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Abstract

We propose a new method to estimate the marginal value of capital

under minimal assumptions. Combining asset prices with fundamen-

tals, our method provides a model-free estimate of marginal q together

with a simple correction for measurement error in (average) Tobin’s

Q. Our measure of marginal q yields plausible and robust estimates of

adjustment costs and sensitivities of investment to fundamentals. It

explains capital investment better than Tobin’s Q, and drives out cash

flow. These results raise serious questions about the large body of em-

pirical evidence that relies on Tobin’s Q to proxy for marginal q and

control for investment opportunities.
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James Tobin’s Q theory of investment emphasizes a fundamental con-

nection between financial markets and the real economy: marginal q - i.e.

marginal value of capital - is a key driver of business investment, conveniently

summarizing all current and future investment opportunities (Hayashi, 1982).

Like any other shadow value, however, the marginal value of capital is not

directly observable and empirical researchers have widely resorted to using

the “observable” (average) Tobin’s Q - i.e. the ratio of market value of cap-

ital to its replacement cost - as a proxy.1 Despite a longstanding consensus

that Tobin’s Q is an imperfect, and likely misspecified, proxy for marginal q,

particularly at the firm level, its use remains predominant in the empirical

literature, primarily for lack of reliable and easy-to-compute alternatives.2

In this paper, we provide such an alternative. We propose a new, easy

to implement, method to estimate marginal q under minimal assumptions

regarding the nature of technology, markets, and investor preferences. The

key insight rests on the joint measurability of the firm value function, i.e., the

firm market value, and its underlying set of firm state variables.

Under simple regularity conditions for the differentiability of the value func-

tion, marginal q can be constructed as the elasticity of firm market value with

respect to capital, using a very simple two-stage procedure. First, we project

the observable market values - i.e. firm value function - onto measurable firm

state variables, which include the firm’s capital stock. Second, we differenti-

ate the projected market values with respect to the capital stock to obtain an
1A Google Scholar search of ‘Tobin Q’ results in over 5,000 articles referencing Tobin’s Q

in the last five years. Similarly, Bartlett and Partnoy (2020) found 445 articles referencing
Tobin’s Q in the recent issues of top three finance journals.

2Hayashi (1982), and Abel and Eberly (1994) establish the exact conditions for equiv-
alence between marginal q and (average) Tobin’s Q. Some well known examples where
these fail to hold include Abel and Eberly (1994, 1997), Gomes (2001), Cooper and Ejarque
(2003), Cooper and Haltiwanger (2006) and Abel and Eberly (2011), among others.
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estimate of the marginal value of capital - the marginal q.

Unlike previous attempts to estimate marginal q, ours makes an efficient

use of market values, and imposes virtually no restrictions on the functional

forms of the stochastic discount factor and firm investment technologies, thus

making the estimate of capital’s shadow value very robust to model mis-

specification. Importantly, by constructing marginal q independently from

investment technologies, we can easily recover structural parameters of ad-

justment cost technologies, even in highly nonlinear models, without resorting

to simulation-based indirect inference methods.

By using only the variation in market values driven by fundamental state

variables, our first-step projection also provides a very simple correction for

classical measurement error in Tobin’s Q that minimizes concerns induced, for

instance, by potential stock market inefficiencies (e.g., Blanchard et al., 1993).

We label this estimate Fitted Q. Unlike other popular statistical corrections

for classical measurement error in the literature (e.g., Erickson and Whited,

2000, Erickson and Whited, 2012 and Erickson et al., 2014), our fundamen-

tal approach produces direct estimates of measurement error-free Tobin’s Q

rather than just corrected coefficient estimates within standard investment-Q

regressions.

While the first-stage Fitted Q estimate corrects for classical measurement

error in Tobin’s Q, our marginal q estimate further corrects for possible model

mis-specification. Thus, by estimating both measures consistently within the

same framework we can uniquely identify and quantify the empirical relevance

of both classical measurement error and model mis-specification.3 The empir-
3Any correction for classical measurement error can only filter out orthogonal noise from

measured (average) Tobin’s Q. Since marginal q is driven by the same (or smaller) set of
state variables driving (average) Tobin’s Q their difference cannot be orthogonal.
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ical results indeed show that while accounting for mis-measurement, i.e. using

Fitted Q, helps, it is accounting for mis-specification, i.e. using marginal q,

that really makes a difference.

Beyond the new methodological contributions, our paper also makes a

number of important empirical ones. First, we document that marginal q

is statistically different from (average) Tobin’s Q or its measurement error-

free counterpart, Fitted Q. On average, marginal q is substantially lower (0.81

vs 1.33 vs 2.87), and less volatile (0.49 vs 1.03 vs 5.77) than both Fitted Q

and (average) Tobin’s Q, respectively.

Second, our empirical estimates of marginal q rather than Tobin’s Q, pro-

vide much tighter (and more plausible) model-free estimates of upper bounds

on capital adjustment costs. Using Tobin’s Q as a proxy for marginal q leads

to estimates of (maximum) adjustment costs that are 3.5 times larger than

the ones we obtain when estimating marginal q directly.

Third, we find that investment is substantially more responsive to changes

in marginal q than Tobin’s Q or even Fitted Q. In particular, we show that the

use of Tobin’s Q systematically underestimates the sensitivity of investment

to fundamentals between 70% and 80% depending on the exact specification

for investment adjustment costs.

Fourth, we revisit the classic investment-q regression using our q measures

together with the measurement-error correction in Tobin’s Q proposed by Er-

ickson et al. (2014). We find that both Fitted Q and marginal q produce

larger and more economically plausible parameter estimates, even in simple

OLS specifications with within-group R2 up to 0.49, that is about 15 times

larger than those obtained when just using Tobin’s Q.

Finally, we show that using either Fitted Q or marginal q, also drives

out the statistical significance of cash flow in investment regressions, further
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questioning the empirical relevance of cash flow effects and their implications

for the existence of financial constraints affecting firms’ investment behaviors.

Taken together, these results suggest that our estimates of marginal q

offer much stronger empirical support for the seminal - but often questioned -

neoclassical theory of investment pioneered by Tobin (1969).

A. Comparison with Literature

Abel and Blanchard (1986) and Gilchrist and Himmelberg (1995) offer the ear-

liest alternative method to estimate marginal q. They use explicit assumptions

on functional forms for the marginal revenue product of capital, the marginal

adjustment cost, and the stochastic discount factor to construct VAR-based

forecasts of the future expected marginal profit of capital.

Abel (1980), Shapiro (1986), and Whited (1992) among others exploit the

first-order condition for investment, to replace unobservable marginal q with a

parameterized marginal investment cost in the Euler equation, and then esti-

mate it using structural GMM. This approach also requires specific functional

form assumptions for the marginal profit of capital and the stochastic discount

factor.

More recently, Philippon (2009) proposes an implementation of the Q-

theory using only bond rather than equity prices which he finds to work better.

Peters and Taylor (2017) construct a new Tobin’s q proxy by accounting for

intangible capital while Crouzet and Eberly (2021) propose a quantification of

the contribution of intangible capital and market power to the gap between

average Tobin’s Q and marginal q.

Gala et al. (2020) propose to estimate the optimal investment policies as

a function of the model’s underlying state variables, which is shown to work
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better empirically than Tobin’s Q. By contrast, estimating marginal q directly

from the value function provides a superior characterization of a firm’s invest-

ment behavior and allows to easily recover structural parameters of adjustment

cost technologies, even in highly nonlinear models, without resorting to com-

putationally intensive indirect inference methods.

I. A General Model of Investment

To describe and motivate our approach we use a continuous time version of the

model in Gala et al. (2020). The framework allows for very general assumptions

about the production technology and capital adjustment costs and is flexible

enough to subsume the vast majority of investment models in the literature as

special cases.

A. Production and Investment Technologies

Consider a firm that uses capital and a vector of costlessly adjustable inputs,

such as labor, to produce a nonstorable output. At each point of time, the

firm chooses the amounts of costlessly adjustable inputs to maximize the value

of its revenue minus expenditures on these inputs.

Let Π (Kit, Ait) denote the maximized value of the instantaneous operating

profit at time t, where Kit is firm i’s capital stock at time t and Ait is a ran-

dom variable representing uncertainty in technology, in the prices of costlessly

adjustable inputs, and/or in the demand facing the firm. We assume only that

ΠK () > 0 and ΠA () > 0 and ΠKK () ≤ 0.

The random variable Ait evolves according to a diffusion process:

dAit = µA (Ait, Ψt) dt + σA (Ait, Ψt) dW A
it (1)
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where dW A
it is standard Wiener process. The vector of aggregate random

variables, Ψt, summarizes the state of the economy and evolves as

dΨt = µΨ (Ψt) dt + σΨ (Ψt) dW Ψ
t (2)

with dW Ψ
t being a vector of standard Wiener processes independent of dW A

it .

The general formulation in (1) allows for common systematic variations in

shocks to technology, prices of costlessly adjustable inputs, and demand facing

the firm.

Capital is acquired by undertaking gross investment at rate I, and the

capital stock depreciates at a fixed proportional rate δ ≥ 0, so that the capital

stock evolves according to

dKit = (Iit − δKit) dt. (3)

When the firm undertakes gross investment, it incurs costs, which reduce op-

erating profits.

Capital adjustment costs are summarized by the function Φ (I, K), which

we assume is twice continuously differentiable for I ̸= 0, with ΦI (·) × I ≥ 0

and ΦII (·) ≥ 0. In addition we set Φ (0, K) = 0 so that adjustment costs

are non negative and minimized at I = 0. These assumptions are general

enough to cover most general non-convex and discontinuous specifications for

investment adjustment cost in the literature.4

4To facilitate exposition our choice of Φ(·) is still general enough to accommodate ad-
justment costs in investment growth. However, as we will see below, our method can easily
be extended to allow for that, as well as frictions in the adjustment of other variables.
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B. Optimal Investment Decisions

Each firm chooses the optimal investment by maximizing the expected present

value of operating profit, Π (K, A) less total investment cost Φ (I, K). The

value of the firm is thus

V (Kit, Ait, Ψt) = max
{It+s}

Et

∫ ∞

0

Λt+s

Λt

[Π (Kit+s, Ait+s) − Φ (Iit+s, Kit+s)] ds (4)

subject to the capital accumulation equation in (3), the firm shock process in

(1), the dynamics for the vector of aggregate random variables in (2), and the

pricing-kernel dynamics

dΛt

Λt

= −r (Ψt) dt − σΛ (Ψt) dW Ψ
t (5)

where rt denotes the instantaneous riskless rate, and σΛ (Ψt) denotes the mar-

ket prices of risks associated with the vector of aggregate systematic shocks,

Ψt.5

The firm value function V (K, A, Ψ) satisfies the following Hamilton-Jacobi-

Bellman (HJB):6

0 = max
I

{Λ [Π (K, A) − Φ (I, K)] + D [ΛV ]} (6)

with D [·] denoting the infinitesimal generator of the Markov processes A and

Ψ, and the process K

D [M (·)] = µA (·) MA + σ2
A (·)
2 MAA + µΨ (·) MΨ + σ2

Ψ (·)
2 MΨΨ + (I − δK) MK

5The vector Ψt summarizes the aggregate state of the economy, which potentially includes
moments of the cross-sectional firm distribution, aggregate shocks to productivity, wages,
relative price of investment goods, and household preferences.

6For simplicity of exposition, we have suppressed the firm and time subscripts i and t.
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applied to the discounted firm value ΛV , along with the transversality (“no

bubble”) condition:

lim
T →∞

Et [|Λt+T Vit+T |] = 0.

Substituting for D [ΛV ] in (6), the optimal investment policy then satisfies

I∗ (q, K) = arg max
I

[qI − Φ (I, K)] (7)

where the marginal value of capital q ≡ VK , by the Fayman-Kac Theorem, is

equal to

q (Kit, Ait, Ψt) = Et

∫ ∞

0
e−δs Λt+s

Λt

[
ΠK (Kit+s, Ait+s) − ΦK

(
I∗

it+s, Kit+s

)]
ds.

(8)

As shown in Abel and Eberly (1994), the marginal q is the present value

of the stream of expected marginal profit of capital which consists of two

components: ΠK is the marginal operating profit accruing to capital, and

−ΦK is the reduction in the adjustment cost accruing to the marginal unit of

capital.

II. Measuring Marginal q

Marginal q in (8) does not yield an explicit closed-form solution under the

general conditions. Hence, we cannot directly test the optimal investment

policies in (7), unless we can measure the unobservable marginal q.
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A. Projection Method

We propose a new methodology to measure marginal q that rests on the joint

measurability of firm value function, V (·), and its underlying state variables,

Ω = {Kit, Ait, Ψt}. Specifically, we can measure marginal q according to its

definition as partial derivative of the observable value function - i.e. market

value of the firm - with respect to its observable capital stock, q ≡ VK (Ω).7

First, we approximate the (scaled) market value of firm i at time t, Qit ≡

Vit/Kit, using a tensor product polynomial in the state variables as

vit ≡ ln Qit =
nk∑

jk=0

na∑
ja=0

nΨ∑
jΨ=0

cjk,ja,jΨ × [kit]jk × [ait]ja × [Ψt]jΨ + ϵit (9)

where kit ≡ ln Kit, ait ≡ ln Ait, and ϵit captures measurement error in mar-
ket values.8 Given state variables kit, ait and Ψt, the coefficients cjk,ja,jΨ are
the subject of the estimation procedure. Then, we estimate the marginal q

according to its definition of partial derivative of the value function as

q̂it = Q̂it

(
1 + ∂ ln Q̂it

∂ ln Kit

)
= Q̂it

1 +
nk∑

jk=0

na∑
ja=0

nΨ∑
jΨ=0

ĉjk,ja,jΨ × jk × [kit]jk−1 × [ait]ja × [Ψt]jΨ

 .

(10)

Notice that, rather than imposing restrictive conditions on the functional forms

for the stochastic discount factor and adjustment cost functions, the projec-

tion method requires only general regularity conditions for the existence and

differentiability of the value function as well as for the measurement of the
7The identification of marginal q rests on the ability to identify the exogenous state

variables, A and Ψ. Therefore, the selection of the relevant state variables for the represen-
tation of the value function should always include the exogenous state variables implied by
the model (or any one-to-one transformation).

8Under the null of the model, the value function, V , depends only on the set of state
variables Ω. Therefore, we estimate the value function under the standard assumption that
firm intrinsic values are observed only with error by the econometrician. The measurement
error ϵit (which can be serially correlated) does not affect firm optimal policies, and as such
is orthogonal to the firm intrinsic value.
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firm-level state variables.

Given a large panel of firms, our approach is flexible enough so that one

can also account for unobserved time-invariant heterogeneity across firms by

allowing the constant term c0,0,0 in (9) to be firm-specific.

A.1 Measuring the State Variables

To estimate marginal q we need to measure the relevant state variables in Ω.

First, we focus on the firm-level (micro) state variables Kit and Ait. The firm

capital stock, Kit, is directly observable, but the firm productivity shocks, Ait,

are not. However, they can be estimated using production function estimation

tools from the industrial organization literature (e.g., Olley and Pakes, 1996,

Levinsohn and Petrin, 2003, and Ackerberg et al., 2015). The details are

provided in Online Appendix B.

Complete knowledge of the aggregate (macro) state variables in Ψ is not

required for the purpose of estimating firm level marginal q. We can capture

the impact of all unobserved aggregate state variables by allowing for time-

specific polynomial coefficients in (9). Specifically, one can fit a separate cross-

section of (scaled) firm market values for each year as

vit ≡ ln Qit =
nk∑

jk=0

na∑
ja=0

bjk,ja,t × [kit]jk × [ait]ja + ϵit (11)

where we have suppressed the direct dependence on the aggregate state vari-

ables, Ψ, and we have allowed the polynomial coefficients bjk,ja,t to vary over

time. For ease of exposition and comparison with the existing literature, we

focus only on unobserved aggregate variation that affects the value function

linearly.9

9Gala (2012) allows aggregate state variables to enter non-additively the value function
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A.2 Polynomial Approximation

A key challenge in implementing this projection method empirically is to de-

termine the order of polynomials in state variables to be included in the es-

timation. These can be assessed using standard model selection techniques

such as Akaike information criterion (AIC). Using step-wise regression analy-

sis, we find that the first and second orders are informative enough to capture

main variation in firms’ market values and higher order terms are generally

not necessary to improve the quality of the approximation.10

In Section IV however, we implement a more robust version of our pro-

jection method that adds a “step zero” where we employ the least absolute

shrinkage and selection operator, Lasso, widely used in statistics and machine

learning to help optimally select orders of polynomials. We show that this

yields very similar estimates to the “reduced” two-step method used in Sec-

tion III.

Ignoring higher order polynomial terms in k and a, can mechanically intro-

duce endogeneity issues in estimating coefficients of bjk,ja,t in (11). In Online

Appendix C, we address this concern with a control function approach that

uses the investment rate as an instrument (e.g., Olley and Pakes, 1996 and

Ackerberg et al., 2015) and show that this delivers similar results to the (eas-

ier to implement) OLS regressions reported in the main text.

B. Discussion

The practical appeal of Q-theory lies in the fact that it is possible to summa-

rize all relevant information about firm state variables with a single (relative)

and investigates empirically alternative projection representations of asset prices.
10To facilitate interpretation, we report only natural polynomials in the paper, but the

Online Appendix shows our estimation results are robust to using orthogonal terms instead.
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market price.11 Unfortunately, it is well known that the required knife-edge

homogeneity assumptions for this result are at odds with micro data, and the

identification and measurement of marginal q with (average) Tobin’s Q offers

a poor fit to the data at the firm level (e.g. Gala et al., 2020).

Here, we propose to use the same exact asset price information to instead

directly estimate marginal q but under minimal assumptions on technology

and preferences that are much less restrictive than those required by previous

methods.12

In addition, since we estimate marginal q independently from adjustment

cost technologies we can more easily recover the structural parameters of ad-

justment cost technologies, even in highly nonlinear and heterogeneous models,

and without resorting to computationally intensive simulation-based estima-

tion methods.

Finally and importantly, since we only use the variation in market val-

ues driven by fundamental state variables in constructing marginal q, we can

also minimize any concerns about classical measurement error induced, for

instance, by potential stock market inefficiencies (Blanchard et al., 1993).

III. Empirical Implementation

We now describe the data used in the empirical analysis and additional is-

sues concerning the projection representation of marginal q. We then use the

projection measure of marginal q to estimate capital adjustment costs and

investigate the shape of the investment policy function.
11Formally Abel and Eberly (1994) show that marginal q is proportional to (average)

Tobin’s Q: q = ρ V
K if Π (·) and Φ (·) are homogeneous of degree ρ in both I and K.

12For example the VAR-based methods used in Abel and Blanchard (1986), and Gilchrist
and Himmelberg (1995) or the Euler-equation approaches in Abel (1980), Shapiro (1986),
and Whited (1992).
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A. Data

Our data come from the combined annual COMPUSTAT files. To facilitate

comparison with much of the literature, our sample is made of an unbalanced

panel of firms for the years 1973 to 2019, that includes only manufacturing

firms (SIC 2000-3999).

We keep only firm-years that have non-missing information required to con-

struct the primary variables of interest, namely: investment, I, firm size, K,

(average) Tobin’s Q, and sales revenues, Y . These variables are constructed

as follows. Firm size, or the capital stock, is defined as the gross book value of

property, plant and equipment (item ppegt). Investment is defined as capital

expenditures in property, plant and equipment (item capx). Sales are mea-

sured by net sales revenues (item sale). These last two variables are scaled

by the beginning-of-year capital stock. Finally, Tobin’s Q is measured by the

end-of-year market value of capital, defined as market value of outstanding

equity (prcc_f × csho) plus the book value of debt (dltt + dlc) net of current

assets (act), scaled by gross property, plant and equipment.13

The sample is filtered to exclude observations where (average) Tobin’s Q

and sales are either zero or negative. Furthermore, we require the gross capital

stock to be greater than 5 million in dollar adjusted to 1982, as is standard in

literature (e.g., Erickson and Whited, 2012 and Peters and Taylor, 2017). To

ensure that the measure of investment captures the purchase of property, plant

and equipment, we eliminate any firm-year observation in which a firm made

an acquisition. All regression variables are trimmed at the top and bottom

0.5% of their distributions to reduce the influence of any outliers, which are
13Erickson and Whited (2006) show that using a perpetual inventory algorithm to estimate

the replacement cost of capital and/or a recursive algorithm to estimate the market value
of debt barely improves the measurement quality of the various proxies for Q.

13



common in accounting ratios. Finally, we require a firm to have at least

two-year observations in the sample. This procedure yields a base sample of

47,141 firm-year observations. More details about the sample construction is

in Online Appendix A. Table 1 reports summary statistics including mean,

standard deviation and main percentiles for the variables of interest.

Table 1: Summary Statistics

This table reports summary statistics for the primary variables of interest from Compustat
over the period 1973-2019. Investment rate, I/K, is defined as capital expenditures in
property, plant and equipment scaled by the beginning-of-year capital stock. The capital
stock, K, is defined as gross property, plant and equipment. Firm size, ln(K), is the natural
logarithm of the beginning-of-year capital stock. The sales-to-capital ratio, ln(Y/K), is
computed as the natural logarithm of end-of-year sales scaled by the beginning-of-year
capital stock. Tobin’s Q is defined as the market value of capital (market value of equity
plus debt net of current assets) scaled by gross property, plant and equipment.

Obs. Mean Std. Dev. 25th 50th 75th
I/K 47, 141 0.155 0.185 0.057 0.102 0.178
ln (K) 47, 141 4.638 2.000 3.051 4.290 5.954
ln (Y/K) 47, 141 0.777 0.818 0.317 0.835 1.297
Q 47, 141 2.872 5.767 0.420 1.004 2.694

With the constructed sample, we now describe our main findings. We first

examine the variation of market values and investment rates across portfolios

sorted by firm size, K, and profitability shock, A. We then proceed to estimate

marginal q, and use it for the estimation of adjustment costs and investment-q

sensitivity. Lastly, we revisit the investment-q regressions by using our measure

of marginal q.
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B. Market Values and Investment by Size and Prof-

itability

To gain some insights about the role of size and profitability shock in span-

ning the true underlying state space for market values and investment rates,

we sort all firms into 25 portfolios double-sorted on the empirical distribution

of profitability shock conditional on firm size. Specifically, each firm is allo-

cated annually first across five firm size quintiles, and then, within each size

quintile, to five productivity quintiles. Table 2 reports the equally-weighted

average market values and investment rates across the resulting 25 condition-

ally double-sorted portfolios.

Across most firm size quintiles the pattern in average market values and in-

vestment rates shows a monotonic increasing relation with productivity. These

relations are statistically and economically significant across these portfolios.

This table confirms that there is substantial variation in market values and

investment rates as functions of the underlying state variables. We now turn

to estimate marginal q using the projection method.

C. First Step: Empirical Value Function

We now turn to formally estimate firms’ value function as a function of the

firm-level state variables in (9).

Table 3 reports the empirical estimates for various specifications of the

value function polynomial regression:

vit =
nk∑

jk=0

na∑
ja=0

cjk,ja × [kit]jk × [ait]ja + δi + ηt + ϵit (12)

As discussed above, all estimates use year- and firm-fixed effects to account
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Table 2: Market Value and Investment by State-Variable Portfolios

This table reports equal-weighted averages of market values and investment rates for port-
folios based on conditional sorts on firm size, K, and profitability shock, A. The sample
period is 1973 to 2019.

Panel A: Market Value, V ($ billion)
Profitability Shock (A)

Q1 2 3 4 Q5
Firm Size (K) Q1 0.042 0.058 0.081 0.128 0.168

2 0.057 0.086 0.125 0.194 0.390
3 0.092 0.166 0.239 0.368 0.626
4 0.318 0.649 0.955 1.224 1.108

Q5 3.570 4.899 6.655 7.193 10.918

Panel B: Investment Rate, I/K

Profitability Shock (A)
Q1 2 3 4 Q5

Firm Size (K) Q1 0.045 0.118 0.202 0.351 0.723
2 0.038 0.091 0.152 0.235 0.428
3 0.035 0.073 0.106 0.154 0.303
4 0.030 0.061 0.086 0.124 0.227

Q5 0.031 0.062 0.090 0.136 0.190

for potential aggregate shocks and unobserved firm heterogeneity, including

variations in firms’ input prices and depreciation rates.

We find that first and second order terms are all strongly statistically sig-

nificant. The complete second order polynomial in k and a, which also includes

the interaction term, explains up to 65% (including fixed effects) of the total

variation in log (scaled) market values.14 Based on the Akaike information

criteria, we then choose the complete second order polynomial in firm size
14We omit higher order terms because they are mostly insignificant and do not improve

the overall quality of the approximation.
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Table 3: Empirical Value Function

This table reports estimates from the empirical value function:

vit =
nk∑

jk=0

na∑
ja=0

cjk,ja
× [kit]jk × [ait]ja + δi + ηt + ϵit

where the left-hand-side is the log market value scaled by capital, ln(V/K), k is firm size,
ln K, a is profitability shock, ln A, δi is a firm fixed effect, and ηt is a year fixed effect.
Robust standard errors are clustered by firm and reported in parenthesis. R

2 denotes
adjusted R-square and AIC is the Akaike Information Criterion. qQ-test is a Wald test
of the equivalence between marginal q and average Q as described in ( 13). P-values are
reported. The sample period is 1973 to 2019.

(1) (2) (3)
ln K −0.339 −0.618 −0.511

(0.017) (0.034) (0.047)
ln A 0.971 0.310 0.524

(0.030) (0.107) (0.128)
(ln K)2 0.031 0.027

(0.003) (0.004)
(ln A)2 0.292 0.289

(0.045) (0.045)
ln A × ln K −0.048

(0.014)

R
2 0.646 0.649 0.649

AIC 113, 894 113, 434 113, 407
qQ-test 0.000 0.000 0.000

and productivity shock (column 3) as the best parsimonious state variable

representation of market values empirically.15

As discussed above, Section IV uses a Lasso approach to help optimally

select orders of polynomials to obtain very similar results. Finally, in the
15Even if the quadratic and interaction terms do not increase substantially the overall

fit of the value function, they are statistically significant and might be still important to
explain variation in investment through marginal q.
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Online Appendix we show that these results are robust to the industry-year

portfolio level regressions as well as the inclusion of interactive fixed effects

between firm and year as suggested by Bai (2009).

D. Second Step: Marginal q

Given the estimates of the (scaled) value function in (12), we can then compute

the Fitted Q and marginal q. The Fitted Q is computed from the fitted

values of the specification in (12), and it provides a measurement error-free

measure of (average) Tobin’s Q, maximally correlated with the fundamental

state variables. The firm’s marginal q is computed according to its definition

as a partial derivative of the value function with respect to its capital stock as

in (10).

Table 4 reports summary statistics for the empirical distributions of esti-

mated marginal q, Fitted Q, and observed Tobin’s Q. Tobin’s Q is on average

higher and more volatile than both Fitted Q and marginal q. Fitted Q is on

average higher and more volatile than marginal q.

Table 4: Distribution of Marginal q

This table reports summary statistics for (average) Tobin’s Q, and the estimated marginal q

and Fitted Q. Fitted Q is computed as the fitted value of the value function approximation
in (12). Marginal q is computed according to its definition as partial derivative of the value
function approximation with respect to the capital stock. The sample period is 1973 to
2019.

Obs. Mean Std. Dev. 25th 50th 75th
Tobin’s Q 47, 141 2.872 5.767 0.420 1.004 2.694
Fitted Q 47, 141 1.325 1.032 0.624 1.038 1.689
Marginal q 47, 141 0.811 0.492 0.462 0.685 1.016

Figure 1 plots the empirical distributions of logarithm of the ratios of To-
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bin’s Q to marginal q (top panel), and Fitted Q to marginal q (bottom panel).

Marginal q can take on values substantially higher than observed Tobin’s Q.

However, marginal q is always lower than Fitted Q, which is consistent with

concavity of the value function (Hayashi, 1982).

To understand the differences among these alternative Q measures and

quantify the contribution of marginal q in explaining variation in both Tobin’s

Q and Fitted Q, we perform a series of regressions of (average) Tobin’s Q

and Fitted Q on marginal q. Figure 2 reports the change in R-squares when

including various covariates. In Panel A, it shows that firm fixed effects explain

about 60% of total variation in Tobin’s Q while marginal q does not explain

much of the total variation in Tobin’s Q. On the other hand, in the regression

of Fitted Q, the R-square increases from 70% to 98% after adding marginal q

as a covariate.

D.1 Equivalence Between Marginal and Average Q

For each state variable representation of the value function in terms of poly-

nomials in k and a, we can test directly the equivalence between marginal q

and average Q. Testing such an equivalence requires that ∂v̂it/∂kit = 0, or

equivalently that all coefficients corresponding to terms involving k are jointly

equal to zero:

cjk,ja = 0 for jk = 1, ..., nk; and ∀ja. (13)

The null hypothesis in (13) corresponds to a test of linear restrictions on the

coefficient estimates. Such an hypothesis can be tested using a Wald statistic

(“qQ-test”), which is distributed as χ2
r with degrees of freedom r equal to the

number of restrictions.
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This figure plots the empirical distributions of the natural logarithm of ratios of (average)
Tobin’s Q to marginal q (top panel) and Fitted Q to marginal q (bottom panel). The sample
period is 1973 to 2019.

Figure 1: Empirical Distribution of Q Wedges

The last row of Table 3 reports the p-values corresponding to the “qQ-test”

for each polynomial specification. In all cases, we can strongly reject the null

hypothesis that marginal q is equal to (average) Tobin’s Q.
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(a) Tobin’s Q on marginal q
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(b) Fitted Q on marginal q

This figure plots the change in R-squares by regressing (average) Tobin’s Q (Panel A) and
Fitted Q (Panel B) on Marginal q. The y-axis denotes regressors included in the regression
and the x-axis is the R-square (percentage) for each regression. The sample period is 1973
to 2019.

Figure 2: R-Squares of Regressing Q on Marginal q

E. Estimating Adjustment Costs

Under the optimal investment policy, the maximand in (7) - i.e. qI − Φ (I, K)

- is nonnegative. As such, the estimate of marginal q provides an upper bound
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on the total capital adjustment costs paid by the firm as a share of capital

expenditure, Φ (·) /I.

Therefore, one can use the empirical distribution of marginal q to draw

inference about the upper bound on the total capital adjustment costs as a

share of investment. As shown in Table 4, marginal q is on average much

lower and less volatile than both Fitted Q and Tobin’s Q. As such, the total

adjustment costs (including the purchase price) never exceed on average 81

percent of the cost of investment for the average firm in the sample. In contrast,

under Hayashi (1982)’s assumptions of homogeneity and perfect competition,

one would have estimated on average an upper bound of 287 percent of the cost

of investment based on the implied equivalence between observed (average)

Tobin’s Q and marginal q.

Therefore, these estimates of marginal q provide much tighter (and plausi-

ble) bounds on the total adjustment costs as a share of investment, regardless

of the specific assumptions concerning the investment technology.

E.1 Marginal q under Smooth Adjustment Costs

With smooth adjustment costs, the optimality condition for investment re-

quires the marginal cost of investment equal to marginal q. Therefore, the

distribution of marginal q corresponds exactly to the distribution of marginal

adjustment costs.

Under smooth adjustment costs, the average of the firm marginal adjust-

ment cost of investment (including the purchase price) is only about 0.81 for

each additional dollar of investment. This estimate is about 39% smaller than

the estimate under the Fitted Q. Thus, if we were to use the Fitted Q as a

measurement error-free estimate of marginal q under the assumption of ho-
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mogeneity, we would have over-estimated the firm marginal adjustment costs.

This is even more pronounced, if we were to use Tobin’s Q. In this case, we

would have estimated the average marginal cost of investment at about 2.87,

which is about 2.5 times higher than under marginal q.

F. Investment-q Sensitivity

In this section, we estimate the implied shape of the investment policy func-

tion by providing structural estimates of investment-q sensitivities and capital

adjustment costs under alternative measures of Tobin’s Q, including the new

measure of marginal q.

In line with the existing literature, we focus on a generalized adjustment

cost function, Φ (·), that is homogeneous of degree one in investment and

capital. Specifically, we use the following polynomial specification for the

adjustment cost function:

Φ (Iit, Kit; δi, ηt)
Kit

= (δi + ηt)
(

Iit

Kit

)
+

M∑
m=2

γm

m

(
Iit

Kit

)m

(14)

where the variables δi and ηt allow for firm- and year-specific elements to the

investment price. For example, the price of capital may systematically vary

across firms due to tax considerations such as the value of investment tax

credits and depreciation allowances. While this function is not restricted to

be globally convex, we verify that the estimates imply convexity.

This functional form yields the following expression for the optimal invest-

ment policy in (7) and can be estimated as

qit =
M∑

m=2
γm

(
Iit

Kit

)m−1
+ δi + ηt + εit (15)
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where the error term ε captures measurement or estimation error in the alter-

native measures of Q. Empirically, we use various measures of Q discussed in

the paper as the dependent variable in (15).

F.1 Quadratic Adjustment Costs

Table 5 reports the estimates of the adjustment cost parameters γm in (15)

obtained with standard Tobin’s Q, Fitted Q, and the projection measure of

marginal q. We concentrate first on the linear-quadratic adjustment costs

specification. Columns (7) of Table 5 shows that the positive and significant

coefficient on investment when using marginal q in (15). It implies an adjust-

ment cost parameter of only about 1.3. This is much smaller than the value

implied by the use of (average) Tobin’s Q in column (1), 4.53, and Fitted Q

in column (4), 2.67.

Following Abel and Eberly (2002), one could obtain an estimate of the

quadratic adjustment costs as a share of investment expenditure by multiplying

γ/2 with 0.16, the sample mean for the investment rate.16 The magnitude of

quadratic adjustment costs as a share of investment expenditure implied by

the coefficient estimate under marginal q is about 10 percent of investment

expenditure.17 As a comparison, these numbers imply that the estimated

quadratic adjustment costs under the Fitted Q and the observed Tobin’s Q

specifications are about two times and 3.5 times as large as them under the
16The total amount of quadratic adjustment costs is given by γ

2
(

I
K

)2
K. Therefore, the

ratio of total adjustment costs to investment I is γ
2

I
K .

17Given the quadratic adjustment cost specification, we can also compare these estimates
with previous studies. For instance, Gilchrist and Himmelberg (1995) find estimates of γ =
20 when using (average) Tobin’s Q and γ = 5.46 when using the VAR-based measure of
marginal q (i.e. Fundamental Q). These estimates, which correspond (≃ γ

2 ×I/K = γ
2 ×0.16)

to 160 percent and 44 percent, respectively, are still much higher than the ones reported
here.
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Table 5: Investment-q Sensitivity

This table reports estimates from the following regression:

Yit =
M∑

m=2
γm

(
Iit

Kit

)m−1
+ δi + ηt + εit

where the left-hand side variable Yit is either marginal q, Fitted Q, or (average) Tobin’s Q,
and the right-hand side variables include the investment rate (I/K), firm fixed effects δi, and
year fixed effects ηt. Specifications (1)-(3) report estimates using (average) Tobin’s Q as the
dependent variable. Specifications (4)-(6) report estimates using Fitted Q as the dependent
variable. Specifications (7)-(9) report estimates using marginal q as the dependent variable.
Robust standard errors are clustered by firm and reported in parenthesis. R

2 denotes
adjusted R-square. The sample period is 1973 to 2019.

Tobin’s Q Fitted Q Marginal q

(1) (2) (3) (4) (5) (6) (7) (8) (9)
γ2 4.527 7.539 9.315 2.671 4.173 4.997 1.299 2.221 2.858

(0.253) (0.472) (0.802) (0.052) (0.082) (0.127) (0.024) (0.036) (0.055)
γ3 −2.707 −6.638 −1.351 −3.174 −0.829 −2.238

(0.423) (1.729) (0.082) (0.300) (0.036) (0.128)
γ4 1.856 0.861 0.665

(0.839) (0.156) (0.066)

R
2 0.571 0.572 0.573 0.802 0.816 0.817 0.827 0.849 0.853

marginal q specification.

These estimates also help us infer the sensitivity of investment to funda-

mentals.18 We show that the inferences about investment sensitivity to funda-

mentals are substantially different when using alternative measures of Q. For

example, the sensitivity of investment as measured by marginal q is more than

three times that estimated in conventional Tobin’s Q regressions. Accounting
18The investment sensitivity to fundamentals given the quadratic adjustment costs is

defined as
∂

(
Iit

Kit

)
/∂qit = 1/γ2.
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for measurement error in Tobin’s Q - i.e. using Fitted Q - increases the invest-

ment sensitivity relative to observed Tobin’s Q. But it is still less than half of

the sensitivity estimated from marginal q.

Importantly, investment is substantially more correlated with marginal q

than with the measures of Tobin’s Q including the measurement error-free

Fitted Q. While accounting for mismeasurement - i.e. using Fitted Q - helps

to some extent, accounting for misspecification - i.e. using marginal q - sub-

stantially improves both the correlation with investment and the structural

estimates of investment sensitivity to fundamentals.

F.2 Polynomial Adjustment Costs

The evidence above rests on the strong assumption of a linear relationship

between investment and marginal q. However previous work has shown that

the relationship between firms’ investment and their Tobin’s Q can be highly

nonlinear (Barnett and Sakellaris, 1999; Abel and Eberly, 2002). This suggests

that a higher order specification of adjustment costs should be considered when

examining the empirical relationship between investment and Q measures.

Table 5 also reports the adjustment cost parameters for higher-order spec-

ifications. The empirical results suggest to include only up to quartic terms

(M = 4). At all instances of cubic terms (M = 3), for example, we esti-

mated this polynomial adjustment cost function to be convex for the range of

investment rates observed in the sample.

Given the estimates in Table 5, one can obtain the structural estimate of

the convex adjustment costs as a share of investment expenditure.19 In Figure
19For the cubic case (M = 3), the total amount of convex adjustment costs is given by

γ2
2
(

I
K

)2
K + γ3

3
(

I
K

)3
K. Therefore, the ratio of total adjustment costs to investment I is

γ2
2

I
K + γ3

3
(

I
K

)2. Similarly, for the quartic case (M = 4), the ratio of total adjustment costs
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3, we plot the ratio of adjustment costs to investment expenditures by varying

investment rates (I/K) from 0 to 1. Panel A demonstrates the magnitudes of

adjustment costs as a share of investment expenditure implied by coefficient

estimates in the cubic case. This ratio increases from 0% to 287% as the in-

vestment rate rises from 0 to 1 when inferred from the estimates of (average)

Tobin’s Q. It implies that, for instance, the estimated convex adjustment costs

are about 287% of investment expenditure when I/K = 1. The convex adjust-

ment cost ratios implied by the estimates from Fitted Q specification is lower

than these from (average) Tobin’s Q. It is between 0% and 164% as the invest-

ment rate increases from 0 to 1. In contrast, the coefficients from the marginal

q specification yield the tightest and most plausible estimates for the convex

adjustment costs, varying between between 0% and 83%. Focusing on the

mean investment rate I/K = 0.16, these numbers imply the estimated convex

adjustment costs under Tobin’s Q and Fitted Q specifications are about 3.4

times and 1.8 times as large as the estimate under the marginal q specification.

Panel B of Figure 3 demonstrates the magnitudes of adjustment costs im-

plied by coefficients in the quartic case. The ratios of adjustment costs to

investment expenditure are quite similar to Panel A when varying the invest-

ment rate, indicating that the estimates of adjustment costs are robust to

inclusion of higher-order polynomials (e.g., the fourth-order polynomial).

For the cubic polynomials, we can also obtain a closed-form solution for the

sensitivity of investment to fundamentals implied by these estimates.20 For an

to investment I is γ2
2

I
K + γ3

3
(

I
K

)2 + γ4
4
(

I
K

)3.
20The investment sensitivity to fundamentals given the cubic adjustment costs is defined

as
∂

(
Iit

Kit

)
/∂qit = 1/

√
γ2

2 + 4γ3qit − 4γ3(δi + ηt).
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(a) Polynomial Adjustment Costs (M = 3)

(b) Polynomial Adjustment Costs (M = 4)

This figure plots the ratio of adjustment costs over investment expenditures - i.e. (Φ−pI)/pI

- as a function of investment rates (I/K). Each panel displays the adjustment costs ratio
implied by marginal q (red solid line), Fitted Q (blue long-dashed line), and (average)
Tobin’s Q (black dashed line). Panel A displays adjustment costs ratios under the third-
degree polynomial adjustment costs (M = 3), while Panel B displays adjustment costs ratios
under the fourth-degree polynomial adjustment costs (M = 4).

Figure 3: Ratio of Adjustment Costs to Investment

average firm, these are estimated to be 0.14 for Tobin’s Q, 0.28 for Fitted Q,

and 0.67 for marginal q, when computed at the sample mean level of Q equal

to 0.81 (the mean value of marginal q in Table 4).
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Consistently with the empirical evidence based on quadratic adjustment

costs, investment is substantially more correlated with marginal q than with

the observed Tobin’s Q or the measurement error-free Fitted Q. Based on

these empirical evidence, one can conclude that accounting for misspecification

- i.e. using marginal q - increases substantially the correlation with investment,

the investment sensitivity to fundamentals, and yields plausible estimates of

capital adjustment costs.

G. Investment-q Regressions

In this section, we consider the classic corporate investment-q regression aug-

mented with cash flow following Fazzari et al. (1988).

As a benchmark, Panel A of Table 6 reports the regression results of cap-

ital investment rates on Q (without cash flow) using the different measures.

In column (1), we report the OLS regression result, which largely replicates

regression results of previous studies. It generates a positively significant co-

efficient on Tobin’s Q, though the magnitude of coefficient ahead of Tobin’s Q

is quite small. Following Erickson et al. (2014), columns (2) and (3) adopt the

fourth- and fifth-order cumulant estimators to correct for classical measure-

ment error in Tobin’s Q regressions. Consistent with Erickson et al. (2014),

the coefficient on Tobin’s Q is now much larger, suggesting attenuation bias

in the OLS estimate. Both estimates generate higher within-group R-square

than does OLS.

Columns (4) and (5) report results using Fitted Q and marginal q instead.

As argued, our Fitted Q is a measurement-error free estimate of Tobin’s Q

and the projection measure of marginal q better captures firms’ investment

opportunities. Notably, both measures yield much larger coefficients than the
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Table 6: Regression of Investment on Q and Cash Flow

This table reports regression results of investment on cash flow and Q measures, either
marginal q, Fitted Q or (average) Tobin’s Q from

I/K = α · C/K + β · Q + δi + ηt + ϵit

following Fazzari et al. (1988), where the left-hand side variable is the investment rate (I/K),
and the right-hand side variables include the cash flow rate (C/K) defined as the firm’s cash
flow level scaled by its capital stock, firm fixed effects δi, and year fixed effects ηt. Panel A
reports regression results of investment on Q without including cash flow. Panel B reports
regression results of investment on Q and cash flow. Columns (1), (4), and (5) report the
OLS regression results. Columns (2) and (3) report results using the fourth and fifth order
cumulant estimators following Erickson et al. (2014). Fixed effects are controlled by a within
transformation for all variables when using the cumulant estimator. ρ2 is the within-group
R2 from a hypothetical regression of investment on true Q, and τ2 is the within-group R2

from a hypothetical regression of our constructed Q measures on true Q. R
2 denotes adjusted

R-square. Sargan Test is the test of the model overidentifying restrictions. The firm-level
clustered standard errors are reported in parenthesis.

Panel A: Investment Rate on Q
OLS Fourth Fifth OLS OLS
(1) (2) (3) (4) (5)

Tobin’s Q 0.007 0.028 0.037
(0.000) (0.003) (0.002)

Fitted Q 0.167
(0.003)

Marginal q 0.376
(0.005)

Firm FE Y Y Y Y Y
Year FE Y Y Y Y Y
ρ2 0.033 0.112 0.147 0.445 0.488

(0.014) (0.014)
R

2 0.329 0.615 0.645
τ 2 0.212 0.161

(0.027) (0.016)
Sargan Test 4.237 17.005
p-value 0.120 0.004
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Panel B: Investment Rate on Q and Cash Flow
OLS Fourth Fifth OLS OLS
(1) (2) (3) (4) (5)

Tobin’s Q 0.007 0.030 0.038
(0.000) (0.003) (0.002)

Fitted Q 0.167
(0.003)

Marginal q 0.376
(0.005)

C/K 0.015*** 0.012 0.007 0.003 0.000
(0.005) (0.006) (0.007) (0.003) (0.003)

Firm FE Y Y Y Y Y
Year FE Y Y Y Y Y
ρ2 0.035 0.121 0.152 0.445 0.488

(0.015) (0.015)
R

2 0.330 0.615 0.645
τ 2 0.197 0.156

(0.025) (0.016)
Sargan Test 1.915 16.279
p-value 0.384 0.006

cumulant estimates and the marginal q regression generates the highest within-

group R-square (about 49%) among all specifications. This confirms that

marginal q is superior to both (average) Tobin’s Q and Fitted Q in explaining

investment. Fitted Q still provides sizable correction for measurement errors in

Tobin’s Q and also greatly improves performance relative to Tobin’s Q. Overall,

marginal q almost doubles the adjusted R-square compared to Tobin’s Q.

Panel B of Table 6 extends the regressions in Panel A by including cash

flow. Coefficient estimates of Q measures are largely consistent with these in

Panel A. For the cash flow variable, column (1) produces a positively significant

coefficient. In contrast, columns (2) and (3) deliver smaller coefficients on

cash flow compared to their OLS counterparts, and it becomes insignificant
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for the fifth-order cumulant estimation. These results are largely consistent

with Erickson et al. (2014). Columns (4) and (5) report results using Fitted

Q and marginal q instead. In both specifications, the estimates of cash flow

coefficient are statistically insignificant, with the cash flow coefficient shrinking

to zero when using marginal q.

IV. Robustness

In this section, we discuss a number of important robustness checks for our

marginal q estimates. The results of most of these tests are summarized in

Table 7 with further details included in Online Appendices B and C.

First, our baseline second order polynomial approximation of firm values

may raise potential endogeneity concerns since any missing higher-order poly-

nomials could likely be correlated with the terms included in the projection

and bias our coefficient estimates. We address this concern using the control

function approach developed by Olley and Pakes (1996) and Ackerberg et al.

(2015) in a two-stage GMM procedure. This procedure is described in detail

in Online Appendix B where we also show that the bias-corrected parame-

ter estimates have similar magnitude and statistical significance with those

reported in Table 3.

In a second robustness check to address potential endogeneity concerns due

to missing higher-order polynomials, we use orthogonalized polynomials in the

state variables, k = ln K and a = ln A to estimate the value function (12).

Table 7, shows that estimated marginal q based on these orthogonalized state

variables is nearly perfectly correlated with that constructed from our baseline

estimates in Table 3. Online Appendix C reports the estimated coefficients

using the orthogonalized state variables which are also consistent with our
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main results.

Table 7: Comparison of Marginal qs Estimated with Various Methods

This table reports the correlation and distance between marginal qs derived from the
OLS regression in Table 3 (marginal qOLS), the regression with orthogonalized ln A and
ln K in Table A4 (marginal qOrthg), the regression with interactive fixed effects in Table
A5 (marginal qIntF E), and the post-Lasso OLS estimation in Table A6 (marginal qLasso).
Panel A reports the correlations between marginal qs. Panel B reports the distance be-
tween marginal qs, computed as the average ratio of the absolute difference between the
row measure and the column measure divided by the mean value of the column mea-
sure. For example, row (2) column (1) of Panel B indicates that the distance between
Marginal qOrthg and Marginal qOLS is equal to 0.0065, which is computed as the average of
abs(Marginal qOrthg − Marginal qOLS)/(Mean of Marginal qOLS = 0.811). abs(·) denotes
the absolute value.

Panel A: Correlation
Marginal qOLS Marginal qOrthg Marginal qIntF E Marginal qLasso

Marginal qOLS 1.0000
Marginal qOrthg 0.9999 1.0000
Marginal qIntF E 0.9901 0.9902 1.0000
Marginal qLasso 0.9490 0.9488 0.9065 1.0000

Panel B: Distance
Marginal qOLS Marginal qOrthg Marginal qIntF E Marginal qLasso

Marginal qOLS 0.0000
Marginal qOrthg 0.0065 0.0000
Marginal qIntF E 0.1193 0.1183 0.0000
Marginal qLasso 0.1126 0.1114 0.1522 0.0000

Next, to mitigate potential endogeneity concerns due to omitted state vari-

ables, we follow Bai (2009) and re-estimate Eqn.(12) allowing for interactive

fixed-effects, which can be correlated with the regressors.21 Again, Table 7

shows that the resulting estimate of marginal q is highly correlated (0.99) with
21The interactive fixed-effects model (Bai, 2009) generalizes the standard fixed-effects

model by allowing for firm-specific effects of unobservable time-varying variables.
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our baseline marginal q. The regression coefficient estimates are collected in

Online Appendix C.

Finally, to address any lingering concerns about our approach to poly-

nomial selection, we use the least absolute shrinkage and selection operator

(Lasso) widely used in statistics and machine learning. Lasso is a regression

analysis for the regularization of data models and feature selection (Tibshirani,

1996). Specifically, we investigate a list of candidate covariates with a series of

polynomials in k = ln K and a = ln A up to their tenth order (a total of 120

variables). The Lasso regression solves the following minimization problem

β∗(lasso) = arg min
β

|y −
p=120∑
j=1

xjβj|2 + λ
p=120∑
j=1

|βj|

where λ
∑p=120

j=1 |βj| is the penalty term. Picking the non-negative regulariza-

tion parameter, λ, is a key step in the Lasso regression and significantly impacts

the prediction performance of the fitted model. Here we use the adaptive Lasso

algorithm developed by (Zou, 2006) to perform the regression, in which the

adaptive weights are used for penalizing different coefficients in the penalty

term. These weights are data-dependent and rely on an initial estimator to

calculate penalty loadings.

In Online Appendix C we show that this Lasso analysis again yields very

similar specification to our baseline regression results in Table 3, by selecting

both the first- and second-order polynomials in k = ln K and a = ln A, to-

gether with only a few additional higher-order terms. Further, post-estimation

OLS based on Lasso’s model selection outcomes also produces very similar

magnitudes for the estimated coefficients.

More importantly, the marginal q constructed from the post-Lasso OLS

estimation is still very highly correlated with our baseline estimates, with a
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correlation coefficient 0.949. On average, the absolute differences between

these two measures is only 11.26% of the mean value of marginal q.

V. Conclusions

We propose a novel and practical way to measure firm’s marginal q using asset

prices under very minimal assumptions concerning technology and preferences.

We show that this measure differs substantially from average Tobin’s Q, has a

much higher correlation with investment and yields more plausible estimates

of capital adjustment costs as well as responses of investment to fundamentals.

Our approach can be easily extended to include additional state variables

and accommodate complex investment models with labor market frictions as

in Hall (2004), Merz and Yashiv (2007), Belo et al. (2014), and Michaels et al.

(2019) and financial frictions as in Bond and Meghir (1994), Hennessy et al.

(2007), Bustamante (2016), Bolton et al. (2011), Hugonnier et al. (2015), and

Bazdresch et al. (2018). In such instances, the projection method can be used

to measure not only marginal q, but also to measure the marginal value of

labor, cash/debt and intangible assets.

Unlike existing methodologies, this measure of marginal q is independent of

assumptions on capital adjustment costs. This independence can be exploited

to validate empirically alternative class of adjustment costs including those

depending on the growth rate of investment as in Eberly et al. (2012) and also

allows for a fully nonparametric kernel density estimation of marginal q, which

seems a new direction of promising research.
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Appendix A: Data Construction

We follow previous literature (e.g., Peters and Taylor, 2017 and Bazdresch

et al., 2018) to construct the sample used in the paper. The sample is from

the 2021 Compustat Industrial Files and run from 1973 to 2019. We screen the

sample as follows. We restrict to manufacturing firms (SIC code 2000 to 3999).

We also exclude observations with negative or zero sales or (average) Tobin’s

Q, or with less than $ 5 million in gross capital stock, which we deflate by the

GDP deflator index with a base year of 1982. Besides, we also exclude any

firm-year observation where a firm made an acquisition in a given year, to avoid

the contamination from the effects of mergers and acquisitions. Specifically,

we delete all firm-year observations if (i) the firm was recorded to have one or

more M&A deals in a year in the SDC Mergers and Acquisition Database, or

(ii) an acquisition (item AQC ) exceeds 15% of total assets (item AT ), or (iii)

the absolute difference between CAPX and CAPXV over PPEGT exceeds 0.5

and at the same time it observes a substantial increase (greater than 20%) of

the absolute growth rate of PPEGT. Moreover, we require that the variables

needed to construct our regression variables not be missing, and trim regression

variables over the entire panel at 0.5% level to remove outliers. Lastly, we

require a firm to have at least two-year observations. We are left with 47,141

firm-year observations, with between 660 and 1,286 firms per year.

In our regressions, the capital stock of a firm is defined as Compustat item

PPEGT. Investment rate is constructed as item CAPX scaled by the gross

beginning-of-period capital stock PPEGT. Cash flow is the sum of items IB

and DP scaled by PPEGT. Tobin’s Q is constructed as DLTT plus DLC plus

PRCC_F times CSHO minus AC, then scaled by PPEGT. In estimating the

profitability shocks, firms’ revenues is defined as the real net sales SALE.
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Appendix B: Estimating Profitability Shocks

We follow Olley and Pakes (1996)’s methodology with the correction proposed

by Ackerberg et al. (2015) to estimate profitability shocks. We assume that

each firm has a Cobb-Douglas revenue function F (Z, K, N) = ZKαK NαN ,

where Z denotes the productivity shock, K is physical capital, N is the variable

factor(s), and W is the price of the variable factor(s). The equations that follow

are based on one variable factor for expositional purposes but extend easily

to multiple variable factors. Maximization of operating profit, Π (Z, K, N) =

F (Z, K, N) − WN , over the flexible factor, N , leads to a reduced form profit

function, Π (K, A) = AKθ, where A = (1 − αN) [Z (αN/W )αN ]
1

(1−αN ) includes

shocks to productivity as well as variations in factor prices and in demand.

The exponent on capital θ is αK/ (1 − αN). Similarly, the revenue function

evaluated at the optimal flexible factor takes the reduced form F (K, A) =
A

(1−αN )K
θ.

The coefficient on K measuring the degree of returns-to-scale in capital (θ)

in both the revenue and profit functions is the same. Moreover, the properties

of the shocks to revenue and profits are the same up to a factor of proportion-

ality. Thus, the estimation strategy is to estimate θ from a regression of the

log revenue on the log capital stock:

πit = ait + θkit + εit

where πit = ln(F (K, A)), ait = ln(Ait), kit = ln(Kit), and εit is noise. However,

running an OLS potentially introduces bias in estimating θ due to the classic

endogeneity problem: kit can be correlated with ait since the econometric

unobservable ait might be observed or partially observed by the firm prior to
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choosing kit.

Olley and Pakes (1996) propose a control function approach to tackle this

endogeneity problem, which is later improved by Levinsohn and Petrin (2003)

and Ackerberg et al. (2015). Typically the primitives of the model are assumed

to satisfy the following assumptions:

ASSUMPTION 1—First-order Markov: p(ait|Iit−1) = p(ait|ait−1) where Iit−1

is the firm’s information set at t − 1.

ASSUMPTION 2—Timing of input choices: Capital choice of firms is dynamic

and evolves according to kit = K(kit−1, iit−1) where investment iit−1 is chosen

before period t.

ASSUMPTION 3—Strict monotonicity: iit = f(ait, kit) is strictly increasing

in ait.

The estimation can be implemented through a two-stage GMM. Given

ASSUMPTION 3, we can invert investment ait = f−1(kit, iit), and substitute

into the production function:

πit = θkit + f−1(kit, iit) + εit = Φt(kit, iit) + εit.

Then the first stage moment condition is

E[εit|Iit] = E[πit − Φt(kit, iit)|Iit] = 0.

After obtaining a nonparametric estimate Φ̂t(kit, iit) of Φt(kit, iit). We estimate

θ in the second stage using the following second stage conditional moment:

E[πit − θkit − g(Φt−1(kit−1, iit−1) − θkit−1)|Iit−1] = 0,

which comes from the Markov property of ait such that ait = E[ait−1|Iit−1] +
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ζit = E(ait|ait−1) + ζit with ζit being the unexpected innovation in ait.

To implement the method in Stata, we follow Asker et al. (2019) and

Baqaee and Farhi (2020) and use the prodest Stata package. Specifically,

• outcome variable is log sales,

• “state” variable is log capital stock, i.e., log PPEGT in the Compustat,

• “proxy” variable is log investment, which is an instrument for produc-

tivity,

• “control” variables include SIC 3-digit and SIC 4-digit sales shares.

We do not include labor in our production function estimation because of

a lot of missing values in Compustat. We hence set “free” variable equal to

a constant zero. Following Baqaee and Farhi (2020), we use 3-year rolling

windows and the estimate of θ for year t is based on data in years t − 1, t, and

t + 1. So in the raw data we extend the sample to years 1972 and 2020. The

estimation procedure has two stages. The first stage is a projection stage. We

regress log sales on the 3rd degree polynomial of all state, proxy, and control

variables in order to remove the measurement errors. The second stage is the

estimation stage using the predicted log sales as the dependent variable.

After obtaining unbiased estimates of θ, we recover the productivity shock

from âit = Φ̂it − θ̂kit. Table A1 tabulates summary statistics for the estimates

of θ across years. Figure A1 exhibits the distribution of estimated ait in the

sample. The mean of âit is equal to 1.376 and the standard deviation is 0.335.
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Appendix C: Additional Tables and Figures

Table A1: Estimates of Productivity Shocks θ

This table reports summary statistics for the estimates of productivity shocks θ

over the period 1973-2019. Detailed estimation procedures are provided in Online

Appendix B.

Obs. Mean Std. Dev. 25th 50th 75th

θ 47 0.848 0.015 0.836 0.844 0.864
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Table A2: Empirical Value Function - Control Function
Approach

This table replicates Table 3, except we follow Ackerberg et al. (2015) to use the

control function approach to correct the potential endogeniety issue after omitting

higher order polynomial terms in ln K and ln A. Fixed effects are controlled by a

within transformation for all variables. Other details are the same as Table 3.

(1) (2) (3)

ln K −0.373 −0.628 −0.551

(0.000) (0.000) (0.006)

ln A 0.981 0.299 0.429

(0.000) (0.000) (0.007)

(ln K)2 0.028 0.026

(0.002) (0.002)

(ln A)2 0.298 0.320

(0.001) (0.007)

ln A × ln K −0.015

(0.014)

Firm FE Y Y Y

Year FE Y Y Y

N 47, 141 47, 141 47, 141
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Table A3: Empirical Value Function - Portfolio-level Estimation

This table replicates Table 3, except we estimate the empirical value function

at the portfolio level. Each observation is a 4-digit SIC industry by year, in which

we take an average of the firm-level variables. Standard errors are clustered at the

indudstry level. We include 4-digit SIC codes and year fixed effects in the regression.

Other details are the same as Table 3.

(1) (2) (3)

ln K −0.118 −0.290 −0.308

(0.021) (0.088) (0.129)

ln A 1.575 0.568 0.526

(0.086) (0.310) (0.379)

(ln K)2 0.017 0.017

(0.009) (0.009)

(ln A)2 0.445 0.445

(0.130) (0.130)

ln A × ln K 0.010

(0.043)

Industry FE Y Y Y

Year FE Y Y Y

R
2 0.512 0.515 0.515

N 8, 902 8, 902 8, 902
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Table A4: Empirical Value Function - Orthogonal ln K and ln A

This table replicates Table 3, except we orthogonalize ln K and ln A as ̂ln K and

l̂n A and then project ln(V/K) on the polynomial of the orthogonalized variables.

Other details are the same as Table 3.

(1) (2) (3)

̂ln K −0.343 −0.623 −0.581

(0.017) (0.034) (0.036)
̂ln A 0.971 1.114 1.327

(0.030) (0.035) (0.071)

( ̂ln K)2 0.031 0.027

(0.003) (0.004)

( ̂ln A)2 0.289 0.289

(0.045) (0.045)
̂ln A × ̂ln K −0.049

(0.014)

Firm FE Y Y Y

Year FE Y Y Y

R
2 0.646 0.649 0.649

N 47, 141 47, 141 47, 141
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Table A5: Empirical Value Function - Interactive Fixed Effects

This table replicates Table 3, except we allow the interactive fixed effects between

firms and years in the regression following Bai (2009). Other details are the same

as Table 3.

(1) (2) (3)

ln K −0.260 −0.552 −0.484

(0.029) (0.066) (0.077)

ln A 0.600 0.233 0.351

(0.036) (0.129) (0.159)

(ln K)2 0.029 0.027

(0.006) (0.006)

(ln A)2 0.164 0.168

(0.053) (0.054)

ln A × ln K −0.029

(0.017)

Firm FE Y Y Y

Year FE Y Y Y

N 47, 141 47, 141 47, 141
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Table A6: Empirical Value Function - Lasso Analysis

This table reports the regression results for the Lasso analysis and the post-

estimation OLS. Candidate covariates in the model include 10th-order polynomials

in ln K and ln A. Column (1) reports the Lasso regression results by using the

adaptive Lasso algorithm proposed by Zou (2006). Column (2) reports the OLS

regression results after selecting variables from the Lasso regression in column (1).

Fixed effects are indicated at the bottom of the table. Other details are the same

as Table 3.

(1) (2)

Lasso Post-est OLS

ln A 0.251 0.258

(ln A)2 0.171 0.126

(ln A)10 0.000 −0.000

ln K −0.799 −0.920

(ln K)2 0.057 0.069

(ln K)6 −0.000 −0.000

(ln A)10 × ln K 0.000 0.000

(ln A)3 × ln K 0.007 0.013

(ln A)7 × (ln K)2 −0.000 −0.000

Firm FE Y Y

Year FE Y Y

R
2 · 0.651

N 47, 141 47, 141
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Figure A1: Distribution of Estimated Productivity Shocks

This figure plots the distributions of the estimated productivity shock (ln(A))

following Olley and Pakes (1996) and Ackerberg et al. (2015). Detailed procedure

to estimate the productivity shock is provided in Online Appendix B.
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