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1 Introduction

Following a wave of acquisitions in an industry, a policymaker asks an economist
if, and by how much, market power has increased. To answer this question,
the economist has detailed production data for a sample of firms in the in-
dustry at her disposal, including output and input quantities and prices.
The economist uses the De Loecker & Warzynski (2012) (henceforth DLW)
method to estimate the firm-level markup and then regresses it on a step
dummy that is one for the acquiring firms in the “after” period and zero oth-
erwise. If the acquisitions have in truth raised the markup of these firms, this
regression is likely to tell the opposite. In this paper, we explain what has
gone wrong in the exercise of the economist and how to address the problem.

To provide policy advice and answer a variety of empirical and theoretical
questions, economists would like to have an easy-to-compute way to estimate
the firm-level markup that does not require modelling demand and making
assumptions about firm conduct. Bain’s (1951) ratio of revenue to variable
cost comes close to this ideal but relies on equating inherently unobservable
marginal cost with average variable cost.

The production approach to estimating the markup has searched for ways
out of this impasse. DLW note that very generally a firm minimizes its cost
irrespective of the specifics of demand and firm conduct. They therefore
obtain the markup from the FOC for cost minimization by substituting in
estimates of the output elasticity of a variable input and the disturbance that
separates the firm’s actual output as recorded in the data from the output
that the firm planned on when it made its input decisions. To obtain the
output elasticity and the disturbance separating actual from planned output,
DLW use the procedure developed by Olley & Pakes (1996) and Levinsohn
& Petrin (2003), implemented as suggested by Ackerberg, Caves & Frazer
(2015) (henceforth OP, LP, and ACF), to estimate the production function.

The DLW method has been widely applied to study the distribution of
the markup across firms and its evolution over time (see, e.g., De Loecker,
Goldberg, Khandelwal & Pavcnik 2016, Brandt, Van Biesebroeck, Wang &
Zhang 2017, Brandt, Van Biesebroeck, Wang & Zhang 2019, De Loecker &
Scott 2016, De Loecker, Eeckhout & Unger 2018, De Loecker & Eeckhout
2018, Autor, Dorn, Katz, Patterson & Van Reenen 2020).1 In this paper,

1See also Berry, Gaynor & Scott-Morton (2020) for a recent panorama of the industrial
organization literature on markups.
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we first characterize the circumstances under which the DLW method con-
sistently estimates markups. We then show that outside these circumstances
the DLW method produces inconsistent estimates of the output elasticity
and the disturbance and therefore biased markups.2 In particular, the DLW
method is not robust to any differences in demand across firms or time un-
less they are observed by the econometrician in their entirety. Similarly, the
DLW method is not robust to any unobserved changes in firm conduct.

This poses an especially thorny issue because, besides its conduct, the
demand a firm faces in the output market is a fundamental determinant of
the markup that the firm charges. At the same time, the large literatures
on demand estimation and productivity analysis make clear that controlling
for differences in demand by observables is a daunting task. Papers such
as Berry, Levinsohn & Pakes (1995) and Foster, Haltiwanger & Syverson
(2008) notably highlight the considerable heterogeneity in demand that re-
mains even after controlling for detailed product attributes or honing in on
(nearly) homogenous products. The issue is compounded by the fact that,
in imperfectly competitive industries, the demand a firm faces depends on
its rivals, which are partially or completely unobserved in typical production
data.

The intuitive reason for the inconsistency of the DLW method is as fol-
lows. The OP/LP procedure solves the endogeneity problem in production
function estimation by inverting a decision of the firm that the econome-
trician observes, such as the firm’s demand for a variable input, to recover
the firm’s productivity that the econometrician does not observe. This in-
version presumes that two firms that have the same productivity have the
same input demand. If there is heterogeneity in demand in addition to het-
erogeneity in productivity, then this is not the case: two firms that have the
same productivity but charge different markups because they face different
demands in the output market generally have different input demands. It
is therefore no longer possible to express unobserved productivity in terms
of observables. Put differently, to use the OP/LP procedure to estimate the
production function and obtain the markup, the DLW method would have
to observe and control for the markup. In this way, the DLW method is

2We first noted the inconsistency of the DLW method in Doraszelski & Jaumandreu
(2019), where we emphasize the implications of biased technological change for markup
estimation. Bond, Hashemi, Kaplan & Zoch (2021) reiterate our point, although their
focus is on the difficulties for markup estimation that arise if the econometrician observes
revenue rather than the quantity of output.
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circular.
The observation that the proxy variable methods developed by OP and

LP cannot accommodate unobserved demand heterogeneity has been made
before. Foster et al. (2008) put it as follows:

. . . idiosyncratic demand shocks make the proxies functions of
both technology and demand shocks, thereby inducing a possi-
ble omitted variable bias. Put simply, proxy methods require a
one-to-one mapping between plant-level productivity and the ob-
servables used to proxy for productivity. This mapping breaks
down if other unobservable plant-level factors besides productiv-
ity drive changes in the observable proxy. (p. 403)

At first glance, however, this observation appears irrelevant under the
cost minimization assumption of DLW. The purpose of relying on cost mini-
mization instead of profit maximization is precisely to insulate the estimated
markup from the specifics of demand and firm conduct. After all, a firm min-
imizes its cost in most circumstances. De Loecker et al. (2016) accordingly
state that (their extension of) the DLW method (to multi-product firms)
“does not require assumptions on the market structure or demand curves
faced by firms” (p. 445, see also p. 497).

This is an overstatement. We show that in the cost minimization problem
the firm’s planned output summarizes the demand the firm faces and its con-
duct. Because planned output remains unobserved by the econometrician,
the firm’s cost-minimizing decisions again cannot be inverted to express un-
observed productivity in terms of observables. The DLW method therefore
either has to rule out any differences in demand and conduct across firms
and time or assume that they can be fully controlled for by observables.

At a minimum, the conditions required by the DLW method to consis-
tently estimate markups must be justified from a detailed understanding of
the market structure and the demands firms face in the industry under study.
This negates the purported advantage of relying on cost minimization in the
production approach to estimating the markup. Whether one can fully con-
trol for any differences in demand across firms and time by observables also
remains questionable in light of the large literatures on demand estimation
and productivity analysis (Berry et al. 1995, Foster et al. 2008), and fully
controlling for any differences in conduct may be equally challenging.

We therefore first characterize the bias in the estimates produced by the
DLW method that results if there are differences in demand or conduct across
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firms or time that cannot be fully controlled for by observables. We show
that the bias permeates the level of the estimated markup and its correlation
with variables of interest such as a firm’s export status or measures of trade
liberalization. To show that both the level and the correlation component
of the bias can be severe, we develop closed-form expressions for the bias in
specific settings.

Using data from the Spanish manufacturing sector, we then test for the
effects of unobserved demand heterogeneity and illustrate their consequences
for the estimated markup. Our empirical application indicates that unob-
served demand heterogeneity is important. The resulting bias is most pro-
nounced in the correlation of the estimated markup with variables of interest.

We then return to the conditions required by the DLW method to con-
sistently estimate markups. We provide a way to formally assess whether
the endeavor of using observables to control for differences in demand across
firms and time is successful. As may be expected, success or failure hinges
on the specification of demand and assumptions on firm conduct. This re-
inforces our point that the DLW method does not free the researcher from
having to think carefully about demand and firm conduct.

We close the paper by continuing our empirical application to illustrate
the dynamic panel approach to estimation. Because the dynamic panel
method avoids the inversion at the heart of the OP/LP procedure, it is
robust to unobserved demand heterogeneity and changes in firm conduct.

In sum, our paper makes three main contributions. First, we highlight a
not duly appreciated—and sometimes completely overlooked—assumption of
the DLWmethod. OP and LP rule out unobserved demand heterogeneity and
changes in firm conduct by assumption.3 Indeed, this has been codified as the
scalar unobservable assumption (Ackerberg, Benkard, Berry & Pakes 2007)
in the subsequent literature. DLW take the OP/LP procedure to a different
context that allows for heterogeneity in demand and the markup as well
as changes in firm conduct without acknowledging the implication, namely
that to use an OP/LP procedure to estimate the production function and

3LP assume a perfectly competitive industry where firms act as price takers and thus
face the same horizontal demand curve (see p. 322 and Appendix A). OP rule out unob-
served demand heterogeneity by assuming that any profitability differences across firms
are due to differences in their capital stocks and productivities (see p. 1273). Limiting the
state variables in the firm’s investment policy to its own capital stock and productivity
implicitly abstracts from competition between firms (see also Lemma 3 and Theorem 1 in
Pakes (1994)).
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obtain the markup, one would have to observe and control for the markup.
Second, we contribute by developing the consequences of unobserved demand
heterogeneity and changes in firm conduct and characterizing the bias in the
estimates produced by the DLW method. The two-step nature of the OP/LP
procedure complicates the analysis and, to our knowledge, our paper is the
first to show when and how a violation of the scalar unobservable assumption
in the first step causes a bias in the second step. Third, we point to the
dynamic panel method and other alternative approaches to estimation that
are robust to differences in demand or conduct across firms or time even if
they cannot be fully controlled for by observables.

The remainder of this paper is organized as follows. In Section 2, we
recall the setup and the DLW method for estimating the markup. In Section
3, we argue that it is generally not possible to express unobserved produc-
tivity in terms of observables. In Section 4, we characterize the bias in the
estimates if the economist nevertheless proceeds along the lines of DLW. In
Section 5, we provide an empirical application to test for the effects of un-
observed demand heterogeneity. In Section 6, we provide a way to formally
assess whether the endeavor of using observables to control for differences in
demand across firms and time is successful. In Section 7, we continue our
empirical application to illustrate the dynamic panel approach and point to
other alternative approaches to estimation. In Section 8, we conclude and
flag issues besides unobserved demand heterogeneity and changes in firm con-
duct that the production function approach to estimating the markup has to
confront.

2 DLW method

Firm j produces output Qjt in period t with a predetermined amount of
capital Kjt and freely variable amounts of labor Ljt and materials Mjt.

4 The
production function is

Qjt = Q∗
jt exp(εjt), Q∗

jt = F (Kjt, Ljt,Mjt) exp(ωjt), (1)

4Applications of OP/LP and DLW differ in the identity of the variable input: DLW
alternatively assume labor or materials to be freely variable (p. 2457), De Loecker et al.
(2016) assume materials to be freely variable (p. 471), and LP assume both labor and
materials to be freely variable (p. 322 and p. 339). We adopt the latter assumption merely
for concreteness.
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where ωjt is Hicks-neutral productivity that the firm observes before it de-
cides on variable inputs in period t but that remains unobserved by the econo-
metrician. As usual in the literature following OP and LP, ωjt is governed by
a first-order Markov process with the law of motion ωjt = E(ωjt|ωjt−1)+ξjt =
g(ωjt−1)+ ξjt, where g(ωjt−1) is expected productivity and ξjt is the produc-
tivity innovation. The disturbance εjt accounts for the difference between
the firm’s actual output Qjt as recorded in the data and the output Q∗

jt that
the firm planned on when it made its input decisions. While we think of εjt
as measurement error for simplicity, it can alternatively be interpreted as an
unanticipated shock to output (OP, pp. 1273–1274).5,6 In contrast to ωjt,
εjt is mean independent of—and therefore uncorrelated with—the inputs.
Because the econometrician does not observe εjt, planned output Q∗

jt also
remains unobserved by the econometrician.

DLW assume cost minimization in an attempt to avoid specifying demand
and firm conduct (pp. 2437–2438 and p. 2443). The firm minimizes variable
cost V Cjt = PLjtLjt + PMjtMjt, where PLjt and PMjt are the prices of labor
and materials, subject to achieving its planned output Q∗

jt. The FOC for
variable input Xjt ∈ {Ljt,Mjt} is

PXjt = MC(Kjt, PLjt, PMjt, Q
∗
jt, ωjt)

∂F (Kjt, Ljt,Mjt)

∂Xjt

exp(ωjt), (2)

where the envelope theorem serves to replace the Lagrange multiplier by
short-run marginal cost MC(·).

The markup is defined as µjt =
Pjt

MC(·) , where Pjt is the price of output.

Rewriting the FOC in equation (2) using the production function in equation
(1) yields

µjt =
PjtQjt

PXjtXjt

∂F (Kjt,Ljt,Mjt)

∂Xjt
Xjt

F (Kjt, Ljt,Mjt) exp(εjt)
=

βX(Kjt, Ljt,Mjt)

SR
Xjt

exp(−εjt), (3)

where βX(·) = ∂F (·)
∂Xjt

Xjt

F (·) is the output elasticity of variable input Xjt and

SR
Xjt =

PXjtXjt

PjtQjt
is the expenditure share of the input. Note that SR

Xjt is

5There are few attempts to account for measurement error in inputs within the proxy
variable paradigm (Kim, Petrin & Song 2016, Hu, Huang & Sasaki 2020, Collard-Wexler
& De Loecker 2020).

6Mundlak & Hoch (1965) refer to ωjt and εjt as the transmitted, respectively, un-
transmitted component of productivity. Examples of the untransmitted component may
include machine breakdowns, labor actions, supply chain disruptions, and power outages
that are not anticipated by the firm.
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observed because it is based on actual output Qjt rather than planned out-
put Q∗

jt. DLW therefore obtain the markup µDLW
jt of firm j in period t by

substituting estimates of βX(·) and εjt into equation (3).
To estimate the output elasticity βX(·) and the disturbance εjt, DLW

use the procedure developed by OP and LP, implemented as suggested by
ACF (p. 2442 and pp. 2444–2449).7 After specifying the OP/LP procedure,
in Section 3 we show that the inversion at the heart of this procedure fails
because planned output Q∗

jt is unobserved by the econometrician. We also
show that in the cost minimization problem the firm’s planned output Q∗

jt

summarizes the demand the firm faces and its conduct. In Section 4, we show
that, as a consequence, the OP/LP procedure yields inconsistent estimates

β̂X(·) = βX(·)(1 + biasjt) and ̂̃εjt = ζjt + εjt in the presence of unobserved
demand heterogeneity. The markup µDLW

jt = µjt(1 + biasjt) exp(−ζjt) esti-
mated by the DLW method is therefore biased.

3 Inverting for unobserved productivity

The OP/LP procedure starts with a function ωjt = h(zjt) that expresses
unobserved Hicks-neutral productivity ωjt by a vector of observables zjt. OP
use the demand for investment to invert for ωjt and LP the demand for a
variable input. zjt correspondingly collects input quantities and prices and
all other arguments of the demand that is inverted for ωjt.

8 Substituting the
function ωjt = h(zjt) into equation (1) and taking logs yields

qjt = q∗jt + εjt = lnF (Kjt, Ljt,Mjt) + h(zjt) + εjt = ϕ(zjt) + εjt, (4)

where we use lowercase letters to denote logs and ϕ(·) is an unknown func-
tion that must be estimated nonparametrically. Assuming that εjt is mean

7While DLW and its subsequent applications sometimes also use other estimators, the
OP/LP procedure plays a central role. DLW report eight estimates based on the OP/LP
procedure in their Table 2, compared to two estimates based on Hall (1986) and Klette
(1999). While all results reported in De Loecker et al. (2016) are based on the OP/LP
procedure, De Loecker, Eeckhout & Unger (2020) also report results based on cost shares
as a robustness check. Of course, these other estimators have their own drawbacks. Hall
(1986) and Klette (1999) assume that the markup is constant across firms and time and the
cost share “approach relies on each input of production to be variable and for production
to occur under constant returns to scale” (De Loecker et al. 2018, p. 13).

8Following LP, DLW rely on the demand for materials and write ωit = ht(mit, kit, zit),
where i indexes firms and t periods (p. 2446). To economize on the notation, we subsume
their mit, kit, and zit into our zjt.
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independent of zjt and carrying out the regression in equation (4) yields esti-
mates of planned output q∗jt = ϕ(zjt) and the disturbance εjt = qjt − q∗jt that
separates actual output qjt from planned output q∗jt.

9 This is the first step
of ACF.

In a second step, the estimate of ϕ(·) and the Markovian assumption on
Hicks-neutral productivity ωjt serve to estimate the production function and

the implied output elasticity βX(·) =
∂ lnF (·)
∂xjt

by carrying out the regression

qjt = lnF (Kjt, Ljt,Mjt)+ g
(
ϕ̂(zjt−1)− lnF (Kjt−1, Ljt−1,Mjt−1)

)
+ ξjt+ εjt,

(5)
where the conditional expectation function g(·) is estimated nonparametri-
cally. Note that any variable input that the firm decides on after it observes
ωjt is correlated with the productivity innovation ξjt and must be instru-
mented for.

In the arguments zjt of the function ωjt = h(zjt), DLW include any “ad-
ditional variables potentially affecting optimal input demand choice” and ad-
vise that “[t]he exact variables to be included . . . depend on the application
but will definitely capture variables leading to differences in optimal input
demand across firms such as input prices” (p. 2446). As we show below,
however, another variable affecting optimal input demand is planned output
Q∗

jt. Because planned output Q∗
jt is unobserved by the econometrician, the

inversion at the heart of the OP/LP procedure fails. Put differently, to use
this procedure to estimate the disturbance εjt or, equivalently, planned out-
put Q∗

jt in the first step and the output elasticity βX(·) in the second step,
DLW would have to observe and control for planned output Q∗

jt.

Inverting a variable input. LP use the demand for a variable input to
invert for ωjt. The solution to the cost minimization problem in Section 2

is the variable cost function V C
(
Kjt, PLjt, PMjt,

Q∗
jt

exp(ωjt)

)
. From Shephard’s

lemma, the demand for variable input Xjt is thus

Xjt =
∂V C

(
Kjt, PLjt, PMjt,

Q∗
jt

exp(ωjt)

)
∂PXjt

. (6)

9The assumption that εjt is uncorrelated with zjt slightly strengthens the earlier as-
sumption that εjt is mean independent of the inputs.
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While this expression can be inverted for
Q∗

jt

exp(ωjt)
, with planned output Q∗

jt

being unobserved it cannot be inverted for ωjt; hence, it is not possible to
replace unobserved Hicks-neutral productivity ωjt by observables zjt. Com-
bining the demands for two or more variable inputs does not resolve the
problem.

Another way to see the problem is to go back to the FOC in equation
(2). Without controlling for marginal cost MC(Kjt, PLjt, PMjt, Q

∗
jt, ωjt), the

FOC cannot be used to express unobserved Hicks-neutral productivity ωjt in
terms of observables zjt. However, marginal cost is inherently unobservable
and the assumption of cost minimization does not suffice to infer it. To see
this, combine the FOCs for labor and materials and the production function
in equation (1) to express marginal cost as

MC(Kjt, PLjt, PMjt, Q
∗
jt, ωjt) =

V Cjt

Q∗
jt

1

ν(Kjt, Ljt,Mjt)
, (7)

where V Cjt = PLjtLjt + PMjtMjt is variable cost and ν(·) = βL(·) + βM(·)
is the short-run elasticity of scale. Even though variable cost is observable,
marginal cost cannot be inferred because the econometrician does not observe
planned output Q∗

jt.
10 Planned output being unobservable is equivalent to

marginal cost being unobservable.

Inverting investment. OP use the demand for investment to invert for
ωjt. OP derive the demand for investment from a dynamic profit maximiza-
tion problem (pp. 1270–1273). This requires OP to take a stand on de-
mand in the output market and firm conduct, which is what DLW intend to
avoid. One may alternatively start from a dynamic cost minimization prob-
lem, where the firm chooses capital, labor, and materials, possibly subject
to adjustment costs, to achieve a sequence of planned outputs Q∗

jt (see, e.g.,
Doraszelski & Jaumandreu 2019). In this case, the demand for investment

is a function of
Q∗

jt

exp(ωjt)
and an analogous problem to the one just reviewed

arises.

Controlling for planned output. As we have shown above, as long as
planned output Q∗

jt is unobserved by the econometrician, it is not possible

10The most one can infer is MC(·) exp(−εjt) by replacing planned output Q∗
jt with

actual output Qjt = Q∗
jt exp(εjt) in equation (7).

10



to replace unobserved Hicks-neutral productivity ωjt by observables zjt. The
obvious way around this problem is to assume that planned output Q∗

jt can
itself be controlled for by a subset of the observables zjt, i.e., that there
exists a function Q∗

jt = D(zDjt) mapping observables zDjt ⊆ zjt into planned
output Q∗

jt. This is the intuition behind DLW’s broad interpretation of zjt.
De Loecker et al. (2016) include variables such as location, product dummies,
export status, input and output tariffs, market share, and the price of output
in zjt (p. 466). Output tariffs, for example, clearly play no role in the cost
minimization problem; the only reason to include them in zjt is as an attempt
to control for Q∗

jt.
The large literatures on demand estimation and productivity analysis cast

doubt on any attempt to control for planned output Q∗
jt by observables zDjt .

Berry et al. (1995) stress the importance of the unobserved characteristic
that remains even after including detailed product attributes in the specifi-
cation of demand. Foster et al. (2008) similarly highlight the considerable
heterogeneity in demand that remains even after honing in on (nearly) ho-
mogenous products. Hence, the demand the firm faces is Q∗

jt = D(zDjt , δjt),
where the demand shock δjt captures unobserved demand heterogeneity in
the sense of any differences in demand across firms or time that remain after
controlling for observables zDjt .

Note that under imperfect competition δjt includes not only the unob-
served product characteristic of the firm under consideration but also those of
its rivals. Moreover, the demand the firm faces depends on its rivals’ prices
under Bertrand competition and on its rivals’ (planned) quantities under
Cournot competition.11 To the extent that these variables are partially or
completely unobserved, as they are in production data that covers a sample
of firms, they become part of δjt.

12

In addition to demand, planned output Q∗
jt = D(zDjt , δjt) depends on the

conduct of the firms in the industry. Changes in firm conduct, e.g., following

11Instead of thinking of Q∗
jt = D(zDjt , δjt) as one of the equations in the demand system

for the industry under study, we can think of D(·) as the firm’s residual demand in the
sense of Baker & Bresnahan (1985). In this case, D(·) encapsulates how the industry
equilibrium changes as the focal firm changes its price or quantity. While this obviates
accounting for rivals’ prices or quantities, D(·) instead depends on assumptions about firm
conduct and on rivals’ marginal costs and thus their unobserved productivities.

12The common practice of letting the function ωjt = h(zjt) vary by period may partly
absorb time-series variation but of course not cross-sectional variation due to unobserved
differences in demand across firms.
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a wave of acquisitions as in the opening paragraph of Section 1, become part
of δjt to the extent that they are unobserved and remain after controlling for
observables zDjt .

In sum, in the cost minimization problem the firm’s planned output Q∗
jt =

D(zDjt , δjt) summarizes the demand the firm faces and its conduct.13 There
is little reason to believe that δjt = 0 as required by DLW. At the very least,
assuming δjt = 0 requires a careful justification starting from the specification
of demand and assumptions on firm conduct, thus negating the purported
advantage of the production approach and relying on cost minimization to
estimate markups over the demand approach. We come back to this point in
Section 6, where we provide a way to formally assess whether the endeavor
of controlling for planned output Q∗

jt by observables zjt is successful.
In Sections 4 and 5, we further develop the consequences of unobserved

demand heterogeneity and changes in firm conduct for the DLW method. We
first characterize the bias in the estimated markup resulting from δjt ̸= 0.
Then we provide an empirical application to test for the effects of δjt ̸= 0.

4 Bias in estimated markup

If there are differences in demand or conduct across firms or time that cannot
be fully controlled for by zjt, then δjt ̸= 0 and equation (4) becomes

qjt = q∗jt + εjt = ϕ(zjt, δjt) + εjt. (8)

Regressing qjt on observables zjt in the first step of ACF, however, yields an
estimate of the conditional expectation E(qjt|zjt) = E(q∗jt|zjt) = E(ϕ(zjt, δjt)|zjt) =
ϕ̃(zjt), where the first equality uses that εjt is mean independent of zjt. We
thus write the first-stage regression as

qjt = ϕ̃(zjt) + ϕ(zjt, δjt)− ϕ̃(zjt) + εjt = ϕ̃(zjt) + ζjt + εjt = ϕ̃(zjt) + ε̃jt,

where the prediction error ζjt = q∗jt −E(q∗jt|zjt) = ϕ(zjt, δjt)− ϕ̃(zjt) is mean
independent of zjt by construction and has mean zero.

13While the firm’s cost-minimizing decisions depend indirectly on δjt through Q∗
jt, its

profit-maximizing decisions depend directly on δjt and thus cannot be used either to
replace Hicks-neutral productivity ωjt by observables zjt. Moreover, under imperfect
competition the profit-maximizing demand for a variable input may not be invertible even
if δjt = 0 (Biondi 2022). DLW do not state if the inverse in their equation (9) is derived
from the profit-maximizing or cost-minimizing demand for materials.
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We develop four alternative characterizations of the prediction error ζjt
that are helpful in assessing the bias in the estimated disturbance in the
first step of ACF and the estimated output elasticity in the second step.
From the production function in equation (1), we have q∗jt = ϕ(zjt, δjt) =
lnF (Kjt, Ljt,Mjt) + ωjt. Assuming for simplicity that the demand the firm
faces takes the form Q∗

jt = D(zDjt) exp(δjt), we also have q∗jt = ϕ(zjt, δjt) =
lnD(zDjt) + δjt. Recalling that zjt includes input quantities and prices and
that zDjt ⊆ zjt (see Section 3) it follows that

ζjt = ωjt − E(ωjt|zjt) = δjt − E(δjt|zjt). (9)

Our first two characterizations in equation (9) show that ζjt covaries with
any part of Hicks-neutral productivity ωjt and any part of the demand shock
δjt that is not captured by observables zjt.

To develop our next two characterizations of ζjt, we use the FOC for
variable input Xjt in equation (2) to write marginal cost MCjt as

MCjt =
1

PXjt
∂F (Kjt,Ljt,Mjt)

∂Xjt

exp(−ωjt). (10)

Using equation (9) it follows that

lnMCjt − E (lnMCjt|zjt) = −ωjt + E (ωjt|zjt) = −ζjt. (11)

Hence, ζjt = − lnMCjt + E(lnMCjt|zjt) is inversely related with any true
determinant of marginal cost that has not been controlled for by observables
zjt. Finally, using equation (11) and assuming that the price of output Pjt is
included in zjt (as in De Loecker et al. 2016) it follows that

lnµjt − E(lnµjt|zjt) = ζjt. (12)

Hence, ζjt = lnµjt − E(lnµjt|zjt) covaries with any true determinant of the
markup that has not been controlled for by observables zjt.

Bias in estimated disturbance. With δjt ̸= 0, DLW obtain an estimate

of ε̃jt = ζjt+εjt in the first step of ACF and substitute this biased estimate ̂̃εjt
into equation (3) in lieu of εjt. Assuming for now that the output elasticity
βX(·) is known, DLW therefore obtain µDLW

jt = µjt exp(−ζjt) or, equivalently,
lnµDLW

jt = lnµjt − ζjt. Equation (12) implies that ε̃jt covaries with any true

13



determinant of the markup that has not been controlled for by observables
zjt. The markup µDLW

jt estimated by the DLW method is therefore inversely
related with any true determinant of the markup that has not been controlled
for by observables zjt.

The economist in the opening paragraph in Section 1 who uses the DLW
method to estimate the markup and then regresses lnµDLW

jt on a step dummy
that is one for the acquiring firms in the “after” period and zero otherwise

is a case in point: the bias in ̂̃εjt predisposes her to finding that the markup
of the acquiring firms has not increased or even decreased following the wave
of acquisitions.

We provide an analytically tractable illustration of how severely biased
the regression of the markup lnµDLW

jt obtained by the DLW method on the
step dummy may be. In Appendix A, we model a merger between two
symmetric Bertrand competitors. The production function of firm j is Q∗

jt =

V
βV
jt exp(ωjt), where βV ∈ (0, 1) is the output elasticity of the variable input

Vjt. We think of Vjt as a composite of labor and materials akin to cost
of goods sold and, to simplify the exposition, we abstract from capital and
specify PV jt = 1. The demand firm j faces is Q∗

jt = exp(δjt)P
η
jtP

γ
−jt, where

η < −1 and γ > η are the own- and cross-price elasticities of demand and
δjt is a demand shock. As we show in Appendix A, the markup of firm j
is µjt =

η+ιjtγ

η+ιjtγ+1
, where pre-merger ιjt = 0 and post-merger ιjt = 1. The

wave of acquisitions may therefore enable a firm to increase its markup from
µ = η

η+1
to µ = η+γ

η+γ+1
.

In Appendix B, we use this model as the basis for the data generating
process. For simplicity, we assume that mergers occur exogenously and use
λ = Pr(ιjt = 1) ∈ (0, 1) to denote the probability that firm j in period t
charges the higher markup µ. We further assume that ωjt ∼ N (0, σ2

ω) and
δjt ∼ N (0, σ2

δ).
14

Regressing the markup lnµjt on the step dummy ιjt yields the coefficient
of interest lnµ − lnµ that measures the increase in market power following

the wave of acquisitions. In contrast, the regression of the markup lnµDLW
jt =

lnµjt−ζjt obtained by the DLW method on the step dummy may be severely
biased to the extent that the prediction error ζjt covaries with any part of the
step dummy ιjt that is not fully controlled for by observable zjt. Because the

14If ωjt follows an AR(1) process with parameter ρ and innovation ξjt ∼
N
(
0, (1− ρ2)σ2

ω

)
, then ωjt ∼ N

(
0, σ2

ω

)
at the stationary distribution. Persistence may

similarly be introduced into δjt.

14



price of output Pjt is informative about the degree of market power that a
firm enjoys, we include it in the first step of ACF and specify zjt = (vjt, pjt).

As we show in Appendix B, regressing lnµDLW
jt on the step dummy yields(

lnµ− lnµ
)
(E(τ(zjt)|ιjt = 1)− E(τ(zjt)|ιjt = 0)) < lnµ− lnµ, (13)

where τ(zjt) ∈ (0, 1) is a weight that depends on the probability λ = Pr(ιjt =
1) and the densities of zjt conditional on ιjt = 1 and ιjt = 0, respectively (see
equation (35) in Appendix B for τ(zjt) and equation (38) for E(τ(zjt)|ιjt)).
It follows immediately from τ(zjt) ∈ (0, 1) that the coefficient of interest in
equation (13) is biased down. Moreover, τ(zjt) = 0 if λ = 0 and τ(zjt) = 1
if λ = 1 and the regression estimates the coefficient of interest to be zero
in these extreme cases. By continuity, the coefficient of interest is therefore
severely biased towards zero if either very few or almost all firms are able to
increase their markup following the wave of acquisitions. In Appendix B, we
evaluate the bias for intermediate cases. We also show that the coefficient of
interest may be estimated to be negative instead of positive if the price of
output Pjt is excluded from the first step of ACF.

Bias in estimated output elasticity. As the output elasticity βX(·) is
not known, it must be estimated in the second step of ACF. With δjt ̸= 0,

ϕ(zjt) in equation (5) becomes ϕ(zjt, δjt). DLW obtain an estimate of ϕ̃(zjt)
in the first step of ACF and substitute it into equation (5) in lieu of ϕ(zjt, δjt).
Rewriting equation (5) accordingly yields

qjt = lnF (Kjt, Ljt,Mjt)

+g
(
ϕ̃(zjt−1) + ζjt−1 − lnF (Kjt−1, Ljt−1,Mjt−1)

)
+ ξjt + εjt.(14)

To take the most favorable case, let ωjt follow an AR(1) process with param-
eter ρ so that g(ωjt−1) = ρωjt−1 and ρζjt−1 becomes part of the composite
error term. Even in this case, however, δjt ̸= 0 invalidates commonly used
instruments in the second step of ACF.

Current capital Kjt is commonly used as an instrument in the second
step of ACF. The underlying assumption is that the firm decides on in-
vestment, and thus capital, in period t − 1 before it observes Hicks-neutral
productivity ωjt (“time to build”); hence, Kjt is uncorrelated with the pro-
ductivity innovation ξjt. Under an analogous assumption, current labor Ljt

15



is also often used as an instrument (De Loecker et al. 2016, p. 471). How-
ever, none of these instruments is valid with δjt ̸= 0: any variable that is
chosen in period t − 1 is chosen with knowledge of Hicks-neutral produc-
tivity ωjt−1 and the demand shock δjt−1 and, from equation (9), is there-
fore correlated with what remains of ωjt−1 and δjt−1 in the prediction error
ζjt−1 = ωjt−1 − E(ωjt−1|zjt−1) = δjt−1 − E(δjt−1|zjt−1) after controlling for
zjt−1.

15 Using invalid instruments biases the estimated output elasticity.
To formalize this bias, we extend the production function of firm j to

be Q∗
jt = K

βK
jt V

βV
jt exp(ωjt). Capital Kjt is chosen in period t − 1 and the

variable input Vjt is chosen in period t. We specify zjt = (kjt, vjt, pV jt) in the

first step of ACF and estimate E(q∗jt|zjt) = ϕ̃(zjt). We simplify the second
step of ACF by assuming that ρ is known. We accordingly rewrite equation
(14) as

qjt − ρϕ̃(zjt−1) = βK (kjt − ρkjt−1) + βV (vjt − ρvjt−1) + ρζjt−1 + ξjt + εjt
(15)

and use 2SLS with instruments kjt, pV jt, and zjt−1 to estimate βK and βV .
Using kjt − ρkjt−1 and v̂jt − ρvjt−1, where v̂jt = E(vjt|kjt, pV jt, zjt−1), to
denote the projections of the regressors kjt − ρkjt−1 and vjt − ρvjt−1 on the
instruments, the 2SLS estimator converges to(

βK

βV

)
+

(
E((kjt − ρkjt−1)

2) E((kjt − ρkjt−1)(vjt − ρvjt−1))
E((kjt − ρkjt−1)(v̂jt − ρvjt−1)) E((v̂jt − ρvjt−1)(vjt − ρvjt−1))

)−1

·
(

E((kjt − ρkjt−1)(ρζjt−1 + ξjt + εjt))

E((v̂jt − ρvjt−1)(ρζjt−1 + ξjt + εjt))

)
=

(
βK

βV

)
+ ρ

(
E((kjt − ρkjt−1)

2) E((k − ρkjt−1)(vjt − ρvjt−1))
E((kjt − ρkjt−1)(vjt − ρvjt−1)) E((v̂jt − ρvjt−1)(vjt − ρvjt−1))

)−1

·
(

E(kjtζjt−1)

E(v̂jtζjt−1)

)
, (16)

where the equality uses that (i) the instruments are uncorrelated with ξjt and
εjt by assumption, (ii) E((kjt−ρkjt−1)(v̂jt−ρvjt−1)) = E((kjt−ρkjt−1)(v̂jt−
vjt + vjt − ρvjt−1)) = E((kjt − ρkjt−1)(vjt − ρvjt−1)) because v̂jt − vjt is mean
independent of kjt and kjt−1 by construction of v̂jt, and (iii) the prediction
error ζjt−1 is mean independent of kjt−1 and vjt−1 by virtue of the first step
of ACF.

15Recall that zjt is specified from the arguments of the demand that is inverted for ωjt

(see Section 3).
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Equation (4) makes clear that E(kjtζjt−1) ̸= 0 generally implies the exis-

tence of a bias. In what follows, we let bias = β̂V −βV

βV
denote the relative bias

in the estimate of the output elasticity of the variable input Vjt. Assessing
this bias requires assessing the various terms in equation (16). This, in turn,
requires specifying the data generating process. In Appendix C, we do so in

a way that allows us to analytically characterize bias = β̂V −βV

βV
.

Specifically, as we detail in Appendix C, marginal costMC(Kjt, PV jt, Q
∗
jt, ωjt)

depends on the index 1
βV

(βKkjt − βV pV jt + ωjt). Rather than specifying de-

mand and assuming firm conduct, we start from marginal revenueMR(Q∗
jt, δjt),

where δjt is a demand shock, and model planned output as

q∗jt =
1

βV

(βKkjt − βV pV jt + ωjt) + δjt. (17)

Equation (17) may be viewed as a log-linearization of the solution toMR(Q∗
jt, δjt) =

MC(Kjt, PV jt, Q
∗
jt, ωjt).

16

We further model the law of motion for capital as

kjt+1 = τ 0 + τ kkjt + τ pKpKjt + τ pV pV jt + τωωjt + τ δδjt, (18)

where the price of capital PKjt may include, besides the user cost of capital,
any other influences on capital such as investment opportunities and finan-
cial constraints. Equation (18) may be viewed as a log-linearization of the
demand for investment that arises from a dynamic profit maximization prob-
lem (as in OP, see Section 3).17 Alternatively, equation (18) encompasses as
a special case the solution to a dynamic cost minimization problem in which
capital is subject to time to build but not to adjustment costs, and we pro-
vide the resulting expressions for τ 0, τ k, τ pK , τ pV , τω, and τ δ in equation
(42) in Appendix C.

16If the demand firm j faces is Q∗
jt = exp(δjt)P

η
jt, where η < −1, then profit maximiza-

tion implies

q∗jt =
βV η

η(1− βV )− βV

(
ln

βV (1 + η)

η
− δjt

η
+

1

βV

(βKkjt − βV pV jt + ωjt)

)
.

As ηβV

η(1−βV )−βV
> 0, q∗jt increases in the index 1

βV
(βKkjt − βV pV jt + ωjt) and in δjt in

accordance with equation (17).
17Assuming constant returns to scale in production and quadratic adjustment costs to

capital, the firm’s dynamic programming problem can be solved in closed form if the firm
is a price-taker in the output market (Syverson 2001, Van Biesebroeck 2007, Ackerberg
et al. 2015). Unfortunately, this is no longer possible under imperfect competition.
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Finally, we assume that xjt ∈ {pKjt, pV jt, ωjt, δjt} follows the AR(1) pro-
cess xjt = ρxxjt−1 + ξxjt with parameter ρx and innovation ξxjt ∼ N(0, σ2

x).
To simplify the exposition, we omit the subscript ω from ρω and ξωjt in what
follows.

In Appendix C, we show that there is no bias in three special cases:

Proposition 1 If σ2
δ = 0, then ζjt = 0 and hence bias = 0.

Proposition 1 rules out any differences in demand and conduct across firms
and time as required by DLW.

Proposition 2 If σ2
ω = 0 or ρ = 0, then E(kjtζjt−1) = E(v̂jtζjt−1) = 0 and

hence bias = 0.

In stark contrast to the literature on productivity analysis, Proposition 2
rules out dispersion or persistence in productivity.

Proposition 3 If τω = τ δ = 0, then E(kjtζjt−1) = E(v̂jtζjt−1) = 0 and
hence bias = 0.

Note that neither τω = 0 nor τ δ = 0 by itself is sufficient for E(kjtζjt−1) =
E(v̂jtζjt−1) = 0. A bias may therefore arise even if the evolution of capital
depends solely on either productivity or the demand shock. Of course, ωjt is
a state variable in the firm’s dynamic programming problem whenever ρ > 0,
as is δjt whenever ρδ > 0, so that typically τω ̸= 0 and τ δ ̸= 0 (as in the
above-mentioned dynamic cost minimization problem, see equation (42) in
Appendix C).

Proposition 1 differs from Propositions 2 and 3 in that there is no predic-
tion error in case of Proposition 1, whereas there is a prediction error in case
of Propositions 2 and 3 but it is not transmitted to the estimated output
elasticity.

Taken together, Propositions 1 and 3 show that current capital Kjt is no
longer a valid instrument with δjt ̸= 0 to the extent that it is chosen in period
t − 1 with knowledge of Hicks-neutral productivity ωjt−1 and the demand
shock δjt−1 and is therefore correlated with what remains of ωjt−1 and δjt−1

in the prediction error ζjt−1 = ωjt−1−E(ωjt−1|zjt−1) = δjt−1−E(δjt−1|zjt−1)
after controlling for zjt−1. The evolution of capital in response to Hicks-
neutral productivity and the demand shock ensures that the prediction error
in the first step of ACF gives rise to a bias in the estimated output elasticity
in the second step of ACF.
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Figure 1: bias = β̂V −βV

βV
over range of σ2

δ for ρδ ∈ {−0.3, 0, 0.3, 0.6}. τ 0, τ k,

τ pK , τ pV , τω, and τ δ from dynamic cost minimization problem.

In evaluating the bias outside the special cases in Propositions 1–3, we
focus on the role of the dispersion and persistence in the demand shock. We
parameterize

βK = 0.2, βV = 0.8, ρ = 0.9, σ2
ω = 0.25

(
1− 0.92

)
,

ρδ ∈ {−0.3, 0, 0.3, 0.6} , σ2
δ ∈ [0, 1],

ρpK = ρpV = 0, σ2
pK

= σ2
pV

= 0.01

and determine τ 0, τ k, τ pK , τ pV , τω, and τ δ in the law of motion for capital in
equation (18) from the above-mentioned dynamic cost minimization problem
(see equation (42) in Appendix C). Our parameterization implies V ar(ω) =
0.25 and is therefore broadly consistent with the dispersion and persistence in
total factor productivity reported in the literature on productivity analysis.
Our parameterization further approximates the widely used assumption in
the literature following OP that input prices are constant. Figure 1 shows

bias = β̂V −βV

βV
over the specified range of σ2

δ for the various values of ρδ.

As can be seen, the bias is small near σ2
δ = 0 in line with Proposition 1 but

rapidly becomes large. The bias may be positive or negative. In Appendix C,
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we show that the bias may be enormous if we change the parameterization
of the law of motion for capital in equation (18).

Bias in estimated markup. Substituting biased estimates of the distur-
bance εjt and the output elasticity βX(·) into equation (3), DLW obtain

µDLW
jt =

βX(Kjt, Ljt,Mjt)(1 + biasjt)

SR
Xjt

exp(−εjt − ε̃jt + εjt)

= µjt(1 + biasjt) exp(−ζjt),

where we index the bias by j and t to accommodate production functions
other than the Cobb-Douglas from our example. It follows that

lnµDLW
jt ≈ lnµjt + biasjt − ζjt.

The bias in the markup µDLW
jt obtained by the DLW method has two

components. The first component affects the unconditional expectation of
µDLW
jt and hence its level since

E(lnµDLW
jt ) = E(lnµjt) + E(biasjt). (19)

The second component of the bias affects the conditional expectation of µDLW
jt

and hence how it correlates with variables that the economist may be inter-
ested in such as a firm’s export status or measures of trade liberalization. To
see this, note that for any such variable wjt we have

E(lnµDLW
jt |wjt) = E(lnµjt|wjt) + E(biasjt|wjt)− E(ζjt|wjt). (20)

5 Testing for the effects of unobserved de-

mand heteroegeneity

In this section, we test whether the first step of ACF is correctly specified
as qjt = ϕ(zjt) + εjt (see again equation (4)) or becomes qjt = ϕ(zjt, δjt) +
εjt (equation (8)). The difficulty is that δjt is inherently unobservable, as
is its correlation with the observables zjt. We overcome this difficulty by
exploiting that our data contains a firm- and year-specific assessment of the
evolution of a firm’s main market (slump, stability, or expansion). As the
underlying survey question intends to measure changes in market size, this
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market dynamism variablemdyjt is as good a proxy for shifts in the demand a
firm faces as one can hope for in production data and therefore an important
component of δjt. At the same time, there is no reason to believe that it
captures differences in demand across firms or time in their entirety. Hence,
while our market dynamism variable mdyjt is useful for testing purposes,
adding it to the observables zjt in the first step of ACF is not a solution to
the problem of unobserved demand heterogeneity.

Data. Our data come from the Encuesta Sobre Estrategias Empresariales
(ESEE) survey, a firm-level survey of the Spanish manufacturing sector, and
spans 1990-2012. An attractive feature of our data is that it contains firm-
and year-specific Paasche-type price indices for output and materials that
we use to deflate revenue and the value of materials.18 Appendix D provides
details on the sample and variables. We estimate the production function
separately for 10 industries.

Specification and estimation. We specify a Cobb-Douglas production
function lnF (Kjt, Ljt,Mjt) = β0 + βt + βKkjt + βLljt + βMmjt, where β0 is
a constant and βt is a set of 21 year dummies. As in ACF, we specify an
AR(1) process with parameter ρ for Hicks-neutral productivity ωjt.

We invert the demand for a variable input and write ωjt = h(zjt). We
include input quantities kjt, ljt, and mjt, the real price of labor pLjt − pjt,
and the real price of materials pMjt− pjt in the observables zjt in addition to
the constant and the year dummies.

In the first step of ACF, we flexibly approximate ϕ(zjt) in equation (4) by
a complete polynomial of order 3 in the continuous variables included in zjt,
the constant, and the year dummies and estimate by OLS. In the second step
of ACF, we estimate equation (5) by GMM. The instruments are kjt, kjt−1,

ljt−1, mjt−1, and ϕ̂(zjt−1) in addition to the constant and the year dummies.
We correct the standard errors for the two-step nature of the estimation (see
Appendix E).

18While using firm-specific price indexes is widely considered preferable to using
industry-wide price indexes or estimating a revenue production function, well-known issues
remain regarding comparing units of differentiated products across firms and multi-product
production within firms (De Loecker & Syverson 2021, pp. 175–182).
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Markup. While our approach extends directly to alternative assumptions,
we assume that both labor Ljt and materials Mjt are variable inputs.

19 Com-
bining equation (3) for labor and materials yields

µjt =
ν(Kjt, Ljt,Mjt)

SR
Ljt + SR

Mjt

exp(−εjt), (21)

where ν(·) = βL(·) + βM(·) = ∂ lnF (·)
∂ljt

+ ∂ lnF (·)
∂mjt

is the short-run elasticity of

scale.20 As in DLW, we obtain the markup µDLW
jt of firm j in period t by

substituting estimates of the parameters ν = βL + βM of the Cobb-Douglas
production function and of the disturbance εjt into equation (21).

Results. Table 1 reports the results from the DLW method. Column (1)
shows the average (log) markup by industry, along with the sample standard
deviation. The average markup ranges from 0.090 in industry 1 to 0.445 in
industry 3.

Columns (2)–(4) show the underlying production function estimates. The
estimate of the output elasticity of capital βK is plausible although not signif-
icant at the 5% level in industries 5, 6, and 8. The estimate of the short-run
elasticity of scale ν is on the high side and in 7 industries ranges from 0.956
to 1.173.

While the extant literature does not routinely conduct formal specifica-
tion tests, the Sargan test in column (5) rejects the specification in 3 indus-
tries at the 5% significance level. This is not surprising: as shown in Section
4, if there are differences in demand across firms or time that cannot be fully
controlled for by zjt, then δjt ̸= 0 and kjt is no longer a valid instrument in
the second step of ACF.

Test. To more specifically test for the effects of unobserved demand het-
erogeneity, recall from equation (14) that if δjt ̸= 0, then equation (5) in the
second step of ACF becomes

qjt = lnF (Kjt, Ljt,Mjt)

19See again footnote 4.
20Doraszelski & Jaumandreu (2019) and Raval (2023) show that, in practice, the level

of the estimated markup and its correlation with variables of interest can be different
depending on whether labor or materials is used in equation (3). Combining them in
equation (21) ameliorates this problem.
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+ρ
(
ϕ̃(zjt−1)− lnF (Kjt−1, Ljt−1,Mjt−1)

)
+ ρζjt−1 + ξjt + εjt,(22)

where ϕ̃(zjt) = E (ϕ(zjt, δjt)|zjt) and ζjt = ϕ(zjt, δjt)− ϕ̃(zjt) is the prediction
error. Treating our market dynamism variable mdyjt as a component of δjt
and noting that δjt ̸= 0 generally implies ζjt ̸= 0, we test for δjt ̸= 0 by
examining the correlation of mdyjt with the composite error ρζjt−1+ξjt+εjt.
Adding mdyjt to the instruments used in the second step of ACF, the Sargan
test in column (6) detects a significant correlation and rejects the specification
in 9 industries at the 5% significance level.

While the Sargan test points to unobserved demand heterogeneity, it may
be difficult to detect this problem from a routine examination of the average
markup or the coefficient of determination in the first step of ACF. Indeed,
the R2 exceeds 0.99 in all industries.

Bias in estimated markup: level component. As shown in Section
4, unobserved demand heterogeneity causes a bias in the estimate of the
disturbance εjt and a bias in the estimate of the output elasticity βX(·).
Plugging biased estimates into equation (21), in turn, causes a bias in the
estimated markup µDLW

jt that has two components. The first component
affects the level of the estimated markup and the second component how it
correlates with variables of interest (see again equations (19) and (20)). We
illustrate both components in turn.

Starting with the level component, we include mdyjt in zjt, re-estimate
equations (4) and (5), and re-compute the markup µDLW

jt .21 Column (7) of
Table 1 shows the average (log) markup by industry. Because mdyjt is only a
proxy for δjt, there is no reason to believe that the estimates are entirely free
of bias. Nevertheless, including mdyjt in zjt decreases the markup noticeably
by more than 0.1 in industries 3, 4, and 5 compared to the baseline in column
(1).

As shown in Section 4, if δjt ̸= 0, then kjt is no longer a valid instrument
in the second step of ACF. A natural response may be for the researcher to
drop this instrument. If the data has been generated by an AR(1) process for
Hicks-neutral productivity ωjt, then this way of proceeding, in theory, avoids
the level component of the bias, although it does not avoid the correlation

21We maintain the assumption that εjt is mean independent of zjt. We also include
mdyjt as an instrument in the second step of ACF. We proceed similarly below with the
indicator of the firm’s export status xstjt.
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component. How well it works in practice no doubt depends on the data at
hand.

Bias in estimated markup: correlation component. Turning to the
correlation component, we regress lnµDLW

jt on our market dynamism variable
mdyjt and report the estimated coefficient in Table 1.22 In the baseline with
mdyjt excluded from zjt, the estimated markup is not significantly correlated
with market dynamism in 8 industries and significantly negatively correlated
with market dynamism in 2 industries (column (8)). In contrast, with mdyjt
included in zjt, the estimated markup is significantly positively correlated in
8 industries (column (9)). The latter conveys, as expected, that firms enjoy
a higher markup if their demands are expanding rather than contracting.

This reversal happens because, as shown in Section 4, with mdyjt ex-
cluded from zjt, a large part of demand heterogeneity is left in the estimated
disturbance. This estimate of ε̃jt = ζjt+εjt is, in turn, substituted into equa-
tion (21) in lieu of εjt to obtain the markup µDLW

jt . Including mdyjt in zjt
absorbs an additional part of demand heterogeneity. The resulting change in
the estimated disturbance rectifies the correlation of the estimated markup
with market dynamism.

It turns out that if the data is generated by a Cobb-Douglas produc-
tion function and if the researcher is only interested in the correlation of
the estimated markup with a variable of interest such as mdyjt, then she
may proceed by simply including this variable in the first step of ACF. This
amounts to purpose-building the markup for the ex-post analysis and does
not address the level component of the bias.

To see why including mdyjt in zjt suffices to consistently estimate the
correlation of the markup with market dynamism, consider equation (20).
Because the short-run elasticity of scale ν is a constant for a Cobb-Douglas
production function, so is biasjt, and thus E(biasjt|mdyjt) is a constant
that is absorbed into the constant of the regression. Moreover, if mdyjt
is included in zjt, then E(ζjt|mdyjt) = 0. Therefore, E

(
lnµDLW

jt |mdyjt
)
=

E
(
lnµjt|mdyjt

)
+ const.23

22We include a constant and a set of 21 year dummies in this and all subsequent regres-
sions of this type.

23Instead of including mdyjt in zjt, one can rewrite equation (21) as lnµjt + εjt =

ln ν(Kjt, Ljt,Mjt) − ln
(
SR
Ljt + SR

Mjt

)
. If E(biasjt|mdyjt) is a constant, then assuming

that εjt is mean independent of mdyjt and regressing lnµjt + εjt on mdyjt suffices to
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Table 2: DLW method (cont’d)

Regression on xsta

Markup A Markup B Markup C
(s. e.) (s. e.) (s. e.)
(1) (2) (3)

1. Metals and metal products -0.007 -0.007 -0.002
(0.008) (0.008) (0.008)

2. Non-metallic minerals 0.042∗ 0.045∗ 0.061∗

(0.012) (0.013) (0.012)

3. Chemical products 0.046∗ 0.045∗ 0.049∗

(0.015) (0.015) (0.016)

4. Agric. and ind. machinery 0.037∗ 0.038∗ 0.042∗

(0.013) (0.013) (0.013)

5. Electrical goods 0.033∗ 0.032∗ 0.028
(0.015) (0.016) (0.016)

6. Transport equipment 0.001 0.006 0.013
(0.022) (0.022) (0.022)

7. Food, drink and tobacco -0.053∗ -0.051∗ -0.035∗

(0.015) (0.015) (0.016)

8. Textile, leather and shoes 0.027∗ 0.026∗ 0.036∗

(0.008) (0.009) (0.009)

9. Timber and furniture 0.033∗ 0.033∗ 0.049∗

(0.010) (0.010) (0.010)

10. Paper and printing products -0.029 -0.029 -0.044∗

(0.016) (0.016) (0.017)

a An asterisk indicates that the coefficient is significant at the 5% level.
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In practice, adding observables to zjt is no panacea. DLW focus on the
correlation of the estimated markup with a firm’s export status and accord-
ingly include the firm’s export status and “other demand conditions” in zjt
(p. 2446). They find “that exporters charge, on average, higher markups
and that markups increase upon export entry” (p. 2437). This finding
is at variance with a number of papers that have found similar or lower
markups for the same products in the more competitive export markets
(Bernstein & Mohnen 1991, Bughin 1996, Moreno & Rodriguez 2004, Das,
Roberts & Tybout 2007, Jaumandreu & Yin 2018, Blum, Claro, Horstmann
& Rivers 2024).

We only partially match the existing literature. In a first pass, we revert to
the estimated markups in columns (1) and (7) of Table 1 and regress lnµDLW

jt

on an indicator of the firm’s export status xstjt. As can be seen in columns (1)
and (2) of Table 2, the estimated coefficient on xstjt is significantly positive
in 6 industries and significantly negative in 1 industry. In a second pass, we
re-estimate equations (4) and (5) and re-compute the markup µDLW

jt while
including both our market dynamism variable mdyjt and the indicator of
the firm’s export status xstjt in zjt. The estimated coefficient on xstjt in
the regression of lnµDLW

jt on xstjt is significantly positive in 5 industries and
significantly negative in 2 industries, as can be seen in column (3) of Table
2.

6 Controlling for marginal cost

To consistently estimate markups, the DLW method has to either rule out
any differences in demand and conduct across firms and time or assume that
they can be fully controlled for by observables zjt, as shown in Sections 3
and 4. As shown in Section 5, the latter may be difficult in practice even if
proxies for shifts in demand such as our market dynamic variable mdyjt and
the indicator of the firm’s export status xstjt are available. De Loecker et al.
(2016) more broadly include variables such as location, product dummies,
export status, input and output tariffs, market share, and the price of output.
In this section, we provide a way to formally assess whether the endeavor of
controlling for planned output Q∗

jt by observables zjt is successful, so that
the assumption δjt = 0 required by DLW is justified.

consistently estimate the correlation of the markup with market dynamism.
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A key insight from Sections 3 and 4 is that controlling for planned output
Q∗

jt is equivalent to controlling for marginal costMC(Kjt, PLjt, PMjt, Q
∗
jt, ωjt) =

MCjt. Equation (11) formalizes that if marginal cost can be controlled for
by observables zjt, then ζjt = − lnMCjt+E(lnMCjt|zjt) = 0 and there is no
prediction error in the first step of ACF. Equation (7), however, makes clear
that marginal cost cannot be inferred from the assumption of cost minimiza-
tion. Controlling for marginal cost therefore requires additional assumptions.

Given demand and cost, firm conduct is specified by a model of product
market competition. To control for marginal cost we exploit that many such
models entail the assumption of short-run profit maximization. Short-run
profit maximization, in turn, implies that planned output Q∗

jt is determined
by MR(Q∗

jt, δjt) = MC(Kjt, PLjt, PMjt, Q
∗
jt, ωjt), where MR(·) is marginal

revenue and the demand shock δjt captures unobserved demand heterogeneity
across firms and time and may include rivals’ prices or planned quantities to
the extent that these variables are unobserved in production data. Assuming
short-run profit maximization therefore allows controlling for marginal cost
by controlling for marginal revenue.24 We illustrate the practical implication
of this observation through a series of examples. We note that Ackerberg &
De Loecker (2024) have independently derived results related to some of our
examples.

Example 1: Monopoly, Bertrand competition, or monopolistic com-
petition with CES demand. The demand firm j faces is

Q∗
jt = exp(δ1jt)P

δ2jt
jt ,

where δ2jt < −1 is the price elasticity. δ1jt parameterizes market size in case
of a monopoly. In case of Bertrand competition, δ1jt is a function of rivals’
prices. In case of monopolistic competition, δ1jt is an aggregate statistic that
characterizes the distribution of prices in the industry. As the impact of firm
j on this statistic is assumed to be negligible in this case, firm j behaves as
a monopoly given the demand it faces.

The marginal revenue of firm j is

MR(Q∗
jt, δjt) =

1 + δ2jt
δ2jt

(
exp(−δ1jt)Q

∗
jt

) 1
δ2jt =

1 + δ2jt
δ2jt

Pjt,

24Without the assumption of short-run profit maximization the state variables in the
firm’s dynamic programming problem must in general also be controlled for.
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where δjt = (δ1jt, δ2jt) is the (two-dimensional) demand shock. Consequently,
if δ2jt = const, then the price of output Pjt controls for MR(·) and hence for
MC(·). The simple expedient of including Pjt in zjt in the first step of ACF
ensures ζjt = 0.

Note, however, that δ2jt = const implies that the markup is µjt =
δ2jt

1+δ2jt
=

const. This is difficult to reconcile with the fact that the estimated markup
from the DLW method varies across firms and time.

If δ2jt ̸= const, then the price of output Pjt no longer suffices to control for
MR(·) and including it in zjt no longer suffices to ensure ζjt = 0. Similarly,
including Pjt in zjt no longer suffices to ensure ζjt = 0 if there are unobserved
changes in firm conduct, e.g., following a wave of acquisitions.

Example 2: Bertrand competition with logit demand. The demand
firm j faces is

Q∗
jt = exp(δMjt)

exp(δPjtPjt)

1 +
∑Nt

j=1 exp(δPjtPjt)
=

exp(δMjt)

1 + exp(δOjt − δPjtPjt)
,

where δPjt < 0 parameterizes price sensitivity, δMjt market size, and δOjt =

ln
(
1 +

∑
−j exp (δPjtP−jt)

)
the combined impact of the outside good and

the prices of the Nt − 1 rivals of firm j.
The marginal revenue of firm j is

MR(Q∗
jt, δjt) =

1

δPjt

(
δOjt + ln

Q∗
jt

exp(δMjt)−Q∗
jt

+
exp(δMjt)

exp(δMjt)−Q∗
jt

)
=

1

δPjt

(
δOjt + ln

S∗
jt

1− S∗
jt

+
1

1− S∗
jt

)
,

where δjt = (δMjt, δOjt, δPjt) is the (three-dimensional) demand shock and

S∗
jt =

Q∗
jt

exp(δMjt)
is the market share of firm j based on planned output Q∗

jt.

Consequently, if δOjt = const and δPjt = const, then the market share S∗
jt

controls for MR(·).
Different from CES demand, the markup µjt =

δPjtPjt(1−S∗
jt)

1+δPjtPjt(1−S∗
jt)

is not nec-

essarily constant even if δOjt = const and δPjt = const. In practice, however,
it is unclear what allows the researcher to assume that market share S∗

jt is ob-
served and measured without error when planned output Q∗

jt is unobserved
and actual output Qjt = Q∗

jt exp(εjt) is measured with error. Calculating
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market share S∗
jt moreover requires the researcher to first define the mar-

ket, which is not an easy undertaking, especially because production data
typically covers only a sample of firms.25

If δOjt ̸= const or δPjt ̸= const, then the market share S∗
jt no longer

suffices to control for MR(·). Note that δOjt ̸= const if rivals’ prices are
unobserved but cannot be assumed constant. Moreover, even if rivals’ prices
are observed, then δOjt ̸= const or δPjt ̸= const in a random-coefficients
model along the lines of Berry et al. (1995).

Example 3: Cournot competition with homogeneous products. Mar-
ket demand is Q∗

t = D(Pt, δt), where Q
∗
t =

∑Nt

j=1Q
∗
jt is the total planned out-

put of the Nt firms and Pt the market price. Because all firms face the same
demand, δt represents unobserved demand heterogeneity across time but not
across firms. Inverse market demand is Pt = P (Q∗

t , δt) and the marginal
revenue of firm j is

MR(Q∗
jt, δt) = P (Q∗

t , δt) +
∂P (Q∗

t , δt)

∂Q∗
t

Q∗
jt = Pt

(
1 +

S∗
jt

η(Pt, δt)

)
, (23)

where S∗
jt =

Q∗
jt

Q∗
t
is the market share of firm j and η(Pt, δt) =

∂D(Pt,δt)
∂Pt

Pt

D(Pt,δt)

the price elasticity of market demand. Consequently, time dummies and
the market share S∗

jt control for MR(·). The same caveats as above ap-
ply regarding observing and calculating market share S∗

jt. Note also that
Cournot competition with homogeneous products implies that the markup
µjt =

η(Pt,δt)
S∗
jt+η(Pt,δt)

is increasing in the market share S∗
jt. This may not be borne

out by the estimated markup from the DLW method.

In sum, whether the endeavor of controlling for planned output Q∗
jt or,

equivalently, for marginal cost MC(·) by observables zjt is successful hinges
on the specification of demand and assumptions on firm conduct. This re-
inforces our point that the DLW method does not free the researcher from
having to think carefully about demand and firm conduct.

25Ackerberg & De Loecker (2024) further discuss of these points and suggest a possible
way forward.
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7 Dynamic panel method and alternative ap-

proaches

In light of the practical difficulties inherent in controlling for unobserved
demand heterogeneity by observables zjt and the assumptions required for
this endeavor to succeed, a natural question is if there are alternatives to
the proxy variable paradigm that are robust to unobserved demand hetero-
geneity. In this section, we illustrate the dynamic panel approach (Arellano
& Bond 1991, Arellano & Bover 1995, Blundell & Bond 1998, Blundell &
Bond 2000) and point to other alternative approaches to estimation.

We continue to assume an AR(1) process with parameter ρ for Hicks-
neutral productivity ωjt. Taking logs and quasi-differencing the production
function in equation (1) yields the estimation equation

qjt = ρqjt−1+lnF (Kjt, Ljt,Mjt)−ρ lnF (Kjt−1, Ljt−1,Mjt−1)+ξjt+εjt−ρεjt−1.
(24)

Because the composite error term contains only the productivity innovation
ξjt in addition to the current and lagged disturbances εjt and εjt−1, lagged
inputs remain valid instruments, as does current capital Kjt under the as-
sumption that the firm decides on investment, and thus capital, in period
t− 1 before it observes ωjt.

Importantly, the dynamic panel approach avoids the inversion in the first
step of ACF and therefore introducing δjt into the estimation.26 Hence, the
dynamic panel approach is robust to δjt ̸= 0 and offers a solution to the
problem of unobserved demand heterogeneity and changes in firm conduct.
Moreover, it offers a solution that does not require the researcher to control
for any differences in demand and conduct across firms and time.

Ackerberg (2020) provides a detailed comparison of the OP/LP proce-
dure and the dynamic panel approach. We highlight three disadvantages of
the dynamic panel approach. First, it requires a stronger assumption on the
stochastic process governing productivity than the OP/LP procedure. Sec-
ond, because the dynamic panel approach avoids the inversion in the first
step of ACF, it does not yield an estimate of the disturbance εjt. It is thus
not able to estimate the markup µjt separately from the disturbance εjt.

26The dynamic panel approach may be viewed as rewriting the production function in
equation (1) as ωjt+ εjt = qjt− lnF (Kjt, Ljt, Ljt) and therefore as expressing ωjt+ εjt in
terms of observables. The OP/LP procedure, in contrast, requires expressing ωjt in terms
of observables.
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Third, in practice the dynamic panel approach may yield low or even neg-
ative estimates of the capital coefficient (De Loecker & Syverson 2021, p.
170).

Specification and estimation. Doraszelski & Jaumandreu (2019) discuss
the importance of flexibly specifying the production function F (Kjt, Ljt,Mjt).
We specify it to include a constant, a set of 21 year dummies, and a com-
plete polynomial of order 3 in kjt, ljt, and mjt to allow output elasticities to
vary with inputs. We estimate equation (24) by GMM. In addition to the
constant and the year dummies, the instruments are a complete polynomial
of order 3 in kjt−1, ljt−1, and mjt−1 and a polynomial of order 3 in kjt. We
winsorize the estimates of the output elasticity of capital βK(Kjt, Ljt,Mjt)
and the short-run elasticity of scale ν(Kjt, Ljt,Mjt) at the 0.05 and 0.95
percentiles.27

Markup. Because the dynamic panel approach does not yield an estimate
of the disturbance εjt, we rewrite equation (21) as

lnµjt + εjt = ln ν(Kjt, Ljt,Mjt)− ln
(
SR
Ljt + SR

Mjt

)
. (25)

We estimate lnµjt+εjt by substituting the estimate of the short-run elasticity
of scale ln ν(Kjt, Ljt,Mjt) into equation (25). Note that any average of lnµjt+
εjt over a sufficiently large number of firms and/or years is a consistent
estimate of the average (log) markup for these firms and/or years.

Results. Table 3 reports the results from the dynamic panel approach.
Column (1) shows the average (log) markup by industry, along with the
sample standard deviation. Due to the flexible specification of the production
function, the sample standard deviation is large. Yet, with the exception of
industry 9, the average markup is sensible. It is again noticeably smaller
by more than 0.1 in industries 3, 4, and 5 compared to the average markup
obtained by the DLW method in column (1) of Table 1, and it is somewhat
larger by more than 0.05 in industries 7 and 8.

Columns (2)–(4) of Table 3 show the average estimate of the output
elasticity of capital βK(·), the average estimate of the short-run elasticity of

27This eliminates some extreme values without materially affecting the mean of the
distribution.
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Table 3: Dynamic panel method

Baseline specification Sargan test
Markup D β(·) ν(·) ρ p-val.
(s. dev.) (s. e.) (d. f.)

(1) (2) (3) (4) (5)

1. Metals and metal products 0.116 0.047 1.036 0.820 0.896
(0.057) (0.086) (2)

2. Non-metallic minerals 0.235 0.022 1.024 0.551 0.838
(0.076) (0.071) (2)

3. Chemical products 0.213 0.053 0.955 0.781 0.547
(0.026) (0.652) (2)

4. Agric. and ind. machinery 0.214 0.003 0.993 0.787 0.281
(0.045) (0.039) (5)

5. Electrical goods 0.214 0.004 0.995 0.785 0.537
(0.038) (0.037) (8)

6. Transport equipment 0.161 0.064 0.975 0.262 0.779
(0.076) (0.142) (2)

7. Food, drink and tobacco 0.228 0.065 0.995 0.779 0.981
(0.041) (0.144) (2)

8. Textile, leather and shoes 0.229 -0.001 1.063 0.725 0.338
(0.089) (0.036) (5)

9. Timber and furniture 0.041 0.005 1.006 0.778 0.911
(0.082) (0.038) (5)

10. Paper and printing products 0.224 0.086 1.054 0.788 0.832
(0.024) (0.023) (5)
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scale ν(·), and the estimate of the AR(1) parameter ρ. The average estimate
of the output elasticity of capital βK(·) is on the low side, especially in
industries 4, 5, 8, and 9. The average estimate of the short-run elasticity of
scale ν(·) is on the high side and ranges from 0.955 to 1.100, comparable to
column (2) of Table 1.28 The Sargan test in column (5) does not reject the
specification in any industry at conventional significance levels.

Alternative approaches. While the dynamic panel method is well-established
for estimating production functions, recent work aims to alleviate some of its
drawbacks, notably the stronger assumption on the stochastic process gov-
erning productivity. Ponder (2021) applies the work on polynomial errors-
in-variables models by Hausman, Newey, Ichimura & Powell (1991) to show
that the dynamic panel approach can be extended from an AR(1) process for
Hicks-neutral productivity ωjt to a Markov process with a polynomial law of
motion.

Abito (2022) similarly assumes a Markov process with a polynomial law of
motion and draws on Hausman et al. (1991) to show how to incorporate firm
fixed effects into the proxy variable paradigm. If differences in demand across
time within firms can be ruled out and if demand satisfies a separability
assumption, then these fixed effects control for the remaining unobserved
demand heterogeneity.

Brand (2020) applies the work on nonclassical measurement error by Hu
& Schennach (2008) and treats the firm’s output conditional on its inputs as
a noisy signal of its productivity. This avoids the inversion in the first step
of ACF. While the estimation procedure assumes a Markov process with a
polynomial law of motion, the identification argument extends to a general
law of motion.

Demirer (2019) develops a partial identification approach that treats ei-
ther investment or materials as an “imperfect proxy” for productivity that
can additionally depend on a demand shock. His setup gives rise to mo-
ment inequalities if the productivity distribution conditional on the imper-
fect proxy being above a threshold stochastically dominates the productivity
distribution conditional on the imperfect proxy being below the threshold.
Of course, these alternative approaches come with their own drawbacks and

28We note that if we instead specify a Cobb-Douglas production function, then in 9
industries we estimate the output elasticity of capital to be even lower than the one we
report in Table 3 while we estimate the short-run elasticity of scale to be comparable.
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more work is required to assess how well they work in practice.

8 Concluding remarks

DLW obtain the markup from the firm’s cost minimization problem by sub-
stituting in estimates of the output elasticity of a variable input and the
disturbance that separates actual from planned output. These estimates are
obtained using the OP/LP procedure. Our paper has highlighted the under-
appreciated assumption of the DLW method that to consistently estimate
markups, it either has to rule out any differences in demand and conduct
across firms and time or assume that they can be fully controlled for by
observables zjt.

The demand a firm faces depends not only on the product characteristics
of the firm but, in imperfectly competitive industries, also on the product
characteristics of its rivals and their prices or quantities. Because typical pro-
duction data has even less information on demand than our market dynamism
variable and rivals are partially or completely unobserved, attempting to con-
trol for any differences in demand across firms and time by observables zjt is
difficult in practice. It is also unappealing from a conceptual point of view.
The demand a firm faces and its conduct are the fundamental determinants
of the markup it charges. Hence, to use an OP/LP procedure to estimate the
production function and obtain the markup, the DLW method would have
to observe and control for all these determinants of the markup.

To develop the consequences of unobserved demand heterogeneity and
changes in firm conduct, we have characterized the bias in the estimates pro-
duced by the DLW method in the presence of a demand shock δjt ̸= 0. The
bias permeates the level of the estimated markup and its correlation with
variables of interest. We have shown that both the level and the correlation
component of the bias can be severe. We have provided an empirical ap-
plication to test for the effects of unobserved demand heterogeneity. In our
application, the bias is most pronounced in the correlation of the estimated
markup with our market dynamism variable. Similar correlations of the es-
timated markup with variables of interest are often the focus of attention in
applications of DLW.

We have further used our empirical application to illustrate the dynamic
panel approach to estimation as an alternative to the proxy variable paradigm.
Because the dynamic panel approach avoids the inversion in the first step of
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ACF and therefore introducing δjt into the estimation, it offers a solution to
the problem of unobserved demand heterogeneity and changes in firm con-
duct. Moreover, it offers a solution that does not require the researcher to
control for any differences in demand and conduct across firms and time. The
disadvantages of the dynamic panel approach include the requirement to as-
sume an AR(1) process for Hicks-neutral productivity ωjt and the inability to
estimate the markup µjt separately from the disturbance εjt. Despite these
disadvantages, there is little reason not to use the dynamic panel approach
at least to alleviate concerns about unobserved demand heterogeneity and
changes in firm conduct.

In addition to unobserved demand heterogeneity and changes in firm con-
duct, the production approach to estimating the markup has other issues to
confront, including flexibly specifying the production function (Doraszelski
& Jaumandreu 2019, Demirer 2020), the costly adjustment of inputs, and
market power in input markets (Yeh, Macaluso & Hershbein 2022, Rubens
2023, Azzam, Jaumandreu & Lopez 2023). A particularly important consid-
eration is that consistently estimating the output elasticity may be difficult in
a model that restricts productivity to be single-dimensional. A number of re-
cent papers provide evidence of labor-augmenting productivity (Doraszelski
& Jaumandreu 2018, Raval 2019, Zhang 2019, Demirer 2020). In contrast
to Hicks-neutral productivity, labor-augmenting productivity directly enters
the output elasticity. The literature has only recently begun to develop more
sophisticated models and estimators to handle multi-dimensional productiv-
ity. Doraszelski & Jaumandreu (2019), Demirer (2020), and Raval (2023)
in particular highlight the implications of biased technological change for
markup estimation.

In sum, contrary to the purported advantage of relying on cost minimiza-
tion, the DLW method does not free the researcher from having to think
carefully about the specification of demand and assumptions on firm con-
duct. The conditions required by the DLW method to consistently estimate
markups may be difficult to satisfy. As we have shown, violations of these
conditions can be consequential.

36



Appendix A

We consider a merger between two symmetric Bertrand competitors labelled
j and −j. The production function of firm j is Q∗

jt = V
βV
jt exp(ωjt). The

cost of producing planned output Q∗
jt is therefore Cjt =

(
Q∗

jt

) 1
βV exp

(
−ωjt

βV

)
,

where we use PV jt = 1. The demand firm j faces is Q∗
jt = exp(δjt)P

η
jtP

γ
−jt.

The production, cost, and demand functions of firm −j are analogous.
The profit of firm j is πjt = PjtQ

∗
jt − Cjt. We model a merger between

firm j and firm −j by assuming that firm j assigns weight ιjt ∈ {0, 1} to the
profit of firm −j and maximizes πjt + ιjtπ−jt. Pre-merger ιjt = 0 and firm j
maximizes πjt; post-merger ιjt = 1 and firm j maximizes πjt + π−jt.

The FOC for the price of output Pjt is

(η + 1) exp(δjt)P
η
jtP

γ
−jt −

1

βV

(
exp(δjt)P

η
jtP

γ
−jt

) 1−βV
βV exp

(
−ωjt

βV

)
η exp(δjt)P

η−1
jt P γ

−jt

+ιjt

(
γ exp(δ−jt)P

η+1
−jt P

γ−1
jt − 1

βV

(
exp(δ−jt)P

η
−jtP

γ
jt

) 1−βV
βV exp

(
−ω−jt

βV

)
γ exp(δ−jt)P

η
−jtP

γ−1
jt

)
= 0.

In the interest of tractability, we assume ωjt = ω−jt and δjt = δ−jt and hence
Pjt = P−jt in equilibrium.29 The FOC accordingly simplifies to

η + ιjtγ + 1

η + ιjtγ
Pjt =

1

βV

(
exp(δjt)P

η+γ
jt

) 1−βV
βV exp

(
−ωjt

βV

)
. (26)

Because the right-hand side of equation (26) is marginal costMCjt at planned
output Q∗

jt = exp(δjt)P
η+γ
jt , in equilibrium the markup is µjt =

η+ιjtγ

η+ιjtγ+1
.

Appendix B

Data generating process. Solving equation (26) yields

pjt =
βV

(1− βV )(η + γ)− βV

(
ln

βV (η + ιjtγ + 1)

η + ιjtγ
− (1− βV )δjt

βV

+
ωjt

βV

)
(27)

and thus

q∗jt =
βV (η + γ)

(1− βV )(η + γ)− βV

(
ln

βV (η + ιjtγ + 1)

η + ιjtγ
− δjt

η + γ
+

ωjt

βV

)
, (28)

29We may assume that firm j is in our sample whereas firm −j is not, as is typical in
production data.
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vjt =
η + γ

(1− βV )(η + γ)− βV

(
ln

βV (η + ιjtγ + 1)

η + ιjtγ
− δjt

η + γ
+

(η + γ + 1)ωjt

η + γ

)
.

(29)

Equations (27)–(29) generate the endogenous variables q∗jt, vjt, and pjt from
the exogenous variables ωjt, δjt, and ιjt.

Gaussian mixture model. Because conditional on ιjt the expressions for
q∗jt, vjt, and pjt in equations (27)–(29) are linear in ωjt and δjt, the assumption
that ωjt ∼ N (0, σ2

ω) and δjt ∼ N (0, σ2
δ) gives rise to a Gaussian mixture

model. Conditional on ιjt, we have q∗jt
vjt
pjt

 ∼ N

 µq∗|ιjt
µv|ιjt
µp|ιjt

 ,

 Σq∗,q∗ Σq∗,v Σq∗,p

Σq∗,v Σv,v Σv,p

Σq∗,p Σv,p Σp,p

 = N
(
µιjt

,Σ
)
,

where

µq∗|ιjt =
βV (η + γ)

(1− βV )(η + γ)− βV

ln
βV (η + ιjtγ + 1)

η + ιjtγ
, (30)

µv|ιjt =
η + γ

(1− βV )(η + γ)− βV

ln
βV (η + ιjtγ + 1)

η + ιjtγ
, (31)

µp|ιjt =
βV

(1− βV )(η + γ)− βV

ln
βV (η + ιjtγ + 1)

η + ιjtγ
, (32)

Σq∗,q∗ =

(
βV (η + γ)

(1− βV )(η + γ)− βV

)2(
σ2
δ

(η + γ)2
+

σ2
ω

β2
V

)
,

Σq∗,v = βV

(
η + γ

(1− βV )(η + γ)− βV

)2(
σ2
δ

(η + γ)2
+

(η + γ + 1)σ2
ω

βV (η + γ)

)
,

Σq∗,p = (η + γ)

(
βV

(1− βV )(η + γ)− βV

)2(
(1− βV )σ

2
δ

βV (η + γ)
+

σ2
ω

β2
V

)
,

Σv,v =

(
η + γ

(1− βV )(η + γ)− βV

)2(
σ2
δ

(η + γ)2
+

(η + γ + 1)2σ2
ω

(η + γ)2

)
,

Σv,p = βV (η + γ)

(
1

(1− βV )(η + γ)− βV

)2(
(1− βV )σ

2
δ

βV (η + γ)
+

(η + γ + 1)σ2
ω

βV (η + γ)

)
,

Σp,p =

(
βV

(1− βV )(η + γ)− βV

)2(
(1− βV )

2σ2
δ

β2
V

+
σ2
ω

β2
V

)
.
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Unconditionally, we have a multivariate Gaussian mixture with density

(1− τ)N

 q∗jt
vjt
pjt

 ;µιjt=0,Σ

+ τN

 q∗jt
vjt
pjt

 ;µιjt=1,Σ

 ,

where λ = Pr (ιjt = 1) ∈ (0, 1) and N (·;µιjt
,Σ) is a multivariate normal

density with parameters µιjt
and Σ.

First step of ACF. The first step of ACF estimates the conditional ex-
pectation E(qjt|zjt) = E(q∗jt|zjt), where zjt = (vjt, pjt). Normality implies
that, conditional on (zjt, ιjt),

30

E(q∗jt|zjt, ιjt) = µq∗|ιjt +
(
Σq∗,v Σq∗,p

)( Σv,v Σv,p

Σv,p Σp,p

)−1(
vjt − µv|ιjt
pjt − µp|ιjt

)
= − ln

βV (η + ιjtγ + 1)

η + ιjtγ
+ vjt − pjt. (33)

This implies that, conditional on zjt,

E(q∗jt|zjt) = E

(
− ln

βV (η + ιjtγ + 1)

η + ιjtγ
+ vjt − pjt

∣∣∣∣ zjt, ιjt = 0

)
Pr(ιjt = 0|zjt)

+E

(
− ln

βV (η + ιjtγ + 1)

η + ιjtγ
+ vjt − pjt

∣∣∣∣ zjt, ιjt = 1

)
Pr(ιjt = 1|zjt)

= − ln βV + vjt − pjt + lnµ+
(
lnµ− lnµ

)
τ(zjt), (34)

where µ = η
η+1

, µ = η+γ
η+γ+1

, and

τ(zjt) = Pr(ιjt = 1|zjt) = λN
(
zjt;

(
µv|ιjt=1

µp|ιjt=1

)
,

(
Σv,v Σv,p

Σv,p Σp,p

))
/(

(1− λ)N
(
zjt;

(
µv|ιjt=0

µp|ιjt=0

)
,

(
Σv,v Σv,p

Σv,p Σp,p

))
+ λN

(
zjt;

(
µv|ιjt=1

µp|ιjt=1

)
,

(
Σv,v Σv,p

Σv,p Σp,p

)))
∈ (0, 1). (35)

The first equality in equation (35) defines τ(zjt) as shorthand for Pr(ιjt =
1|zjt) and the second equality uses Bayes’ theorem to provide an expression
for Pr(ιjt = 1|zjt). Because τ(zjt) ∈ (0, 1), we think of it as a weight.

30Equation (33) can alternatively be derived without invoking normality by using equa-
tions (27) and (29) to eliminate ωjt and δjt in equation (28).
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Markup regression. Regressing the markup lnµDLW
jt = lnµjt − ζjt ob-

tained by the DLW method on a constant and the step dummy ιjt estimates

E
(
lnµDLW

jt |ιjt
)
= E

(
lnµDLW

jt |ιjt = 0
)
+
(
E
(
lnµDLW

jt |ιjt = 1
)
− E

(
lnµDLW

jt |ιjt = 0
))

ιjt,

where

E
(
lnµDLW

jt |ιjt
)
= E

(
lnµjt|ιjt

)
− E

(
ζjt|ιjt

)
= ln

η + ιjtγ

η + ιjtγ + 1
− E(ζjt|ιjt).

(36)
Turning to the prediction error ζjt = q∗jt−E(q∗jt|zjt), using equation (34),

E(q∗jt|ιjt) = µq∗|ιjt , E(vjt|ιjt) = µv|ιjt , E(pjt|ιjt) = µp|ιjt , and the expressions
for µq∗|ιjt , µv|ιjt , and µp|ιjt in equations (30)–(32) yields

E
(
ζjt|ιjt

)
= E

(
q∗jt|ιjt

)
− E

(
E(q∗jt|zjt)|ιjt

)
= E

(
q∗jt|ιjt

)
− E

(
− ln βV + vjt − pjt + lnµ+

(
lnµ− lnµ

)
τ(zjt)

∣∣ ιjt)
= µq∗|ιjt + ln βV − µv|ιjt + µp|ιjt − lnµ−

(
lnµ− lnµ

)
E (τ(zjt)|ιjt)

= ln
η + ιjtγ

η + ιjtγ + 1
− lnµ−

(
lnµ− lnµ

)
E(τ(zjt)|ιjt), (37)

where

E(τ(zjt)|ιjt) =
∫

τ(zjt)N
(
zjt;

(
µv|ιjt
µp|ιjt

)
,

(
Σv,v Σv,p

Σv,p Σp,p

))
dzjt. (38)

Turning back to the markup lnµDLW
jt = lnµjt− ζjt obtained by the DLW

method, substituting equation (37) into equation (36) yields

E
(
lnµDLW

jt |ιjt
)
= lnµ+

(
lnµ− lnµ

)
E(τ(zjt)|ιjt).

The coefficient of interest is thus

E
(
lnµDLW

jt |ιjt = 1
)
− E

(
lnµDLW

jt |ιjt = 0
)

=
(
lnµ− lnµ

)
(E(τ(zjt)|ιjt = 1)− E(τ(zjt)|ιjt = 0)) . (39)

Equation (35) implies τ(zjt) = 0 if λ = 0 and τ(zjt) = 1 if λ = 1. The
coefficient of interest in equation (39) is therefore estimated to be zero in these
extreme cases. To evaluate the bias for intermediate cases, we parameterize

βV = 0.8, η = −6, γ = 2.5, σ2
ω = 0.25, σ2

δ ∈ {0.01, 0.05, 0.25, 1.25} .
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Figure 2: Coefficient of interest in equation (39) over range of λ for σ2
δ ∈

{0.01, 0.05, 0.25, 1.25}.

The wave of acquisitions may therefore enable a firm to increase its markup
from µ = 1.2 to µ = 1.4. Total factor productivity exp(ωjt) is 3.60 times
larger at the 90th percentile of the productivity distribution than at the 10th
percentile.31 The demand shock δjt may be less, equally, or more dispersed
than Hicks-neutral productivity ωjt. Figure 2 shows the coefficient of interest
over the entire range of λ for the various values of σ2

δ . By comparison,
regressing lnµjt instead of lnµDLW

jt on a constant and the step dummy ιjt
yields ln 1.4 − ln 1.2 = 0.1542 for the coefficient of interest. As can be seen,
even for very small values of σ2

δ , the coefficient of interest is severely biased
towards zero over the entire range of λ.

Excluding price of output. Excluding the price of output Pjt from the
first step of ACF, we specify zjt = vjt. Normality implies that, conditional
on (zjt, ιjt),

E(q∗jt|zjt, ιjt) = µq∗|ιjt + Σq∗,vΣ
−1
v,v

(
zjt − µv|ιjt

)
31Syverson (2004) cites 90:10 ratios of about 2 and Hsieh & Klenow (2009) of about 5.
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=
(η + γ + 1)(η + γ)σ2

ω

(
− ln

βV (1+η+ιjtγ)

η+ιjtγ
+ vjt

)
+ σ2

δβV vjt

(η + γ + 1)2σ2
ω + σ2

δ

.

The derivations proceed along similar lines as before. We obtain E
(
lnµDLW

jt |ιjt = 1
)
−

E
(
lnµDLW

jt |ιjt = 0
)
= −0.0508 if we parameterize σ2

δ = 0.01 and λ = 0.5.
Hence, the coefficient of interest may be estimated to be negative instead of
positive.

Appendix C

To simplify the exposition, we omit firm and time subscripts in what follows.
We use the superscript ′ to denote a lead, the subscript −1 to denote a first
lag, and the subscript −2 to denote a second lag, etc.

Data generating process: variable input. Given capital K, the de-

mand for the variable input is V =
(

Q∗

KβK exp(ω)

) 1
βV . Using equation (17)

thus yields

v =
1

βV

(
1− βV

βV

(βKk + ω)− pV + δ

)
. (40)

Variable cost is V C = PV

(
Q∗

KβK exp(ω)

) 1
βV . Marginal cost isMC = 1

βV
PV

(Q∗)
1−βV
βV

(KβK exp(ω))
1

βV

and thus depends on the index 1
βV

(βKk − βV pV + ω).

Data generating process: capital. The firm’s dynamic programming
problem simplifies considerably if capital is subject to time to build but not
to adjustment costs (Adda & Cooper 2003, pp. 189–190). Capital evolves
as K ′ = (1 − θ)K + I, where θ ∈ [0, 1] is the rate of depreciation and I is
investment. The firm buys and sells capital in the spot market each period.

In our setup, in the current period the firm sets K ′ to minimize its ex-
pected total cost in the subsequent period while accounting for the resale
value of undepreciated capital:

min
K′

E (V C ′ + PKK
′ − P ′

K(1− θ)K ′|Q∗, K ′, K, PK , PV , ω, δ) ,
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where PKK
′ is the acquisition cost of capital and P ′

K(1 − θ)K ′ is the resale
value of undepreciated capital. The FOC can be written as32

ln
βK

βV

+ lnE

(
P ′
V

(
Q∗′

exp(ω′)

) 1
βV

+ P ′
K(1− θ)|Q∗, K ′, K, PK , PV , ω, δ

)
− βK + βV

βV

k′ = pK .

(41)

Setting θ = 1 for simplicity, we have

E

(
P ′
V

(
Q∗′

exp(ω′)

) 1
βV

|Q∗, K ′, K, PK , PV , ω, δ

)

= E

(
exp

(
p′V +

1

βV

(
1

βV

(βKk
′ − βV p

′
V + ω′) + δ′ − ω′

))
|Q∗, K ′, K, PK , PV , ω, δ

)
= exp

(
βK

β2
V

k′ − 1− βV

βV

ρpV pV +
1− βV

β2
V

ρωω +
1

βV

ρδδ

)
E

(
e
− 1−βV

βV
ξ′pV +

1−βV
β2
V

ξ′ω+
1

βV
ξ′δ

)
,

where the first equality uses equation (17) and the second equality exploits
the assumed AR(1) processes for pV , ω, and δ. Hence, we obtain

k′ =
1

βV (βK + βV )− βK

·
(
βV

(
ln

βK

βV

+ lnE(·)
)
− βV pK − (1− βV )ρpV pV +

1− βV

βV

ρωω + ρδδ

)
,

(42)

where, again exploiting the assumed AR(1) processes,

lnE(·) =
(
1− βV

βV

)2 σ2
pV

2
+

(
1− βV

β2
V

)2
σ2
ω

2
+

(
1

βV

)2
σ2
δ

2
.

Equation (42) is a special case of the law of motion in equation (18). From
hereon we work with the more general equation (18).

V AR(1) process. Equations (17) and (40) generate q∗ and v from k, pV , ω,
and δ, and equation (18) generates k′ from k, pK , pV , ω, and δ. Combining

32As it takes planned output Q∗′ as given in the dynamic cost minimization problem,

the firm presumes ∂Q∗′

∂K′ = 0.
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these equations and the assumed AR(1) processes for pK , pV , ω, and δ yields
the V AR(1) process

q∗

k′

v
p′K
p′V
ω′

δ′


=



0
τ 0
0
0
0
0
0


+



0 βK

βV
0 0 −1 1

βV
1

0 τ k 0 τ pK τ pV τω τ δ
0 (1−βV )βK

β2
V

0 0 − 1
βV

1−βV

β2
V

1
βV

0 0 0 ρpK 0 0 0
0 0 0 0 ρpV 0 0
0 0 0 0 0 ρω 0
0 0 0 0 0 0 ρδ





q∗−1

k
v−1

pK
pV
ω
δ


+



0
0
0
ξ′pK
ξ′pV
ξ′ω
ξ′δ


.

Defining x = (q∗, k′, v, p′K , p
′
V , ω

′, δ′)
T
, u =

(
0, 0, 0, ξ′pK , ξ

′
pV
, ξ′ω, ξ

′
δ

)T
, and the

coefficient vector a, respectively, matrix A accordingly, we write the V AR(1)
model more compactly as

x = a+ Ax−1 + u, u ∼ N(0,Υ),

where Υ = diag
(
0, 0, 0, σ2

pK
, σ2

pV
, σ2

ω, σ
2
δ

)
.

In what follows we exploit that our setup yields a V AR(1) process to
derive the various terms in equation (16)—and hence the bias in the estimate
of the output elasticity of the variable input V—as functions of the primitives.
This allows us to evaluate the bias and to prove Proposition 1–3 by direct
calculation using a computer algebra system.

Expectations, covariances, and Yule-Walker equations. Define the
expectation vector µ = E(x). Assuming stability of the V AR(1) process, we
obtain

µ = (I − A)−1 a (43)

in closed form (Lütkepohl 2005, pp. 15). We use µq∗ as shorthand for E(q∗),
µk′ for E(k′), etc.

Define the covariance matrix Γh = Cov(x, x−h) for all h ≥ 0. The Yule-
Walker equations are

Γ0 = AΓ0AT +Υ, Γh = AΓh−1, h ≥ 1.

Solving these equations yields Γh for all h ≥ 0 in closed form (Lütkepohl 2005,

pp. 26–27). Given the timing of the various variables in x = (q∗, k′, v, p′K , p
′
V , ω

′, δ′)
T
,
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we obtain

Γ0 =



Σq∗,q∗ Σq∗,k′ Σq∗,v Σq∗,p′
K

Σq∗,p′
V

Σq∗,ω′ Σq∗,δ′

. . . Σk′,k′ Σk′,v Σk′,p′
K

Σk′,p′
V

Σk′,ω′ Σk′,δ′

. . . . . . Σv,v Σv,p′
K

Σv,p′
V

Σv,ω′ Σv,δ′

. . . . . . . . . Σp′
K ,p′

K
Σp′

K ,p′
V

Σp′
K ,ω′ Σp′

K ,δ′

. . . . . . . . . . . . Σp′
V ,p′

V
Σp′

V ,ω′ Σp′
V ,δ′

. . . . . . . . . . . . . . . Σω′,ω′ Σω′,δ′

. . . . . . . . . . . . . . . . . . Σδ′,δ′


, (44)

Γ1 =



Σq∗,q∗−1
Σq∗,k Σq∗,v−1

Σq∗,pK
Σq∗,pV

Σq∗,ω Σq∗,δ

Σk′,q∗−1
Σk′,k Σk′,v−1

Σk′,pK
Σk′,pV

Σk′,ω Σk′,δ

Σv,q∗−1
Σv,k Σv,v−1 Σv,pK

Σv,pV
Σv,ω Σv,δ

Σp′
K ,q∗−1

Σp′
K ,k Σp′

K ,v−1
Σp′

K ,pK
Σp′

K ,pV
Σp′

K ,ω Σp′
K ,δ

Σp′
V ,q∗−1

Σp′
V ,k Σp′

V ,v−1
Σp′

V ,pK
Σp′

V ,pV
Σp′

V ,ω Σp′
V ,δ

Σω′,q∗−1
Σω′,k Σω′,v−1

Σω′,pK
Σω′,pV

Σω′,ω Σω′,δ

Σδ′,q∗−1
Σδ′,k Σδ′,v−1

Σδ′,pK
Σδ′,pV

Σδ′,ω Σδ′,δ


, (45)

Γ2 =
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Σω′,pV,−1
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Σδ′,q−2
Σδ′,k−1

Σδ′,v−2
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Σδ′,ω−1
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,

(46)

where we use Σq∗,q∗ as shorthand for V ar(q∗), Σq∗,k′ for Cov(q∗, k′), etc.

Derivation: prediction error and proof of Proposition 1. To obtain
the prediction error ζ = q∗ − E(q∗|z), note that

q∗

k′

v
p′V

 ∼ N




µq∗

µk′

µv

µp′V

 ,


Σq∗,q∗ Σq∗,k Σq∗,v Σq∗,pV

. . . Σk,k Σk,v Σk,pV

. . . . . . Σv,v Σv,pV

. . . . . . . . . ΣpV ,pV


 ,

where the elements of the expectation vector and the covariance matrix are
given by equations (43), (44), and (45). Normality implies that

E(q∗|z) = µq∗ +
(
Σq∗,k Σq∗,v Σq∗,pV

) Σk,k Σk,v Σk,pV

. . . Σv,v Σv,pV

. . . . . . ΣpV ,pV

−1 k − µk′

v − µv

pV − µp′V

 .
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We thus obtain the prediction error in closed form as

ζ = q∗ − µq∗ − πk(k − µk′)− πv(v − µv)− πpV (pV − µp′V
). (47)

Proposition 1 is proven by evaluating equation (47).

Derivation: projection. To obtain the projection v̂ = E(v|k, pV , z−1),
note that

v
k
k−1

v−1

pV
pV,−1

 ∼ N





µv

µk′

µk′

µv

µp′V
µp′V

 ,


Σv,v Σk,v Σk−1,v Σv,v−1 Σv,pV Σv,pV,−1

. . . Σk,k Σk,k−1 Σk,v−1 Σk,pV Σk,pV,−1

. . . . . . Σk−1,k−1 Σk−1,v−1 Σk−1,pV Σk−1,pV,−1

. . . . . . . . . Σv−1,v−1 Σv−1,pV Σv−1,pV,−1

. . . . . . . . . . . . ΣpV ,pV ΣpV ,pV,−1

. . . . . . . . . . . . . . . ΣpV,−1,pV,−1



 ,

where the elements of the expectation vector and the covariance matrix are
given by equations (43), (44), (45), and (46). Normality implies that

E(v|k, pV , z−1) = µv +
(
Σk,v Σk−1,v Σv,v−1 Σv,pV Σv,pV,−1

)

·


Σk,k Σk,k−1 Σk,v−1 Σk,pV Σk,pV,−1

. . . Σk−1,k−1 Σk−1,v−1 Σk−1,pV Σk−1,pV,−1

. . . . . . Σv−1,v−1 Σv−1,pV Σv−1,pV,−1

. . . . . . . . . ΣpV ,pV ΣpV ,pV,−1

. . . . . . . . . . . . ΣpV,−1,pV,−1


−1

k − µk′

k−1 − µk′

v−1 − µv

pV − µp′V
pV,−1 − µp′V

 .

We thus obtain the projection in closed form as

v̂ = µv + ϕk(k − µk′) + ϕk−1
(k−1 − µk′))

+ϕv−1
(v−1 − µv)) + ϕpV

(pV − µp′V
) + ϕpV,−1

(pV,−1 − µp′V
)). (48)

Derivation: bias and proofs of Propositions 2 and 3. With the pre-
diction error ζ and the projection v̂ in hand, we turn to the various terms in
equation (16). Using equation (47) we obtain E(kζ−1) as

E(kζ−1)

= E
(
k
(
q∗−1 − µq∗ − πk(k−1 − µk′)− πv(v−1 − µv)− πpV (pV,−1 − µp′V

)
))

= Σq∗−1,k
− πkΣk,k−1 − πvΣk,v−1 − πpV Σk,pV,−1

. (49)
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Using equations (48) and (47) we next obtain E(v̂ζ−1) as

E(v̂ζ−1)

−E
((

µv + ϕk(k − µk′) + ϕk−1
(k−1 − µk′) + ϕv−1

(v−1 − µv) + ϕpV (pV − µp′V
) + ϕpV,−1

(pV,−1 − µp′V
)
)

·
(
q∗−1 − µq∗ − πk(k−1 − µk′)− πv(v−1 − µv)− πpV (pV,−1 − µp′V

)
))

= ϕkΣq∗−1,k
+ ϕk−1

Σq∗−1,k−1 + ϕv−1
Σq∗−1,v−1 + ϕpV Σq∗−1,pV

+ ϕpV,−1
Σq∗−1,pV,−1

−πk

(
ϕkΣk,k−1 + ϕk−1

Σk−1,k−1 + ϕv−1
Σk−1,v−1 + ϕpV Σk−1,pV + ϕpV,−1

Σk−1,pV,−1

)
−πv

(
ϕkΣk,v−1 + ϕk−1

Σk−1,v−1 + ϕv−1
Σv−1,v−1 + ϕpV Σv−1,pV + ϕpV,−1

Σv−1,pV,−1

)
−πpV

(
ϕkΣk,pV,−1

+ ϕk−1
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+ ϕv−1
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ΣpV,−1,pV,−1

)
.

Direct calculation with a computer algebra system proves the following
lemma:

Lemma 4 E(v̂ζ−1) = ϕkE(kζ−1).

Hence, E(kζ−1) = 0 implies E(v̂ζ−1) = 0. Propositions 2 and 3 are therefore
proven by evaluating equation (49).

Evaluating the bias outside the special cases in Propositions 1–3 requires
the remaining terms in equation (16). We obtain

E((k − ρωk−1)
2) = E(k2)− 2ρωE(kk−1) + ρ2ωE(k2

−1)

= (1 + ρ2ω)
(
Σk,k + µ2

k′

)
− 2ρω

(
Σk,k−1 + µ2

k′

)
E((k − ρωk−1)(v − ρωv−1)) = E(kv)− ρωE(kv−1)− ρωE(k−1v) + ρ2ωE(k−1v−1)

= (1 + ρ2ω) (Σk,v + µk′µv)− ρω
(
Σk,v−1 + µk′µv

)
− ρω

(
Σk−1,v + µk′µv

)
E((v̂ − ρωv−1)(v − ρωv−1)) = E(v̂v)− ρωE(v̂v−1)− ρωE(vv−1) + ρ2ωE(v2−1)

= E(v̂v)− ρωE(v̂v−1)− ρω
(
Σv,v−1 + µ2

v

)
+ ρ2ω

(
Σv,v + µ2

v

)
where using equation (48)

E(v̂v)

= E
((

µv + ϕk(k − µk′) + ϕk−1
(k−1 − µk′) + ϕv−1
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) + ϕpV,−1
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)
)
v
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Figure 3: bias = β̂V −βV

βV
over range of σ2

δ for ρδ ∈ {−0.3, 0, 0.3, 0.6}. τ 0 =

τ pV = 0, τ k = τω = τ δ = 0.5, and τ pK = −0.5.

and

E(v̂v−1)

= E
((

µv + ϕk(k − µk′) + ϕk−1
(k−1 − µk′) + ϕv−1

(v−1 − µv) + ϕpV (pV − µp′V
) + ϕpV,−1

(pV,−1 − µp′V
)
)
v−1

)
= µ2

v + ϕkΣk,v−1 + ϕk−1
Σk−1,v−1 + ϕv−1

Σv−1,v−1 + ϕpV Σv−1,pV + ϕpV,−1
Σv−1,pV,−1 .

Bias. Plugging the above expressions into equation (16), we obtain the bias
in the estimate of the output elasticity of the variable input V in closed form.
Figure 3 changes the parameterization underlying Figure 1 to τ 0 = τ pV = 0,
τ k = τω = τ δ = 0.5, and τ pK = −0.5. As can be seen, the bias may be
enormous.

Appendix D

The ESEE is a firm-level survey of the Spanish manufacturing sector spon-
sored by the Ministry of Industry. At the beginning of the survey, about 5%
of firms with up to 200 workers were sampled randomly by industry and size
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strata. All firms with more than 200 workers were included in the survey
and 70% of these larger firms responded. Firms disappear over time from the
sample due to either exit (shutdown or abandonment of activity) or attrition.
To preserve representativeness, samples of newly created firms were added
to the initial sample almost every year and some additions counterbalanced
attrition.

We observe firms for a maximum of 23 years between 1990 and 2012. We
restrict the sample to firms with at least three years of observations, giving
a total of 3026 firms and 26977 observations. The number of firms with 3,
4,. . . , 23 years of data is 398, 298, 279, 278, 290, 324, 122, 111, 137, 96, 110,
66, 66, 98, 66, 40, 37, 44, 37, 42, and 87, respectively.33

In what follows we list the variables that we use, beginning with the
variables that we take directly from the data source.

� Revenue (R). Value of produced goods and services computed as sales
plus the variation of inventories.

� Exports (X). Value of exports.

� Investment (I). Value of current investments in equipment goods (ex-
cluding buildings, land, and financial assets) deflated by a price index
of investment. The price of investment is the equipment goods com-
ponent of the index of industry prices computed and published by the
Spanish Ministry of Industry.

� Capital (K). Capital at current replacement values is computed recur-
sively from an initial estimate and the data on investments I at t − 1
using industry-specific depreciation rates. Capital in real terms is ob-
tained by deflating capital at current replacement values by the price
index of investment.

� Labor (L). Total hours worked computed as the number of workers
times the average hours per worker, where the latter is computed as
normal hours plus average overtime minus average working time lost
at the workplace.

33Table D1 in Doraszelski & Jaumandreu (2019) shows the industry labels along with
their definitions in terms of the ESEE, ISIC and NACE classifications and the number of
firms and observations per industry.
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� Intermediate consumption (MB). Value of intermediate consumption
(including raw materials, components, energy, and services).

� Proportion of white collar workers (pwc). Fraction of non-production
workers.

� Advertising (adv). Firm expenditure in advertising.

� R&D Expenditures (R&D). Cost of intramural R&D activities, pay-
ments for outside R&D contracts with laboratories and research cen-
ters, and payments for imported technology in the form of patent li-
censing or technical assistance, with the various expenditures defined
according to the OECD Frascati and Oslo manuals.

� Price of output (P ). Firm-level price index for output. Firms are
asked about the price changes they made during the year in up to five
separate markets in which they operate. The price index is computed
as a Paasche-type index of the responses.

� Price of labor (PL). Hourly wage cost computed as wage bill divided
by total hours worked.

� Price of materials (PM). Firm-specific price index for intermediate
consumption. Firms are asked about the price changes that occurred
during the year for raw materials, components, energy, and services.
The price index is computed as a Paasche-type index of the responses.

� Market dynamism (mdy). Firms are asked to assess the evolution of
the main market in which they operate. The demand shifter codes the
responses as 0, 0.5, and 1 for slump, stability, and expansion, respec-
tively.

We construct a number of additional variables. We consistently subtract
advertising from intermediate consumption because it is not a production
input. We define variable cost as the wage bill plus the cost of intermedi-
ate consumption (minus advertising), minus the R&D expenditures and an
estimate of the part of the wage bill corresponding to white collar workers.
The estimation assumes that white-collar employees work the same number
of hours but have an average wage 1.25 times higher. This is important to
better approximate variable cost.
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� Output (Q). Revenue deflated by the firm-specific price index of output.

� Materials (M). Value of intermediate consumption minus advertising
deflated by the firm-specific price index of materials.

� Variable cost (V C). Wage bill (including social security payments)
plus the cost of intermediate consumption minus advertising, R&D
expenditures, and white collar pay.

� Export status (xst). Export status is one when the value of exports is
positive and zero otherwise.

Appendix E

Let γ be the parameters estimated in equation (4) in the first step of ACF
and θ the parameters estimated in equation (5) in the second step of ACF.
Given the estimate γ̂, ξjt + εjt = rjt(θ, ϕ(zjt−1; γ̂)) in equation (5) depends

on ϕ̂(zjt−1) = ϕ(zjt−1; γ̂). Stacking yields the Tj × 1 vector rj(θ, ϕ(zj,−1; γ̂)),
where Tj is the number of observations for firm j.

Following Wooldridge (2010), let

D0 = E[w′
jrj(θ0, ϕ(zj,−1; γ̂))rj(θ0, ϕ(zj,−1; γ̂))

′wj]

be the variance of the orthogonality conditions based on the Tj × Q matrix
of instruments wj in the second step of ACF, evaluated at the true value
of θ. Expanding rj(·) around the true value of γ yields rj(θ0, ϕ(zj,−1; γ̂)) ≈
rj(θ0, ϕ(zj,−1; γ0)) +

∂rj
∂ϕ

∇γϕ(zj,−1; γ0)(γ̂ − γ0). Since γ is estimated by OLS,

we use (γ̂ − γ0) =
∑

j(f(zj)
′f(zj))

−1f(zj)
′εj, where f(zj) are the regressors

in the first step of ACF, and replace rj(·) by

r̃j(θ0, γ0, εj) = rj(θ0, ϕ(zj,−1; γ0))+
∂rj
∂ϕ

∇γϕ(zj,−1; γ0)
∑

j(f(zj)
′f(zj))

−1f(zj)
′εj.

Replacing the true values of θ, γ, and εj by their estimates, we estimate

D0 as D̂ = 1
N

∑
j w

′
j r̃j(θ̂, γ̂, ε̂j)r̃j(θ̂, γ̂, ε̂j)

′wj. Next, we use D̂ in the usual
sandwich formula for the asymptotic variance of the estimated parameters θ
and in the optimal weighting matrix to compute the Sargan test.
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