domain of inter-organizational academic teams. 

While this research provides novel findings and contributions, it is important to 

acknowledge its limitations (while providing opportunities for future research). First, our ability 

to observe teams is restricted to those with at least one patent. The omission of teams that fail to 

achieve innovation outcomes could pose a challenge, particularly if the interaction between star 

and non-star inventors plays a role in such failures. Future research utilizing unselected R&D team 

data and outcomes would be most welcome. Second, we lack information about the intermediate 

knowledge development processes within teams. Unraveling those steps could reveal interesting 

contingencies or effective interventions to stem the homogenization effects. Finally, our estimates 

should not be interpreted as causal, since our empirical approach lacks exogenous variation.  

More broadly, future research may not only consider team composition effects in light of 

our results but also investigate how established levers of innovation may interact with the 

homogenization effects we highlight. For example, at the organizational level, a tolerance for 

failure (Manso, 2011) and an associated culture of exploration and experimentation has been 

shown to promote innovation. Can firms with such a culture staff R&D teams with stars and non-

stars without suffering detrimental homogenization effects? Similarly, knowledge recombination 

has long been discussed as a positive influence on innovation (e.g., Fleming, 2001). Future work 

in this area may investigate innovation outcomes associated with staffing teams with researchers 

of different accomplishment levels who themselves also have knowledge and experience in 

disparate domains. These types of studies might shed light on the relative importance of different 

levers of innovation. Clearly, there is much work ahead to more fully understand this area, but our 

hope is that this work initiates that conversation.  
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FIGURE 1: Trends of Fabless Firm Founding and Knowledge Domains. Panel A shows fabless 
startups’ founding years (gray bars) and the percentage of fabless startups targeting emerging 
technologies at their founding (black line). Emerging technologies include machine learning, 
virtual reality, autonomous cars, big data, cryptocurrency, digital health, Internet of Things (IoT), 
robots, drones, and wearables. Panel B shows the citation trends of the top 10 most common 
knowledge domains (see Appendix Table A1) that star and novice inventors have before joining 
fabless firms. Stars who entered before 2000 and novice inventors who joined fabless firms after 
2010 are included. The adjusted citation index is the citation count that each set of knowledge 
domains receives divided by the total citations made in each year.  
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TABLE 1: Summary Statistics and Correlations. Panel A shows the observations for testing Hypothesis 1 where the unit of analysis 
is at the team inventor dyad-year level. Panel B shows the observations for testing Hypotheses 2 where the unit of analysis is at the firm-
inventor-year level. Panel B excludes star inventors to investigate the innovation outcome of non-star inventors. Panel A includes teams 
with co-patenting years up to 2015 (this cutoff provides plenty of post-team time to elapse, allowing us to avoid data incompleteness 
issues). The time period cutoff is shortened in Panel B because patent citation data suffers more from the truncation problem in recent 
years, particularly after 2020. To alleviate the imbalance problem, we decrease the cutoff to 2012 in Panel B. 
 
Panel A: Inventor dyad-year sample (at firm-team-inventor dyad-year level; including star inventors) 
 N Mean SD Min Max (1) (2) (3) (4) (5) (6) (7) 
(1) Knowledge Similarity 2,034,353 0.334 0.438 0.000 1.000        
(2) Post Team Interaction 2,034,353 0.679 0.467 0.000 1.000 0.178       
(3) Star in Dyad 2,034,353 0.153 0.360 0.000 1.000 0.021 -0.035      
(4) Star-Star Dyad 2,034,353 0.013 0.115 0.000 1.000 0.040 -0.006 0.243     
(5) Star-Middle Dyad 2,034,353 0.077 0.266 0.000 1.000 0.030 -0.031 0.725 -0.021    
(6) Star-Novice Dyad 2,034,353 0.063 0.243 0.000 1.000 -0.020 -0.016 0.595 -0.017 -0.052   
(7) Novice in Dyad 2,034,353 0.665 0.472 0.000 1.000 -0.035 0.072 -0.218 -0.121 -0.362 0.143  

 
Panel B: Inventor-year sample (at firm-team-inventor-year level; excluding star inventors)  
 N Mean SD Min Max (1) (2) (3) (4) (5) (6) (7) 
(1) Scaled Citation 1,032,695 0.587 1.326 0.000 47.107        
(2) Generality 1,032,695 0.235 0.280 0.000 0.933 0.495       
(3) Originality 1,032,695 0.277 0.291 0.000 0.942 0.368 0.706      
(4) Post Team Interaction 1,032,695 0.747 0.435 0.000 1.000 -0.109 -0.115 -0.026     
(5) Star in Team 1,032,695 0.124 0.329 0.000 1.000 0.068 0.077 0.082 -0.049    
(6) Past Star in Team 1,032,695 0.046 0.209 0.000 1.000 0.019 0.034 0.042 -0.048 0.593   
(7) Contemporary Star in Team 1,032,695 0.078 0.268 0.000 1.000 0.067 0.066 0.066 -0.021 0.742 -0.100  
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TABLE 2: Knowledge Similarity between Stars and Non-Stars After Team Interaction. Fixed-effect regressions at the firm-team-
inventor dyad-year level. The dependent variable is Knowledge Similarity. The “Dyads with Stars” sample includes dyads having at 
least one star inventor, whereas the “Dyads without Stars” sample includes the other dyads. Robust standard errors are clustered by 
inventor dyad and shown in parentheses, and p-values are in brackets.  
 

 (1) (2) (3) (4) (5) (6) (7) (8) 
Post Team Interaction 0.291 0.269 0.247 0.253 0.249 0.248 0.205 0.258 
 (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.006) (0.003) 
 [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] [0.000] 
Star in Dyad -0.058 -0.027       
 (0.004) (0.004)       
 [0.000] [0.000]       
Post Team Interaction × Star in Dyad 0.021 0.029 0.028      
 (0.005) (0.004) (0.004)      
 [0.000] [0.000] [0.000]      
Post Team Interaction × Star-Star Dyad    -0.128     
    (0.019)     
    [0.000]     
Post Team Interaction × Star-Mid Dyad     0.028    
     (0.005)    
     [0.000]    
Post Team Interaction × Star-Novice Dyad      0.055   
      (0.006)   
      [0.000]   
Post Team Interaction × Novice in Dyad       0.046 -0.005 
       (0.008) (0.003) 
       [0.000] [0.087] 
Sample Full Full Full Full Full Full Dyads with Stars Dyads without Stars 
Firm FE Yes Yes Yes Yes Yes Yes Yes Yes 
Team FE No Yes Yes Yes Yes Yes Yes Yes 
Dyad FE No No Yes Yes Yes Yes Yes Yes 
Team Formation Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Year FE Yes Yes Yes Yes Yes Yes Yes Yes 
Adj. R-squared 0.122 0.316 0.461 0.461 0.461 0.461 0.415 0.465 
Firm Count 372 372 372 372 372 372 150 368 
Inventor Count 18,621 18,621 18,621 18,621 18,621 18,621 3,859 17,883 
Team Count 27,727 27,727 27,727 27,727 27,727 27,727 4,132 26,062 
Team-Inventor Count 87,745 87,745 87,745 87,745 87,745 87,745 14,280 81,436 
Dyad Count 122,240 122,240 122,240 122,240 122,240 122,240 11,489 110,751 
Observations 2,034,353 2,034,353 2,034,353 2,034,353 2,034,353 2,034,353 220,258 1,814,095 
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TABLE 3: Non-Stars' Innovation Performance After Team Interaction with Stars. Fixed-effect regressions at the firm-team-
inventor-year level. The “CEM” sample includes the one-to-one matched observations between the treated and control groups by 
coarsened exact matching at the team-inventor level. Robust standard errors clustered by inventor are shown in parentheses, and p-
values are in brackets. 
 

 Panel A: Main Results  Panel B: Mechanism Tests 
DV: Scaled Citation  Generality  Originality  Scaled Citation  Generality  Originality 
 (1) (2)  (3) (4)  (5) (6)  (7) (8)  (9) (10)  (11) (12) 
Post Team Interaction 0.174 0.311  0.075 0.081  0.081 0.084  0.266 0.170  0.081 0.069  0.089 0.077 
 (0.015) (0.037)  (0.003) (0.005)  (0.003) (0.005)  (0.035) (0.025)  (0.004) (0.004)  (0.005) (0.004) 
 [0.000] [0.000]  [0.000] [0.000]  [0.000] [0.000]  [0.000] [0.000]  [0.000] [0.000]  [0.000] [0.000] 
Post Team Interaction  -0.245 -0.255  -0.016 -0.017  -0.003 -0.004          
× Star in Team (0.076) (0.074)  (0.007) (0.008)  (0.007) (0.007)          
 [0.001] [0.001]  [0.035] [0.026]  [0.691] [0.617]          
Post Team Interaction           -0.371   -0.040   -0.029  
× Past Star in Team          (0.092)   (0.009)   (0.010)  
          [0.000]   [0.000]   [0.003]  
Post Team Interaction            -0.017   0.010   0.019 
× Contemporary Star in Team           (0.080)   (0.009)   (0.008) 
           [0.834]   [0.228]   [0.022] 
Mean of DV 0.587 0.666  0.235 0.246  0.277 0.290  0.666 0.666  0.246 0.246  0.290 0.290 
Sample Full CEM  Full CEM  Full CEM  CEM CEM  CEM CEM  CEM CEM 
Firm FE Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Team FE Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Inventor FE Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Team Formation Year FE Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Year FE Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes  Yes Yes 
Adj. R-squared 0.213 0.200  0.310 0.280  0.308 0.291  0.201 0.199  0.281 0.280  0.291 0.291 
Firm Count 339 283  339 283  339 283  283 283  283 283  283 283 
Inventor Count 15,209 6,254  15,209 6,254  15,209 6,254  6,254 6,254  6,254 6,254  6,254 6,254 
Team Count 22,483 9,800  22,483 9,800  22,483 9,800  9,800 9,800  9,800 9,800  9,800 9,800 
Team-Inventor Count 66,532 15,634  66,532 15,634  66,532 15,634  15,634 15,634  15,634 15,634  15,634 15,634 
Observations 1,032,695 251,286  1,032,695 251,286  1,032,695 251,286  251,286 251,286  251,286 251,286  251,286 251,286 
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Appendix 1: Analytical Model 
 
We present a simple analytical model to illustrate how non-stars’ knowledge homogenized toward 

traditional knowledge domains (as would be the case with emulating star inventors’ knowledge) 

becomes suboptimal. We define non-star inventors’ innovation quality as a function of (a) 

knowledge inputs between traditional versus non-traditional knowledge and (b) time in the 

industry represents the maturity of each knowledge domain. We make the following assumptions: 

(1) both knowledge domain and time in the industry have a positive relationship with performance, 

with decreasing returns, and (2) traditional knowledge emerges earlier than non-traditional 

knowledge. In this framework, we show that under the performance maximization condition, non-

stars’ overreliance on traditional knowledge becomes suboptimal if (a) traditional knowledge 

obsolescence is severe or (b) knowledge misfit between the two knowledge inputs is severe. 

 We define non-stars’ innovation performance function as follows9: 

𝑃 =
𝛼
𝑚 ln(𝑡𝑥)PQRQS
,-./!#!)0.1

+ 𝛽ln	(𝑡(𝑁 − 𝑥))PQQQQRQQQQS
2)03#-./!#!)0.1

 

 

where 𝑃: innovation performance (i.e., quality), 𝑥: the amount of traditional knowledge in the total 

knowledge mix 𝑁	(1 ≤ 𝑥 ≤ 𝑁), 𝑡: time in the industry (𝑡 > 0), 𝛼(𝛽): productivity coefficient of 

traditional (non-traditional) knowledge (𝛼, 𝛽 ≥ 1), 𝑚: discount factor of 𝛼  due to knowledge 

misfit in traditional knowledge against non-traditional knowledge (𝑚 > 1).  

 The first-order condition for performance maximization by knowledge input is the 

following10:  

 
9 We choose a natural logarithmic function because (a) it satisfies the assumption that knowledge input and time have 
a positive relationship with innovation performance, with decreasing returns, and (b) both the knowledge input and 
time in the industry are non-zero positive values allowing differentiability in the given domain. The implications from 
this model can be applied to any functional forms following these conditions without loss of generality.  
10 Checking the second-order condition is unnecessary because we assume an increasing function with non-zero 
positive inputs. 
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𝜕𝑃
𝜕𝑥 =

𝛼𝑡
𝑚(𝑡𝑥) −

𝛽𝑡
𝑡(𝑁 − 𝑥) = 0	

⇒ 𝛼𝑡(𝑁 − 𝑥) = 𝛽𝑚(𝑡𝑥)	

⇒ 𝑥∗ =
𝛼𝑁𝑡 − 𝛽𝑚
𝛽𝑚𝑡 + 𝛼𝑡  

 

Under this maximization condition, we further investigate when the optimal knowledge mix 

represents a greater portion of traditional knowledge: 

𝑥∗ >
𝑁
2	

⇔
𝛼𝑁𝑡 − 𝛽𝑚
𝛽𝑚𝑡 + 𝛼𝑡 >

𝑁
2	

⇔ 𝛼𝑁𝑡 > 𝛽(𝑚𝑁𝑡 + 2𝑚)	

⇔ 𝛼 > ^
𝑚𝑁𝑡 + 2𝑚

𝑁𝑡 _PQQQRQQQS
5-!6#!)0

𝛽	

 
This inequality suggests that the optional condition holds if traditional knowledge has a higher 

productivity coefficient compared to non-traditional knowledge in the absence of the friction term 

(i.e., 𝛼 > 𝛽). The friction term provides the key condition under which the inequality does not 

hold (i.e., non-stars’ overreliance on traditional knowledge leads to suboptimal performance). The 

inequality is violated if 𝑡 or 𝑚 is sufficiently high. When sufficient technological advances are 

made in both types of knowledge (i.e., 𝑡 is high), overreliance on traditional knowledge becomes 

suboptimal due to amplified decreasing returns in traditional knowledge. The optimal condition is 

also not met if the knowledge misfit problem is severe (i.e., 𝑚 is high) because it dampens the 

effective use of traditional knowledge. Thus, these conditions explain why the problems of 

knowledge obsolescence and misfit may lead to undermined innovation quality of non-stars 

homogenized toward traditional knowledge. 
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Appendix 2: Further Data Details 
 
A2.1. Pitchbook data 

Among 113,882 unique venture-backed firms founded until 2021, the first fabless screening based 

on the four keywords leaves 1,950 firms. For the screened-in firms having at least one keyword 

match in their business descriptions, we manually investigate whether the descriptions correctly 

refer to the characteristics of fabless firms that specialize in chip design. Common false positives 

are suppliers or facilitators of semiconductor-related materials or products, e.g., “provider of 

semiconductor packaging technologies,” “manufacturer of electronic components using nitride 

semiconductor materials,” and “provider of optical devices for semiconductor-based lamps.” 

These firms should not be considered fabless startups focusing on chip design as their business is 

closer to the production of chips or semiconductor-related products. This manual verification 

process results in 638 venture-backed fabless startups.  

A2.2. USPTO data 

We only include granted utility patents because those patents pass the minimum quality threshold 

determined by the USPTO, contributing to technological innovation. Regarding the timing of 

patenting outcomes, we use the application years of the granted patents (not granted years) to 

measure the date of knowledge creation accurately, as is customary in the literature.   

For the matching between the Pitchbook and USPTO datasets, we use Stata modules to (a) 

preprocess raw names to address inconsistencies in firm names in the two data sources (i.e., 

“stnd_compname”), (b) conduct probabilistic linking to calculate match scores based on the 

proximity between the preprocessed name components (i.e., “reclink2”), and (c) manually review 

potential matches that pass a certain threshold when they are not perfect matches (i.e., 

“clrevmatch”). We set the threshold to a 0.95 match score out of 1. The fuzzy matching results in 
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482 correct matches between the two data sources. There are 37 firms in which the earliest team 

patent application year precedes the founding year in the Pitchbook data (mostly one year ahead 

of the founded year). For our purposes of investigating inventor interactions, we replace those 

founding years with the earliest team inventing year in the USPTO data. For the matched firms, 

we only include inventors who have been associated with at least one inventing team in the sample 

based on co-patenting. Team size is limited to 10, excluding 144 out of 27,727 teams (0.005%). 

A2.3. Variables 

For each inventor dyad in H1, we first consider up to 10 years before and after the team interaction. 

Within this window, the earliest pre-team year is when at least one inventor starts having a 

patenting outcome (if it is later than t-10), and the latest post-team year is when at least one 

inventor continues issuing a patent (if it is earlier than t+10). We fill in missing observations with 

zeros within the final pre- and post-team year window.  

To calculate Knowledge Similarity, we use level-2 CPC codes (e.g., H01: electric elements), 

constructing a vector space with dimension = 129. Using more granular levels could denote 

inventors’ knowledge domains more precisely (as used in Section 4.2), but the dimensionality 

becomes too high, making the similarity between inventors nearly zero in most cases. For example, 

level-3 CPC codes would entail constructing a vector space with dimension = 670.  

For each inventor to test H2, we first consider up to 10 years before and after the team 

interaction. Within this window, the minimum pre-team year is when a focal inventor starts issuing 

a patent (if it is later than t-10), whereas the maximum post-team year is five years after the last 

patent is issued (if it is earlier than t+10). We consider the five-year buffer in the post-team period 

because it is more likely that the inventor could not achieve inventions after the final patent 
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application (not because the inventor completely retires from any patenting work). We fill in 

missing observations with zeros within the final pre- and post-team year window.    

A2.4. Sample restrictions 

The dyad-year-level dataset for H1 (Panel A in Table 1) includes teams with co-patenting years up 

to 2015. Given that the most recent and “complete” patent data is around 2022, this cutoff provides 

sufficient post-team observations for the teams patented until 2015. The cutoff needs to be 

shortened in the inventor-year-level dataset (i.e., Panel B in Table 1) because patent citation data 

suffers more from the truncation problem in recent years, particularly after 2020. To alleviate the 

imbalance problem, we decrease the cutoff to 2012 in Panel B. 
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Appendix 3: Additional Empirical Analyses and Discussions 

A3.1. Endogenous selection in inventing teams  

We discuss two major selection issues that may confound our main results in H2 and explain how 

our fixed effects can mitigate the biases. The first selection is from the firm side. There could be 

firms with or without star inventors in the first place. If this firm selection is significant, our 

counterfactual inventors (non-stars who do not interact with stars) may have lower innovation 

performance because they are in firms with limited resources or capabilities. This scenario implies 

downward biases in our estimates because the observed innovation quality loss of non-star 

inventors in the treatment group is compensated by these inventors’ relatively higher performance 

(or increasing trends) compared to the counterfactual inventors. Firm fixed effects in our model 

address these fundamental differences between firms with or without star inventors.  

 The second selection is from the team side. Firms may assign their star inventors 

disproportionately to the inventing teams. One could argue that firms strategically match their star 

inventors and high-performing non-star inventors in the same team with the hope that the non-stars 

learn from the stars and keep improving their innovation performance. In this case, this team 

selection also causes an underestimation problem due to the same reasoning explained above. To 

alleviate this issue, we include team fixed effects that rule out the underlying differences between 

teams with or without stars. 

 As we discussed in Section 3.5, we further apply CEM to resolve remaining confounders, 

and the CEM-adjusted results are consistent with the underestimation scenario. Column (2) in 

Table 3 shows the estimated coefficient becomes larger in magnitude with smaller standard errors 

compared to Column (1), meaning having a more comparable set of treatment versus control 

groups may reduce the underestimation problem. We find the same results in Column (3) and 
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Column (4) where the dependent variable is Generality. Therefore, although our efforts may not 

fully overcome the endogeneity problem due to the lack of exogenous variation, we believe our 

estimates provide reasonable lower bounds of the true effects.  

A3.2. Parallel trends in the temporal DID estimates  

The core assumption of the DID setup is the parallel trend between the treatment and control 

groups. To validate this assumption, we plot the temporal DID estimates of our main models 

(Column (8) in Table 2 for H1 and Column (2) in Table 3 for H2). Years between t-4 and t+10 are 

included in the temporal regression to ensure sufficient observations at each time point. Figure A1 

visualizes the temporal DID estimates for Knowledge Similarity (Panel A) and Scaled Citation (i.e., 

Panel B). Dots represent point estimates, and capped lines denote 95% confidence intervals. In 

Panel B, we further compare the confidence intervals from the full sample (i.e., shaded area) and 

CEM sample (i.e., dots and capped lines). There is no pre-trend in both cases, and our F-tests do 

not reject the null hypothesis that estimates of t-1 to t-4 are jointly zero (p-value: 0.529 for 

Knowledge Similarity; p-value: 0.346 for Scaled Citation).  

A3.3. Knowledge domains of star versus novice inventors  

To identify inventors’ knowledge domains, we use level-3 CPC codes (e.g., H01L21). Using level-

3 codes helps us differentiate knowledge domains between star versus novice inventors more 

clearly, as compared to level-2 codes used in calculating Knowledge Similarity. We exclude 

indexing schemes in the ranking because these codes’ definitions are too broad to provide specific 

information about different knowledge domains. Table A1 shows the top 10 knowledge domains 

of stars (joined before 2000) and novice inventors (joined after 2010). It shows the two groups of 

inventors had very different knowledge domains before they joined fabless firms.  
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FIGURE A1: Temporal Effects of Team Interaction with Stars on Knowledge 
Homogenization and Innovation Performance. Panel A shows the year-by-year DID estimates 
of team interaction with stars on knowledge similarity between inventors measured by Knowledge 
Similarity (Hypothesis 1). Black dots indicate the estimates, and gray capped lines represent 95% 
confidence intervals. Panel B shows the DID estimates of team interaction with stars on non-star 
inventors’ innovation performance measured by Scaled Citation (Hypothesis 2). The shaded area 
in Panel B shows confidence intervals in the full sample without matching, whereas the dots and 
lines represent the estimations based on the matched sample.
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TABLE A1: List of Knowledge Domains by Star and Novice Inventors. 
 Star Inventors 

(joined fabless before 2000) 
 Novice Inventors 

(joined fabless after 2010) 

Rank 
CPC 
Code 

Description  CPC 
Code 

Description 

1 H01L21 Processes or apparatus adapted for the manufacture or treatment of 
semiconductor or solid state devices or of parts thereof 

 G06F3 Input arrangements for transferring data to be processed into a form capable of 
being handled by the computer; Output arrangements for transferring data from 
processing unit to output unit, e.g. interface arrangements 

2 H01L29 Semiconductor devices adapted for rectifying, amplifying, 
oscillating or switching, or capacitors or resistors with at least one 
potential-jump barrier or surface barrier 

 G06F9 Arrangements for program control, e.g. control units 

3 H01L27 Devices consisting of a plurality of semiconductor or other solid-
state components formed in or on a common substrate 

 G06F30 Computer-aided design [CAD] 

4 H01L23 Details of semiconductor or other solid state devices  G06F13 Interconnection of, or transfer of information or other signals between, memories, 
input/output devices or central processing units 

5 H03K19 Logic circuits, i.e. having at least two inputs acting on one output; 
Inverting circuits 

 G06F2119 Details relating to the type or aim of the analysis or the optimisation 

6 Y10S148 Metal treatment  G06F2203 Interaction techniques based on graphical user interfaces [GUI] 
7 Y10S438 Semiconductor device manufacturing: process  G06F8 Arrangements for software engineering 
8 G11C11 Digital stores characterised by the use of particular electric or 

magnetic storage elements; Storage elements therefor 
 H01L23 Details of semiconductor or other solid state devices 

9 H03K3 Circuits for generating electric pulses; Monostable, bistable or 
multistable circuits 

 H01L24 Arrangements for connecting or disconnecting semiconductor or solid-state bodies; 
Methods or apparatus related thereto 

10 G11C7 Arrangements for writing information into, or reading information 
out from, a digital store 

 G06F3 Input arrangements for transferring data to be processed into a form capable of 
being handled by the computer; Output arrangements for transferring data from 
processing unit to output unit, e.g. interface arrangements 

 


