
1

Conditional Approval and Value-Based Pricing for2

New Health Technologies3
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Health technology assessments often inform decisions made by public payers, such as the UK’s NHS, as they

negotiate the pricing of companies’ new health technologies. A common assessment mechanism compares the

incremental cost effectiveness ratio (ICER) of the new health technology, relative to a standard of care, to

a maximum threshold on the cost-per-QALY (CPQ). In much research and practice, these assessments may

not distinguish between cost-per-patient and negotiated price, effectively ignoring the value-based-pricing

principle that better health outcomes merit higher prices. Other research models this distinction but does not

account for uncertainty in the ICER associated with clinical trial data that are limited in size and scope. This

paper models the strategic behavior of a payer and a company as they price a new health technology, and it

considers the use of conditional approval (CA) schemes whose post-marketing trials reduce ICER uncertainty

before final pricing decisions are made. Analytical results suggest a very different view of the value-based

pricing negotiations underlying these schemes: interim prices used during CA post-marketing trials should

reflect cost-sharing for the CA scheme, not just cost-effectiveness goals for a treatment. Moreover, the types

of caps on interim prices used by entities such as the UK Cancer Drugs Fund may hinder the development of

new technologies and lead to suboptimal CA designs. We propose a new risk-sharing mechanism to remedy

this. Numerical results, calibrated to approval data of an oncology drug, illustrate the issues in a practical

setting.
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12

13 Many jurisdictions use health technology assessments (HTAs) when making reimbursement14

approval and pricing decisions about new health technologies (Panteli et al. 2015). Typically, HTAs15

follow soon after clinical “marketing authorization” by regulatory bodies, such as the European16

Medicines Agency and the UK’s Medicines & Healthcare products Regulatory Agency, whose deci-17

sions are based on evidence of treatment safety and efficacy from clinical trials (EMA 2022, MHRA18

2023). Emanuel et al. (2020) review the purchasing processes of six countries and find that all19

except the US have centralized, state-level mechanisms designed to improve health value for money.20
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In making access and reimbursement decisions, many HTAs compare a new health technology’s21

incremental cost effectiveness ratio (ICER), a widely-used measure of cost-effectiveness, to a thresh-22

old (Claxton et al. 2015). The ICER is a ratio whose numerator measures the difference between23

a new technology’s overall cost and that of an existing standard and whose denominator measures24

an analogous increment in health benefits. Overall costs include include the price of the new tech-25

nology (e.g., drug, device, diagnostic) and the costs of the broader treatment process in which it is26

used. Benefits are often measured in quality adjusted life years (QALYs, e.g., OECD 2019). A new27

technology is more likely be approved for reimbursement if its ICER is below a cost-per-QALY28

(CPQ) threshold that reflects a maximum willingness to pay for health. In the UK, for example,29

the relevant CPQ threshold might be 30,000£/QALY (NICE 2014).30

But there exist several important issues regarding how to make such access and reimbursement31

decisions for new health technologies. We note two of them here.32

One important issue arises because incremental cost depends on the price of the new health33

technology. HTAs often do not explicitly distinguish the reimbursement price from the marginal34

cost to the for-profit company that provides the technology (European Commission 2018), nor the35

potential for the price to be an endogenous function of health value. But health economic surplus36

is central to value-based pricing initiatives that reward better health outcomes with better prices37

(Claxton et al. 2008) and hence a firm’s profit margin. Here, surplus is the per-patient improvement38

in health-economic value times number of patients treated.39

On the one hand, if the reimbursement is set to the health technology provider’s marginal cost,40

then the payer takes all of the surplus – a disincentive for the company to further invest in new41

technologies. On the other hand, if the reimbursement price is set so that the estimated ICER42

exactly matches the CPQ threshold, then the provider of the technology captures all health surplus43

(Claxton 2007, Brouwer et al. 2021), which may raise concerns about inflationary effects. The44

European Commission (2018, p. 44) explicitly notes the importance of breaking up the per-patient45

price into costs and a surplus as a crucial part of obtaining fair and sustainable prices and splits46

of surpluses. While this point of view that is consistent with others’ observations (e.g., Claxton47

2007, Brouwer et al. 2021, Wouterse et al. 2023), those works have not explicitly modeled strategic48

behavior in price negotiations.49

A second significant issue concerns uncertainty regarding the ICER of the new health technology.50

HTAs, which are based on limited data collected from patients who satisfy clinical trial inclusion51

criteria under controlled treatment conditions, provide only imperfect estimates regarding effec-52

tiveness, safety, and costs (Walker et al. 2012, Bravo et al. 2021), and the importance of including53

in HTAs the probability that a given technology is cost-effective is well established (O’Hagan and54

Stevens 2002, Claxton et al. 2005). Thus, for example, after a Phase III trial and an initial health55
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economic assessment for a new drug, there may be value to considering additional options, beyond56

rejecting the new drug for reimbursement approval or adopting it with a negotiated price, options57

that can help reduce the potential of poorly calibrated reimbursement and pricing decisions.58

Conditional-approval (CA) schemes are increasingly important options for reducing uncertainty.59

They use post-marketing trials that collect additional data regarding cost-effectiveness to bet-60

ter calibrate reimbursement approval and pricing decisions. Examples include the UK’s first CA61

scheme, which was designed to use post-marketing data to update prices for multiple sclerosis ther-62

apies to maintain an ICER that matched a 36,000£/QALY threshold (UK DOH 2002), Sweden’s63

pricing decision for Duodopa (Willis et al. 2010), the UK’s patient access scheme with GSK for64

Votrient (Griffiths et al. 2011), “coverage with evidence development” schemes of the US’s Centers65

for Medicare & Medicaid Services (CMS 2014), and the UK’s Cancer Drugs Fund (CDF, NHS66

England 2016) and Innovative Medicines Fund (NHS England 2022). But CA schemes are designed67

on a case-by-case basis, and there remain questions regarding how much data to collect, how to68

structure reimbursement for a new health technology during a scheme and, at the scheme’s end,69

how to reappraise reimbursement approval and pricing decisions.70

In comparing the use of a CA scheme to immediate approval, HTA agencies and producers of new71

health technologies must weigh the costs and benefits of the data-collection enterprise. On the cost72

side lies the expense of conducting the post-marketing trial, along with the lost health-economic73

value that might have accrued had the technology’s approval for reimbursement not been delayed.74

On the benefit side is the value of the sample data to be collected, data that allow the HTA agency75

to reduce uncertainty regarding population-level cost-effectiveness and, in turn, the risk of poorly76

calibrated approval and pricing decisions (Gandjour 2009, Grimm et al. 2017).77

In this paper, we develop a stylized model of reimbursement decisions and price negotiations that78

split the total health economic surplus (derived from costs and QALYs) between a single payer79

and a single for-profit company that brings a new health technology to market. Here, we seek to:80

• identify conditions under which a CA scheme is preferred to immediate approval or rejection;81

• assess trade-offs for the optimal design of a CA scheme;82

• inform reimbursement decisions for the so-called interim price for the new technology that’s83

used during the CA’s post-marketing trial, as well as for the price that’s used if the technology is84

ultimately approved for reimbursement; and85

• assess whether introducing CA schemes increases or reduces the likelihood that: (a) a company86

submits a new technology for reimbursement approval and pricing decisions, (b) an adopted tech-87

nology is cost effective, (c) the process of implementing a given CA scheme itself is cost effective.88

In §1, we further place our approach within the context of additional, related literature. The89

review differentiates our work from previous research, such as our novel modeling of interim prices90
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and how they are set, and it motivates our modeling choices, such as the use of risk-neutral91

objectives and cooperative bargaining, which in turn define the scope of our work.92

Our model, formalized in §2, has two players that strategically interact: one represents a public93

healthcare system (the payer), such as the UK’s National Health Service (NHS), and the other the94

provider of a new health technology (the company). To simplify exposition and fix ideas, we focus95

on new health technologies that are drugs, may refer to them as treatments, and assume that a96

Phase III clinical trial and initial HTA are complete. The payer may then immediately approve97

the new treatment for reimbursement and negotiate a price, may immediately decline to reimburse98

the new treatment, or may run one of two types of CA scheme (Claxton et al. 2016).99

One variety of CA scheme, the only in research (OIR) scheme analyzed in §3, allows only patients100

who participate in the post-marketing trial to obtain access to the new treatment during the trial.101

The other type, the only with research (OWR) scheme analyzed in §4, allows all patients, not102

just those in the post-marketing trial, to access the new treatment during the trial. Both types103

run two-arm trials that further compare the cost effectiveness of the new treatment to that of the104

existing standard of care.105

For both schemes, we identify how much data to collect by maximizing the expected value of106

information, less the cost of data collection, with respect to the sample size. Given a CA scheme is107

to be pursued, we also show how the choice of whether to run an OIR or OWR scheme depends on108

the initial strength of evidence in favor of the new treatment as well as any reversal costs (van de109

Wetering et al. 2017) that are associated with removing broad access to the new technology, should110

an OWR scheme be chosen and the treatment ultimately not be approved for reimbursement.111

From a managerial or policy perspective, we provide new insights in §3 and §4 regarding the112

interim prices that are used during the post-marketing trial. While they have not been exten-113

sively studied in the literature, these interim prices turn out to be critical in determining whether114

immediate approval, immediate rejection, or an OIR or OWR scheme is optimal.115

Moreover, we show in §5 that caps on the interim price, such as those recommended in current UK116

Cancer Drugs Fund (CDF) guidance (NHS England 2016), have the potential to disrupt cooperative117

bargaining, lead to misalignment between the players’ incentives, negatively influence the design118

of the post-marketing trial, and negatively affect a treatment’s prospects for conditional approval.119

We propose a new risk-sharing mechanism to realign incentives that works in most cases but find120

that, in some contexts, a price cap can nevertheless prevent an otherwise valuable treatment from121

reaching market and thereby reduce societal value. In §6, we quantify those model-based insights122

with a numerical example that is motivated by a CA scheme pursued by the NHS and GSK for123

the oncology drug Votrient. This case study quantifies and adds nuance to the discussion in §5.124
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In §7, we show how negotiating power links directly to pricing decisions that in turn affect the125

probability that a given health technology is cost effective. Unless the technology developer has126

the power to extract all surplus, bargaining outcomes are likely to deviate from the 50% chance127

of cost effectiveness, given residual uncertainty in health benefits and costs at the end of the128

post-marketing trial, that is implicit in some other analysis (e.g., Danzon et al. 2018).129

We note that CA schemes themselves are expensive, and it is reasonable to ask whether the130

cost of a CA scheme is more than balanced by the expected gains in health economic value that131

follow from having more information before making reimbursement approval and pricing decisions.132

Section 7 shows that a CA scheme might not always have a high probability of being cost effective.133

We also discuss in §7 how a provider of an existing technology might respond to a new treatment134

that could supplant its position as a supplier and the effect on the CA decision process.135

Our analysis targets the UK and other socialized health systems, so we focus on the case of136

one company and one payer. It is less well suited for the US, which has multiple payers, multiple137

copayment options, and more price-sensitive demand. We model a treatment that is assessed for138

potential approval for a single group of patients but do not preclude the possibility that the139

accept/reject/CA decision pertains to a single subpopulation of interest that has been identified140

from an earlier Phase III trial. We assume that the company’s cost of production can be adequately141

captured by variable costs per treatment, without significant fixed costs. Thus, our insights are142

more appropriate for small-molecule drugs, for example, where contract manufacturers may be143

available, rather than for a biological medicine that may require larger fixed capital investments,144

if it is approved. Our analysis also assumes there is a relatively constant incidence over time of145

patients with the medical condition in question, rather than a large backlog of chronic patients146

for whom the new treatment is a potential cure. These points delimit the scope of our work and147

identify areas of future work, as noted in §8.148

An Online Companion provides Nash bargaining results used for our model (Appendix A),149

proofs of mathematical claims (Appendix B), comparative statics (Appendix C), further case study150

analysis (Appendices D and E), and results that relax some assumptions of our model (Appendix F).151

1. Literature Review152

We discuss how our paper relates to other work on conditional approval schemes and the negoti-153

ation process for the approval of new health technologies, as well as other work that links to or154

complements our model. The discussion also motivates some of our modeling assumptions.155

Conditional Approval Schemes. There are many papers that develop schema that provide156

qualitative guidance regarding the choices to be made among CA schemes and multiple alternative157

risk-sharing agreements (RSAs). Among them, Walker et al. (2012), Garrison et al. (2013), and158
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Claxton et al. (2016) provide comprehensive views of the trade-offs regarding OIR and OWR159

conditional-approval schemes, discounts, and other risk-sharing mechanisms. Piatkiewicz et al.160

(2018) and Zampirolli Dias et al. (2020) address risk sharing and market entry more broadly.161

There is also work that quantifies those tradeoffs. Claxton (2007) shows that a risk-neutral payer162

should be indifferent between the expected value of information (VoI) gained through conditional163

approval and an up-front price reduction that is equivalent to that gain. van de Wetering et al.164

(2017) provide details on reversal costs, which follow a payer’s decision to stop reimbursement at165

the end of an OWR trial. Eckermann and Willan (2007) characterize the effect of reversal costs on166

the decision to employ an OIR or OWR conditional-approval scheme.167

In addition, there exists work that mathematically analyzes discounting and CA schemes. Gand-168

jour (2009) and Zaric (2021) characterize the nature and value of price discounting for risk-averse169

payers. We note, however, that much of the health-economic literature argues that payers should170

be risk-neutral with respect to uncertainty regarding a treatment’s expected population-level effec-171

tiveness (e.g., Barnsley et al. 2016, Danzon et al. 2018). We also assume that the payer is risk172

neutral for most of the paper, and we discuss measures of the payer’s risk in §7.173

The above mathematical studies of CA schemes do not consider the company’s strategic behavior,174

for example its willingness to accept price discounts. Nor do they fully model the interim prices175

that are relevant to conditional approval schemes. But most CA schemes follow a similar timeline176

and involve an agreed-upon interim price per treatment at which the payer reimburses the company177

while data regarding effectiveness are collected (Willis et al. 2010, Griffiths et al. 2011, NHS England178

2016). We explicitly model the strategic negotiation of these interim pricing decisions.179

Some analytical papers do consider the strategic incentives of both the payer and the company.180

Zaric and Xie (2009) compare alternative schemes for addressing a treatment that is found not to181

be cost-effective – the provision of a rebate from the company to the payer versus the de-listing of182

the treatment from the payer’s formulary. Levaggi (2014) compares two initial pricing schemes –183

value-based pricing (VBP) and a traditional “listing” model in which the company proposes a price184

and the payer accepts the offer with a probability which declines with the price. Levaggi (2014)185

emphasizes the ability of VBP to offer an efficient split of social welfare to company and payer,186

a feature of our Nash bargaining framework. These two papers do not address the VoI obtained187

from conditional approval schemes, though. We include VoI in the negotiated value, applying to188

post-marketing trials the approach of previous work that uses VoI (Barton et al. 2008) to design189

earlier-stage trials (Chick et al. 2022, Alban et al. 2023).190

Negotiation. There is recent work on pricing and RSAs for new health technologies that explic-191

itly considers the price negotiation process. Whittal et al. (2022) develop a qualitative “value-based192

negotiating framework” that is intended to guide the payer and company as they select the type of193
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RSA, contract terms, and data that allow for a “fair split of key risks” encountered in the approval194

a new treatment. Gladwell et al. (2020) model the VoI of conditional approval schemes and note195

that much related work focuses on the payer’s point of view, not that of the company. They model196

negotiation choices assuming a Stackelberg game in which the company moves first and the price197

reflects the payer’s maximum willingness to pay. We use Nash bargaining to characterize both198

interim and final prices, and we demonstrate that a Stackelberg game can be viewed as special case199

of our Nash bargaining model and discuss the implications of the result.200

Nash bargaining is a representation that fits our context well for two reasons. First, payers such201

as the NHS explicitly note a societal interest in maintaining a financially viable health-technology202

sector. The UK Dept. of Health and Social Care and the Association of the British Pharmaceutical203

Industry (UK DHSC and ABPI 2018) recognize, “. . . the importance of collaboration between the204

public and private sectors in delivering improved health gains from medicines . . . and in supporting205

the pharmaceutical industry in the United Kingdom so that it can continue to innovate now and in206

the future.” Cooperative bargaining models naturally allow for the inclusion of fractional sharing207

of gains. Second, in using axiomatic, cooperative bargaining, we need not specify the details of the208

negotiation process. For instance, UK guidance (NHS England 2016, NICE 2021) states that the209

approval process involves negotiations with the company, but the structure and timeline of these210

negotiations are fluid and can be adapted on a case-by-case basis.211

Berdud et al. (2023) also use a stylized Nash bargaining model for a finite set of new treatments212

to study how to split surpluses between payer and drug producers, but they assume that ICERs213

are known and do not model uncertainty about them. Other work also uses a Nash bargaining214

framework to characterize strategic outcomes for various forms of risk sharing (Antoñanzas et al.215

2011, Critchley and Zaric 2019, Gamba et al. 2020, Hlávka et al. 2021, Zorc et al. 2024). But these216

works do not consider the conditional-approval schemes that are the focus of this paper.217

Other Related Work. There has been work in the health economics and operations man-218

agement literature that studies other types of uncertainty that create a risk for the payer, such219

as uncertainty about the size of the population that will use the treatment (Gavious et al. 2014,220

Zhang et al. 2011, Zhang and Zaric 2015, Levaggi and Pertile 2020) and about the safety profile of221

new treatments (Ahuja et al. 2021). Another RSA mechanism, implemented after approval, links222

reimbursement for a given patient to that patient’s response to treatment (Mahjoub et al. 2017,223

Olsder et al. 2022, Adida 2021, Xu et al. 2022). Our paper and those papers are complements.224

2. Two-stage Bargaining Model225

We present a sequential, game-theoretic model with two players. One is an organization that226

develops and produces health technologies, and the other is a decision maker in a publicly funded227
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Figure 1 Model timeline. The pre-submission stage is assumed to have been completed, leaving the company

and payer to work through two potential stages: initial submission, and post-marketing trial and reappraisal.

healthcare system that is responsible for health outcomes and expenditures in its jurisdiction (e.g.,228

UK NHS). We refer to these players as the company and the payer, respectively. We use a stylized229

cooperative bargaining model to capture how the payer and company jointly reach pricing and230

data collection decisions. Our cooperative model uses two stages of Nash bargaining and explicitly231

represents uncertainty regarding health-economic benefits. Table EC.1 summarizes its notation.232

2.1. Timeline of the Cooperative Bargaining Model233

To fix ideas, we focus on new drug treatments. Figure 1 sketches the model’s timeline, which follows234

NHS England (2016) and NICE (2021). In a pre-submission stage, the company completes phase235

III clinical trials for a new treatment, obtains marketing authorization from a regulatory authority,236

and presents trial results to the payer. The payer uses those results to conduct an HTA. We focus237

on a single indication for a specific group of patients that may be identified in the Phase III trial238

and do not consider subgroup analysis within the CA scheme. We model the stages that follow.239

There are three types of outcomes at the initial submission stage. First, the players have the240

option of immediately approving reimbursement of the new treatment at a per-patient price, p0.241

That price effectively shares the expected gain between the company and the payer. Second, the242

new treatment may be rejected for reimbursement at the time of submission. In this case, the payer243

continues offering the current standard of care to patients, and the company cancels any plans for244

additional trials or for reimbursement by the payer. Third, the payer and company can agree to245

have the treatment conditionally approved and to collect additional data through a post-marketing246

trial. Here, the company conducts the trial and pays for its nominal cost, while the payer reimburses247

the company at an interim price, pi, for each patient in the trial who receives the new treatment.248

The negotiation for CA determines three quantities: the trial’s sample size, n, duration, t, and249

interim price, pi. The sample size is the number of pairwise observations in the post-marketing250

trial, a two-arm trial that compares the new treatment with an existing standard of care.251
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After the CA scheme’s post-marketing trial concludes, another round of negotiation occurs in the252

reappraisal stage. If, given the new evidence from the post-marketing trial, the payer and company253

agree on reimbursement of the new treatment, then negotiation yields a reappraisal price, p1, that254

allocates the expected health-economic gains between the company and the payer. If the payer and255

company cannot agree on reimbursement of new treatment at this time, then the payer offers the256

current standard of care to future patients, and the company abandons any plans for reimbursement257

by the payer. We do not consider the option of conducting a second post-marketing trial to collect258

even more data, which is consistent with our motivating example (NHS England 2016).259

We model two variants of CA scheme (Walker et al. 2012, Claxton et al. 2016). The only-in-260

research (OIR) scheme in §3 limits the use of the new treatment during the post-marketing trial261

to patients who are trial subjects. The only-with-research scheme (OWR, also called approval with262

research) in §4 allows all patients access to the new treatment during the post-marketing trial. For263

the OWR scheme, but not the OIR scheme, there is a reversal cost, fr, if the new treatment is264

rejected for reimbursement at the time of reappraisal (Eckermann and Willan 2007). We assume265

the reversal cost is independent of the duration of the post-marketing trial.266

In §3 and §4, we will use a cooperative game theory model and Nash bargaining to determine the267

outcomes of negotiations, which we label as follows. Approval of the treatment at initial submission268

at price p0 is denoted by (A0, p0), an OIR conditional approval scheme with an interim price pi269

and a post-marketing trial with sample size n and duration t by (CAI, pi, n, t), an analogous OWR270

conditional approval scheme by (CAW, pi, n, t), and rejection by R0. If conditional approval – OIR271

or OWR – is selected, the ultimate approval of the treatment at price p1 is denoted by (A1, p1).272

We let R1 denote the treatment’s ultimate rejection, after the post-marketing trial.273

2.2. Parameters and Decision Variables for Post-Marketing Trial274

We define the post-marketing trial in terms of its sample size, n, and duration, t and assume the275

trial’s finer details may be changed with no effect on our analysis, below. Thus, we implicitly assume276

that the time required to observe patient outcomes is small in comparison with the duration of the277

market exclusivity period.278

Post-Marketing Trial Structure. We normalize the time horizon over which the new treat-279

ment has market exclusivity to equal one and denote by N the total number of patients who would280

use the new treatment if it were offered, from the time of initial submission until the end of the281

market exclusivity period. Thus, if the new treatment is approved for use at the time of initial sub-282

mission, then the number of patients receiving the new treatment equals N , and under conditional283

approval with a post-marketing trial that number would decrease.284

To describe the post-marketing trial, we define two decision variables: n, its sample size, measured285

in patient pairs, and t∈ (0,1), the fraction of the market exclusivity period that the post-marketing286
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Figure 2 The number of patients treated with the standard of care and new treatment, represented as areas.

(a) If the new treatment is immediately approved. (b) If the new treatment is conditionally approved.

trial will cover. Of the 2n trial subjects, n receive the standard of care and n receive the new287

treatment. The rate at which patients can be recruited into the post-marketing trial may have a288

limit, rmax ∈ (0,1), due to capacity or other constraints, so that 2n≤ trmaxN .289

In the OIR scheme of §3, those patients who are not recruited into the post-marketing trial over290

[0, t) continue using the current standard of care. For the OWR scheme studied in §4, the tN − 2n291

patients who are treated during [0, t) but are not in the trial receive the new treatment. Figure 2292

summarizes the numbers of patients treated under different conditions.293

Here, with a single publicly funded payer, co-payments are often negligible or uniformly applied294

across treatments (e.g., a flat rate in the UK), and choice of treatment is often guided by a clinician.295

Thus, we assume that patients’ choices are not impacted by the treatment’s price. Our results296

also apply if a known fraction of patients adopt the conditionally approved new treatment until it297

receives an approval after the post-marketing trial, a simple algebraic extension of our results.298

Post-Marketing Trial Outcomes. The post-marketing trial randomizes pairs of patients, one299

to the new treatment (with subscript N ) and the other to the standard of care (with subscript300

S) and measures differences in health outcomes and costs of care between the two. The random301

variable Xj models the incremental difference between the new treatment and the standard of302

care for the jth pair. Each patient’s health outcome includes the economic benefit associated with303

clinical improvement, along with costs that fall into two categories: the price paid for the new304

health technology and standard of care (pN , pS) and the value of other relevant patient-level costs305

of care (CN , CS), such as administration, follow-up, and the management of complications. We306

emphasize that CN and CS do not include the cost of reimbursement, (pN , pS).307

We denote by EN (and ES) the expected clinical effectiveness of the new treatment (and standard308

of care, respectively) in the patient population, expressed in terms of quality-adjusted life-years309
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(QALYs) and convert QALYs to a financial value using the cost-per-QALY (CPQ) threshold of310

the healthcare payer, which we denote by λ (e.g., 30,000£/QALY; also see NICE 2014).311

The population-level expectation of the incremental net monetary benefit of the new treatment

per patient, relative to the existing standard, excluding the new technology’s price (INMB-p), is

θ= λ(EN −ES)− (CN −CS). (1)

The expected incremental net monetary benefit (INMB) including the new technology’s price is

θ− (pN − pS).

While the population mean, θ, is unknown, it can be estimated from Phase III clinical-trial data.312

We assume that observations are independent and normally distributed, conditional on the313

unknown population mean, so that Xj | θ ∼ Normal (θ,ΣX) for each j. The variance in outcomes,314

ΣX , is known and models random variation in the differences in outcomes across patient pairs.315

Bayesian Inference. We assume that the company and payer have access to the same data and316

share the same beliefs regarding the INMB-p of the new treatment at the time of initial submission,317

based on the information available at the end of the Phase III trial. We denote the prior distribution318

of that common belief by θ ∼ Normal (µ0,Σ0), where µ0 is the mean and Σ0 is the variance. The319

choice of (µ0,Σ0) might account for statistical issues, such as the reweighing of Phase III trial data320

to account for potential differences between trial inclusion criteria and the population to be treated321

post-adoption (Mantopoulos et al. 2015) and expert judgement using methods described elsewhere322

(e.g., O’Hagan et al. 2006).323

After (noisy) outcomes X⃗n = (X1,X2, . . . ,Xn) of the n patient pairs in the post-marketing trial

are observed, the players use Bayes’ rule to update the belief about θ to Normal (µ1,Σ1), where

µ1 = µ0 +

∑n

j=1X
j/n−µ0

ΣX/n+Σ0

Σ0, and Σ1 =Σ0 −
Σ0Σ0

ΣX/n+Σ0

. (2)

We note that, at the time of initial submission, the patient outcomes to be observed during

the post-marketing trial and resulting value of µ1 are uncertain. Thus, at initial submission we

define the preposterior mean, M1 = E[µ1 | X⃗n, µ0, n0], as the random variable associated with the

posterior mean, µ1, to be observed at the end of the post-marketing trial, where n0 ≜ΣX/Σ0 is the

effective sample size of the prior distribution. Recalling θ∼ Normal (µ0,Σ0), standard results give

M1 | µ0, n0 ∼ Normal
(
µ0, σ

2
M1

)
where σM1

=

√
ΣXn

n0(n+n0)
. (3)

Post-Marketing Trial Costs. We denote the fixed cost of running a post-marketing trial by324

fDC and the variable cost of recruiting each patient pair into the trial by vDC , where ‘DC’ stands325
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for ‘data collection’. The NHS states that data collection should not put a burden on the healthcare326

system (NHS England 2016), and we assume that the company runs and incurs the full cost of the327

post-marketing trial. Nevertheless, the interim price at which the payer reimburses the company328

during the post-marketing trial effectively allows this cost to be shared between the players.329

2.3. The Payer’s Objective330

We assume the payer is risk-neutral (Claxton 1999, Barnsley et al. 2016, Danzon et al. 2018) and331

seeks to maximize the INMB for its population. We consider associated measures of risk in §7.332

If the new treatment is approved at submission, the payer gains INMB-p and reimburses p0 to the

company for each patient who receives the new treatment, where p0 is determined by negotiation.

In this case, the payer’s total expected INMB across the population of N patients is

V0(A0, p0) ≜ E [N(θ− (p0 − pS)) | µ0, n0] = N(µ0 − p0 + pS), (4)

If the new treatment is rejected at the time of initial submission, the payer’s total expected333

INMB is zero (i.e., V0(R0)≜ 0) because patients continue using the standard of care.334

If the new treatment is conditionally approved at the time of initial submission, the payer’s total

expected INMB from conditional approval depends on whether the new treatment is ultimately

approved or rejected after the post-marketing trial ends. If the new treatment is approved given

the updated belief at the end of the post-marketing trial, (µ1,Σ1), the payer gains the additional

INMB-p and incurs the additional cost of reimbursing the company at p1 for each patient receiving

the new treatment after the post-marketing trial ends. We denote the payer’s total expected INMB

from approval at price p1 at the end of the post-marketing trial by

V1(A1, p1, t) ≜ E [(1− t)N(θ− (p1 − pS)) | µ1,Σ1] = (1− t)N(µ1 − p1 + pS). (5)

where N is the size of the target population, (1 − t) is the fraction of the market exclusivity335

period that remains at the end of the post-marketing trial, and p1 is determined by negotiation at336

reappraisal. If the new treatment is rejected after the conclusion of the post-marketing trial, the337

total expected INMB is V1(R1)≜ 0 for OIR schemes and is V1(R1)≜−fr for OWR schemes.338

For an OIR scheme, we combine the two sets of outcomes at the end of the post-marketing trial –339

acceptance at price p1 or rejection – to denote the payer’s total expected INMB given the updated340

belief, (µ1,Σ1), after a post-marketing trial with duration t as V ∗
1 (t). In turn, we let E [V ∗

1 (t) | µ0, n0]341

denote the expectation of V ∗
1 (t) with respect to the players’ belief at initial submission.342

We then can define the payer’s total expected INMB from an OIR scheme, as of the time of

initial submission, as a function of the interim price, pi, the sample size, n, and the post-marketing

trial duration, t. This quantity, V0(CA
I, pi, n, t), includes the total expected INMB of the cohort of
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n patients who receive the new treatment in the post-marketing trial at interim price pi, and the

total expected INMB at reappraisal, based on the updated belief at the end of the trial. That is,

V0(CA
I, pi, n, t)≜E

[
n∑

j=1

Xj −n(pi − pS)+V ∗
1 (t)

∣∣µ0, n0

]
= n(µ0 − pi + pS)+E [V ∗

1 (t) | µ0, n0] . (6)

The tN −2n patients who do not participate in the OIR post-marketing trial receive the standard343

of care, and their INMB is zero. We discuss the analysis of OWR schemes in §4 below.344

2.4. The Company’s Objective345

We assume that the company is risk-neutral and aims to maximize its expected profit. We further346

assume that the fixed cost of production is zero and that variable cost per treatment is vN . This is347

roughly consistent with the company’s using a contract manufacturer to produce the new treatment.348

If the new treatment is approved at the time of initial submission, the company incurs the

variable production cost vN and is reimbursed at price p0 for each patient treated. We denote the

company’s profit from the treatment’s approval at price p0 at the time of initial submission by

Π0(A0, p0) ≜ N(p0 − vN ). (7)

If the new treatment is rejected, then the company’s profit is zero, which we denote as Π0(R0)≜ 0.349

If the new treatment is conditionally approved at the time of initial submission, the company’s

total expected profit from conditional approval depends on whether the new treatment is approved

or rejected after the post-marketing trial ends. If the new treatment is approved given the updated

belief at the end of the post-marketing trial, (µ1,Σ1), the company incurs the variable production

cost, vN , and is reimbursed at price, p1, for each patient treated with the new treatment once the

post-marketing trial ends. The company’s profit from approval at price p1 following the end of the

post-marketing trial is therefore

Π1(A1, p1, t) ≜ (1− t)N(p1 − vN ). (8)

If the new treatment is rejected at the conclusion of the post-marketing trial, the company’s350

additional profit after rejection is Π1(R1)≜ 0.351

In analogy with V ∗
1 (t), we let Π

∗
1(t) denote the company profit across the two sets of outcomes of352

renegotiation at the end of the post-marketing trial of an OIR scheme – acceptance at price p1 or353

rejection – for a given updated belief, (µ1,Σ1). In turn, we let E [Π∗
1(t) | µ0, n0] be the expectation354

of the company’s post-reappraisal profit with respect to the players’ belief at initial submission.355

To construct the company’s expected total profit from an OIR scheme at the time of initial

submission, we add the cash flows associated with the post-marketing trial to the expected post-

trial profits that follow. During the post-marketing trial, the company pays the fixed cost of running
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the trial, fDC , plus the variable cost of the trial, vDC , for each of the n patient pairs in the trial.

It also earns the interim price, pi, and incurs the variable production cost, vN , for each of the n

patients in the trial who receives the new treatment. Combining these terms gives

Π0(CA
I, pi, n, t) ≜ n(pi − vN )− fDC −nvDC +E [Π∗

1(t) | µ0, n0] . (9)

See §4 for a formulation and an analysis of OWR schemes.356

3. Analysis of the Two-stage Bargaining Model with an OIR Scheme357

This section analyzes the two-stage bargaining problem for the case in which the only conditional358

approval option under consideration is the OIR scheme. In §4, we also analyze the OWR scheme.359

Our analysis employs backwards induction. At each stage of the model, we use an axiomatic,360

cooperative, Nash bargaining framework that allows for asymmetric outcomes, and we use subgame361

perfection to roll back later-stage results to earlier periods. (See Appendix A and Lippman and362

McCardle 2012.) In §3.1 and §3.2, we characterize the Nash bargaining solution at the reappraisal363

and initial submission stages of the game, respectively, and we compare the various prices that364

are determined through bargaining. In §3.3, we summarize the Nash bargaining outcome of the365

two-stage model, and in §3.4 we present comparative statics results.366

3.1. The Reappraisal Stage367

Consider the reappraisal stage, which begins at the end of the post-marketing trial. By (2), the368

players’ belief regarding the unknown INMB-p of the new treatment is Normal(µ1,Σ1). The remain-369

ing number of patients to treat before market exclusivity ends is (1− t)N . The payer and company370

negotiate to determine whether the new treatment is approved at some price p1 or is rejected.371

At this stage, our model corresponds to a Nash bargaining problem in which players negotiate372

their shares of a joint surplus, and the disagreement outcomes for both players are zero. Appendix A373

presents the details of the bargaining problem, and here we present a summary of the main result.374

If the joint surplus is positive, the Nash bargaining solution implies that it is split according to375

the players’ bargaining powers, where the company receives a fraction, β, of the joint surplus, and376

the payer receives the remaining 1− β. When β = 0.5 the Nash bargaining problem is symmetric,377

and when β = 1 it is equivalent to a Stackelberg game in which the company leads. (See also378

Appendix B.4). If the joint surplus is negative, then bargaining breaks down, and both players379

receive the disagreement outcome of zero.380

Because the price, p1, is a transfer between the two players, it only impacts how the surplus is

shared, not the size of the joint surplus to be allocated through bargaining. We denote the joint

surplus to be shared as S1(A1, t) ≜ V1(A1, p1, t)+Π1(A1, p1, t), and from (5) and (8) we have:

S1(A1, t) = (1− t)N(µ1 − (p1 − pS))+ (1− t)N(p1 − vN ) = (1− t)N(µ1 + pS − vN ). (10)



Yapar, Chick, Gans: Conditional Approval and Value-based Pricing
15

If µ1 < vN −pS , the joint surplus is negative. In this case, bargaining breaks down, the treatment381

is rejected, and the payer’s and company’s expected payouts are zero.382

If µ1 > vN − pS , there is a positive joint surplus to be shared, and the Nash bargaining solution383

implies that the payer and company receive fractions 1−β and β of the joint surplus, respectively.384

Therefore we have V1(A1, p1, t) = (1−β)S1(A1, t) and Π1(A1, p1, t) = βS1(A1, t). Using (5), (8), and385

(10) and then solving for p1, we find the reappraisal price, p∗1, at which the payer and company386

obtain 1−β and β shares of the joint surplus.387

If µ1+pS−vN = 0, the joint surplus is zero, and the players are indifferent between the bargaining388

solution and the disagreement outcome. To ensure that the set of bargaining solutions is closed (a389

technical assumption of Nash bargaining solutions) we assume that, in this case, the bargaining390

solution prevails. Prop. 1 summarizes the results for Nash bargaining at reappraisal.391

Prop. 1. Suppose that the post-marketing trial is completed and the players’ belief regarding the

unknown INMB-p, θ, of the new treatment is Normal(µ1,Σ1). Then the joint surplus, the payer’s

INMB and the company’s expected profit at the Nash bargaining outcome are

S∗
1(t) =max{(1− t)N(µ1 + pS − vN ),0}, V ∗

1 (t) = (1−β)S∗
1(t), Π∗

1(t) = βS∗
1(t). (11)

If µ1 + pS − vN ≥ 0, then the Nash bargaining outcome at reappraisal is approval with reappraisal392

price p∗1 = vN +β(µ1 + pS − vN ). Otherwise, the outcome is rejection.393

We view p∗1 as cost-plus pricing: the price covers the company’s production cost, vN , plus a fraction394

of each patient’s health-economic surplus that is proportional to the company’s bargaining power.395

3.2. The Initial Submission Stage396

At the initial submission stage, the prior mean and variance of the new treatment’s INMB-p are397

µ0 and Σ0, respectively. Using that information, the payer and company negotiate to determine398

whether the new treatment is: immediately approved with a price p0; conditionally approved with399

an interim price pi and a post-marketing trial with sample size n and duration t; or rejected.400

Our cooperative bargaining model at the initial submission stage corresponds to a Nash bar-401

gaining problem in which the payer and company have the option to share the joint surplus from402

immediate approval or the joint surplus from conditional approval, and the disagreement outcomes403

for both players are zero. Lemma 1 presents the bargaining solution for such a problem.404

Lemma 1. Consider an asymmetric bargaining problem in which two players negotiate to share405

either the surplus from an OIR scheme or the surplus from immediate approval. If both surpluses406

are negative, then the disagreement outcome is obtained. Otherwise, a Nash bargaining solution to407

this problem is obtained by selecting the outcome with the higher surplus and splitting the surplus408

proportionately, according to the players’ bargaining powers.409
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As in the analysis for the reappraisal stage, prices do not impact the size of the surplus, only how410

the surplus is shared, and our analysis proceeds as before. For each outcome, we add the payer’s411

net benefit and the company’s profit to construct a joint surplus. The Nash bargaining outcome is412

the one that maximizes the joint surplus.413

3.2.1. Expected Payoffs from Immediate Approval. The decision to immediately414

approve the new treatment is analogous to that of approving the new treatment at reappraisal.415

While the prior mean and variance of the INMB-p at initial submission, (µ0,Σ0), differ from those416

at reappraisal, comparison of (4) to (5) and (7) to (8) shows that the payer’s two net benefit417

functions and that the company’s two profit functions have the same forms.418

In turn, the joint surplus from immediate approval, which is simply the sum of the net benefit and419

profit function, is analogous from one period to the next. Prop. 2 summarizes the Nash bargaining420

solution if the outcome of negotiation is to immediately approve at the initial submission stage.421

Prop. 2. Suppose that the Nash bargaining outcome at initial submission is immediate approval.

Then the immediate approval price is p∗0 = vN +β(µ0+pS − vN ), and the joint surplus, the payer’s

total INMB, and the company’s expected profit from immediate approval are

S0(A0) =N(µ0 + pS − vN ), V0(A0, p
∗
0) = (1−β) S0(A0) and Π0(A0, p

∗
0) = β S0(A0). (12)

Note that the immediate-approval price has the same cost-plus structure as the reappraisal price,422

p∗1. At the time of initial submission, however, µ1, is unknown and has a normally distributed423

pre-posterior associated with the random variable M1. Therefore, an explicit comparison of the424

immediate-approval and reappraisal prices naturally takes the latter as an expectation. Direct425

evaluation of that expectation allows us to compare p∗0 and p∗1.426

Corollary 1. Suppose µ0 ≥ vN −pS so that the joint surplus from immediate approval is non-427

negative. Then p∗0 <EM1
[p∗1 |M1 ≥ vN − pS ].428

Thus, given µ0 ≥ vN −pS , so that a price at initial submission can be negotiated, the expected price429

at reappraisal will be greater, assuming that it can be negotiated as well. This effect is consistent430

with the “expected value of information” described in Claxton (2007).431

3.2.2. Joint Surplus from Conditional Approval. As before, the joint surplus is the sum

of the payer’s net benefit and the company’s profit from conditional approval, as defined in (6) and

(9). Adding the two and recalling the definition of S∗
1(t) from (11), we have

S0(CA
I, n, t) ≜ n(µ0 + pS − vN )− fDC −nvDC +EM1

[S∗
1(t) | µ0, n0] , (13)
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where S∗
1(t) depends on µ1 and the expectation is taken with respect to M1, the preposterior432

distribution of µ1 at initial submission defined in (3).433

We can use (3) to evaluate the expectation in the last term of (13). We first let

ψ(x)≜E[(X −x)+] = ϕ(x)−x(1−Φ(x)), (14)

denote the standard normal loss function, where ϕ(x) and Φ(x) are the density and cumulative

distribution functions of a standard normal random variable X ∼ Normal (0,1). Then substituting

M1 for µ1 in (11), taking expectations, and applying the definition of ψ(x) we have

S0(CA
I, n, t) = n(µ0 + pS − vN )− fDC −nvDC +(1− t)NσM1

ψ

(
vN − pS −µ0

σM1

)
. (15)

The joint surplus depends on the design parameters of the post-marketing trial, n and t, both434

directly and through the definition of σM1
in (3).435

3.2.3. Optimal Post-Marketing Trial Design. Through the Nash bargaining process, the

payer and company both obtain positive fractions of the joint surplus (15), so they share a common

interest in maximizing the value of S0(CA
I, n, t). They therefore can jointly determine the optimal

sample size and duration of the post-marketing trial by solving

max
n,t

{
S0(CA

I, n, t) | 0≤ 2n≤Nrmaxt
}
. (16)

In Appendix B.3, we show that the optimal sample size n∗ and duration t∗ are unique and nonzero436

whenever conditional approval is the Nash bargaining outcome. We denote the maximized joint437

surplus as S0(CA
I)≜ S0(CA

I, n∗, t∗).438

From (15) we observe that total number of patients who receive the new treatment decreases439

with the duration of the post-marketing trial. For any given sample size, n, it is therefore optimal440

to complete the post-marketing trial as quickly as possible. As a result, (16) can be optimized by441

setting the duration to t= 2n/(Nrmax), the shortest feasible time frame in which a given sample442

of n can be collected, and then optimizing over the sample size.443

We define σ∗
M1

≜
√
ΣXn∗/(n0(n∗ +n0)). Then, we can rewrite the maximized joint surplus as

S0(CA
I) = n∗(µ0 + pS − vN )− fDC −n∗vDC +(N − 2n∗/rmax)σ

∗
M1
ψ

(
vN − pS −µ0

σ∗
M1

)
. (17)

3.2.4. Expected Payoffs from Conditional Approval. Now, we develop Nash bargaining444

results that characterize the payer’s and company’s expected payoffs if the outcome of negotiation445

at initial submission stage is conditional approval. From (13) and (17) we have t∗ = 2n∗/(Nrmax)446

and EM1
[S∗

1(t
∗) | µ0, n0] = (N − 2n∗/rmax)σ

∗
M1
ψ
(
(vN − pS −µ0)/σ

∗
M1

)
, and recalling that V ∗

1 (t) =447
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(1− β)S∗
1(t) and Π∗

1(t) = βS∗
1(t) for any realization of µ1, we can express, as of the time of initial448

submission, the payer’s and company’s expected values at reappraisal.449

For the optimized n∗ and t∗ we can rewrite the payer’s expected net benefit (6) as

V0(CA
I, pi) = n∗(µ0 + pS − pi)+ (1−β) (N − 2n∗/rmax)σ

∗
M1
ψ

(
vN − pS −µ0

σ∗
M1

)
, (18)

and the company’s expected profit (9) as

Π0(CA
I, pi) = n∗(pi − vN )− fDC −n∗vDC +β (N − 2n∗/rmax)σ

∗
M1
ψ

(
vN − pS −µ0

σ∗
M1

)
. (19)

Then setting either V0(CA
I, pi) = (1− β)S0(CA

I) or Π0(CA
I, pi) = βS0(CA

I) and solving for pi we450

obtain the following Nash bargaining solution.451

Prop. 3. Suppose that the Nash bargaining outcome at the initial submission is an OIR scheme.

Then the payer’s INMB and the company’s expected profit from conditional approval are

V0(CA
I, p∗i ) = (1−β)S0(CA

I) and Π0(CA
I, p∗i ) = βS0(CA

I),

where S0(CA
I) is defined in (17). In turn, the interim price is p∗i = p∗0 + (1− β)(vDC + fDC/n

∗)452

where p∗0 = vN +β(µ0 + pS − vN ) from Prop. 2.453

As with p∗0 and p∗1, the interim price has a cost-plus structure and equals the price at immediate454

approval plus a partial reimbursement of the extra costs the company incurs to conduct the post-455

marketing trial. Note, however, that the share of those costs, 1−β, reflects the payer’s bargaining456

power: the payer and company share costs in the same manner that they share gains.457

Furthermore, the interim price is always strictly greater than the price that would be approved458

at initial submission, an increase that, in this case, reflects cost-sharing rather than risk reduction.459

Corollary 2. If p∗0 and p∗i exist, then p∗0 < p
∗
i .460

Remark 1. The interim and expected reappraisal prices are not strictly ordered. Their relative461

magnitudes depend on the initial expected surplus per patient, (µ0 + pS − vN ), the per-patient462

cost of the post-marketing trial, (fDC/n
∗ + vDC), the parties’ relative bargaining powers, β and463

1−β, and the degree of uncertainty concerning the INMB-p of the new treatment, n0. We discuss464

comparative statics regarding p∗i in §3.4 and numerically study the relationship between p∗0, p
∗
i , and465

EM1
[p∗1 |M1 ≥ vN − pS ] in §6.2.466
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3.3. Solution to the Bargaining Problem467

To summarize, for the payer and the company there are potentially two stages of bargaining on468

the path to a treatment’s approval. In the initial submission stage, the joint surplus to be shared469

through bargaining is the maximum of the joint surplus from immediate approval, S0(A0), and the470

joint surplus from conditional approval, S0(CA
I) (Lemma 1).471

• If S0(A0)>S0(CA
I) and S0(A0)≥ 0, the Nash bargaining outcome is immediate approval with472

price p∗0 set to share the joint surplus in proportion to the players’ bargaining powers (Prop. 2).473

• If instead S0(CA
I)>S0(A0) and S0(CA

I)≥ 0, then the Nash bargaining outcome is conditional474

approval, the company conducts a post-marketing trial with n∗ pairs of subjects over time t∗, and475

the payer reimburses the company at interim price p∗i that equals the price at immediate approval476

price plus the payer’s share of the cost of the post-marketing trial. (See Prop. 3.)477

• If both S0(A0)< 0 and S0(CA
I)< 0, then there is no joint surplus to share, and negotiation478

breaks down. The treatment is rejected, the payer’s expected INMB in the initial submission stage479

is zero, and the company’s expected profit in the initial submission stage is zero.480

For completeness, we note that, in the event that the joint surpluses from the two outcomes are481

non-negative and equal, we assume that the outcome chosen is immediate approval at price p∗0. See482

Figure 3c below for a visualization of this result on the (µ0, n0) plane. (This result is broader than483

just for that specific example. See Appendix C.2.2.)484

A second stage of bargaining occurs if and only if conditional approval dominates at initial485

submission. In this case, the revised mean at reappraisal, µ1, becomes known, and the treatment is486

approved if an only if the resulting S1(A1, t
∗)≥ 0. If approved, the price p∗1 is set so that the joint487

surplus is shared according to the players’ bargaining powers (Prop. 1).488

3.4. Comparative Statics Results489

We conduct a comparative statics analysis to understand the sensitivity of Nash-bargaining out-490

comes and prices to model parameters. Most of the results are intuitive. Therefore, we focus here on491

a subset of insights for OIR schemes. Additional results and all derivations appear in Appendix C.492

Appendix E gives numerical results for parameters that cannot be unambiguously signed.493

First, we discuss the sensitivity of the company’s payoff to the effective sample size. We note that494

n0 does not affect the company’s expected profit from immediate approval, and for any given µ0,495

the surplus from conditional approval is highest when the effective sample size is as low as possible.496

Thus, once enough Phase III data are collected to ensure immediate or conditional approval, the497

company has no incentive beyond the requirements of the Phase III trial to collect further samples.498

Second, we examine the sensitivity of prices to the company’s bargaining power, β. We know499

from Prop. 2 that immediate approval can be optimal only when S0(A0) =N(µ0 + pS − vN )≥ 0.500
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Therefore, for all treatments that are immediately approved, the price, p∗0 = vN +β(µ0+ pS − vN ),501

(weakly) increases with β, and from Prop. 1 an analogous result holds for p∗1.502

In contrast, the interim price, p∗i , may increase or decrease with the bargaining power of the503

company. To see this, recall from Prop. 3 that the interim price is p∗i = p∗0+(1−β)(vDC +fDC/n
∗).504

If µ0+pS −vN > 0, then p∗0 increases and (1−β)(vDC+fDC/n
∗) decreases with β, and the direction505

of change depends on their balance. If the treatment is highly favorable and the cost of the post-506

marketing trial is small, then the p∗0 term will dominate, so that the interim price increases with507

β. If the treatment is marginally favorable and cost of the trial is high, then the last term of508

p∗i will dominate, meaning that the interim price decreases with β. When µ0 + pS − vN < 0, so509

immediate approval is not attractive, both p∗0 and (1− β)(vDC + fDC/n
∗) decrease with β, and510

p∗i unambiguously decreases. The relationship between the company’s bargaining power and the511

interim price is consistent with cooperative bargaining outcomes in which the payer and company512

share gains and costs.513

4. Comparison of the OIR and OWR Conditional Approval Schemes514

In this section we develop expressions for an OWR conditional approval scheme that is the analogue515

of the OIR scheme analyzed in §3. For the case in which both OIR and OWR are under consideration516

at initial submission, we then compare bargaining outcomes and realized prices for the two schemes.517

We begin with the reappraisal stage and recall that, in an OWR scheme, fr denotes the total518

cost the payer incurs to reverse public health information and practice in the event that the519

new treatment is rejected at the reappraisal stage. In this case, the Nash bargaining problem at520

reappraisal has a disagreement outcome of zero for the company and of −fr for the payer. There521

is no such reversal cost for OIR schemes.522

The introduction of the reversal cost implies that the joint surplus at reappraisal is

S∗,W
1 (t) = max{(1− t)N(µ1 + pS − vN ),−fr}, (20)

which for large fr can have realizations that fall significantly below the floor of zero in the analogous

expression for OIR schemes in (11). In turn, as of the time of initial submission, the joint surplus

from an OWR scheme parallels (13):

S0(CA
W, n, t) ≜ (Nt−n)(µ0 + pS − vN )− fDC −nvDC +EM1

[
S∗,W
1 (t) | µ0, n0

]
, (21)

and we denote the maximized joint surplus as S0(CA
W)≜maxn,t{S0(CA

W, n, t) | 0≤ 2n≤Nrmaxt}523

and the optimal sample size and duration by n∗,W and t∗,W.524

We note two differences between (13) and (21). In the first term, the cohort of patients who525

receive the new treatment during the post-marketing trial is typically far larger in the OWR scheme,526
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(Nt− n) rather than n, so the expected total gain or loss from these patients is larger under the527

OWR scheme. And the final expectation terms can differ significantly for large values of fr, due to528

the difference between the floors of the maxima that are embedded within (11) and (20), above.529

The characterization of Nash bargaining outcomes then follows the same approach as in §3. First,530

we can show that, for any given sample size it is optimal to complete the OWR post-marketing531

trial as quickly as possible, so t∗,W = 2n∗,W/(Nrmax). Second, when both OIR and OWR are under532

consideration at initial submission, we can straightforwardly extend the results in Lemma 1 to hold533

for bargaining that includes three potential surpluses: S0(A0), S0(CA
I) and S0(CA

W).534

We find that the interim price under the OWR scheme is

p∗,Wi = p∗0 +(1−β)
n∗,WvDC + fDC

n∗,W(2/rmax − 1)
−β

fr
n∗,W(2/rmax − 1)

, (22)

where n∗,W(2/rmax−1)> 0 is the total number of patients receiving the new treatment during the535

post-marketing trial. The first two terms are analogous to those for the interim price in the OIR536

scheme, p∗i from Prop. 3: the immediate approval price, p∗0 = vN +β(µ0+pS−vN ) from Prop. 2, plus537

a partial reimbursement of the costs the company incurs to conduct the post-marketing trial. The538

third and final term reflects the company’s share of the reversal cost that the payer would incur if539

the treatment were rejected at reappraisal. The first term, p∗0, increases with β for (µ0+pS−vN )> 0,540

and the second and third terms decrease as β increases. How p∗,Wi changes with β depends on the541

relative magnitudes of the the three terms’ costs and revenues.542

We also show that the reappraisal price under an OWR scheme has a cost-plus structure, similar

to its OIR counterpart, with an extra term proportional to the reversal cost:

p∗,W1 = vN +β(µ1 + pS − vN )+β
fr

N − 2n∗,W/rmax

, (23)

where N − 2n∗,W/rmax > 0 is the total number of patients remaining to be treated after the con-543

clusion of the post-marketing trial. The first two terms are equal to the reappraisal price under the544

OIR scheme, p∗1 in Prop. 1. The final term allows the company to recover the share of the reversal545

cost paid through the interim price in the event that the new treatment is approved at reappraisal,546

in which case the reversal cost is not incurred.547

We now compare the prices under the OWR scheme, p∗,W1 and p∗,Wi , to the immediate approval548

price, p∗0. An analogue to Corollary 1 can be shown for p∗,W1 : the expected reappraisal price after549

an OWR scheme strictly exceeds the immediate approval price. The result for the interim price550

under the OWR scheme differs from that of its OIR counterpart, however. The OWR scheme’s551

interim price includes partial reimbursement of the company’s costs from the post-marketing trial,552

as well as partial compensation for the potential reversal cost the payer may incur, while the OIR553
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scheme’s interim price includes only the former. Therefore, the relationship between the OWR554

scheme’s interim price and the immediate approval price depends on the balance between these555

two effects. If the payer’s share of the total post-marketing-trial cost exceeds the company’s share556

of the reversal cost, (1− β)(n∗,WvDC + fDC)> βfr, an analogue to Corollary 2 can be shown: the557

interim price of an OWR scheme strictly exceeds the immediate approval price. Otherwise, the558

interim price of an OWR scheme falls below the immediate approval price.559

The similarity of (13) and (21) also allows us to provide a sharp comparison of the preferability560

of the two schemes in certain cases. If S0(CA
I) = S0(CA

W), we break ties by choosing OIR.561

Prop. 4. i. If µ0 + pS − vN < 0, then S0(CA
I)>S0(CA

W).562

ii. If µ0+pS −vN = 0, then S0(CA
I) = S0(CA

W) for fr = 0 and S0(CA
I)>S0(CA

W) for fr > 0.563

iii. If µ0 + pS − vN > 0, then there is an R> 0 such that S0(CA
I)<S0(CA

W) for fr <R,564

S0(CA
I) = S0(CA

W) for fr =R, and S0(CA
I)>S0(CA

W) for fr >R.565

To interpret Prop. 4, we recall that the expected surplus at initial submission for both schemes is566

the sum of the expected surplus during the post-marketing trial and that obtained at reappraisal.567

When the expected per-patient surplus at initial submission is negative, µ0 + pS − vN < 0, OWR’s568

use of the new treatment for Nt− n > n patients drives its total expected health-economic value569

below that of OIR, and the presence of reversal costs, −fr ≤ 0 only makes the disparity worse.570

In contrast, when µ0 + pS − vN > 0, an OWR scheme might be preferable to an OIR scheme571

under some conditions. In the absence of a reversal cost, fr = 0, the new treatment’s availability572

to a larger number of patients during the post-marketing trial makes OWR more attractive than573

OIR. When there is a positive reversal cost, fr > 0, this advantage that OWR may enjoy during574

the post-marketing trial may be more than outweighed by a lower expectation at reappraisal. In575

this case, we show that there is an upper threshold on the reversal cost, R, that determines which576

scheme is preferable. In §6.2 we explore the relationship between joint surpluses from OWR and577

OIR schemes for different values of the cost of reversal.578

Details of the analysis and comparative statics results are in Appendices B.2 and C, respectively.579

5. Impact of Cost-Effectiveness Constraints on the Interim Price580

While the UK Government’s pricing guidelines (UK DHSC and ABPI 2018) support a bargaining581

approach to price determination, other guidance of NHS England (2016) suggests that the interim582

price should be lowered, if needed, to satisfy relevant cost-effectiveness thresholds. Such a limit583

has the potential to conflict with the interim price obtained via Nash bargaining, especially if the584

initial appraisal of expected effectiveness is low, data collection or production costs are high, or585

both. Here, we assess how constraints on the interim price can affect bargaining outcomes, first for586

OIR schemes and then for OWR schemes.587



Yapar, Chick, Gans: Conditional Approval and Value-based Pricing
23

We let pi denote an exogenously defined cap on the interim price and recall that the interim588

price for OIR schemes characterized in Prop. 3 is p∗i . If pi ≥ p∗i , then the interim price obtained by589

bargaining does not violate the cap. If pi < p
∗
i , however, then the Nash-bargaining price violates the590

cap, and the uniqueness of p∗i implies that the two cannot be reconciled without some adjustment:591

either the cap or the details of our Nash bargaining model must be modified.592

In fact, the players can effectively relax the details of our Nash bargaining model through the use593

of a contracting mechanism that guides the conditional approval process. We note that both the594

immediate costs of the post-marketing trial, fDC + nvDC , and the distribution of the subsequent595

benefits,M1+pS−vN , are common knowledge to the players, as is the ultimate realization once the596

trial completes, µ1 + pS − vN . Therefore, the costs and expected gains associated with conditional597

approval can be contracted upon in advance. (For example, see Hart and Moore 1988.)598

Suppose that Nash bargaining at initial submission obtains the interim price, p∗i , and [β, (1−β)]
shares of expected gains, as defined in Prop. 3. If pi < p∗i , the players can use the capped interim

price, pi and still preserve the [β, (1− β)] split of expected gains defined in Prop. 3 by explicitly

adjusting the split of expected gains at reappraisal to compensate the company for the revenues lost

during the post-marketing trial. Formally, they use the capped interim price, pi, and alternative

fractions, [β1, (1−β1)], to define analogues to (18)-(19) as follows:

V0(CA
I, pi, n, t, β1) = n(µ0 − pi + pS)+ (1−β1)EM1

[S∗
1(t) | µ0, n0] , and (24)

Π0(CA
I, pi, n, t, β1) = n(pi − vN )− fDC −nvDC +β1EM1

[S∗
1(t) | µ0, n0] , (25)

and adding (24) and (25) they obtain S0(CA
I, n, t). Preserving the [β, (1−β)] split implies:

V0(CA
I, pi, n

∗, t∗, β1) = (1−β)S0(CA
I) and Π0(CA

I, pi, n
∗, t∗, β1) = βS0(CA

I). (26)

The players use (24)-(26) to identify and contract upon a β∗
1 that is consistent with an outcome599

that divides the total expected surplus at initial submission according to [β, (1−β)]. If, in turn, OIR600

is the Nash bargaining outcome at initial submission, then at reappraisal the players substitute β∗
1601

for β in (11) to determine p∗1. If pi ≥ p∗i , then β
∗
1 = β because no adjustment to the Nash solution602

is required. If pi < p∗i , however, (24)-(26) imply that β∗
1 > β: a lower interim price paid to the603

company is balanced by higher expected price at reimbursement.604

Because cooperative bargaining is conserved at initial submission, the company’s and the payer’s605

incentives remain aligned, and they maintain the common objective of designing the post-marketing606

trial to maximize the expected joint surplus from the OIR scheme. Thus, they continue to agree607

to choose the same post-marketing trial parameters n∗ and t∗ = 2n∗/(Nrmax) identified in §3.2.3.608

At the same time, when pi < p
∗
i and β < β

∗
1 ≤ 1, the contracting mechanism matches the expected609

gains obtained through the less restrictive, bargaining-based interim price, p∗i , by shifting the610
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allocation of costs and rewards over time. In particular, the company bears a higher share of611

post-marketing-trial costs but enjoys only a chance at earning higher rewards, since these gains612

are obtained only should the new treatment ultimately be approved. Thus, the approach shifts613

financial risk from the payer to the company, and we refer the scheme as a risk-sharing contract.614

Furthermore, if pi is far below p∗i , then β
∗
1 might exceed one. In that case, the payer obtains a615

negative share of the gains at reappraisal. Prop. 5 shows when this is a concern, and Corollary 3616

indicates how the cap can be set to avoid the problem.617

Prop. 5. Consider the case in which S0(CA
I)≥ S0(CA

W) and S0(CA
I)> 0.618

i. If pi ≥ p∗i , then the interim price is p∗i and β∗
1 = β.619

ii. If p∗i > pi ≥ p∗i − (1−β)EM1
[S∗

1(t
∗) | µ0, n0]/n

∗, then β < β∗
1 ≤ 1,620

iii. If p∗i − (1−β)EM1
[S∗

1(t
∗) | µ0, n0]/n

∗ > pi, then β
∗
1 > 1 and (1−β∗

1)EM1
[S∗

1(t
∗) | µ0, n0]< 0.621

Corollary 3. If S0(CA
I)≥ 0 and β < 1, then pi = µ0+pS always satisfies Case (ii) of Prop. 5.622

Recall from the first term of (6) that the new treatment is cost effective when its expected INMB623

is non-negative: µ0 − pi + pS ≥ 0. Therefore, Corollary 3’s cap of pi = µ0 + pS , guarantees that624

the new treatment will be (marginally) cost effective at the interim price and that a risk-sharing625

contract is implementable, so that the incentives of the players can be realigned. If the price cap626

is selected to be much lower than µ0 + pS , however, as in Case (iii) of Prop. 5, then even with the627

availability of a risk-sharing contract, cooperation may break down.628

If OIR maximizes the joint surplus under the original Nash bargaining scheme but p∗i > pi and629

β∗
1 > 1, then one or both of the players may be unwilling to pursue the surplus-maximizing course630

of action. The payer may balk at incurring losses at reappraisal or the company may refuse to enter631

an OIR scheme under the capped interim price. When it comes to the design of the post-marketing632

trial, the payer and the company’s incentives may differ, and it is not immediately clear how the633

sample size and the duration of the post-marketing trial would be determined.634

If OWR is preferred to OIR, one can prove analogous results. Let β∗,W
1 be the readjusted fraction635

to be used when OWR is the Nash negotiation outcome and let Ñ ≜Nt∗,W −n∗,W.636

Prop. 6. Consider the case in which S0(CA
W)>S0(CA

I) and S0(CA
W)> 0.637

i. If pi ≥ p∗,Wi , then the interim price is p∗,Wi and β∗,W
1 = β.638

ii. If p∗,Wi > pi ≥ p∗,Wi − (1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
/Ñ +βfr/Ñ , then β < β∗,W

1 ≤ 1,639

iii. If p∗,Wi − (1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
/Ñ +βfr/Ñ > pi, then β

∗,W
1 > 1640

and (1−β∗,W
1 )EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
< 0.641

Corollary 4. If S0(CA
W)≥ 0 and β < 1, then pi = µ0+pS always satisfies Case (ii) of Prop. 6.642
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Thus, the imposition of an interim price cap can potentially transform conditional approval from643

the preferred option into to an unacceptable alternative, reducing the expected joint surplus that644

would have been obtainable via Nash bargaining and destroying societal value. In the case of a645

treatment for which S0(A0)< 0 and either S0(CA
I)> 0 or S0(CA

W)> 0, the imposition of such a646

cap may block the approval of a treatment that ultimately may have made it to market through647

an OIR or OWR scheme.648

We note that a cap with pi ≥ µ0 + pS would not change the preference for OIR versus OWR649

when conditional approval is optimal. We also note that in cases i. and ii. of Props. 5 and 6, and650

therefore under the hypothesis of Corollaries 3 and 4 as well, the negotiated prices if the treatment651

is accepted on reappraisel will be cost effective at the CPQ threshold, λ, from (1).652

6. Case Study: Votrient653

We present a numerical case study that illustrates our Nash bargaining model, many of the issues654

raised for OIR and OWR schemes in §3–§4, and the interim price caps in §5. In §6.1, we use data655

from previous approval processes to parameterize our case-study example. In §6.2, we explore how656

Nash bargaining outcomes, the optimal sample size and duration of the post-marketing trial, and657

prices change with the cost of reversal when both OIR and OWR options are available for condi-658

tional approval. In §6.3, we illustrate the potential negative impact of the interim-price constraints659

addressed in §5, as well as the feasibility of our risk-sharing approach for mitigating adverse con-660

sequences. Together, §6.2 and §6.3 underscore that the role of the interim price in conditional661

approval (CA) scheme design is one of cost-sharing and is not aligned with current practices, which662

link interim price with initial estimates of a cost-effective price.663

Our example is based, in part, on data from an OWR risk-sharing agreement between the NHS664

and GSK for Votrient (pazopanib).1 Votrient, which was developed by GSK, is a tyrosine kinase665

inhibitor that is used in the treatment of advanced renal cell carcinoma. As a small-molecule666

treatment, Votrient does not require a specific new manufacturing infrastructure, and it can be667

produced for GSK by contract manufacturers. The example is illustrative and not intended to668

advocate for any specific medical treatment.669

In 2011, NICE conditionally approved Votrient with an OWR scheme in which GSK would670

provide a future price update linked to the outcome of a trial called COMPARZ (NICE 2011).671

Votrient entered the UK market while COMPARZ collected further data on its effectiveness relative672

to that of the current standard of care, Sutent (sunitinib). In 2013, NICE announced that the673

cost-effectiveness of Votrient was re-evaluated based on the evidence collected in COMPARZ, and674

the UK health system approved Votrient for use at its initially approved price.675

1 We use brand names in this section. Active ingredients are mentioned in parenthesis.
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Table 1 Parameter values used for the Votrient case study of §6.

Parameter Value Source
λ £30,000 NICE (2014)
µ0 £2,049 Derived from NICE (2011)
ΣX £2796,8902 Derived from NICE (2011)
n0 290 Derived from NICE (2011) and a non-informative prior assumption
pS £20,089 Derived from NICE (2009) and Motzer et al. (2009)
N 21,200 NICE (2011)
rmax 0.2 Derived from NICE (2011) and ClinicalTrials.gov (2010)
vN £1,205 Derived following the calculation method in Hill et al. (2016)
fDC £10× 106 Derived from Sertkaya et al. (2014)
vDC £6,226 Derived from Sertkaya et al. (2014) and Moore et al. (2018)

6.1. Parameter Values676

Table 1 summarizes the parameter values used for the Votrient case study, together with their677

data sources. Along with these estimates, our examples cover a range of values for the ‘bargaining678

power’ parameter, β ∈ {0.1,0.2, . . . ,0.9,1}, and for the cost of reversal parameter, fr ∈ {0,107,2×679

107, . . . ,99× 107,100× 107}. Appendix D.1 provides details of how we derive the parameter values680

summarized in Table 1 from regulatory and industry sources.681

6.2. Impact of the Cost of Reversal in OWR Schemes682

To explore the relationships studied in §4, we numerically analyze how our example’s Nash bar-683

gaining solution, post-marketing trial sample size, and prices change with the cost of reversal. We684

begin with the Nash bargaining solution.685

The joint surpluses from immediate approval and rejection directly follow from their definitions:686

S0(A0) = £444 million and S0(R0) = £0. To find S0(CA
I) and S0(CA

W), we recall that both687

S0(CA
I, n, t) and S0(CA

W, n, t) decrease as t increases for any given n. Therefore, we calculate688

S0(CA
I, n, t) for n∈ {1,2, . . . ,Nrmax/2} and let t= 2n/(Nrmax). We find that n∗ = 219, t∗ = 0.1033,689

and S0(CA
I) =£477 million for the case-study parameter values. We also find the n that achieves690

the highest S0(CA
W, n, t) for each fr and call the OWR scheme’s optimal trial size n∗,W.691

Figure 3 has three panels. Each depicts the Nash bargaining outcomes at initial submission for692

different values of µ0 and n0, and the three differ in their reversal costs. In each panel, treatments693

with high prior mean beliefs regarding INMB-p with and high effective sample sizes obtain imme-694

diate approval, while analogous treatments with low prior mean beliefs are immediately rejected.695

Conditional approval (OIR or OWR) is used either when the prior mean implies that the joint696

surplus from immediate approval is close to zero or when the effective number of samples is low,697

both cases in which EM1
[p∗1 |M1 ≥ vN −pS ] is much larger than p∗0 and for which the expected value698

of information (VoI) is high.699

In Figure 3a, the reversal cost is zero. For small n0, for which CA schemes are optimal, the700

results are consistent with Prop. 4: the OWR scheme is the Nash outcome when µ0 + pS − vN > 0701
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Figure 3 Nash bargaining outcomes at the initial submission stage for different values of µ0 and n0 at three

levels of the cost of reversal, fr. Parameter values for the Votrient case study are marked with ‘+’.

(a) fr = 0. (b) fr =£30× 107. (c) fr =£100× 107.

and the OIR scheme is the outcome otherwise. In Figure 3b, the reversal cost is positive, the region702

for OWR is smaller compared to that in Figure 3a, and an OWR scheme is the Nash outcome for703

treatments with relatively high µ0 and low n0. In Figure 3c, the reversal cost is high enough that704

an OWR scheme is never the Nash outcome.705

Recall that Votrient received conditional approval through an OWR scheme, and on each of the706

panels we mark the COMPARZ trial’s (µ0, n0) coordinates with a ‘+’ sign. From Figures 3a and 3b,707

we see that, given a low to moderate cost of reversal, an OWR scheme would have been optimal708

for Votrient. In contrast, from Figure 3c we see that, for a high cost of reversal, an OIR approach709

would have been preferable. Because Votrient was approved at the end of COMPARZ, it did not710

incur reversal costs, and we do not know what its fr might have been. But the results reported711

in Figure 3 suggest that, in the context of our model, the decision to pursue an OWR scheme in712

COMPARZ appears to have been reasonable.713

We can also explore the optimal choice of OIR/OWR and post-marketing trial design as a714

function of fr. Figure 4a presents joint surpluses at initial submission for a range of reversal costs.715

If the cost of reversal is zero then, as in Prop. 4, an OWR scheme obtains the highest joint surplus,716

since Votrient’s per-patient joint surplus is positive (µ0 + pS − vN =£20,933> 0). As the cost of717

reversal increases, however, the joint surplus of the OWR scheme decreases and drops below those718

for the OIR scheme and for immediate approval, which do not have reversal costs and remain719

constant. We see that the Nash bargaining outcome for Votrient is an OWR scheme if fr <£24×107720

and is an OIR scheme otherwise.721

In Figure 4b we see that the optimal sample size is higher for an OWR scheme as compared to an722

OIR scheme, and the optimal sample size for the OWR scheme decreases in fr. The post-marketing723

trial for an OIR scheme would run over about 10% of the drug’s market exclusivity period and724

include about 2.1% (2× n∗/N × 100%) of the target population. In contrast the post-marketing725
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Figure 4 The effect of the cost of reversal on the joint surplus and optimal post-marketing trial size.

(a) Joint surplus from an OWR scheme, an OIR scheme

and immediate approval.

0 20x10
7

40x10
7

60x10
7

80x10
7

100x10
7

Cost of reversal (f
r
)

4.3

4.5

4.7

4.9

5.1

5.3

S
u

rp
lu

s
 (

£
)

10
8

S
0
(CA

W
)

S
0
(CA

I
)

S
0
(A

0
)

(b) Optimal number of patient pairs under OWR (n∗,W)
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Table 2 Votrient Case Study: Bargaining prices (in £) for different values of the bargaining
power parameter. (OWR is preferred to OIR here, because fr = 0 for OWR in this table).

Bargaining Immediate Approval OIR OWR with fr = 0

power p∗0 p∗i EM1
[p∗1 | A1] p∗,Wi EM1

[p∗,W1 | AW
1 ]

β = 0.1 3,298 49,998 4,585 6,163 5,012
β = 0.3 7,485 43,807 11,344 9,713 12,625
β = 0.5 11,672 37,616 18,103 13,263 20,238
β = 0.7 15,858 31,425 24,862 16,813 27,852
β = 0.9 20,045 25,234 31,621 20,363 35,465
β = 1.0 22,138 22,138 35,001 22,138 39,272

trial for an OWR scheme would run over about 19-21% of the drug’s market exclusivity period and726

include roughly 3.2-4.7% of the target population. In comparison, COMPARZ was planned to take727

about 20% of the exclusivity period and included 4.1% (876/N × 100%) of the target population.728

Finally, we consider the prices that would arise under different bargaining outcomes. Table 2729

presents the prices associated with immediate approval, which is never the Nash negotiation out-730

come for the parameter values of Votrient case study; the OIR scheme, which is the Nash outcome731

if fr >£24× 107; and the OWR scheme, which is the Nash outcome if fr <£24× 107. We denote732

the event of the new treatment being approved upon reappraisal after an OIR scheme by A1 ≜733

{M1 ≥ vN − pS} and after an OWR scheme by AW
1 ≜ {M1 ≥ vN − pS − fr/(N − 2n∗,W/rmax)}, and734

we report the expected reappraisal price conditional on approval at reappraisal. Table 2 assumes735

that fr = 0. Appendix D.2 discusses qualitative observations for other values of fr > 0, including736

those for which OIR is preferred.737

Looking across each row for a given β, we see that the interim price and the expected reappraisal738

price (conditional on approval) are both higher than the immediate approval price, as is consistent739

with Corollaries 1 and 2 for OIR and the analysis in Appendix B.2 for OWR. The relationship740
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between the interim price and the expected reappraisal price depends on the value of β for both741

the OIR and OWR scheme, however.742

Table 2 also shows that the interim price under the OIR scheme is higher than that under the743

OWR scheme for each value of β < 1. We recall that the interim price under both OIR and OWR744

includes a partial reimbursement of the extra cost the company incurs to conduct a post-marketing745

trial. Under an OWR scheme with fr = 0, this reimbursement is spread across Nt∗,W−n∗,W = 4,014746

patients who use the new treatment during the post-marketing trial. Comparatively, under an OIR747

scheme, the reimbursement for the post-marketing trial is spread across only n∗ = 219 patients.748

This leads to a significant difference between the OIR and OWR schemes’ interim prices, because749

these per-patient prices reflect fixed costs, fDC , that are allocated over patient cohorts that have750

significantly different sizes. Indeed, the interim price p∗i for the OIR scheme can far exceed the751

cost-effectiveness threshold in this setting, particularly for low values of β. ICER estimates for752

Votrient at p∗i range from 75,522£/QALY to 439,700£/QALY, depending on the value of β, and753

all are above the 30,000£/QALY threshold often adopted by NICE.754

For the special case of β = 1, in which cooperative bargaining degenerates to a Stackelberg755

game (see Appendix B.4 for a proof), Table 2 shows that the interim price under the OIR and756

OWR schemes are equal to the immediate approval price. That price is lower than the expected757

reappraisal price, conditioned on approval, with either scheme.758

Conversely, Table 2 shows that the expected reappraisal price under the OWR scheme is higher759

than that under the OIR scheme for all values of β. Given the same mean µ0 and Σ0 in both760

schemes, as well as a zero reversal cost for OWR, the OWR scheme’s larger sample sizes imply a761

systematically higher VoI and, in turn, higher expected prices at reappraisal.762

Table 2 also shows that the effect of bargaining power on prices is consistent with the comparative763

statics results in §3.4 and Appendix C. While immediate approval and expected reappraisal prices764

increase with β for both OIR and OWR, interim prices behave differently for the two schemes. For765

OIR the interim price decreases as β increases, a reflection of the fact that large fixed trials costs766

are spread over only a small group of n∗ = 219 subjects who will be charged the interim price, so767

that per subject trial cost dominates the more modest increase in p∗0 that accompanies an increase768

in β. In contrast, the number of patients receiving the new treatment under OWR is 20-fold higher769

(Nt∗,W−n∗,W = 4,014), and the increase in p∗0 that accompanies β instead dominates the decrease770

in price associated with per-patient allocation of post-marketing trial costs.771

6.3. Impact of Cost-Effectiveness Constraints on the Interim Price772

In §5 we noted that cost-effectiveness considerations can motivate the payer to constrain interim773

prices and that these caps can result in infeasible Nash bargaining outcomes for the interim price.774
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Here, we numerically illustrate the potential consequences of using caps on the interim price,775

and we use the solution approach proposed in §5 to show how surplus sharing can be adjusted776

at reappraisal to accommodate these constraints. For illustrative purposes, we focus on the OIR777

scheme and assume that the bargaining power of the company is β = 0.5, but the insights hold for778

other values of β and for the OWR scheme.779

The cap on the interim price we study in this section is pi = µ0 + pS and is motivated by NHS780

England (2016). The price sets the INMB to zero so that the treatment is cost-effective at the cost-781

per-QALY threshold λ. At the same time, the company pays the full cost of the post-marketing trial782

and the full production cost. For the parameter values calculated for the case study, pi =£22,138.783

We start by illustrating the consequences of putting a cap on the interim price. As explained784

in §5, a cap can break the Nash bargaining framework unless the bargaining process is modified.785

To show how it breaks, we assume that bargaining at the reappraisal stage proceeds without any786

adjustments so that the expected surplus at reappraisal is split between players in proportion to787

their bargaining powers, [β,1−β]. We calculate the company’s expected profit under the cap from788

(25), Π0(CA
I, pi, n

∗, t∗, β), and we divide by the expected joint surplus, S0(CA
I), to find the effective789

share of the gain the company would receive if the interim price cap is implemented without any790

other adjustments to the bargaining process.791

Figure 5a presents a contour plot of the company’s effective share under the cap, pi, for various792

prior means and effective prior sample sizes. The dashed lines represent the boundary between793

conditional approval, immediate approval (A0) and rejection (R0) outcomes. Therefore the contour794

lines are only relevant between the dashed lines where the Nash outcome is conditional approval.795

Figure 5a shows that, as expected, the company’s effective share of the joint surplus under the796

cap falls below its bargaining power, β = 0.5, for all values of µ0 and n0, if advance contracting is797

not used. For the Votrient case study, the company’s share is 0.486. (See ‘+’ on Figure 5a.) More798

generally, the company’s share decreases as the prior mean decreases and as the effective sample799

size increases. In the shaded region that is closest to the boundary between conditional approval800

and rejection, the company’s effective share of the surplus is negative.801

Thus, in these cases the company would not enter into a conditional approval scheme. Because the802

surplus at initial submission is negative, these treatments also would not be immediately approved803

at initial submission, and as a result they would be rejected.804

Now we explore the advance contracting mechanism proposed in §5 as a remedy for that break-805

down. Figure 5b presents an analogous contour plot of β∗
1 when advance contracting is used for806

different values of µ0 and n0. For the Votrient case study, β∗
1 = 0.507. For treatments with lower807

prior means and higher effective samples sizes compared to the case study – which are also the808

closest to the boundary between conditional approval and rejection – the value of β∗
1 is higher and809
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Figure 5 Effect of constraints on interim prices that may be inconsistent with Nash bargaining outcomes.

Parameter values for Votrient case study are marked with ‘+’. (Here, β = 0.5 and fr = 100× 107, so that OWR is

not preferred to OIR in this figure.)

(a) The company’s effective share of joint surplus under

a cap on interim price without advance contracting.
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(b) The values of β∗
1 obtained from advance contracting

for different values of µ0 and n0.
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is close to 0.9. This implies that the payer would share about 0.9 of the gain at the reappraisal810

with the company, even though the bargaining power of the company is only 0.5.811

We tested different values of β to understand the range of possible values of β∗
1 . For Votrient case812

study, β∗
1 = 0.024 when β = 0.01, β∗

1 = 0.507 when β = 0.5, and β∗
1 = 0.9901 when β = 0.99. We see813

that the gap between β∗
1 and β gets smaller as β increases. This means that the risk-sharing-based814

readjustment to β decreases with the company’s bargaining power.815

7. Probability of Cost Effectiveness and Competitive Response816

We now consider how CA schemes affect the payer’s risks, as well as how competition from an817

incumbent manufacturer may affect the outcome of negotiation. In §7.1 we characterize the prob-818

ability that a new treatment is cost-effective at the prices that arise from cooperative bargaining.819

This is an important measure of risk that follows from parameter uncertainty about the treatment’s820

effectiveness and costs, due to limited data, and it has been used in practice (e.g., Barton et al.821

2008, Danzon et al. 2018). In §7.2 we turn our attention to the probability of cost-effectiveness822

of an entire CA scheme. There are significant costs beyond the price of the treatment that are823

associated with implementing CA schemes, and here we say a CA scheme is cost-effective if its824

total cost is less than the expected gain in health economic value achieved at the completion of the825

scheme. In §7.3 we consider the potential influence that price reductions offered by an incumbent826

manufacturer may have on the outcome of negotiations between the payer and the company.827
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7.1. Probability that a New Treatment is Cost-effective828

A new treatment is considered cost-effective compared to the standard of care if its INMB, based829

on an expected population-wide benefit, exceeds zero (e.g., Claxton et al. 2005, Barton et al.830

2008, Danzon et al. 2018). That INMB, in turn, depends on the negotiated price of the adopted831

treatment and on data available regarding its health benefits and other treatment costs. Because832

data are limited, there is uncertainty regarding the INMB. NICE (2014, p. 119) highlights the need833

to explore the impact of parameter uncertainty on the results of the economic analysis. We analyze834

the probability of the new treatment being cost-effective, or equivalently the probability that the835

INMB is greater than zero, at the different prices that emerge from a bargaining process given836

uncertainty regarding the treatment’s effectiveness and cost.837

We let CE(p) ≜ {θ − (p − pS) > 0} denote the event that the new treatment is cost-effective,838

i.e., its INMB is positive at a given price, p. We then define a treatment’s probability of cost-839

effectiveness at price p as the probability that the event CE(p) realizes given the uncertainty about840

the INMB, θ ∼ Normal(µ0,Σ0), and given that the price, p, can be negotiated. For example, the841

probability of cost-effectiveness at the immediate approval price, p∗0, is P(CE(p∗0)|µ0 ≥ vN − pS),842

where the condition µ0 ≥ vN − pS ensures that an immediate approval price can be negotiated.843

If µ0 = vN − pS , the negotiated immediate-approval price is cost effective with a probability844

of 50%. However, if µ0 > vN − pS , we find that the probability that the negotiated immediate845

approval price results in a cost-effective treatment decreases in the company’s bargaining power,846

β, and is 50% when the company has all of the bargaining power (β = 1). Thus, the risk neutrality847

assumption does not imply a probability of cost-effectiveness of 50%, a contrast with (Danzon848

et al. 2018). This result extends to the reappraisal prices negotiated after an OIR or an OWR849

scheme with zero reversal cost. However, if the OWR scheme has significant reversal costs, then850

the probability of cost-effectiveness at the final reappraisal price might fall below 50% even when851

the payer has some bargaining power. We demonstrate these results in Appendix F.1.852

We also show in Appendix F.1 that, for our case study, even though the information collected853

through conditional approval may lead to higher expected prices at reappraisal as compared to the854

immediate approval price, these reappraisal prices may also be associated with higher probabilities855

of cost effectiveness compared to the analogous probability for the immediate approval price.856

7.2. Probability of a Conditional Approval (CA) Scheme Being Cost-effective.857

We now study the probability of a CA scheme itself is cost-effective, i.e., whether the expected858

gains in health-economic value achieved exceed the total cost associated with the scheme, including859

the treatment price, fixed and variable data collection costs and potential reversal cost.860

As an analogue to a treatment being cost-effective relative to the standard of care, we define861

the cost-effectiveness of a CA scheme in comparison to other negotiation outcomes. As a result, we862
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have three probabilities of relative cost-effectiveness associated with each CA scheme: as compared863

to the competing CA scheme (OIR or OWR), immediate approval, and rejection. For example,864

to characterize the probability of cost-effectiveness of an OIR scheme, we track the unconditional865

probability that, as of the time of initial submission, the payer’s total INMB under the OIR scheme866

is greater than that of each of the three alternatives: the OWR scheme, immediate approval, and867

rejection; and this results in three probabilities that are associated with the OIR scheme.868

The main high-level insight from our analysis in Appendix F.2 is that, when the company’s869

bargaining power is high, a CA scheme might have a low probability of being cost-effective even870

if it is, in expectation, desirable. For our case study, we calculate the probability that the Nash871

outcome with the highest expected surplus (which is either an OIR or an OWR scheme depending872

on the value chosen for the reversal cost) is cost-effective when compared to immediate approval,873

and this probability can be lower than 0.5. And the probability that the Nash outcome is cost-874

effective when compared to immediate rejection falls below 0.5 when the bargaining power of the875

company is high (e.g., β > 0.8 for fr = 0, and β > 0.6 for fr = 30× 107 in our case study).876

We also observed that an increasing reversal cost leads to a decrease in the expected value of an877

OWR scheme, resulting in OIR becoming relatively more desirable. But even with high reversal878

costs, the probability that an OWR scheme is cost effective relative to OIR can remain above 0.5.879

7.3. What If a Competing Incumbent Lowers Its Price?880

As a response to the company’s submission of the new treatment, the producer of a key component881

of the standard of care, who we call the incumbent, may attempt to maintain its position as882

technology provider by reducing its price. Such a discount reduces the INMB of the new treatment883

and, in turn, can change the payer’s and company’s bargaining outcome. For simplicity we focus884

on the case in which only the OIR scheme is under consideration. Here we sketch the high level885

impact of the incumbent’s action, which we analyze in more detail in Appendix F.3.886

The mechanism by which a price reduction by the incumbent can alter the payer’s and company’s887

negotiation is a shift in the payer’s disagreement outcome. Specifically, in the original OIR scheme888

analyzed in Section 3, the payer’s rejection of the new treatment leads to disagreement outcomes of889

zero for both players. If the payer elects to take a discount from the incumbent and reject the new890

treatment, its disagreement outcome increases by the total value implied by the discount, while891

the company’s disagreement value remains zero. Therefore, when the outcome is either immediate892

approval or rejection, the payer is able to appropriate the entire value obtained from the discount.893

In turn, a discount implies that the value of µ1 needed for the new treatment to be approved at894

reappraisal is higher under competition compared to the one under the original model. And at initial895

submission, the region for immediate approval in Figure 3c would be smaller under competition. If896

approved, the immediate approval and reappraisal prices are both weakly lower under competition.897
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8. Discussion and Conclusions898

Conditional approval (CA) schemes can mitigate a healthcare payer’s risk of approving a treatment899

that might be cost-ineffective or of rejecting a treatment that might be cost-effective, while poten-900

tially giving patients early access to promising new health technologies. They represent important901

tools to inform reimbursement approval and pricing decisions in practice, but areas of concern902

with their implementation include two features we have studied in this paper: strategic behavior903

in payer-company price negotiations; and uncertainty in the health-economic value of the new904

technology.905

For an interesting subset of CA schemes, for example those in which costs to a drug developer906

are largely variable, our stylized model of immediate acceptance, immediate rejection, or the choice907

of an OIR or OWR scheme, along with associated prices, suggests two important implications for908

their analysis and practice, and it provides a new view on a third.909

One, although strategic negotiation of the interim price per treatment has not been rigorously910

studied as such in the past, the interim price per treatment that is used during the CA scheme’s911

post-marketing trial period is critical to the option’s negotiation process and viability. Given the912

assumptions of our model, it is not appropriate to set the interim price based on the estimated913

cost-effectiveness target for the new treatment, as in the early betaferon risk sharing scheme (UK914

DOH 2002, Boggild et al. 2009) and in more recent UK Cancer Drugs Fund guidance (NHS England915

2016). Instead, it should be considered to be a cost-sharing mechanism for the CA scheme.916

Two, interim-price caps that are in line with these UK examples may disincentivize firms from917

bringing some new treatments to market unless an additional risk-sharing mechanism is introduced.918

The mechanism we propose compensates a company affected by an interim-price cap with a higher919

price should the treatment ultimately be approved for reimbursement.920

Three, our analysis of CA schemes underscores the observation that the use of value-based921

principles, paying more for better health outcomes, may require an explicit incorporation of price922

negotiation into health technology assessments. To wit, in many cases the ICER assumes that cost923

and health effectiveness can be estimated separately, but value-based principles used within CA924

schemes imply that cost and price may both be influenced by health outcomes.925

There are other interesting settings that might be studied by relaxing some of our assumptions:926

new health technologies such as devices and diagnostics whose approval processes may be similar927

to, but different from, drug approval pathways; sequences of new treatments; treatments that have928

high fixed costs to the company associated with approval; price-sensitive demand; risk aversion;929

CA schemes that consider multiple subpopulations; different fixed costs to the payer to launch930

an OIR or OWR scheme or at approval; other market exclusivity models; a reversal cost that is931

correlated with the duration of or number of patients in the post-marketing trial or with posterior932
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cost-effectiveness; surpluses that occur once market exclusivity ends; broader options for the post-933

marketing trial’s design; and nuances among treatments for acute care versus chronic diseases. The934

extension of our model to health systems funded by a mix of public programs, private insurance,935

and out-of-pocket payments (as in the US) may require the solution to multiple, simultaneous936

bargaining problems between the company and many payers. Different modeling may be useful to937

asses Medicare’s push to lower prices for already-marketed drugs without considering QALYs.938

That said, even if some of the paper’s modeling assumptions are modified and some specific939

mathematical results change, it may be that some of its general implications may still hold. These940

questions point to interesting areas for further research.941
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1084

Online Companion: Appendices
Table EC.1 includes a table that summarizes the notation for our model. Appendix A recalls elements of1085

the Nash bargaining problem that will be relevant to our model and its analysis. Appendix B provides the1086

mathematical results that support the claims made in §3, §4 and §5, as well as the connection between the two-1087

stage Nash bargaining model with β = 1 and a Stackelberg game with a price-setting company. Appendix C1088

presents comparative statics results that assess the effect of key parameters on the Nash bargaining outcome1089

of our two-stage model, on the optimal sample sizes of the post-marketing trial, and on the prices that1090

arise from bargaining. Appendix D shows how parameter values were chosen for the Votrient case study1091

presented in §6 and presents additional numerical results based on the case study. Appendix E extends1092

Appendices C and D by providing numerical comparative statics for our case study and for parameters whose1093

comparative statics are not unambiguously signed. Appendix F presents supporting analysis and additional1094

insights regarding the discussion on assumptions in §7.1095

Appendix A: Summary of Nash Bargaining As It Applies to Our Model1096

We present an introduction to the asymmetric, two-person Nash bargaining problem. This introduction1097

enables a more self-contained discussion of our model and its analysis. Nash’s formulation of the problem1098

is based on the assumption that the payoffs of the two players at the end of the bargaining process should1099

depend only on (1) the payoffs they would expect if they fail to reach an agreement at the end of bargaining,1100

and (2) the set of payoffs that are jointly feasible for the two players in the process of bargaining. Nash’s1101

original formulation of the bargaining problem involves two players whose positions in the bargaining game1102

are symmetric. We focus on the asymmetric case which involves two players with asymmetric bargaining1103

power. See Myerson (1997) for further discussion on Nash bargaining, and see Lippman and McCardle (2012)1104

for the use of subgame perfection to embed Nash bargaining within a multi-stage game.1105

Let F to denote the feasible set of the bargaining game, which consists of a set of possible payoffs of players1106

attainable through agreement. Let d represent the disagreement payoffs the players obtain if they fail to1107

reach agreement. A two-person bargaining problem consists of a pair (F, d), where F is a closed and convex1108

subset of R2, d = (d1, d2) is a vector in R2, and the set F ∩ {(x1, x2) : x1 ≥ d1 and x2 ≥ d2} is bounded. If1109

the two players fail to reach an agreement, player i= 1,2 receives di, and if the two players agree on a point1110

(x1, x2)∈F, then player i= 1,2 receives xi.1111

If the set F ∩ {(x1, x2) : x1 ≥ d1 and x2 ≥ d2} is empty for a bargaining problem, we say that bargaining1112

fails, and both payers receive their disagreement payoffs. We continue with the cases in which the bargaining1113

problem satisfies the non-emptiness condition.1114

The assumption that F is convex can be justified by allowing the players to agree on implementing jointly1115

randomized strategies. The assumption that F is closed is a natural topological requirement. The non-1116

emptiness and boundedness conditions mean that some feasible payoff through agreement is at least as good1117

as disagreement for both players, but unbounded gains over the disagreement point are not possible.1118

The solution to a bargaining problem, (F, d), is a function, denoted by ϕ(F, d), that maps any two-person1119

bargaining problem to a set of payoffs in R2. We let ϕi(F, d) denote the ith component of ϕ(F, d) and1120

represent the payoff received by player i= 1,2 based on the solution function.1121
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Table EC.1 Principal Notation.

Symbol Definition

N Total number of patients who would switch to the new treatment if it were approved for use at the
time of initial submission

Xj Incremental net monetary benefit, excluding the price of the new treatment, relative to the standard
of care, for patient pair j

θ Expected incremental net monetary benefit per patient, excluding the price (INMB-p) of treatment,
for the given population

ΣX Variance of noisy observations of differences in INMB-p from patient pairs
µ0 Mean of the prior belief regarding the INMB-p per patient of the new treatment in the population,

based on information at the time of initial submission
Σ0 Variance of the prior belief regarding the INMB-p per patient of the new treatment in the popu-

lation, based on information at the time of initial submission
n0 Effective sample size of the prior belief regarding the INMB-p of the new treatment in the popu-

lation, based on information at the time of initial submission
µ1 Mean of the updated belief, at the end of the post-marketing trial, regarding the INMB-p per

patient of the new treatment in the population
Σ1 Variance of the updated belief, at the end of the post-marketing trial, regarding the INMB-p per

patient of the new treatment in the population
t Fraction of the market exclusivity period used for the post-marketing trial
n Sample size (number of patient pairs) in the post-marketing trial
rmax Upper limit on the proportion of patients that can be recruited into the post-marketing trial in a

unit of time
fDC Fixed cost of running the post-marketing trial for further data collection (‘DC’)
vDC Variable cost per patient pair recruited during the post-marketing trial
fr Reversal cost if the new treatment is withdrawn at the end of an OWR scheme
vN Variable, per-patient production cost of the new treatment
β The company’s Nash ‘bargaining power’
pS Per-patient price of the standard of care
p0 Immediate-approval price of the new treatment at the time of initial submission
pi Interim price of the new treatment during the post-marketing trial
p1 Price of the new treatment determined at the end of the post-marketing trial
A1 Event that the new treatment is approved at reappraisal after an OIR scheme, given {M1 ≥ vN −pS}
AW

1 Event that the new treatment is approved at reappraisal after an OWR scheme, given {M1 ≥
vN − pS − fr/(N − 2n∗,W/rmax)}

Nash identified this solution function by taking an axiomatic approach. These axioms are a list of properties1122

that a reasonable bargaining solution function needs to satisfy:1123

Axiom 1. Strong Efficiency. The solution to any two-person bargaining problem should be feasible and1124

Pareto efficient. Formally, ϕ(F, d) is in F, and, for any (x1, x2)∈F, if x1 ≥ ϕ1(F, d) and x2 ≥ ϕ2(F, d), then1125

x1 = ϕ1(F, d) and x2 = ϕ2(F, d).1126

Axiom 2. Individual Rationality. The participation constraint of each player should be satisfied.1127

Formally, ϕ1(F, d)≥ d1 and ϕ2(F, d)≥ d2.1128

Axiom 3. Scale Covariance. An increasing affine utility transformation that maintains ordering over1129

preferences should not alter the outcome of the bargaining process. Formally, for any numbers λ1, λ2, γ1 and1130

γ2 such that λ1 > 0 and λ2 > 0, if G= {(λ1x1 + γ1, λ2x2 + γ2) : (x1, x2)∈F} and w= (λ1d1 + γ1, λ2d2 + γ2),1131

then ϕ(G,w) = (λ1ϕ1(F, d)+ γ1, λ2ϕ2(F, d)+ γ2).1132
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Axiom 4. Independence of Irrelevant Alternatives. Eliminating feasible alternatives that would not1133

have been chosen, other than the disagreement point, should not affect the solution. Formally, for any closed1134

convex set G, if G⊆ F and ϕ(F, d)∈G, then ϕ(G,d)∈G.1135

Let β and 1 − β denote the bargaining power of player 1 and 2, respectively. Then there is a unique

solution function, ϕ(F, d), that satisfies Axioms 1-4 above, and this solution function maximizes the following

generalized Nash product for every two person bargaining problem, (F, d),

ϕ(F, d)∈ argmax
(x1,x2)∈F,x1≥d1,x2≥d2

(x1 − d1)
β(x2 − d2)

1−β. (EC.1)

A Nash bargaining problem is often used to model situations in which the two players attempt to reach1136

an agreement on how to split a value, A, which can be random. In such situations, we write the feasible set1137

of the problem as F = {(αA, (1−α)A) : 0≤ α≤ 1} and the disagreement outcome as d = (d1, d2). Note that1138

this also implies that x1 +x2 =A for all (x1, x2)∈F.1139

For such a bargaining problem, if A≥ d1+d2, the solution to (EC.1) is ϕ(F, d) = (d1+β(A−d1−d2), d2+1140

(1 − β)(A − d1 − d2)). In words, the Nash bargaining solution implies a split of the total joint surplus,1141

A−d1−d2, between two players that is proportional to their bargaining powers, and the share of the surplus is1142

added to the disagreement outcome of each player: x1 = d1+β(A−d1−d2) and x2 = d2+(1−β)(A−d1−d2).1143

If A< d1+d2, there is no pair of feasible payoffs through agreement that is at least as good as disagreement1144

for both players, bargaining fails, and both payers receive the payoffs at the disagreement point.1145

Appendix B: Proofs of Mathematical Claims1146

This appendix proves the mathematical claims made in the main text, except the ones for the discussion of1147

assumptions in §7. See Appendix F for the supporting analysis for §7.1148

Appendix B.1 proves claims made in §3. Appendix B.2 similarly supports the results in §4. Appendix B.31149

discusses the trade-offs associated with optimal sample size and duration of the post-marketing trial of1150

OIR and OWR schemes and proves the existence of a unique, non-zero optimal sample size. Appendix B.41151

introduces the Stackelberg game in which the company acts first as the price-setter and the payer then1152

make an approval decision given the submitted price, and it proves the equivalence of the two-stage Nash1153

bargaining model with β = 1 and the Stackelberg game. Appendix B.5 proves mathematical claims in §5.1154

B.1. Proofs of Mathematical Claims in §31155

The proofs of propositions are presented throughout the text in §3. Here we present the derivations of the1156

rest of the results.1157

Proof of Lemma 1. Consider the asymmetric bargaining problem in which the payer and the company1158

negotiate to share the surplus from one of two possible bargaining outcomes, denoted by S0(A0) and S0(CA
I),1159

where β and 1−β denote the company’s and payer’s respective bargaining power.1160

Here, the constituent parameters of S0(A0), defined in (12), are all finite. Similarly, the boundedness of1161

the loss function, (14), along with that of the other scaler parameters in the definition of S0(CA
I) in (15),1162

implies that S0(CA
I) is finite as well. Thus, both surpluses are finite constants.1163

We can write the feasible set of the problem as F0 = {(αS0(A0), (1 − α)S0(A0)) : 0 ≤ α ≤ 1} ∪1164

{(αS0(CA
I), (1−α)S0(CA

I)) : 0≤ α≤ 1} and the disagreement outcome as d0 = (0,0).1165
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We need to show that F0 is a convex and closed subset of R2. Given 0≤ α≤ 1 and finite constants S0(A0)1166

and S0(CA
I), if follows that {(αS0(A0), (1− α)S0(A0)) : 0≤ α≤ 1} and {(αS0(CA

I), (1− α)S0(CA
I)) : 0≤1167

α ≤ 1} are convex and closed subsets of R2. As is common in the Nash bargaining literature, we allow1168

the players to randomise their actions across the two disjoint sets of F0 (Myerson 1997), though we later1169

show that randomized outcomes are never used in equilibrium. Under this assumption, F0 contains a convex1170

combination of two convex and closed sets and therefore is also closed and convex.1171

As long as either S0(A0) ≥ 0 or S0(CA
I) ≥ 0 holds, F0 ∩ {(x1, x2) : x1 ≥ 0 and x2 ≥ 0} is nonempty. If1172

S0(A0) < 0 and S0(CA
I) < 0, there is no feasible solution to the bargaining problem, bargaining breaks1173

down, and both players receive their respective disagreement outcomes (as in Appendix A). Otherwise the1174

boundedness of S0(A0) and S0(CA
I) imply that F0 ∩{(x1, x2) : x1 ≥ 0 and x2 ≥ 0} is bounded as well.1175

Then, we apply the Nash bargaining solution to the bargaining problem (F0, d0). If S0(CA
I)<S0(A0), then1176

x1 +x2 ≤ S0(A0) for all (x1, x2)∈F0 and the solution is ϕ(F0, d0) = (βS0(A0), (1−β)S0(A0)). If S0(CA
I)>1177

S0(A0), then x1 + x2 ≤ S0(CA
I) for all (x1, x2) ∈ F0, and the solution is ϕ(F0, d0) = (βS0(CA

I), (1 −1178

β)S0(CA
I)). We break ties, S0(CA

I) = S0(A0), by selecting S0(A0).1179

To summarize, the Nash bargaining solution implies that two players share the value that results in a1180

larger joint surplus, max{S0(A0), S0(CA
I)}, and that the split of the total joint surplus between two players1181

is proportional to their bargaining powers. □1182

Proof of Corollary 1. For µ0 ≥ vN − pS ,

EM1
[p∗1 |M1 ≥ vN − pS ] =

∫∞
vN−pS

[vN +β(M1 + pS − vN )] dF (M1)

P (M1 > vN − pS)

> vN +β

∫ ∞

−∞
(M1 + pS − vN )dF (M1) = vN +β(µ0 + pS − vN ) = p∗0,

where M1, defined in (2), has cumulative distribution function F (M1). □1183

Proof of Corollary 2. Follows directly from the definitions of p∗0 and p∗i . □1184

B.2. Proofs of Mathematical Claims in §41185

B.2.1. Analysis of The Reappraisal Stage when an OWR Scheme is Implemented. With the1186

inclusion of a non-negative cost of reversal, fr ≥ 0, our cooperative bargaining model at the reappraisal stage1187

corresponds to a Nash bargaining problem in which the disagreement outcome for the company is zero while1188

the disagreement payoff for the payer is −fr. As in Appendix A the Nash solution of such a bargaining1189

problem is as follows. If the joint surplus that will be obtained with agreement is greater than the joint1190

surplus at the disagreement outcome, the Nash bargaining solution implies that the difference between the1191

two will be split proportionately, according to the players’ bargaining powers, with the relevant share added1192

to the disagreement payoff of each player. We use superscript ‘W’ to indicate that these results are associated1193

with an OWR scheme, which might have a positive cost of reversal.1194

The joint surplus that will be obtained with agreement at reappraisal is S1(A1, t) and is defined in (10).1195

If there is a disagreement, the joint surplus would be −fr. The Nash solution implies that an agreement is1196

reached only if1197

S1(A1, t) = (1− t)N(µ1 + pS − vN )≥−fr, which holds if µ1 ≥ vN − pS − fr/((1− t)N).
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If µ1 < vN − pS − fr/((1 − t)N), bargaining breaks down, the treatment is rejected, the payer’s and1198

company’s expected payouts are −fr and zero, respectively. If instead µ1 ≥ vN −pS − fr/((1− t)N), and the1199

Nash bargaining solution implies that1200

VW
1 (A1, p1, t) =−fr +(1−β)(S1(A1, t)− (−fr)), ΠW

1 (A1, p1, t) = β(S1(A1, t)− (−fr)).

Using (5) and (8) and solving for p1, we find p∗,W1 , the reappraisal price for the Nash bargaining outcome.1201

Prop. EC.1 summarizes the Nash bargaining outcome at the reappraisal stage for an OWR scheme with a1202

non-negative cost of reversal.1203

Prop. EC.1. Suppose that the post-marketing trial of an only with research scheme with the cost of

reversal, fr ≥ 0, is completed and the players’ belief regarding the unknown INMB-p of the new treatment is

Normal(µ1,Σ1). Then. the joint surplus, the payer’s INMB and the company’s expected profit at the Nash

bargaining outcome are

S∗,W
1 (t) =max{(1− t)N(µ1 + pS − vN ),−fr},

V ∗,W
1 (t) = (1−β)S∗,W

1 (t)−βfr ,

Π∗,W
1 (t) = βS∗,W

1 (t)+βfr.

If µ1 ≥ vN − pS − fr/((1− t)N), the Nash bargaining outcome at the reappraisal stage is approval with the1204

reappraisal price p∗,W1 = vN + β(µ1 + pS − vN )+ βfr/((1− t)N). Otherwise, the Nash bargaining outcome at1205

the reappraisal stage is rejection.1206

Comparing the reappraisal price under an OWR scheme to the immediate approval price, we have1207

Corollary EC.1. Suppose µ0 > vN − pS so that the joint surplus from immediate approval is non-1208

negative. Then p∗0 <EM1

[
p∗,W1 |M1 ≥ vN − pS − fr/((1− t)N)

]
.1209

Proof of Corollary EC.1. For µ0 ≥ vN − pS ,

EM1

[
p∗,W1 |M1 ≥ vN − pS − fr/((1− t)N)

]
=

∫∞
vN−pS−fr/((1−t)N)

[vN +β(M1 + pS − vN + fr/((1− t)N))] dF (M1)

P (M1 > vN − pS − fr/((1− t)N))

> vN +β

∫ ∞

−∞
(M1 + pS − vN )dF (M1)+ fr/((1− t)N)

> vN +β

∫ ∞

−∞
(M1 + pS − vN )dF (M1) = vN +β(µ0 + pS − vN ) = p∗0,

where M1, defined in (2), has cumulative distribution function F (M1). □1210

Thus, given that a price at the initial submission can be negotiated, the expected price at the reappraisal1211

will be greater, assuming it can be negotiated as well.1212

B.2.2. Analysis of The Initial Submission Stage when an OWR scheme is the Nash Outcome.1213

Now we find the prices and player payoffs in the event that the Nash bargaining outcome at initial submission1214

is conditional approval with an OWR scheme. We use superscript ‘W’ to indicate that these results are1215

associated with an OWR scheme which might have a positive cost of reversal.1216
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Joint Surplus from an OWR Scheme. We define the payer’s total expected INMB from an OWR

scheme, as of the time of initial submission, as

V0(CA
W, pi, n, t) ≜ (tN −n)(µ0 − pi+ pS)+EM1

[
V ∗,W
1 (t) | µ0, n0

]
, (EC.2)

where pi, n, and t are determined by negotiation, and V ∗,W
1 (t) is defined in Prop. EC.1 and depends on µ1.1217

The expectation is taken with respect to M1, the preposterior distribution of µ1 at initial submission. (See1218

equations (3) and (11).) Note that under an OWR scheme, n patients receive the standard of care as a part1219

of the post-marketing trial, and tN −n patients receive the new treatment during the post-marketing data1220

collection.1221

Similarly, the company’s total expected profit from OWR, as of the time of initial submission, is

Π0(CA
W, pi, n, t) ≜ (tN −n)(pi− vN )− fDC −nvDC +EM1

[
Π∗,W

1 (t) | µ0, n0

]
, (EC.3)

where Π∗,W
1 (t) is defined in Prop. EC.1.1222

As in §3.2.2, we obtain the joint surplus from an OWR scheme by adding (EC.2) and (EC.3).

S0(CA
W, n, t) ≜ (tN −n)(µ0 + pS − vN )− fDC −nvDC +EM1

[
S∗,W
1 (t) | µ0, n0

]
,

where S∗,W
1 (t) is defined in Prop. EC.1. By substituting M1 for µ1, taking expectations, and applying the

definition of ψ(x) we have

S0(CA
W, n, t) = (tN −n)(µ0 + pS − vN )− fDC −nvDC

− fr +(1− t)NσM1
ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
. (EC.4)

Designing the Post-Marketing Trial for an OWR scheme. As in §3.2.3, the payer and the company

share a common interest in maximizing the joint surplus by solving the following optimization problem

max
n,t

{
S0(CA

W, n, t) | 0≤ 2n≤Nrmaxt
}
. (EC.5)

From (EC.4), we observe that increasing the duration of the post-marketing trial, t, has two opposing

effects on the joint surplus. On one hand, more patients are treated with the new treatment during data

collection as t increases. On the other hand, the number of patients that can be treated with the new

treatment after the reappraisal decision decreases. To see how these two forces play out, we take the first

derivative of (EC.4) with respect to t:

∂S0(CA
W, n, t)

∂t
= N(µ0 + pS − vN )−NσM1

ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
+(1− t)NσM1

[
Φ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
− 1

][
−fr

(1− t)2NσM1

]
= N(µ0 + pS − vN )−NσM1

ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
+

[
1−Φ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)]
fr

(1− t)

= N(µ0 + pS − vN + fr/((1− t)N))−NσM1
ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
−Φ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
fr

(1− t)
.
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The first derivative above is non-positive because x ≤ ψ(−x) implies N(µ0 + pS − vN + fr/((1− t)N)) ≤1223

NσM1
ψ
(
vN−pS−fr/((1−t)N)−µ0

σM1

)
and Φ

(
vN−pS−fr/((1−t)N)−µ0

σM1

)
fr

(1−t) ≥ 0. We conclude that the joint surplus1224

from an OWR scheme decreases with t for a given n. Then (EC.5) can be optimized by setting the duration1225

to t= 2n/(Nrmax), the shortest feasible time frame in which a given sample of n can be collected, and then1226

optimizing over the sample size.1227

We denote the optimal sample size and duration under an OWR scheme by n∗,W and t∗,W, and we write

the maximized joint surplus as

S0(CA
W)≜ S0(CA

W, n∗,W, t∗,W)

= n∗,W(2/rmax− 1)(µ0 + pS − vN )− fDC −n∗,WvDC

− fr +(N − 2n∗,W/rmax)σ
∗,W
M1

ψ

(
vN − pS − fr/((N − 2n∗,W/rmax))−µ0

σ∗,W
M1

)
, (EC.6)

where σ∗,W
M1

≜
√
ΣXn∗,W/(n0(n∗,W +n0)). In Appendix B.3, we show that the optimal sample size n∗,W and1228

duration t∗,W are unique and nonzero whenever the OWR scheme is the Nash bargaining outcome.1229

Expected Payoffs from an OWR Scheme. By using (EC.2), (EC.3) and (EC.6), setting either1230

V0(CA
W, pi, n

∗,W, t∗,W) = (1 − β)S0(CA
W) or Π0(CA

W, pi, n
∗,W, t∗,W) = βS0(CA

W) and solving for pi, we1231

obtain the Nash bargaining outcome summarized in Prop. EC.2.1232

Prop. EC.2. Suppose that the Nash bargaining outcome at the initial submission stage is an OWR condi-

tional approval scheme with the cost of reversal, fr ≥ 0. Then the payer’s INMB and the company’s expected

profit from conditional approval are

V0(CA
W, p∗,Wi ) = (1−β)S0(CA

W) and Π0(CA
W, p∗,Wi ) = βS0(CA

W),

where S0(CA
W) is defined in (EC.6). In turn, the interim price is

p∗,Wi = p∗0 +(1−β)
n∗,WvDC + fDC
n∗,W(2/rmax− 1)

−β
fr

n∗,W(2/rmax− 1)
.

The first two terms of p∗,Wi are analogous to the interim price under the OIR scheme, p∗i : the immediate1233

approval price, p∗0, plus a partial reimbursement of the extra costs the company incurs to conduct the post-1234

marketing trial. The third and final term reflects the company’s share of the reversal cost that the payer1235

might incur if the treatment is rejected at the reappraisal. The difference between p∗,Wi and p∗i stem from1236

(i) the number of patients who receive the new treatment during the post-marketing data collection differ1237

between OIR and OWR schemes, (ii) the optimal sample sizes for the post-marketing trials of OIR and OWR1238

schemes are different, and (iii) the compensation for the reversal cost associated with the OWR scheme in1239

the event of rejection after the post-marketing trial.1240

Furthermore, we have a result that is similar to Corollary 2 and that follows from the definition of p∗,Wi :1241

Corollary EC.2. Suppose that p∗0 and p∗,Wi exist. If (1 − β)(n∗,WvDC + fDC) > βfr, then p∗0 < p∗,Wi .1242

Otherwise, p∗0 ≥ p∗,Wi .1243
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B.2.3. Nash Bargaining Solution when both OIR and OWR Conditional Approval Schemes1244

are Feasible. We now discuss the Nash bargaining outcome at the initial submission stage when an OWR1245

scheme is a feasible bargaining outcome in addition to an OIR scheme, immediate approval, and rejection.1246

Extending the result in Lemma 1 to also account for OWR is straightforward. Therefore, in the initial1247

submission stage, the joint surplus to be shared through bargaining is the maximum of the joint surplus from1248

immediate approval, S0(A0), the joint surplus from an OIR scheme, S0(CA
I), and the joint surplus from an1249

OWR scheme, S0(CA
W).1250

Prop. 4 summarizes the analytical results about the choice between OIR and OWR schemes. We present1251

the proof below.1252

Proof of Prop. 4. We recall the definitions of S0(CA
I) and S0(CA

W) from (17) and (EC.6), respectively.1253

First, for claim i., we show that the joint surplus obtained from an OIR scheme is always higher than the

one from an OWR scheme when µ0 + pS − vN < 0.

S0(CA
I) ≥ n∗,W(µ0 + pS − vN )− fDC −n∗,WvDC +(N − 2n∗,W/rmax)σ

∗,W
M1

ψ

(
vN − pS −µ0

σ∗,W
M1

)
> n∗,W(2/rmax− 1)(µ0 + pS − vN )− fDC −n∗,WvDC

+(N − 2n∗,W/rmax)σ
∗,W
M1

ψ

(
vN − pS −µ0

σ∗,W
M1

)
≥ n∗,W(2/rmax− 1)(µ0 + pS − vN )− fDC −n∗,WvDC

− fr +(N − 2n∗,W/rmax)σ
∗,W
M1

ψ

(
vN − pS − fr/((N − 2n∗,W/rmax))−µ0

σ∗,W
M1

)
= S0(CA

W).

The first inequality holds for any arbitrary sample size, including n∗,W, because S0(CA
I) is optimized over1254

the sample size. The second inequality follows because 2/rmax − 1 > 1 and µ0 + pS − vN < 0. The third1255

follows from the fact that ψ(·) is decreasing at a rate lower than 1. The equality follows from the definition1256

of S0(CA
W).1257

Second, for part of claim ii., we consider the case of µ0+pS−vN = 0 and fr = 0. The optimization problems1258

(16) and (EC.5) are equal to each other, therefore S0(CA
I) = S0(CA

W).1259

Third, for the remainder of claim ii., we show S0(CA
I)>S0(CA

W) when µ0 + pS − vN = 0 and fr > 0:

S0(CA
I) =−fDC −n∗vDC +(N − 2n∗/rmax)σ

∗
M1
ψ (0)

≥ −fDC −n∗,WvDC +(N − 2n∗,W/rmax)σ
∗,W
M1

ψ (0)

> −fDC −n∗,WvDC − fr +(N − 2n∗,W/rmax)σ
∗,W
M1

ψ

(
−fr/((N − 2n∗,W/rmax))

σ∗,W
M1

)
= S0(CA

W).

The first equality follows because we assumed µ0 + pS − vN = 0. The inequality in the second line holds for1260

any arbitrary sample size, including n∗,W, because S0(CA
I) is optimized over the sample size. The third line1261

follows because ψ(·) is decreasing at a rate lower than 1. And the final equality follows from the definition1262

of S0(CA
I) when µ0 + pS − vN = 0.1263
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Finally, for claim iii., we show that there is a threshold-type rule when µ0 + pS − vN > 0. It follows from

the definition of S0(CA
I) that the joint surplus from the OIR scheme is independent of fr. To show the joint

surplus from the OWR scheme strictly decreases with fr, we use the envelope theorem and we take the first

derivative of S0(CA
W) with respect to fr:

∂S0(CA
W)

∂fr
=
∂S0(CA

W, n, t)

∂fr
=−1+ (1− t)NσM1

(
−1

((1− t)N)σM1

)(
Φ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
− 1

)
=−Φ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
< 0.

We next show that S0(CA
W)>S0(CA

I) when fr = 0.

S0(CA
W) ≥ n∗(2/rmax− 1)(µ0 + pS − vN )− fDC −n∗vDC +(N − 2n∗/rmax)σ

∗
M1
ψ

(
vN − pS −µ0

σ∗
M1

)
> n∗(µ0 + pS − vN )− fDC −n∗vDC +(N − 2n∗/rmax)σ

∗
M1
ψ

(
vN − pS −µ0

σ∗
M1

)
= S0(CA

I).

The first inequality holds for any arbitrary sample size, including n∗, because S0(CA
W) is optimized over1264

the sample size. The second inequality follows because 2/rmax−1> 1 and µ0+pS −vN > 0, and the equality1265

follows from the definition of S0(CA
I).1266

Then, if µ0+pS −vN > 0, there is a R> 0 such that S0(CA
I)<S0(CA

W) for fr <R; S0(CA
I) = S0(CA

W)1267

for fr =R; and S0(CA
I)>S0(CA

W) for fr >R. We note that, for the special case of µ0 + pS − vN > 0 and1268

fr = 0, we have S0(CA
I)<S0(CA

W). □1269

B.3. The Optimal Sample Size and Duration of OIR and OWR Schemes1270

We now characterize the solution of the optimal trial size and duration for the OIR and OWR conditional1271

approval schemes, from the optimization problems in (16) and (EC.5), respectively. We will show that when1272

an OIR or OWR scheme is the outcome of the negotiation, there is a unique, non-zero optimal trial size and1273

duration.1274

The existence of optimal solutions for (16) and (EC.5) follows from the Weierstrass extreme value theorem.1275

The functions being maximized, S0(CA
I, n, t) and S0(CA

W, n, t), are real-valued and continuous. And the1276

feasible sets of both problems, {0 ≤ 2n ≤ Nrmaxt}, are closed and bounded. Therefore, S0(CA
I, n, t) and1277

S0(CA
W, n, t) must attain a maximum in the set {0≤ 2n≤Nrmaxt} at least once.1278

In 3.2.3 and B.2.2, we showed that it is optimal to complete the trial as quickly as possible for both1279

OIR and OWR schemes. Therefore, we can set t= 2n/(Nrmax) for any n. The optimization problem for an1280

OIR scheme becomes maxn
{
S0(CA

I, n,2n/(Nrmax)) | 0≤ 2n≤Nrmax
}
, and the one for the OWR scheme1281

becomes maxn
{
S0(CA

W, n,2n/(Nrmax) | 0≤ 2n≤Nrmax
}
.1282

We discuss three trade-offs involved with choosing the optimal n before presenting the technical analysis.1283

(1) Higher n implies that a higher number of patients are treated with the new treatment during the1284

post-marketing trial (both for OIR and OWR schemes). For treatments with a positive expected INMB,1285

µ0+pS −vN > 0, a higher n increases the joint surplus because more patients have access to a treatment that1286

provides positive benefit in expectation. For treatments with a negative expected INMB, µ0+pS −vN < 0, a1287
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higher n decreases the joint surplus because more patients are exposed to a treatment that does not provide1288

a positive benefit in expectation. (2) Higher n increases the total cost of the post-marketing trial due to1289

the variable data collection cost and, as a result, decreases the joint surplus. (3) The expected value of1290

information to be gained from the post-marketing trial, not including sampling costs, increases with n.1291

OIR Scheme. We start by showing that the optimal sample size is non-zero if the OIR scheme is the1292

bargaining outcome. If we have µ0+pS −vN ≥ 0 and we set n= 0, S0(CA
I,0,0) =−fDC+N(µ0+pS −vN )<1293

S0(A0). And if we have µ0 + pS − vN < 0 and we set n= 0, S0(CA
I,0,0) =−fDC <S0(R0). Therefore, if the1294

optimal sample size is zero, then the OIR scheme is not the bargaining outcome.1295

We continue with the case of n> 0. To simplify the equations, we let y≜ vN −pS −µ0. The first derivative

of S0(CA
I, n,2n/(Nrmax)) with respect n is

∂S0(CA
I, n,2n/(Nrmax))

∂n
=−y− vDC − 2

rmax
σM1

ψ

(
y

σM1

)
+

(
N − 2n

rmax

)
∂σM1

∂n
ψ

(
y

σM1

)
+

(
N − 2n

rmax

)
σM1

∂ψ (y/σM1
)

∂n
.

Recall the definition of the standard loss function, ψ(y/σM1
) = ϕ(y/σM1

)− (y/σM1
)(1−Φ(y/σM1

)), then:

∂ψ (y/σM1
)

∂n
=

(
1−Φ

(
y

σM1

))
y

σ2
M1

∂σM1

∂n
, and

∂σM1

∂n
ψ

(
y

σM1

)
+σM1

∂ψ (y/σM1
)

∂n
=
∂σM1

∂n
ϕ

(
y

σM1

)
.

Therefore, we obtain the first derivative as

∂S0(CA
I, n,2n/(Nrmax))

∂n
=−y− vDC − 2

rmax
σM1

ψ

(
y

σM1

)
+

(
N − 2n

rmax

)
∂σM1

∂n
ϕ

(
y

σM1

)
. (EC.7)

We now derive the second derivative of S0(CA
I, n,2n/(Nrmax)) with respect n. We have

∂2S0(CA
I, n,2n/(Nrmax))

∂n2
=− 2

rmax

∂σM1

∂n
ψ

(
y

σM1

)
− 2

rmax
σM1

∂ψ (y/σM1
)

∂n
− 2

rmax

∂σM1

∂n
ϕ

(
y

σM1

)
+

(
N − 2n

rmax

)
∂2σM1

∂n2
ϕ

(
y

σM1

)
+

(
N − 2n

rmax

)
∂σM1

∂n

∂ϕ (y/σM1
)

∂n

=− 4

rmax

∂σM1

∂n
ϕ

(
y

σM1

)
+

(
N − 2n

rmax

)
∂2σM1

∂n2
ϕ

(
y

σM1

)
+

(
N − 2n

rmax

)
y2

σ3
M1

ϕ

(
y

σM1

)(
∂σM1

∂n

)2

,

where the second equality follows from

∂ϕ (y/σM1
)

∂n
=

y2

σ3
M1

ϕ

(
y

σM1

)
∂σM1

∂n
, and

∂σM1

∂n
ψ

(
y

σM1

)
+σM1

∂ψ (y/σM1
)

∂n
=
∂σM1

∂n
ϕ

(
y

σM1

)
.

Using the following two equations

∂σM1

∂n
=

ΣX
2σM1

(n+n0)2
,
∂2σM1

∂n2
=−σM1

n0(4n+n0)

4n2(n+n0)2
, (EC.8)

and rearranging the terms, we get

∂2S0(CA
I, n,2n/(Nrmax))

∂n2

= ϕ

(
y

σM1

)
−n2(2n2

0y
2 +6n0ΣX +4NrmaxΣX)+n(−2n3

0y
2 +n2

0Nry
2 −n0NrmaxΣX)+n3

0Nrmaxy
2

4rmaxn2(n0 +n)3σM1

.
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The value in the denominator, 4rmaxn
2(n0 + n)3σM1

, and ϕ (y/σM1
) are positive for all n > 0. In the1296

nominator, we have a second-degree polynomial in n that is concave and whose discriminant is positive.1297

Then, there are two roots for the polynomial. We can further show that one root is always negative and the1298

other root is positive when y= vN − pS −µ0 ̸= 0 and is zero when y= vN − pS −µ0 = 0.1299

Now, we can analyze the sign of ∂2S0(CA
I, n,2n/(Nrmax))

/
∂n2 . If µ0 + pS − vN = 0, then1300

∂2S0(CA
I, n,2n/(Nrmax))

/
∂n2 < 0 for n > 0. If µ0 + pS − vN ̸= 0, there is a threshold nT > 0 such that1301

∂2S0(CA
I, n,2n/(Nrmax)

/
∂n2 > 0 when 0< n< nT , ∂

2S0(CA
I, n,2n/(Nrmax))

/
∂n2 = 0 when n= nT and1302

∂2S0(CA
I, n,2n/(Nrmax))

/
∂n2 < 0 when nT <n.1303

To summarize, if µ0 + pS − vN = 0, then S0(CA
I, n,2n/(Nrmax)) is concave in 0 < n ≤ Nrmax/2,1304

and the maximum is achieved either at n = 0 or n ∈ (0,Nrmax/2]. And if µ0 + pS − vN ̸= 0, then1305

S0(CA
I, n,2n/(Nrmax)) is convex for 0< n < nT and concave for nT < n≤Nrmax. Because the maximum1306

of a convex function is at the extremes, the maximum is achieved either at n = 0, n = nT or at a unique1307

n∈ (nT ,Nrmax/2] where nT > 0.1308

We already showed that the OIR scheme is not optimal if the maximum is achieved at n = 0. We can1309

also show that the maximum is never achieved at n= nT . We consider the following two cases separately:1310

∂S0(CA
I, n,2n/(Nrmax))

/
∂n evaluated at n= nT is non-zero and ∂S0(CA

I, n,2n/(Nrmax))
/
∂n evaluated1311

at n= nT is zero. In the first case, the first derivative is non-zero therefore n= nT is not a local maximum. In1312

the second case, the sign of the second derivative implies that the first derivative is increasing for n< nT and1313

decreasing for n> nT . Then, the first derivative would be negative in the neighborhood of nT , and n= nT is1314

not a local maximum.1315

As a result, if µ0 + pS − vN = 0 and the OIR scheme is the bargaining outcome, the optimal sample size1316

is unique and satisfies 0 < n ≤ Nrmax/2. And if µ0 + pS − vN ̸= 0 and the OIR scheme is the bargaining1317

outcome, the optimal sample size is unique and satisfies n∈ (nT ,Nrmax/2] where nT > 0.1318

OWR Scheme. We first show that the optimal sample size is not n= 0 or n=Nrmax/2 if the OWR scheme1319

is the bargaining outcome. We note that the OWR scheme might be optimal only when µ0 + pS − vN ≥ 01320

(see Prop. 4), and therefore we focus only on this case. If we set n = 0, S0(CA
W,0,0) = −fDC +N(µ0 +1321

pS − vN ) < S0(A0). If we set n = Nrmax/2, then S0(CA
W,Nrmax/2,1) = (N −Nrmax/2)(µ0 + pS − vN )−1322

fDC − vDCNrmax/2<S0(A0). Therefore, if the optimal sample size is zero or Nrmax/2, then the conditional1323

approval with an OWR scheme is not the bargaining outcome.1324

We next consider the case of fr = 0. If fr = 0, the only difference between S0(CA
I, n,2n/(Nrmax) and1325

S0(CA
W, n,2n/(Nrmax) is in the first term, n vs. n(2/rmax − 1), and both of these terms disappear in the1326

second derivative. Therefore, the argument for the non-zero, unique optimal made for the OIR scheme holds1327

for the OWR scheme if fr = 0.1328

We continue with the case of fr > 0 and 0<n<Nrmax/2. We let g(n)≜ vN −pS −µ0−fr/(N −2n/rmax)

to simplify the equations. The first derivative of S0(CA
W, n,2n/(Nrmax)) with respect n is

∂S0(CA
W, n,2n/(Nrmax))

∂n
=

(
2

rmax
− 1

)
(µ0 + pS − vN )− vDC − 2

rmax
σM1

ψ

(
g(n)

σM1

)
+

(
N − 2n

rmax

)
∂σM1

∂n
ψ

(
g(n)

σM1

)
+

(
N − 2n

rmax

)
σM1

∂ψ (g(n)/σM1
)

∂n
. (EC.9)
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And the second derivative of S0(CA
W, n,2n/(Nrmax)) with respect n is

∂2S0(CA
W, n,2n/(Nrmax))

∂n2
=− 4

rmax

∂σM1

∂n
ψ

(
g(n)

σM1

)
− 4

rmax
σM1

∂ψ (g(n)/σM1
)

∂n

+

(
N − 2n

rmax

)
∂2σM1

∂n2
ψ

(
g(n)

σM1

)
+2

(
N − 2n

rmax

)
∂σM1

∂n

∂ψ(g(n)/σM1
)

∂n

+

(
N − 2n

rmax

)
σM1

∂2ψ (g(n)/σM1
)

∂n2
. (EC.10)

From the definition of the standard normal loss function, we have:
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And from the definitions of g(n) and σM1
, we have
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Plugging these four equalities into (EC.10), we get
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Next, we use the following equalities:
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and obtain the following:
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We plug (EC.8) and (EC.11) into the above equation, use y≜ vN − pS −µ0 and rearrange terms to obtain:

∂2S0(CA
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The value in the denominator, 4n2rmax(n0 + n)3σM1
(Nrmax − 2n)3, and ϕ (g(n)/σM1

) are posi-1329

tive for all 0 < n < Nrmax/2. In the nominator, we have a fifth-degree polynomial. We found1330

that this polynomial has two positive real roots. Then, there are two thresholds such that nWT2 ∈1331

(0,Nrmax), nWT3 ∈ (0,Nrmax), and nWT2 < nWT3. We have ∂2S0(CA
W, n,2n/(Nrmax))

/
∂n2 > 0 if 0 ≤1332

n < nWT2, ∂
2S0(CA

W, n,2n/(Nrmax))
/
∂n2 < 0 if nWT2 < n < nWT3, ∂

2S0(CA
W, n,2n/(Nrmax))

/
∂n2 > 0 if1333

nWT3 < n ≤ Nrmax/2, and ∂2S0(CA
W, n,2n/(Nrmax))

/
∂n2 = 0 if n = nWT2 or n = nWT3. In other words,1334

S0(CA
W, n,2n/(Nrmax)) is convex for 0≤ n< nWT2, is concave for nWT2 <n< nWT3, and convex for nWT3 <n≤1335

Nrmax/2. Therefore, the maximum is achieved either at n= 0, n∈ [nWT2, n
W
T3], or n=Nrmax/2.1336

We discussed above why the optimal sample size cannot be zero or Nrmax/2 if the OWR scheme is optimal.1337

We can also show that the maximum is never achieved at n= nWT2 or n= nWT3, using an argument similar to1338

the one for the OIR scheme. Therefore, if the OWR scheme is the bargaining outcome, we have a unique1339

optimal, non-zero sample size that satisfies n∗ ∈ (nWT2, n
W
T3) if fr > 0 and n∗ ∈ (nWT ,Nrmax/2) if fr = 0.1340

B.4. Equivalence of the Bargaining Model with β = 1 and a Stackelberg Game1341

Consider a Stackelberg model in which the company acts first as a price-setter and the payer then makes an1342

approval decision given the submitted price. In this section, we prove that the approval outcomes and prices1343

obtained under the Stackelberg model, described in §B.4.1, are equivalent to the ones we obtain from the1344

two-stage Nash bargaining model, described in §2, when β = 1.1345

B.4.1. Timeline of a Stackelberg Model. We now describe the timeline of events for a Stackelberg1346

model. As in the timeline of the Nash bargaining model in §2, the company completes a phase III clinical trial1347

for a new treatment and obtains marketing authorization from a regulatory authority in a pre-submission1348

stage.1349

At the beginning of the initial submission stage, the company decides whether to submit the new treatment1350

to the payer and at which price. We let NS0 denote the outcome of the company not submitting the new1351
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treatment to the payer. If the company submits the new treatment to the payer, the company presents1352

the trial results to the payer and submits an offer which contains the following three sets of values: an1353

immediate approval price, p0, an OIR conditional approval scheme which involves an interim price pi and a1354

post-marketing trial with sample size n and duration t, and an analogous OWR conditional approval scheme.1355

Given the new treatment’s trial results and the submitted offer, the payer makes the reimbursement1356

decision, which has four potential outcomes: (1) the new treatment is immediately approved at price p0,1357

which is denoted by (A0, p0), (2) the new treatment is conditionally approved under an OIR scheme with1358

an interim price pi and a post-marketing trial with sample size n and duration t, which is denoted by1359

(CAI, pi, n, t), (3) the new treatment is conditionally approved under an OWR scheme with an interim price1360

pWi and a post-marketing trial with sample size n and duration t, which is denoted by (CAW, pWi , n, t), or1361

(4) the new treatment is rejected, which is denoted by R0.1362

If the payer decides to conditionally approve the new treatment through an OIR or OWR scheme, the1363

company conducts the post-marketing trial and pays for its nominal cost, and the payer reimburses the1364

company at the interim price during the trial, pi under an OIR scheme and pWi under an OWR scheme.1365

After the post-marketing trial concludes, the company decides either to withdraw the new treatment from1366

the payer’s consideration or to continue with the submission and present a new offer which consists of a1367

reappraisal price p1. We let NS1 denote the outcome of the company withdrawing the submission. The payer1368

makes the reimbursement decision, which has two potential outcomes: (1) the new treatment is approved at1369

price p1, which is denoted by (A1, p1), and (2) the new treatment is rejected, which is denoted by R1.1370

The players’ payoffs under different outcomes are as in §2. The only two outcomes that are not explicitly1371

defined in §2 are the company not making a submission at the initial submission and the company withdraw-1372

ing the submission at the reappraisal. In a bargaining setting, these two outcomes would be contained by1373

the bargaining breaking down, therefore, the payoffs are the same as the ones under the rejection outcome.1374

B.4.2. Analysis of the Stackelberg Model with an OIR Scheme. This section parallels §3 and1375

analyzes the Stackelberg model for the case in which the conditional approval option is only in research1376

(OIR). Our analysis employs backwards induction.1377

Payer’s Reimbursement Decision at The Reappraisal Stage. Suppose that the company submits1378

a reappraisal price p1 at the conclusion of the post-marketing trial. If the payer approves the new treatment1379

at that price, its total expected INMB from approval is given by V1(A1, p1, t) in (5). If the payer rejects the1380

new treatment, however, the total expected INMB is V1(R1) = 0.1381

The payer approves the new treatment at price p1 if V1(A1, p1, t) ≥ V1(R1). (We break ties by choosing1382

approval as in §3). Because V1(A1, p1, t) = (1− t)N(µ1 − p1 + pS) and V1(R1) = 0, the treatment is approved1383

if µ1 + pS ≥ p1, and is rejected otherwise.1384

Company’s Submission and Pricing Decisions at The Reappraisal Stage. If the company submits1385

reappraisal price p1 and the new treatment is approved at that price, then the company’s expected profit at1386

the end of the post-marketing trial is Π1(A1, p1, t) in (8). If the company decides to withdraw the submission,1387

or if the new treatment is rejected at the submitted price, the company’s additional profit after rejection at1388

the end of the post-marketing trial is Π1(R1) =Π1(NS1)≜ 0.1389
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Because Π1(A1, p1, t) increases with p1, and because the payer would reject the treatment if p1 >µ1 + pS ,1390

we find that p1 = µ1 + pS maximizes the company’s profit from continuing with the submission. Therefore,1391

the company submits the new treatment with the reappraisal price pSeq,∗1 = µ1 + pS if Π1(A1, p
Seq,∗
1 , t)≥ 0,1392

which implies µ1 + pS − vN ≥ 0. Otherwise, the company withdraws the submission. (We break the ties by1393

choosing to submit the treatment.) Here, optimal values that are associated with the sequential Stackelberg1394

model may be denoted with a superscript Seq.1395

Prop. EC.3. Consider the the reappraisal stage of the Stackelberg model outlined in §B.4.1. If µ1 + pS −

vN ≥ 0 at the conclusion of the post-marketing trial, the company would submit the reappraisal price pSeq,∗1 =

µ1 + pS , and the payer would approve the new treatment. The players’ payoffs would be

Π1(A1, p
Seq,∗
1 , t) = (1− t)N(µ1 + pS − vN ) and V1(A1, p

Seq,∗
1 , t) = 0. (EC.12)

Otherwise, the company withdraws the submission at the conclusion of the post-marketing trial, and1396

Π1(NS1) = 0 and V1(NS1) = 0.1397

Remark EC.1. Prop. EC.3 is equivalent to Prop. 1 when β = 1.1398

Payer’s Reimbursement Decision at The Initial Submission Stage. Suppose the company presents1399

the trial results to the payer and submits an offer that contains an initial submission price, p0, an interim1400

price, pi, and the sample size and duration of the post-marketing trial to be conducted if the payer chooses1401

an OIR scheme, (n, t). We now analyze the best response of the payer to the company’s submission.1402

If the payer immediately approves the new treatment at price p0, the payer’s total expected INMB across1403

the population of N patients is given by V0(A0, p0) in (4). If the payer rejects the new treatment, the payer’s1404

total expected INMB is zero (i.e., V0(R0)≜ 0).1405

If the payer accepts the OIR scheme proposed by the company, the payer’s total expected INMB from1406

conditional approval depends on whether the new treatment is ultimately approved or rejected after the post-1407

marketing trial ends. Combining the two sets of outcomes at the end of the post-marketing trial, which are1408

outlined in Prop. EC.3, we denote the payer’s total expected INMB after a post-marketing trial with duration1409

t as V ∗
1 (t) = 0. We then have the payer’s total expected INMB from an OIR scheme as V0(CA

I, pi, n, t) =1410

n(µ0 − pi+ pS), which follows from (6).1411

The payer selects the outcome that would maximize its INMB, max{V0(A0, p0), V0(CA
I, pi, n, t), V0(R0)}

given the submission made by the company. We break ties by selecting in the order of immediate approval,

conditional approval, and rejection. Then, the payer immediately approves the new treatment at the initial

submission, i.e. V0(A0) =max{V0(A0, p0), V0(CA
I, pi, n, t), V0(R0)}, if

µ0 + pS ≥ p0 and (N −n)(µ0 + pS)≥Np0 −npi.

And, the payer conditionally approves the new treatment with an OIR scheme at the initial submission, i.e.

V0(CA
I, pi, n, t) =max{V0(CA

I, pi, n, t), V0(R0)}>V0(A0, p0), if

µ0 + pS ≥ pi and (N −n)(µ0 + pS)<Np0 −npi.
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Finally, the payer rejects the new treatment at the initial submission, i.e. V0(R0) >

max{V0(A0, p0), V0(CA
I, pi, n, t)}, if

µ0 + pS < p0 and µ0 + pS < pi.

Figure EC.1 summarizes the payer’s best response to a submission from the company in this model.1412

Company’s Submission and Pricing Decisions at The Initial Submission Stage. We analyze the1413

company’s optimal submission and pricing decisions given the payer’s best response in Figure EC.1.1414

If the company does not submit the new treatment or the new treatment is rejected at initial submission,1415

the company’s profit is zero, Π0(NS0) ≜ Π0(R0) = 0. If the company submits the new treatment to the1416

payer, and the new treatment is immediately approved at initial submission, the company’s profit from the1417

treatment’s approval at price p0 at initial submission is given by Π0(A0, p0) in (7).1418

If the company submits the new treatment to the payer, and the new treatment is conditionally approved

at the time of initial submission, the company’s total expected profit from conditional approval depends on

whether the new treatment is approved or not submitted after the post-marketing trial ends. We let Π∗
1(t)

denote the company profit across the two sets of outcomes at the end of the post-marketing trial of an OIR

scheme – acceptance at price pSeq,∗1 or no submission. Combining the two sets of outcomes at the end of

the post-marketing trial, which are outlined in Prop. EC.3, and using the pre-posterior distribution of µ1 to

evaluate the expectation, EM1
[Π∗

1(t) | µ0, n0], we have

Π0(CA
I, pi, n, t) ≜ n(pi− vN )− fDC −nvDC +EM1

[Π∗
1(t) | µ0, n0]

= n(pi− vN )− fDC −nvDC +EM1

[
(1− t)N(M1 + pS − vN )+ | µ0, n0

]
= n(pi− vN )− fDC −nvDC +(1− t)NσM1

ψ

(
vN − pS −µ0

σM1

)
, (EC.13)

Figure EC.1 The payer’s best response given the company’s submission of an immediate approval price, p0, an

interim price pi, sample size n and duration t, in a Stackelberg model. We break ties by selecting in the order of

immediate approval, conditional approval, and rejection.
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which also follows from (9).1419

We analyze the company’s optimal submission and pricing decision in three steps. We first find the param-1420

eter values that maximize the company’s profit from an OIR scheme, Π0(CA
I, pi, n, t). Second, we find those1421

that maximize the profit from immediate approval, Π0(A0, p0). And finally, we characterize the company’s1422

optimal action at initial submission.1423

Expected Profit from an OIR Scheme. The company obtains the highest possible profit from an OIR1424

scheme by choosing the values for (pi, n, t) that maximize (EC.13) given that the payer would accept the1425

OIR scheme. Figure EC.1 shows that the value of p0 impacts whether or not the payer accepts the OIR1426

scheme, and (EC.13) shows that p0 does not affect the expected profit from the OIR scheme.1427

For any given (n, t), the company maximizes (EC.13) by setting pi = µ0+pS and ensures the payer accepts

the interim price by setting p0 > µ0 + pS . We plug pi = µ0 + pS into (EC.13) and define the optimal values

for the sample size and duration of the post-marketing trial as

(n∗, t∗) =argmax
n,t

n(µ0 + pS − vN )− fDC −nvDC +(1− t)NσM1
ψ

(
vN − pS −µ0

σM1

)
s.t. 0≤ 2n≤Nrmaxt. (EC.14)

We let σ∗
M1

≜
√
ΣXn∗/(n0(n∗ +n0)) and write the maximum expected profit from an OIR scheme as

Π0(CA
I, µ0 + pS , n

∗, t∗) = n∗(µ0 + pS − vN )− fDC −n∗vDC +(1− t∗)Nσ∗
M1
ψ

(
vN − pS −µ0

σ∗
M1

)
. (EC.15)

Remark EC.2. The maximization problem in (EC.14) is identical to one in (16). Therefore, the optimal1428

values for the sample size and duration of the post-marketing trial as are the same for the Nash bargaining1429

solution and the solution of the Stackelberg model. Furthermore, we have Π0(CA
I, µ0+pS , n

∗, t∗) = S0(CA
I),1430

where S0(CA
I) is defined in Prop. 3.1431

Expected Profit from Immediate Approval. The company obtains the highest possible profit from1432

immediate approval by choosing the highest possible immediate approval price, which would maximize (7),1433

given that the payer would immediately approve the new treatment. Figure EC.1 shows that the value1434

of t does not impact the payer’s decision, the values of pi and n impact whether or not the payer would1435

immediately approve the new treatment, and (7) shows that pi and n do not affect the expected profit from1436

immediate approval.1437

The company’s profit from immediate approval, (7), is maximized by setting p0 = µ0+pS , and immediate1438

approval is preferred by the payer if pi ≥ µ0 + pS , for any n and t.1439

Then, the company’s maximum expected profit from immediate approval is

Π0(A0, µ0 + pS) = N(µ0 + pS − vN ). (EC.16)

Remark EC.3. We have Π0(A0, µ0 + pS) = S0(A0), where S0(A0) is defined in Prop. 2.1440

Company’s Optimal Decision. We now outline the optimal offer that would be submitted by the com-1441

pany at the initial submission:1442

• If Π0(A0, µ0 + pS)>Π0(CA
I, µ0 + pS , n

∗, t∗) and Π0(A0, µ0 + pS)≥ 0, the company’s optimal action is1443

to submit pSeq,∗0 = µ0 + pS , p
Seq,∗
i ≥ µ0 + pS , n

∗ and t∗. Then, the treatment is immediately approved by the1444

payer at the immediate approval price pSeq,∗0 = µ0 + pS .1445
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• If instead Π0(CA
I, µ0+pS , n

∗, t∗)>Π0(A0, µ0+pS) and Π0(CA
I, µ0+pS , n

∗, t∗)≥ 0, then the company’s1446

optimal action is to submit pSeq,∗i = µ0+pS , p
Seq,∗
0 >µ0+pS , n

∗ and t∗. Then, the treatment is conditionally1447

approved with an OIR scheme by the payer at the interim price pSeq,∗i = µ0 + pS and with a post-marketing1448

trial whose sample size is n∗ and duration is t∗.1449

• If both Π0(A0, µ0 + pS)< 0 and Π0(CA
I, µ0 + pS , n

∗, t∗)< 0, then the company would not submit the1450

treatment to the payer, and both the payer and the company receive payoffs of zero.1451

For completeness, we note that, in the event that the expected profits from the two outcomes are non-negative1452

and equal, we assume that the outcome chosen is immediate approval at price pSeq,∗0 = µ0 + pS .1453

Remark EC.4. Given the equivalences outlined in Remarks EC.2 and EC.3, the conditions under which1454

the treatment is immediately approved, conditionally approved, or rejected are identical under the Stackel-1455

berg model and the Nash bargaining model. (See §3.3.) Furthermore, the Nash bargaining price at immediate1456

approval for β = 1 is p∗0 = pSeq,∗0 , and the Nash bargaining interim price for β = 1 is p∗i = pSeq,∗i .1457

B.4.3. Comparison of the OIR and OWR Conditional Approval Schemes under the Stackel-1458

berg Model. This section parallels §4 and analyzes the Stackelberg model for the case in which both OIR1459

and OWR conditional approval schemes are under consideration.1460

Payer’s Reimbursement Decision at Reappraisal. Suppose that the company submits a reappraisal1461

price p1 at the conclusion of the post-marketing trial of an OWR scheme. In this case, the payer’s payoff1462

from rejection at reappraisal is −fr, i.e. V1(R1)≜−fr for an OWR scheme.1463

The payer approves the new treatment at price p1 if V1(A1, p1, t)≥ V1(R1), which implies µ1+pS+fr/((1−1464

t)N)≥ p1. The payer rejects the new treatment, otherwise.1465

Company’s Submission and Pricing Decisions at Reappraisal. The company’s payoffs are the1466

same under OIR and OWR schemes since the company does not face a reversal cost.1467

Because Π1(A1, p1, t) increases with p1, and because the payer would reject the treatment if p1 > µ1 +1468

pS +fr/((1− t)N) following an OWR scheme’s post-marketing trial, p1 = µ1+pS +fr/((1− t)N) maximizes1469

the company’s profit from continuing with the submission. Alternatively, withdrawing the submission at1470

reappraisal results in a profit of zero, in which case the payer would still be responsible for the reversal cost1471

(i.e. V1(NS1)≜−fr).1472

Therefore, the company submits the new treatment at reappraisal with price pSeq,W,∗1 = µ1+pS +fr/((1−1473

t)N) if Π1(A1, p
Seq,W,∗
1 , t) ≥ 0, which implies µ1 + pS + fr/((1 − t)N) − vN ≥ 0. Otherwise, the company1474

abandons the submission. (We break the ties by choosing to have the company submit the treatment.) Then,1475

we have the following result:1476

Prop. EC.4. Consider the reappraisal stage of an OWR scheme in the Stackelberg model outlined in

§B.4.1. If µ1+pS +fr/((1− t)N)−vN ≥ 0 at the conclusion of the post-marketing trial, the company submits

the reappraisal price pSeq,W,∗1 = µ1 + pS + fr/((1 − t)N), and the payer approves the new treatment. The

players’ payoffs are then

Π1(A1, p
Seq,W,∗
1 , t) = (1− t)N(µ1 + pS + fr/((1− t)N)− vN ) and V1(A1, p

Seq,∗
1 , t) =−fr. (EC.17)

Otherwise, the company withdraws the submission at the conclusion of the post-marketing trial, with1477

Π1(NS1) = 0 and V1(NS1) =−fr.1478
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Remark EC.5. Prop. EC.4 is equivalent to Prop. EC.1 when β = 1.1479

Payer’s Reimbursement Decision at The Initial Submission Stage. The payer’s payoffs from1480

immediate approval, an OIR scheme and rejection are the same as those in §B.4.2. We now calculate the1481

payer’s expected payoff from an OWR scheme.1482

The payer’s total expected INMB from an OWR conditional approval scheme depends on whether the new1483

treatment is ultimately approved or rejected after the post-marketing trial ends. Combining the two sets of1484

outcomes at the end of the post-marketing trial, which are outlined in Prop. EC.4, we denote the payer’s1485

total expected INMB after a post-marketing trial with duration t as V ∗,W
1 (t) =−fr. We then can define the1486

payer’s total expected INMB from an OWR scheme with sample size nW and duration tW , as of the time of1487

initial submission, as V0(CA
W, pWi , n

W , tW ) = (NtW −nW )(µ0 − pWi + pS)− fr, which follows from (EC.2).1488

The payer selects the outcome that would maximize its INMB,

max{V0(A0, p0), V0(CA
I, pi, n, t), V0(CA

W, pWi , n
W , tW ), V0(R0)}, and we break ties by selecting the

outcome in the order of immediate approval, the OIR scheme, the OWR scheme, and rejection.

Then, the payer immediately approves the new treatment at initial submission, i.e. V0(A0) =

max{V0(A0, p0), V0(CA
I, pi, n, t), V0(CA

W, pWi , n, t), V0(R0)}, if

µ0 + pS ≥ p0, (N −n)(µ0 + pS)≥Np0 −npi

and (N(1− tW )+nW )(µ0 + pS)+ fr ≥Np0 − (NtW −nW )pWi . (EC.18)

The payer conditionally approves the new treatment with an OIR scheme at initial submission, i.e.

V0(CA
I, pi, n, t) =max{V0(CA

I, pi, n, t), V0(CA
W, pWi , n

W , tW ), V0(R0)}>V0(A0, p0), if

µ0 + pS ≥ pi, (N −n)(µ0 + pS)<Np0 −npi,

and (n+nW −NtW )(µ0 + pS)+ fr ≥ npi− (NtW −nW )pWi . (EC.19)

The payer conditionally approves the new treatment with an OWR scheme at initial submission, i.e.

V0(CA
W, pWi , n

W , tW ) =max{V0(CA
W, pWi , n

W , tW ), V0(R0)}>max{V0(A0, p0), V0(CA
I, pi, n, t)}, if

µ0 + pS − fr/(Nt
W −nW )≥ pWi , (N(1− tW )+nW )(µ0 + pS)+ fr <Np0 − (NtW −nW )pWi ,

and (n+nW −NtW )(µ0 + pS)+ fr <npi− (NtW −nW )pWi . (EC.20)

Finally the payer rejects the new treatment at initial submission, i.e. V0(R0) >

max{V0(A0, p0), V0(CA
I, pi, n, t), V0(CA

W, pWi , n
W , tW )}, if

µ0 + pS < p0, µ0 + pS < pi, and µ0 + pS − fr/(Nt
W −nW )< pWi . (EC.21)

Company’s Submission and Pricing Decisions at Initial Submission. We first characterize the1489

parameter values that maximize company’s expected profit from an OWR scheme. We then identify the1490

company’s optimal action at initial submission when an OWR scheme is an option.1491
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Expected Profit from an OWR Scheme. We let Π∗,W
1 (t) denote the company’s profit from the two sets

of outcomes at the end of the OWR scheme’s post-marketing trial. Recall from Prop. EC.4 that, if µ1+pS +

fr/((1− t)N)− vN ≥ 0, the treatment is submitted and approved at price pSeq,W,∗1 = µ1+pS + fr/((1− t)N),

and the company does not make a submission otherwise. Then we have

EM1

[
Π∗,W

1 (t) | µ0, n0

]
= EM1

[
(1− t)N(M1 + pS + fr/((1− t)N)− vN )+ | µ0, n0

]
= (1− t)NσM1

ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
. (EC.22)

In turn, the company’s expected total profit from an OWR scheme at initial submission is

Π0(CA
W, pWi , n, t) ≜ (Nt−n)(pWi − vN )− fDC −nvDC +(1− t)NσM1

ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
.

(EC.23)

The company obtains the highest possible profit from an OWR scheme by choosing values for pWi , n, and1492

t that maximize (EC.23). For any given (n, t), the price that maximizes (EC.23) is the highest interim price1493

at which the payer would accept an OWR scheme, µ0+pS −fr/(Nt−n). To make OWR the most attractive1494

choice to the payer, the company sets other options’ prices to satisfy p0 >µ0 + pS and pi >µ0 + pS .1495

Plugging pWi = µ0 + pS − fr/(Nt−n) into (EC.23), we define the optimal sample size and duration as

(n∗,W , t∗,W ) =argmax
n,t

(Nt−n)(µ0 + pS − vN )− fDC −nvDC

− fr +(1− t)NσM1
ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
s.t. 0≤ 2n≤Nrmaxt. (EC.24)

We now let σ∗,W
M1

≜
√
ΣXn∗,W/(n0(n∗,W +n0)) and write the maximum expected profit from an OWR scheme,

Π0(CA
W,µ0 + pS − fr/(Nt

∗,W −n∗,W), n∗,W, t∗,W)

=(Nt∗,W −n∗,W)(µ0 + pS − vN )− fDC −n∗,WvDC − fr

+(1− t∗,W)Nσ∗,W
M1

ψ

(
vN − pS − fr/((1− t∗,W)N)−µ0

σ∗,W
M1

)
. (EC.25)

Remark EC.6. The maximization problem in (EC.24) is identical to one in (EC.5). Therefore, the optimal1496

values for the sample size and duration of the post-marketing trial as are the same for the Nash bargaining1497

solution and the solution of the Stackelberg model. Furthermore, we have Π0(CA
W, µ0 + pS − fr/(Nt

∗,W −1498

n∗,W), n∗,W, t∗,W) = S0(CA
W), where S0(CA

W) is defined in (EC.6).1499

Company’s Optimal Decision. The values of (p0, pi, n, t) that maximize the company’s expected profit1500

from immediate approval and from an OIR scheme are those identified in §B.4.2. Those values, together with1501

the OWR trial parameters, (n∗,W, t∗,W) and an OWR interim price satisfying pWi > µ0 + pS − fr/(Nt
∗,W −1502

n∗,W) ensure that the payer prefers the OIR scheme or immediate approval to the OWR scheme.1503

We now outline the optimal offer that would be submitted by the company at the initial submission when1504

both OIR and OWR schemes are under consideration:1505
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• If Π0(A0, µ0 + pS) = max{Π0(A0, µ0 + pS),Π0(CA
W, µ0 + pS − fr/(Nt

∗,W −1506

n∗,W), n∗,W, t∗,W),Π0(CA
I, µ0 + pS , n

∗, t∗),0}, the company’s optimal action is to submit pSeq,∗0 = µ0 + pS ,1507

and to set pSeq,∗i > µ0 + pS and pSeq,W,∗i > µ0 + pS − fr/(Nt
∗,W − n∗,W), where the data collection (n, t) is1508

determined by (n∗, t∗) for the OIR scheme and by (n∗,W, t∗,W) for the OWR scheme. Then, the treatment1509

is immediately approved by the payer at the immediate approval price pSeq,∗0 .1510

• If Π0(CA
I, µ0 + pS , n

∗, t∗) = max{Π0(CA
W, µ0 + pS − fr/(Nt

∗,W − n∗,W), n∗,W, t∗,W),Π0(CA
I, µ0 +1511

pS , n
∗, t∗),0}>Π0(A0, µ0 + pS), then the company’s optimal action is to submit pSeq,∗i = µ0 + pS , and to set1512

pSeq,∗0 >µ0+pS and pSeq,W,∗i >µ0+pS −fr/(Nt∗,W−n∗,W), where the data collection (n, t) is determined by1513

(n∗, t∗) for the OIR scheme and by (n∗,W, t∗,W) for the OWR scheme. Then, the treatment is conditionally1514

approved with an OIR scheme by the payer at the interim price pSeq,∗i .1515

• If Π0(CA
W, µ0 + pS − fr/(Nt

∗,W − n∗,W), n∗,W, t∗,W) = max{Π0(CA
W, µ0 + pS − fr/(Nt

∗,W −1516

n∗,W), n∗,W, t∗,W),0}>max{Π0(A0, µ0+ pS),Π0(CA
I, µ0+ pS , n

∗, t∗)}, then the company’s optimal action is1517

to submit pSeq,W,∗i = µ0 + pS − fr/(Nt
∗,W − n∗,W), and to set pSeq,∗i > µ0 + pS and pSeq,∗0 > µ0 + pS , where1518

the data collection (n, t) is determined by (n∗, t∗) for the OIR scheme and by (n∗,W, t∗,W) for the OWR1519

scheme. Then, the treatment is conditionally approved with an OWR scheme by the payer at the interim1520

price pSeq,W,∗i .1521

• If max{Π0(A0, µ0+pS),Π0(CA
W, µ0+pS −fr/(Nt∗,W−n∗,W), n∗,W, t∗,W),Π0(CA

I, µ0+pS , n
∗, t∗)}< 0,1522

then the company would not submit the treatment to the payer.1523

As with the Nash bargaining model, we break ties by selecting immediate approval, an OIR scheme and an1524

OWR scheme in this order.1525

Remark EC.7. Given the equivalency outlined in Remark EC.6, the conditions under which the treat-1526

ment is immediately approved, conditionally approved with an OIR or OWR scheme, or rejected are identical1527

under the Stackelberg model and the Nash bargaining model. Furthermore, the Nash bargaining interim1528

price for an OWR scheme for β = 1 is p∗,Wi = pSeq,W,∗i .1529

B.5. Proofs of Mathematical Claims in §51530

Prop. 5 shows when the payer would obtain a negative share of the gains at the reappraisal stage if our1531

advance contracting mechanism is implemented for an OIR scheme, and we present the proof below.1532

Proof of Prop. 5. Case (i) directly follows from the fact that the Nash bargaining process is not disrupted1533

when pi ≥ p∗i . Therefore there is no need for a readjustment to (β,1−β) at the reappraisal stage.1534

If pi < p∗i , the value of β∗
1 is determined in a way to satisfy Π0(CA

I, pi, n
∗, t∗, β1) = βS0(CA

I). By using

(13) and (25) and solving

n∗(pi− vN )− fDC −n∗vDC +β∗
1 EM1

[S∗
1(t

∗) | µ0, n0] = β [n∗(µ0 + pS − vN )− fDC −n∗vDC +EM1
[S∗

1(t
∗) | µ0, n0]] ,

we find

β∗
1 =

βn∗(µ0 + pS)−n∗pi+(1−β) [fDC +n∗vDC +n∗vN ] +βEM1
[S∗

1(t
∗) | µ0, n0]

EM1
[S∗

1(t
∗) | µ0, n0]

. (EC.26)
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Because the denominator of the right hand side of (EC.26) is positive, for case (ii) we then have β∗
1 ≤ 1 if

and only if

EM1
[S∗

1(t
∗) | µ0, n0]≥ βn∗(µ0 + pS)−n∗pi+(1−β) [fDC +n∗vDC +n∗vN ] +βEM1

[S∗
1(t

∗) | µ0, n0] ,

(1−β)EM1
[S∗

1(t
∗) | µ0, n0]≥ βn∗(µ0 + pS)−n∗pi+(1−β) [fDC +n∗vDC +n∗vN ] ,

(1−β)EM1
[S∗

1(t
∗) | µ0, n0]≥ n∗(p∗i − pi)

pi ≥ p∗i − (1−β)EM1
[S∗

1(t
∗) | µ0, n0]/n

∗,

where the third line directly follows from the definition of p∗i in Prop. 3.1535

For case (iii) we similarly have β∗
1 > 1 if and only if

EM1
[S∗

1(t
∗) | µ0, n0]<βn

∗(µ0 + pS)−n∗pi+(1−β) [fDC +n∗vDC +n∗vN ] +βEM1
[S∗

1(t
∗) | µ0, n0] ,

(1−β)EM1
[S∗

1(t
∗) | µ0, n0]<βn

∗(µ0 + pS)−n∗pi+(1−β) [fDC +n∗vDC +n∗vN ] ,

(1−β)EM1
[S∗

1(t
∗) | µ0, n0]<n

∗(p∗i − pi)

pi < p∗i − (1−β)EM1
[S∗

1(t
∗) | µ0, n0]/n

∗.

Moreover, β∗
1 > 1 implies that (1−β∗

1)EM1
[S∗

1(t
∗) | µ0, n0]< 0, because the expectation in this expression is1536

positive. □1537

Proof of Corollary 3. Now we show that pi = µ0+pS always satisfies Case (ii) of Prop. 5, which requires

pi ≥ p∗i − (1−β)EM1
[S∗

1(t
∗) | µ0, n0]/n

∗. We plug in the definition of p∗i from Prop. 3 and pi = µ0 + pS :

µ0 + pS ≥ vN +β(µ0 + pS − vN )+ (1−β)(vDC + fDC/n
∗)− (1−β)EM1

[S∗
1(t

∗) | µ0, n0]/n
∗,

and we rearrange terms to obtain

(1−β)(µ0 + pS)− (1−β)(vDC + fDC/n
∗ + vN )+ (1−β)EM1

[S∗
1(t

∗) | µ0, n0]/n
∗ = (1−β)S0(CA

I)/n∗ ≥ 0.

The equality follows from the definition of S0(CA
I). Thus, if S0(CA

I)≥ 0, then pi = µ0 + pS is sufficient for1538

Case (ii) of Prop. 5 to hold. □1539

Price caps in OWR schemes. Next, we discuss the implications of putting a cap on the interim price1540

under an OWR scheme. Suppose that the Nash bargaining outcome is an OWR scheme and Nash bargaining1541

at initial submission obtains the interim price, p∗,Wi . As in the discussion for OIR in §5, if p∗,Wi > pi, then1542

Nash bargaining solution violates the price cap, and either the cap or the details of the Nash bargaining1543

must be modified.1544

When an OWR scheme is the Nash outcome, the details of Nash bargaining model can be relaxed in a

manner similar to that of the risk-sharing mechanism discussed in §5. For alternative fractions [β1, (1−β1)],

we write the analogues to (24) and (25) for an OWR scheme:

V0(CA
W, pi, n, t, β1) = (Nt−n)(µ0 − pi+ pS)+ (1−β1)EM1

[
S∗,W
1 (t) | µ0, n0

]
, and (EC.27)

Π0(CA
W, pi, n, t, β1) = (Nt−n)(pi− vN )− fDC −nvDC +β1EM1

[
S∗,W
1 (t) | µ0, n0

]
. (EC.28)
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Adding (EC.27) and (EC.28), we obtain S0(CA
W, n, t). The players aim to preserve the [β, (1− β)] split of

the joint surplus, S0(CA
W), so that

V0(CA
W, pi, n, t, β1) = (1−β)S0(CA

W) and Π0(CA
W, pi, n, t, β1) = βS0(CA

W). (EC.29)

The risk-sharing mechanism used when OWR is the Nash outcome implies that the players use (EC.27)-1545

(EC.29) to identify and contract upon a β∗,W
1 , which is the analogue of β∗

1 for OIR. Because cooperative1546

bargaining is conserved at initial submission, the players maintain the common objective of designing the1547

post-marketing trial to maximize the expected joint surplus at reappraisal. Therefore they continue to agree1548

to choose the same trial parameters n∗,W and t∗,W = 2n∗,W/(Nrmax) identified in Appendix B.2.2.1549

Prop. 6 and Corollary 4 indicate when β∗,W
1 exceeds one and are analogous to Prop. 5 and Corollary 3.1550

Proof of Prop. 6. Case (i) directly follows from the fact that the Nash bargaining process is not disrupted1551

when pi ≥ p∗,Wi , therefore there is no need for a readjustment to (β,1−β) at the reappraisal stage.1552

If pi < p
∗,W
i , the value of β∗,W

1 must satisfy Π0(CA
W, pi, n

∗,W, t∗,W, β1) = βS0(CA
W). Defining Ñ ≜Nt∗,W−

n∗,W to simplify the expressions, we use (21) and (EC.28),

Ñ(pi− vN )− fDC −n∗,WvDC +β∗,W
1 EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
= β

[
Ñ(µ0 + pS − vN )− fDC −n∗,WvDC +EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]]
,

and solve the above equality for β∗,W
1 :

β∗,W
1 =

βÑ(µ0 + pS)− Ñpi+(1−β)
[
fDC +n∗,WvDC + ÑvN

]
+βEM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
EM1

[
S∗,W
1 (t∗,W) | µ0, n0

] . (EC.30)

We now show that the denominator of the right-hand side of (EC.30) is positive when S0(CA
I)<S0(CA

W).

Using the definition of S∗,W
1 (t∗,W) in Prop. EC.1, substituting M1 for µ1, taking expectations, and applying

the definition of ψ(x), we have

EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
=−fr +(N − 2n∗,W/rmax)σ

∗,W
M1

ψ

(
vN − pS − fr/((N − 2n∗,W/rmax))−µ0

σ∗,W
M1

)
.

Then, EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
> 0 holds if and only if

ψ

(
vN − pS − fr/((N − 2n∗,W/rmax))

σ∗,W
M1

)
>

fr

(N − 2n∗,W/rmax)σ
∗,W
M1

,

which follows from rmax < 1 and the definition of σ∗,W
M1

.1553

We recall from Prop. 4 that S0(CA
I) < S0(CA

W) holds only when µ0 + pS − vN > 0. Given x ≜ µ0 +1554

pS − vN > 0 and y ≜ fr/((N − 2n∗,W/rmax)σ
∗,W
M1

), we have ψ(−x − y) > ψ(−y) > y. Therefore, we have1555

EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
> 0 when S0(CA

I)<S0(CA
W).1556

Because the denominator of the right-hand side of (EC.30) is positive, for case (ii) we then have β∗,W
1 ≤ 1

if and only if we have S0(CA
I)<S0(CA

W) and:

(1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
≥ βÑ(µ0 + pS)− Ñpi+(1−β)

[
fDC +n∗,WvDC + ÑvN

]
,

(1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
≥ Ñ(p∗,Wi − pi)+βfr,

pi ≥ p∗,Wi +βfr/Ñ − (1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
/Ñ,
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where the second line directly follows from the definition of p∗,Wi in (22).1557

For case (iii) we similarly have β∗,W
1 > 1 if and only if

(1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
<βÑ(µ0 + pS)− Ñpi+(1−β)

[
fDC +n∗,WvDC + ÑvN

]
,

(1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
< Ñ(p∗,Wi − pi)+βfr,

pi < p
∗,W
i +βfr/Ñ − (1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
/Ñ.

Moreover, β∗,W
1 > 1 also implies that (1−β∗,W

1 )EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
< 0, because the expectation in this1558

expression is positive. □1559

Proof of Corollary 4. Now we show that pi = µ0+pS always satisfies Case (ii) of Prop. 6, which requires

pi ≥ p∗,Wi +βfr/Ñ − (1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
/Ñ , where Ñ ≜Nt∗,W−n∗,W. We plug in the definition

of p∗,Wi from (22) and pi = µ0 + pS :

µ0 + pS ≥ vN +β(µ0 + pS − vN )+ (1−β)(vDCn
∗,W + fDC)/Ñ −βfr/Ñ

+βfr/Ñ − (1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
/Ñ,

and we rearrange terms to obtain

(1−β)(µ0 + pS)− (1−β)((vDCn
∗,W + fDC)/Ñ + vN )+ (1−β)EM1

[
S∗,W
1 (t∗,W) | µ0, n0

]
/Ñ

= (1−β)S0(CA
W)/Ñ ≥ 0.

The equality follows from the definition of S0(CA
W). Thus, if S0(CA

W)≥ 0, then pi = µ0 + pS is sufficient1560

for Case (ii) of Prop. 6 to hold. □1561

Appendix C: Comparative Statics Results1562

We use comparative statics to explore the effect of key model parameters on the solution to the two-stage1563

bargaining problem. Appendix C.1 discusses how model parameters influence joint surpluses, player payoffs,1564

optimal sample size of the post-marketing trial and bargaining prices. Appendix C.2 discusses the sensitivity1565

of Nash bargaining outcomes to model parameters. For parameters that cannot be unambiguously signed1566

here, we offer numerical comparative statics results for the Votrient case study in Appendix E.1567

C.1. Sensitivity of Joint Surpluses, Player Payoffs and Prices to Key Model Parameters1568

Table EC.2 summarizes the derivatives of joint surpluses, S0(A0), S0(CA
I), S0(CA

W), the derivatives of1569

optimal sample sizes, n∗ and n∗,W, and the derivatives of prices, p∗0, p
∗
i and p

∗,W
i , for the parameters (denoted1570

by ‘b’) in the first column of the table. Appendix C.1.1, Appendix C.1.2 and Appendix C.1.3 present the1571

algebra that leads to the results presented in Table EC.2. Appendix C.1.4 offers insights based on the1572

comparative statics results for joint surpluses and prices.1573

C.1.1. Derivations of Comparative Statics Results for Joint Surpluses. Because S0(CA
I) and1574

S0(CA
W) are obtained by solving their respective constrained optimization problems, we employ the envelope1575

theorem for a constrained optimization problem to obtain the comparative statics for S0(CA
I) and S0(CA

W).1576

We have shown in §3.2.3 and Appendix B.2 that it is optimal to set t = 2n/(rmaxN) and maximize over1577
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the sample size for both problems. Then, we can rewrite each of these two optimization problems as an1578

optimization over a single variable, n.1579

For ease of exposition, we focus on S0(CA
I), but the results continue to hold for S0(CA

W). We start

by defining some additional notation. We let b to contain all problem parameters, and we let f(n;b) =

S0(CA
I, n,2n/(rmaxN)) represent the objective function of the optimization as a function of the decision

variable, n, and problem parameters, b. We define g1(n;b) = n and g2(n;b) =Nrmax/2−n. Therefore, our

maximization problem has the following form:

S0(CA
I) =max

n
f(n;b)

s.t. gi(n;b)≥ 0 for i= 1,2.

Let L be the Lagrangian expression of our problem:

L(n;b) = f(n;b)+λ1g1(n;b)+λ2g2(n;b)

where λ1 and λ2 are Lagrange multipliers associated with each constraint. Now we let n∗(b) be the optimal

solution that maximizes the objective function subject to constraints, and λ∗
1(b) and λ

∗
2(b) be the Lagrange

multipliers at the optimal solution. Then, the envelope theorem states that the derivative of the value function

at the optimal solution with respect to a problem parameter b∈ b satisfy the following

∂S0(CA
I)

∂b
=
∂f(n∗;b)

∂b
+λ∗

1(b)
∂g1(n

∗;b)

∂b
+λ∗

2(b)
∂g2(n

∗;b)

∂b
.

Furthermore, when both constraints are independent of the parameter of interest (i.e., ∂gi(n
∗;b)/∂b = 0 for

i= 1,2) or when neither constraint is binding (i.e., λ∗
1 = 0 and λ∗

2 = 0), the following condition holds:

∂S0(CA
I)

∂b
=
∂f(n∗;b)

∂b
=
∂S0(CA

I, n∗,2n∗/(rmaxN))

∂b
. (EC.31)

For S0(CA
I) and S0(CA

W), neither constraint is a function of the following parameters:1580

µ0, n0, pS , vN , fDC , vDC and β. Therefore, we can directly apply (EC.31) to examine the impact of each of1581

these parameters. For the parameter N , we assume that the optimal value of the decision variable, n∗, lies1582

in the interior of the problem domain.1583

Finally, we note the following derivative that will be used repeatedly: dψ(x)/dx =Φ(x)− 1.1584

Table EC.2 Comparative statics results for the joint surplus from immediate approval, S0(A0), the joint surplus from an OIR scheme,
S0(CAI), the joint surplus from an OWR scheme, S0(CAW), the optimal sample size of an OIR scheme, n∗, the optimal sample size of
an OWR scheme, n∗,W, the immediate approval price, p∗

0 , the interim price under an OIR scheme, p∗
i , and the interim price under an

OWR scheme, p∗,W
i .

Parameter(b) ∂S0(A0)/∂b ∂S0(CA
I)
/
∂b ∂S0(CA

W)
/
∂b ∂n∗/∂b ∂n∗,W

/
∂b ∂p∗0/∂b ∂p∗i /∂b ∂p∗,Wi

/
∂b

µ0 ≥ 0 ≥ 0 ≥ 0 † † ≥ 0 † †
n0 = 0 ≤ 0 ≤ 0 † † = 0 † †
ΣX = 0 ≥ 0 ≥ 0 † † = 0 † †
pS ≥ 0 ≥ 0 ≥ 0 † † ≥ 0 † †
vN ≤ 0 ≤ 0 ≤ 0 † † ≥ 0 † †
fDC = 0 ≤ 0 ≤ 0 = 0 = 0 = 0 ≥ 0 ≥ 0
vDC = 0 ≤ 0 ≤ 0 ≤ 0 ≤ 0 = 0 † †
N ≥ 0 ≥ 0 † ≥ 0 † = 0 ≤ 0 †
β = 0 = 0 = 0 = 0 = 0 ≥ 0 † †
†It is not possible to unambiguously sign analytical expressions. Their closed forms are presented in Appendix C.1.1, Appendix C.1.2

and Appendix C.1.3, and their effects are numerically analyzed in Appendix E.
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Prior Mean about the INMB-p. First, we observe that S0(A0) is linearly increasing in µ0:

∂S0(A0)

∂µ0

=N.

Second, we show that S0(CA
I) is increasing in µ0:

∂S0(CA
I, n, t)

∂µ0

= n+(1− t)N

[
1−Φ

(
vN − pS −µ0

σM1

)]
,

which implies ∂S0(CA
I)
/
∂µ0 > 0 by the envelope theorem.1585

Third, we show that S0(CA
W) is increasing in µ0:

∂S0(CA
W, n, t)

∂µ0

= tN −n+(1− t)N

[
1−Φ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)]
.

By definition n≤ tN . Then, ∂S0(CA
W)
/
∂µ0 > 0 by the envelope theorem.1586

Effective Sample Size of the Prior Distribution about the INMB-p. First, the fact that S0(A0) is1587

independent of n0 follows from its definition in (12).1588

Second, we show that S0(CA
I) is decreasing in n0. We recall from (3) that σM1

is a function of n0.

∂S0(CA
I, n, t)

∂n0

= (1− t)N

∂σM1

∂n0

ψ

(
vN − pS −µ0

σM1

)
+σM1

∂ψ
(
vN−pS−µ0

σM1

)
∂n0


= (1− t)N

∂σM1

∂n0

ψ

(
vN − pS −µ0

σM1

)
+σM1

∂ψ
(
vN−pS−µ0

σM1

)
∂
(
vN−pS−µ0

σM1

) ∂
(
vN−pS−µ0

σM1

)
∂σM1

∂σM1

∂n0


= (1− t)N

∂σM1

∂n0

[
ψ

(
vN − pS −µ0

σM1

)
+σM1

(
Φ

(
vN − pS −µ0

σM1

)
− 1

)(
−vN − pS −µ0

σ2
M1

)]
= (1− t)N

∂σM1

∂n0

[
ψ

(
vN − pS −µ0

σM1

)
+
vN − pS −µ0

σM1

(
1−Φ

(
vN − pS −µ0

σM1

))]
= (1− t)N

∂σM1

∂n0

ϕ

(
vN − pS −µ0

σM1

)
,

where the last line follows from the definition of ψ(x) = ϕ(x)−x(1−Φ(x)).1589

Now we show that ∂σM1
/∂n0 < 0 and therefore ∂S0(CA

W)
/
∂n0 < 0 by the envelope theorem.

∂σM1

∂n0

=
∂
√
ΣXn/(n0(n+n0))

∂n0

=−
√

ΣXn
1

2

(
1

n0(n+n0)

)3/2

(n+2n0) =−
σ3
M1

(n+2n0)

2nΣX
< 0.

Third, we show S0(CA
W) is decreasing in n0 following the same steps as we did for S0(CA

I):

∂S0(CA
W, n, t)

∂n0

= (1− t)N
∂σM1

∂n0

ϕ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
.

Because ∂σM1
/∂n0 < 0, ∂S0(CA

W)
/
∂n0 < 0 by the envelope theorem.1590

Variance of Outcomes. First, S0(A0) is independent of ΣX from its definition in (12).1591

Second, we show that S0(CA
I) is increasing in ΣX . We recall from (3) that σM1

is a function of ΣX .

∂S0(CA
I, n, t)

∂ΣX
= (1− t)N

∂σM1

∂ΣX
ϕ

(
vN − pS −µ0

σM1

)
,

where the derivation follows that for n0.1592
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Now we show that ∂σM1
/∂ΣX > 0, and therefore ∂S0(CA

I)
/
∂ΣX > 0 by the envelope theorem.

∂σM1

∂ΣX
=
∂
√
ΣXn/(n0(n+n0))

∂ΣX

=

√
ΣXn/(n0(n+n0))

2ΣX
> 0

Third, we show S0(CA
W) is increasing in ΣX following the same steps as we did for S0(CA

I):

∂S0(CA
W, n, t)

∂n0

= (1− t)N
∂σM1

∂ΣX
ϕ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
.

In turn, ∂σM1
/∂ΣX > 0 implies∂S0(CA

W)
/
∂ΣX > 0 by the envelope theorem.1593

Price of the Standard of Care. We note that the price of the standard care, pS , always show up together1594

with the prior mean about INMB-p, µ0, in the equations for joint surpluses, and the two parameters have1595

the same sign. Therefore, the direction of their effects on S0(A0), S0(CA
I) and S0(CA

W) are the same.1596

Production Cost. We note that the price of the variable production cost, vN , always show up together1597

with the prior mean about INMB-p, µ0, in the equations for joint surpluses, and the two parameters have1598

opposite signs. Therefore, the direction of their effects on S0(A0), S0(CA
I) and S0(CA

W) are the opposite.1599

Fixed Cost of Post-marketing Data Collection. It directly follows from their definitions that S0(A0)1600

is independent of fDC , and S0(CA
I) and S0(CA

W) are linearly decreasing in fDC .1601

Variable Cost of Post-marketing Data Collection. First, it directly follows from its definition in (12)1602

that S0(A0) is independent of vDC .1603

Second, we note that S0(CA
I) and S0(CA

W) are decreasing vDC :

∂S0(CA
I, n, t)

∂vDC
=−n and

∂S0(CA
W, n, t)

∂vDC
=−n.

From envelope theorem, ∂S0(CA
I)
/
∂vDC < 0 and ∂S0(CA

W)
/
∂vDC < 0.1604

Population Size. First, we analyze S0(A0):

∂S0(A0)

∂N
= µ0 + pS − vN .

Because immediate approval can be Nash bargaining outcome only if µ0 + pS − vN ≥ 0, we say S0(A0) is1605

non-decreasing with N .1606

Second, we show that S0(CA
I) is increasing in N :

∂S0(CA
I, n, t)

∂N
= (1− t)σM1

ψ

(
vN − pS −µ0

σM1

)
,

which implies ∂S0(CA
I)
/
∂N > 0 by the envelope theorem.1607

Third, we derive the derivative of S0(CA
W) with respect to N :

∂S0(CA
W, n, t)

∂N
= t(µ0 + pS − vN )+ (1− t)σM1

ψ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)
− (1− t)NσM1

[
1−Φ

(
vN − pS − fr/((1− t)N)−µ0

σM1

)][
fr

(1− t)N2σM1

]
Therefore, the sign of ∂S0(CA

W)
/
∂N is indeterminate.1608

Bargaining Power. By definition, S0(A0), S0(CA
I) and S0(CA

W) are all independent of β.1609
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C.1.2. Derivations of Comparative Statics Results for The Optimal Sample Size. We now

explore how the optimal sample size changes with the problem parameters. We start with the OIR scheme.

The optimal sample size n∗ is determined as the n that sets ∂S0(CA
I, n,2n/(Nrmax))

/
∂n = 0. Using the

implicit function theorem, we have

∂n

∂b
= −∂

2S0(CA
I, n,2n/(Nrmax))

∂n∂b

/
∂2S0(CA

I, n,2n/(Nrmax))

∂n2

We know that, if the OIR scheme is the Nash bargaining outcome, S0(CA
I, n,2n/(Nrmax)) is concave1610

at the optimal solution. (See Appendix B.3.) Then, the sign of ∂n∗/∂b is the same as the sign of1611

∂2S0(CA
I, n,2n/(Nrmax))

/
∂n∂b . Following the same argument, the sign of ∂n∗,W

/
∂b is the same as the1612

sign of ∂2S0(CA
W, n,2n/(Nrmax))

/
∂n∂b .1613

It is not possible to unambiguously sign the effects of some model parameters because the signs of1614

∂2S0(CA
I, n,2n/(Nrmax))

/
∂n∂b and ∂2S0(CA

W, n,2n/(Nrmax))
/
∂n∂b depend on other parameter values.1615

Here we present the comparative statics results for fDC , vDC and β, whose effects can be unambiguously1616

signed for the optimal sample sizes of the OIR and OWR schemes, and for N , whose effect can be unam-1617

biguously signed for the optimal sample size of the OIR scheme. We numerically analyze the effect of µ0, pS ,1618

vN , n0, ΣX and N on n∗ and n∗,W in Appendix E.1619

Fixed Cost of Post-marketing Data Collection. For an OIR scheme, ∂S0(CA
I, n,2n/(Nrmax))

/
∂n is1620

given in (EC.7), and we see that the optimal sample size is independent of fDC . And for an OWR scheme,1621

we see from (EC.9) that the optimal sample size is independent of fDC .1622

Variable Cost of Post-marketing Data Collection. We have

∂2S0(CA
I, n,2n/(Nrmax))

∂n∂vDC
=−1,

∂2S0(CA
W, n,2n/(Nrmax))

∂n∂vDC
=−1

Then, the optimal sample sizes of an OIR scheme and an OWR scheme both decrease with the variable cost1623

of data collection, vDC .1624

Population Size. For an OIR scheme, we have

∂2S0(CA
I, n,2n/(Nrmax))

∂n∂N
=
∂σM1

∂n
ϕ

(
y

σM1

)
.

From (EC.8), we know ∂σM1
/∂n > 0. Then, the optimal sample size of an OIR scheme increases with the1625

population size, N .1626

Bargaining Power. We see from (EC.7) and (EC.9) that the optimal sample size is independent of β for1627

both OIR and OWR schemes.1628

C.1.3. Derivations of Comparative Statics Results for Prices.1629

Immediate Approval Price. The immediate approval price, p∗0 = vN +β(µ0+pS −vN ), is straightforward

to analyze. The partial derivative of p∗0 with respect to µ0, pS , vN and β are

∂p∗0
∂µ0

= β ,
∂p∗0
∂pS

= β ,
∂p∗0
∂vN

= 1−β and
∂p∗0
∂β

= µ0 + pS − vN .

We note that the immediate approval can be the Nash bargaining outcome only if µ0 + pS − vN ≥ 0, and1630

β ≥ 0 by definition. Then, p∗0 increases with µ0, pS , vN and β, and p∗0 is independent of all other parameters.1631
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Interim Price of an OIR Scheme. From the definition in Prop. 3, we observe that p∗i reduces to p∗01632

for the special case of β = 1. Therefore, the comparative statics results outlined for p∗0 above holds also for1633

p∗i when β = 1. When 0 < β < 1, p∗i depends on the optimal sample size of the post-marketing trial, n∗.1634

Therefore, it is not possible to unambiguously sign analytical expressions for the comparative statics of p∗i if1635

it is not possible to do so for the optimal n∗.1636

For the effect of the total number of patients in the population, N , on p∗i , we have

∂p∗i
∂N

=−(1−β)
fDC
(n∗)2

∂n∗

∂N
.

We showed ∂n∗/∂N > 0 in Appendix C.1.2. Therefore, the OIR interim price, p∗i , decreases with N if β < 1.1637

Because n∗ is independent of fDC and β (see Appendix C.1.2), we have

∂p∗i
∂fDC

=
1−β

n∗ and
∂p∗i
∂β

= µ0 + pS − vN − vDC − fDC/n
∗.

Given that n∗ ≥ 0 by definition, p∗i is non-decreasing with fDC , and p∗i increases with β if µ0 + pS − vN −1638

vDC − fDC/n
∗ > 0.1639

For the rest of the parameters, µ0, pS , vN , vDC , n0 and ΣX , we have the following expressions for the

partial derivatives of p∗i :

∂p∗i
∂µ0

=−(1−β)
fDC
(n∗)2

∂n∗

∂µ0

+β ,
∂p∗i
∂pS

=−(1−β)
fDC
(n∗)2

∂n∗

∂pS
+β,

∂p∗i
∂vN

=−(1−β)
fDC
(n∗)2

∂n∗

∂vN
+1−β ,

∂p∗i
∂vDC

=−(1−β)
fDC
(n∗)2

∂n∗

∂vDC
+1−β,

∂p∗i
∂n0

=−(1−β)
fDC
(n∗)2

∂n∗

∂n0

,
∂p∗i
∂ΣX

=−(1−β)
fDC
(n∗)2

∂n∗

∂ΣX
.

We observe that the effect of these parameters on the OIR interim price, p∗i , depends both on their effect1640

on the optimal sample size, n∗, the optimal sample size itself, the fixed data collection cost, fDC , and the1641

bargaining power, β. By varying these values these partial derivatives can be made positive or negative.1642

Therefore, the effects of µ0, pS , vN , vDC , n0 and ΣX on p∗i are indeterminate and we numerically analyze1643

these effects on p∗i in Appendix E using parameters from the Votrient case study.1644

Although the effects are indeterminate, we make one structural observation concerning the partial deriva-1645

tive of p∗i with respect to n0 and ΣX : the effect of n0 (or ΣX) on the optimal sample size, n∗, and on the1646

OIR interim price, p∗i , are directional opposites if β < 1. In other words, if the optimal sample size increases1647

with n0 (or ΣX), the OIR interim price decreases with n0 (or ΣX).1648

Interim Price of an OWR Scheme. From the definition in Prop. EC.2, p∗,Wi reduces to p∗0 −1649

fr/(2n
∗,W/rmax − n∗,W) for the special case of β = 1. When β = 1 and there is no reversal cost, fr = 0, the1650

comparative statics results outlined for p∗0 above holds also for p∗,Wi . When 0<β < 1 or fr > 0, p∗,Wi depends1651

on the optimal sample size of the post-marketing trial, n∗,W. Thus, it is not possible to unambiguously sign1652

analytical expressions for the comparative statics of p∗,Wi if it is not possible to do so for n∗,W.1653

Because β and fDC do not impact the value of n∗,W (see Appendix C.1.2), we have

∂p∗,Wi
∂fDC

=
1−β

n∗,W(2/rmax− 1)
and

∂p∗,Wi
∂β

= µ0 + pS − vN − n∗,WvDC + fDC + fr
n∗,W(2/rmax− 1)

.
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Given that rmax < 1 by definition, p∗,Wi always increases with fDC . And p∗,Wi increases with β when µ0 +1654

pS − vN − (n∗,WvDC + fDC + fr)/(n
∗,W(2/rmax− 1))> 0.1655

For the rest of the parameters, µ0, pS , vN , vDC , n0, ΣX and N , we have the following expressions for the

partial derivative of p∗,Wi :

∂p∗,Wi
∂µ0

=− (1−β)fDC −βfr
(n∗,W)2(2/rmax− 1)

∂n∗,W

∂µ0

+β ,
∂p∗,Wi
∂pS

=− (1−β)fDC −βfr
(n∗,W)2(2/rmax− 1)

∂n∗,W

∂pS
+β,

∂p∗,Wi
∂vN

=− (1−β)fDC −βfr
(n∗,W)2(2/rmax− 1)

∂n∗,W

∂vN
+1−β ,

∂p∗,Wi
∂vDC

=− (1−β)fDC −βfr
(n∗,W)2(2/rmax− 1)

∂n∗,W

∂vDC
+1−β ,

∂p∗,Wi
∂n0

=− (1−β)fDC −βfr
(n∗,W)2(2/rmax− 1)

∂n∗,W

∂n0

,
∂p∗,Wi
∂ΣX

=− (1−β)fDC −βfr
(n∗,W)2(2/rmax− 1)

∂n∗,W

∂ΣX
,

∂p∗,Wi
∂N

=− (1−β)fDC −βfr
(n∗,W)2(2/rmax− 1)

∂n∗,W

∂N
.

The effects of these parameters on the OWR interim price are indeterminate, and we numerically analyze1656

the effect of µ0, pS , vN , n0, ΣX , vDC and N on p∗,Wi in Appendix E.1657

Although the effects are indeterminate, we make one structural observation concerning the partial deriva-1658

tive of p∗,Wi with respect to n0 and ΣX : the effect of n0 on the optimal sample size, n∗,W and on the OWR1659

interim price, p∗,Wi , are directional opposites only if (1− β)fDC > βfr. If (1− β)fDC < βfr, the directional1660

effect of n0 on n∗,W and on p∗,Wi are the same. And if (1−β)fDC = βfr, a change in the value of n0 does not1661

impact p∗,Wi . The same insight also applies to ΣX and N . Whereas for µ0, pS , vN and vDC , it is possible for1662

both n∗,W and p∗,Wi to increase with the parameter.1663

C.1.4. Insights Based on the Comparative Statics Results. We now interpret the comparative1664

statics results presented in Table EC.2. We start by discussing how the joint surplus and player payoffs1665

change with model parameters and continue with how the prices are impacted by various model parameters.1666

Sensitivity of Player Payoffs to Model Parameters. Because the bargaining framework implies that1667

the joint surplus is shared between the payer and the company, the signs for ∂S0(A0)/∂b , ∂S0(CA
I)
/
∂b1668

and ∂S0(CA
W)
/
∂b presented in Table EC.2 hold also for the payer’s net benefit and the company’s profit,1669

with the exception of the bargaining power, β. A higher bargaining power of the company, β, implies that1670

the company receives a higher share of the surplus, therefore the company’s profit always increases with β1671

and the payer’s net benefit decreases with β.1672

The impact of most parameters are straightforward to interpret, so we focus on highlighting two interesting1673

observations. The first is that, under conditions that lead to conditional approval outcome (OIR or OWR),1674

the company’s profit is the highest when the effective sample size is as low as possible. And the second one1675

is that the profit from immediate approval is not impacted by the effective sample size. Together, these two1676

facts imply that once enough data is collected in Phase III to ensure immediate approval, the company has1677

no incentive to collect further samples.1678

Sensitivity of Prices to Model Parameters. The immediate approval price, p∗0 = vN +β(µ0+pS − vN ),1679

is higher when the prior mean and the price of the standard of care are higher and lower when the production1680

cost is lower. Recalling Prop. 2, immediate approval can be optimal only when S0(A0) =N(µ0+pS −vN )≥ 0.1681

Thus, for new technologies that are immediately approved, the price, p∗0 (weakly) increases with β.1682
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We now turn our attention to interim prices. The fixed cost of the trial, fDC , leads to an increase in both1683

OIR and OWR interim prices because the interim price acts as a cost-sharing mechanism. The OIR interim1684

price decreases as the total number of patients in the population, N , increases, because the optimal sample1685

size of an OIR scheme increases with N and the fixed data collection cost can be divided across a larger1686

patient pool. The effect of N on the OWR interim price is more complicated due to the reversal cost.1687

The OIR interim price, p∗i , may increase or decrease with the bargaining power of the company. To see1688

this, recall from Prop. 3 that the interim price is p∗i = p∗0 + (1 − β)(vDC + fDC/n
∗). If µ0 + pS − vN > 0,1689

then p∗0 increases and (1 − β)(vDC + fDC/n
∗) decreases with β, and the direction of change depends on1690

their balance. If the treatment is highly favorable and the cost of the trial is small, then the first term will1691

dominate, so that the interim price increases with β. If the treatment is marginally favorable and cost of1692

the trial is low, then the second term will dominate, meaning that the interim price decreases with β. When1693

µ0+ pS − vN < 0, so immediate approval is not attractive, both p∗0 and (1−β)(vDC + fDC/n
∗) decrease with1694

β, and p∗i unambiguously decreases.1695

To analyze the sensitivity of p∗,Wi to β, we recall from Prop. EC.2 that the OWR interim price is

p∗,Wi = p∗0 +(1−β)
n∗,WvDC + fDC
n∗,W(2/rmax− 1)

−β
fr

n∗,W(2/rmax− 1)
= p∗0 +

n∗,WvDC + fDC
n∗,W(2/rmax− 1)

−β
n∗,WvDC + fDC + fr
n∗,W(2/rmax− 1)

.

If µ0 + pS − vN > 0, then p∗0 increases and −β(n∗,WvDC + fDC + fr)/(n
∗,W(2/rmax − 1)) decreases with β,1696

and the direction of change depends on their balance. And if µ0 + pS − vN < 0, so immediate approval is1697

not attractive, both decrease with β, and p∗,Wi unambiguously decreases. We note that the term (n∗,WvDC+1698

fDC + fr)/(n
∗,W(2/rmax − 1)) is the total data collection cost plus potential reversal cost of an OWR trial1699

divided across all patients treated with the new treatment during the post-marketing data collection period.1700

Unambiguously characterizing the effect of the rest of the parameters on the interim prices, p∗i and p∗,Wi ,1701

is not possible because their impact on depends on their impact on the optimal sample size. We numerically1702

explore the comparative statics for µ0, pS , vN , n0, ΣX , vDC and N on the optimal sample sizes (n∗, n∗,W)1703

and Nash bargaining interim prices (p∗i , p
∗,W
i ) for the Votrient case study in Appendix E.1704

C.2. Sensitivity of the Nash Bargaining Outcomes to Key Model Parameters.1705

In §6.2, we numerically explore the sensitivity of Nash outcomes when an OWR scheme is also feasible. In1706

this appendix, we analyze the impact of model parameters on the Nash bargaining outcome. We focus on1707

the case of an OWR scheme being infeasible due to a high cost of reversal.1708

We recall from §3.3 that the Nash bargaining outcome depends on which joint surplus is the highest among1709

S0(A0) and S0(CA
I). Therefore, in Appendix C.2.1, we start by analyzing the impact of key model parameters1710

on the difference S0(A0)− S0(CA
I) to understand how parameters impact the choice between immediate1711

approval and an OIR scheme. Then, in Appendix C.2.2, we present the insights about the sensitivity of the1712

Nash bargaining outcomes to model parameters.1713

C.2.1. Sensitivity of the Difference between Joint Surpluses to Selected Model Parameters.1714

Table EC.3 summarizes the derivatives of the difference between the joint surpluses from immediate approval1715

and an OIR scheme, S0(A0) − S0(CA
I), for selected parameters which are denoted by ‘b’ and shown in1716

the first column of the table. As in Appendix C.1.1, we use the envelope theorem to obtain the values for1717

∂(S0(A0)−S0(CA
I))
/
∂b .1718
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Table EC.3 Derivatives of the difference between the
joint surpluses from immediate approval and an OIR scheme,

S0(A0)−S0(CAI), with respect to model parameters.

Parameter(b) ∂(S0(A0)−S0(CA
I))
/
∂b

µ0 ≥ 0
n0 ≥ 0
ΣX ≤ 0
pS ≥ 0
vN ≤ 0
fDC ≥ 0
vDC ≥ 0
N ‡
β = 0

‡It is not possible to unambiguously sign analytical expres-

sions, but their closed forms are presented in text.

Prior Mean of the INMB-p. We show that S0(A0)−S0(CA
I) is increasing in µ0:

∂(S0(A0)−S0(CA
I, n, t))

∂µ0

= (N −n)− (1− t)N

[
1−Φ

(
vN − pS −µ0

σM1

)]
= (N −n)− (1− t)N +(1− t)NΦ

(
vN − pS −µ0

σM1

)
=−n+ tN +(1− t)NΦ

(
vN − pS −µ0

σM1

)
.

By definition, n≤ tN . Then, we write ∂(S0(A0)−S0(CA
I))
/
∂µ0 > 0 by the envelope theorem.1719

Effective Sample Size of the Prior Distribution of the INMB-p. We show that S0(A0)−S0(CA
I) is

increasing in n0, which follows directly from ∂S0(CA
I)
/
∂n0 because S0(A0) is independent of n0:

∂(S0(A0)−S0(CA
I, n, t))

∂n0

=−(1− t)N
∂σM1

∂n0

ϕ

(
vN − pS −µ0

σM1

)
where ∂σM1

/∂n0 < 0. Then, ∂(S0(A0)−S0(CA
I))
/
∂n0 > 0 by the envelope theorem.1720

Variance of Outcomes. We show that S0(A0)−S0(CA
I) is decreasing in ΣX , which follows directly from

∂S0(CA
I)
/
∂ΣX because S0(A0) is independent of ΣX :

∂(S0(A0)−S0(CA
I, n, t))

∂ΣX
=−(1− t)N

∂σM1

∂ΣX
ϕ

(
vN − pS −µ0

σM1

)
where ∂σM1

/∂ΣX > 0. Then, ∂(S0(A0)−S0(CA
I))
/
∂ΣX < 0 by the envelope theorem.1721

Price of the Standard of Care. We note that the price of the standard care, pS , always show up together1722

with the prior mean about INMB-p, µ0, in the equations for joint surpluses, and the two parameters have1723

the same sign. Therefore, the direction of their effects on the surpluses are the same.1724

Production Cost. We note that the price of the variable production cost, vN , always show up together1725

with the prior mean about INMB-p, µ0, in the equations for joint surpluses, and the two parameters have1726

opposite signs. Therefore, the direction of their effects are the opposite.1727

Fixed Cost of Post-Marketing Data Collection. It directly follows from its definition that S0(A0)−1728

S0(CA
I) is linearly increasing in fDC .1729
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Figure EC.2 Nash bargaining outcomes at the initial submission stage for different value of µ0 and n0 for

different fixed data collection costs. The value of n′
0 satisfies

(fDC +n∗vDC)/((1− t∗)Nψ (0)) =
√

(ΣXn∗)/(n∗n′
0 +n′

0n
′
0) and the value of n′′

0 satisfies

(f ′′
DC +n∗vDC)/((1− t∗)Nψ (0)) =

√
(ΣXn∗)/(n∗n′′

0 +n′′
0n

′′
0 ) for f ′′

DC < fDC .

(a) Higher fixed data collection cost. (b) Lower fixed data collection cost.

Variable Cost of Post-Marketing Data Collection. We show that S0(A0)− S0(CA
I) is increasing in

vDC , which follows directly from ∂S0(CA
I)
/
∂vDC because S0(A0) is independent of vDC :

∂(S0(A0)−S0(CA
I, n, t))

∂vDC
= n.

Population Size. We analyze how S0(A0)−S0(CA
I) changes with N :

∂(S0(A0)−S0(CA
I, n, t))

∂N
= µ0 + pS − vN − (1− t)σM1

ψ

(
vN − pS −µ0

σM1

)
.

Because ψ(x)≥ 0 for all x, we conclude that, when µ0 + pS − vN ≤ 0, ∂(S0(A0)−S0(CA
I))
/
∂N ≤ 0. When1730

µ0 + pS − vN > 0, the sign of ∂(S0(A0)−S0(CA
I))
/
∂N depends on other parameter values.1731

Bargaining Power. By definition, S0(A0)−S0(CA
I) is independent of β.1732

C.2.2. Sensitivity of the Nash Bargaining Outcomes to Key Model Parameters. Figure EC.21733

presents two figures, each depicting the Nash bargaining outcomes at the initial submission stage for different1734

values of µ0 and n0 and divided into six regions. The fixed data collection cost, fDC , used in Figure EC.2a1735

is higher than the one used in Figure EC.2b.1736

We use the results presented in Table EC.2 and Table EC.3 to show the existence and general structure

of the regions shown in Figure EC.2. We start by deriving n′
0 used in Figure EC.2a. If µ0 = vN − pS , then:

S0(A0) = 0,

S0(CA
I) =−fDC −n∗vDC +(1− t)Nσ∗

M1
ψ (0) ,

S0(A0)−S0(CA
I) = fDC +n∗vDC − (1− t∗)Nσ∗

M1
ψ (0) .

We note that σ∗
M1

is a function of n0, and we define n′
0 as the point that satisfies fDC+n∗vDC

(1−t∗)Nψ(0) = σ∗
M1

. Then, at1737

the coordinate µ0 = vN − pS and n0 = n′
0, we can show that S0(A0), S0(CA

I) and S0(A0)−S0(CA
I) are all1738
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zero. As we note in §3.3, we assume that, in this case, the Nash bargaining outcome is immediate approval1739

of the new treatment.1740

Now we show that n′
0 in Figure EC.2a is always smaller than n′′

0 in Figure EC.2b. We observe that σ∗
M1

1741

that satisfies the equation fDC+n∗vDC

(1−t∗)Nψ(0) = σ∗
M1

increases as fDC increases. Using the fact that n∗ is independent1742

of fDC and that ∂σM1
/∂n0 < 0, the n0 that satisfies this equality decreases as fDC increases. Therefore,1743

n′
0 <n

′′
0 if f ′′

DC < fDC .1744

We then analyze the four regions separated by µ0 = vN −pS and n0 = n′
0 in Figure EC.2a and Figure EC.2b,1745

one by one. We will use the following facts: (1) S0(A0)− S0(CA
I) is increasing in both µ0 and n0, and (2)1746

S0(CA
I) is increasing in µ0 and decreasing in n0.1747

First, we focus on the region defined by µ0 > vN − pS and n0 <n
′
0. Using the fact that S0(A0)−S0(CA

I)1748

increases as µ0 increases and decreases as n0 decreases, we conclude that there is a strictly decreasing line1749

(represented by the dashed line in Figure EC.2a and Figure EC.2b) on which S0(A0)−S0(CA
I) = 0, above1750

which S0(A0)−S0(CA
I)> 0 and below which S0(A0)−S0(CA

I)< 0. Therefore, the Nash bargaining outcome1751

in this region is immediate approval above the line and OIR below the line. The exact shape (convexity vs.1752

concavity) of this line is obtained by numerical analysis based on the parameters estimated in §6.1.1753

Second, we analyze the region defined by µ0 > vN − pS and n0 > n′
0. In this region, we have S0(A0)> 01754

because µ0 > vN − pS , and we have S0(A0)−S0(CA
I)> 0 because S0(A0)−S0(CA

I) increases as µ0 and n01755

increases. Therefore, the Nash bargaining outcome in this region is immediate approval.1756

Third, we study the region defined by µ0 < vN − pS and n0 < n′
0. In this region. we have S0(A0) < 01757

because µ0 < vN − pS . We conclude that immediate approval is not the Nash bargaining outcome in this1758

region. Using the fact that S0(CA
I) decreases as µ0 decreases and increases n0 decreases, we conclude that1759

there is a strictly increasing line (represented by the dotted line in Figure EC.2a and Figure EC.2b) on1760

which S0(CA
I) = 0, above which S0(CA

I)> 0 and below which S0(CA
I)< 0. Therefore, the Nash bargaining1761

outcome in this region is OIR above the line and rejection below the line. The exact shape of this line is1762

obtained by numerical analysis using the parameters estimated in §6.1.1763

Finally, we focus on the region defined by µ0 < vN − pS and n0 > n′
0. In this region, we have S0(A0)< 01764

because µ0 < vN −pS , and we have S0(CA
I)< 0 because S0(CA

I) decreases as µ0 decreases and n0 increases.1765

Therefore, the Nash bargaining outcome in this region is rejection of the new treatment.1766

We observe from Figure EC.2a and Figure EC.2b that treatments with high prior mean beliefs about1767

INMB-p with a high effective sample size in the prior receive immediate approval, while treatments with low1768

prior mean beliefs are immediately rejected. An OIR scheme is used either when prior mean implies that the1769

joint surplus from immediate approval is close to zero or when the effective number of samples is low, both1770

cases in which EM1
[p∗1 |M1 > vN − pS ] is significantly larger than p∗0 and for which the VoI is high.1771

We next discuss the effect of the fixed and variable costs of the post-marketing trial. Figure EC.2b shows1772

the change in Nash bargaining outcomes for a fixed cost of the post-marketing trial that is lower than that1773

used in Figure EC.2a. We observe that regions in which OIR is the Nash outcome expand as the fixed cost1774

of the post-marketing trial decreases. Table EC.2 shows that fixed and variable costs of data collection only1775

impact the joint surplus from an OIR scheme not the one from immediate approval, and the direction of1776
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their impact is the same. Therefore, the impact of a lower variable cost on the Nash bargaining outcome1777

would be similar.1778

We continue with the impact of other parameters on the Nash bargaining outcome. Recalling that, by1779

definition n0 =ΣX/Σ0, it is straightforward to infer the impact of ΣX from the observations regarding n0.1780

For low values of ΣX , the VoI is not high enough, and the Nash bargaining outcome is approval when1781

µ0 > vN − pS and rejection otherwise. As ΣX grows, the VoI increases and there is a region in which OIR is1782

the Nash outcome.1783

Similarly, we can infer the impact of the price of the standard of care, pS and the production cost, vN , from1784

the fact that the joint surplus per patient from immediate approval of the new treatment is µ0 + pS − vN .1785

These three parameters always appear together in equations for joint surpluses. The direction of the effect1786

on the joint surplus is the same for µ0 and pS , and the direction of the effect is the opposite for µ0 and vN .1787

Regarding the effect of the population size, we can show that ∂(S0(A0)−S0(CA
I))
/
∂N ≤ 0 when µ0 +1788

pS − vN ≤ 0. Then, for treatments with negative per-patient joint surplus from immediate approval of the1789

new treatment, OIR is the Nash bargaining outcome for high values of N and rejection is the outcome for low1790

values. When µ0 + pS − vN > 0, it is not possible to unambiguously determine the impact of the population1791

size, N , on the Nash bargaining outcomes.1792

We finally discuss the effect of the bargaining power parameter, β. Because the bargaining power of the1793

company, β, and the payer, 1− β, do not impact the joint surplus from immediate or conditional approval,1794

they do not affect either the optimal sample size, n∗ or the optimal duration of the post-marketing trial, t∗,1795

nor do they affect which treatments are immediately or conditionally approved. This follows from the fact1796

that we model prior beliefs regarding the distribution of the health-economic benefit of treatments as being1797

independent of bargaining power.1798

Appendix D: Additional Numerical Results for Votrient Case Study1799

Appendix D.1 provides details of how we fit parameter values used for the Votrient case study in §6.2 based1800

on data from UK NICE and industry, and Appendix D.2 presents additional numerical results related to §6.2,1801

with particular focus on the OWR scheme and interim pricing. Appendix E presents numerical comparative1802

statics results for this case study.1803

D.1. Parameter Values of Votrient Case Study1804

To specify beliefs regarding the INMB-p of Votrient relative to Sutent, we use QALY and cost data presented1805

in the NICE guidance for Votrient. NICE (2011) reports that the mean effectiveness of Votrient and Sutent1806

are 1.966 and 1.898 QALYs, respectively. NICE (2011) also states that the per-patient cost of adverse effects1807

and additional resources is £7,314 for Votrient and £7,323 for Sutent, so we set the mean belief about the1808

per-patient cost of Votrient, CN , and Sutent, CS , as £7,314 and £7,323, respectively. Assuming a maximum1809

willingness-to-pay CPQ threshold of λ=£30,000/QALY (NICE 2014), the prior mean for the INMB-p of1810

Votrient at the the initial submission stage is then µ0 =£30,000 (1.966− 1.898)− (7,314− 7,323) =£2,049.1811

Next, we estimate the variance of outcomes and the prior variance of the belief about INMB-p. The1812

standard error of the mean in terms QALYs gained is reported to be 0.84 over 1,000 simulation runs (NICE1813
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2011). We calculate the population variance of INMB-p as ΣX = £2(30,000 × 0.84
√
1,000)2. We set the1814

effective sample size at the initial submission stage to be n0 = 290, which is the sample size of the clinical1815

trial whose results were available at the time of initial submission. The implied prior variance of the belief1816

about INMB-p is then Σ0 =ΣX/290.1817

To determine the total number of patients, N , we use a time horizon of 10 years, which is consistent with1818

NICE (2011). NICE (2011) also states that 2,120 patients are eligible to receive treatment with Votrient per1819

year in the UK. Therefore, N = 21,200.1820

We calculate the NHS’s price for Sutent using NICE’s guidance regarding Sutent (NICE 2009), as well as1821

the study by Motzer et al. (2009). The median number of treatment cycles needed for a patient receiving1822

Sutent is 7.4 (Motzer et al. 2009), where £3,139 is the cost of one Sutent treatment cycle (NICE 2009).1823

Therefore, pS = (7.4−1)×3,139 =£20,089, where we subtract one because the first treatment cycle of Sutent1824

is free for the NHS (NICE 2009).1825

We estimate the maximum recruitment rate for the post-marketing trial based on the sample size and1826

duration of COMPARZ. The trial was planned to last 2 years (NICE 2011), and given the time horizon of1827

10 years, we let t = 2/10 = 0.2 for COMPARZ. The planned sample size of COMPARZ was 876 patients1828

(ClinicalTrials.gov 2010) and, we use the optimality of recruiting patients as quickly as possible, shown in1829

§3, to determine the maximum recruitment rate. Assuming that COMPARZ was designed optimally, we set1830

rmax = 876/(21,200× 0.2)≈ 0.2.1831

We follow the analysis in Hill et al. (2016) to estimate the variable production cost, vN , which we assume1832

to equal the price charged by a contract manufacturer to produce Votrient. Votrient is sold as 200mg and1833

400mg tablets. We base our calculation on 400mg tablets. Export data for India2 suggests that the price1834

of the active pharmaceutical ingredient (API) for Votrient is US$2,850/kg, or US$1.14 per 400mg tablet.1835

We add costs of US$0.38 per tablet for excipients and US$0.42 per tablet for coating and tableting (Hill1836

et al. 2016), for a total of US$1.94 per 400mg tablet. The standard daily dose of Votrient is 800mg (NICE1837

2011), giving a monthly cost of US$116.40. We allow US$0.35/month for bottling, package insert, shipping1838

and duties, and a 50% mark-up for the contract manufacturer (Hill et al. 2016). As a result, the monthly1839

production cost is US$175. The median treatment duration for Votrient is 11.1 months (NICE 2011). Thus,1840

the production cost of Votrient per patient is US$1,944. We set vN =£1,205 using the average exchange rate1841

in 2011.1842

Finally, we estimate the costs associated with running a post-marketing trial. We use the average costs1843

reported in Sertkaya et al. (2014) to determine the fixed cost and total per-patient cost of running a post-1844

marketing trial to be $16× 106 and $2.2× 106, respectively. Therefore, we set fDC = £10× 106 using the1845

average exchange rate in 2011. Similarly, we set vDC = 2×(£1.4×106)/446 =£6,226 where 446 is the median1846

sample size of a Phase III clinical trial (Moore et al. 2018).1847

2 Export data for 2017 and 2018, retrieved from http://www.infodriveindia.com on 5/10/2019.
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Table EC.4 Votrient Case Study: The interim price and the expected reappraisal price conditional on
approval for different values of the cost of reversal. All values are in £.

When fr =£9× 107 When fr =£24× 107 When fr =£30× 107

p∗,Wi EM1
[p∗,W1 | AW

1 ] p∗,Wi EM1
[p∗,W1 | AW

1 ] p∗,Wi EM1
[p∗,W1 | AW

1 ]
β = 0.1 3,921 5,273 −288 5,748 −2,155 5,948
β = 0.3 2,765 13,409 −10,269 14,834 −16,047 15,434
β = 0.5 1,609 21,545 −20,250 23,921 −29,939 24,920
β = 0.7 453 29,682 −30,231 33,007 −43,830 34,406
β = 0.9 −703 37,818 −40,212 42,093 −57,722 43,892
β = 1.0 −1,281 41,889 −45,202 46,546 −64,668 48,541

D.2. Additional Numerical Results1848

We present additional numerical results related to the case study in §6.2, particularly those related to Table 2,1849

to characterize the effect of reversal costs on resulting interim prices. Table EC.4 displays the interim price,1850

p∗,Wi , and the expected reappraisal price conditional on eventual approval, EM1
[p∗,W1 | Approval], for three1851

different values of the cost of reversal, fr. Recall that OWR is the Nash bargaining outcome only when1852

fr <£24× 107 in our example.1853

Table EC.4 shows that the expected reappraisal price increases with fr, but the reversal cost’s impact1854

is minimal. Table EC.4 also suggests that the expected reappraisal price after an OWR scheme is higher1855

than the immediate approval price, and the expected reappraisal price after an OWR scheme increases as β1856

increases for all values of fr > 0, which matches the observations made in §6.2 for fr = 0.1857

Table EC.4 shows that, for fr > 0, the expected reappraisal price after an OWR scheme is always higher1858

than the OWR interim price. For fr = 0, we found in §6.2 that the relationship between the OWR interim1859

price and the expected OWR reappraisal price depends on the value of β.1860

Table EC.4 provides insights regarding the effect of the reversal cost on the OWR scheme’s interim price.1861

As the reversal cost increases, the interim price decreases and may even become negative, acting as a per-1862

patient fee with which the company compensates the payer to be a part of the OWR scheme. Note that if1863

the new treatment is approved at reappraisal, after an OWR scheme, the reappraisal price is appropriately1864

higher to compensate the company for this so-called fee.1865

A comparison of Table 2 and Table EC.4 shows that the interim price under the OIR scheme is higher1866

than that under OWR for all values of the reversal cost, fr > 0, which matches our observation in §6.2 for1867

fr = 0. Furthermore, the gap between the OIR and OWR interim prices increases with the reversal cost.1868

As opposed to the findings in §6.2 for fr = 0, Table EC.4 displays the interim price of an OWR scheme1869

decreasing with β when fr > 0. This is expected from the comparative statics results in Appendix C.1.3,1870

which shows that p∗,Wi decreases with β when µ0 + pS − vN − (n∗,WvDC + fDC + fr)/(n
∗,W(2/rmax− 1))< 0.1871

Again, as opposed to the findings in §6.2 for fr = 0, the interim price of an OWR scheme is higher than the1872

immediate approval price only for β = 0.1 and fr =£9×107 and is lower than the immediate approval price1873

for all other parameter values.1874

Appendix E: Numerical Comparative Statics Results1875

Appendix C showed that some but not all comparative statics results can be signed unambiguously. We1876

now explore the comparative statics for the Nash bargaining prices based on the case study in §6.2. For this1877
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case study, we assess how the optimal sample size (n∗, n∗,W) and Nash bargaining interim price (p∗i , p
∗,W
i )1878

for OIR and OWR schemes change as one parameter of the model is changed, while the other parameters1879

remain fixed at the values in Table 1. We do so for low, medium and high values of the negotiating power1880

parameter, β ∈ {0.1,0.5,0.9}. In this section, we assume fr = 0.1881

Before presenting those results, we recall that we showed in §6.2 that the OWR scheme is the Nash1882

bargaining outcome for Votrient case study when fr = 0. Furthermore, Prop. 4 states that, for fr = 0, the1883

OWR scheme is preferred to the OIR scheme if µ0 + pS − vN > 0, and the OIR scheme is preferred if1884

µ0 + pS − vN < 0. (We break ties by selecting the OIR scheme.) Therefore, as we vary the values of µ0, vN1885

and pS , the Nash bargaining outcome for the case study might change to an OIR scheme. Indeed, for some1886

values of µ0 that are lower than that for the Votrient case study, and for some values of vN that are higher1887

than that for the Votrient case study, the Nash bargaining solution is an OIR scheme. For all values of pS1888

we explored, the OWR scheme is preferred to the OIR scheme. For the rest of the parameters, the OWR1889

scheme is preferred to the OIR scheme. This is expected because Prop. 4 shows that the choice between OIR1890

and OWR scheme is not impacted by other parameters when fr = 0.1891

Prior mean, µ0. Figure EC.3 displays the comparative statics results for the prior mean of INMB-p, µ0.1892

Figure EC.3a shows that, for both OWR and OIR schemes, the optimal sample size is first increasing and1893

then decreasing with µ0. The optimal sample sizes are largest for the case of OIR and OWR schemes are for1894

values of µ0 are most in the interior regions of the optimality zones for those schemes. This can be visualized1895

by drawing a vertical line at the ‘+’ for Votrient in Figure 3a of the main paper and then noting that each1896

maximum occurs in the interior of the region that falls between the horizontal line that marks µ0 = vN − pS1897

and the boundary at which the respective conditional approval scheme is no longer optimal.1898

Figure EC.3 Optimal sample sizes and interim prices for different values of µ0.

(a) Optimal number of patient pairs under OWR (n∗,W)

and OIR (n∗) schemes.
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(b) Nash bargaining interim price under OWR (p∗,Wi )

and OIR (p∗i ) schemes.
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In Figure EC.3b, we observe that the interim price is increasing with µ0 except for low values of µ0 and1899

β. For example, if β = 0.1, then the OIR interim price, which is the bargaining outcome for low values of µ0,1900
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is first decreasing and then increasing with µ0. Interestingly, the optimal interim price with β = 0.5 and 0.91901

is negative for the OIR scheme. In this case, the expected value of the information per-patient is high, and1902

the company’s compensation to the payer for patients who receive the new treatment in the trial is (more1903

than) counterbalanced by the expected value of a potential approval upon reappraisal.1904

Variable manufacturing cost, vN . Figure EC.4 displays the comparative statics results for the variable1905

manufacturing cost of the new treatment, vN . As opposed to the results for µ0, the OWR scheme is the Nash1906

outcome for lower values of vN , and the OIR scheme is the Nash outcome for higher values of vN . We see1907

in Figure EC.4a that the optimal sample size of the OWR scheme is decreasing with vN , while the optimal1908

sample size of the OIR scheme is increasing. Figure EC.4b shows that the interim prices increase with vN1909

for both OIR and OWR schemes and for all values of β. The interim prices for both OWR and OIR schemes1910

decrease with β when vN >µ0+pS (which implies µ0+pS −vN < 0) and the figure quantifies the magnitude1911

of comparative statics results in §C.1.4.1912

Figure EC.4 Optimal sample sizes and interim prices for different values of vN .

(a) Optimal number of patient pairs under OWR (n∗,W)

and OIR (n∗) schemes.
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(b) Nash bargaining interim price under OWR (p∗,Wi )

and OIR (p∗i ) schemes.
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Price of the standard of care, pS. Figure EC.5 displays the comparative statics results for the price1913

of the standard of care, pS . Figure EC.5a shows that the optimal sample size of an OWR scheme is first1914

increasing and then decreasing with pS . And Figure EC.5b displays that the interim price of an OWR scheme1915

is increasing with pS .1916

Effective sample size of prior distribution, n0. Figure EC.6 displays the comparative statics results1917

for the effective sample size of prior distribution about INMB-p, n0. Figure EC.6a shows that the optimal1918

sample size of an OWR scheme is increasing with n0. Figure EC.6b displays that the interim price of an1919

OWR scheme is decreasing with the n0. As expected from Appendix C.1.3, the effect of n0 on the optimal1920

sample size and on the interim price are opposite.1921
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Figure EC.5 Optimal sample sizes and interim prices for different values of pS . The OWR scheme is the Nash

bargaining outcome for all values tested.

(a) Optimal number of patient pairs under OWR (n∗,W).
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(b) Nash bargaining interim price under OWR (p∗,Wi ).

0 1 2 3 4

Price of the standard of care (p
s
) 10

4

-4

-3

-2

-1

0

1

2

3

4

5

6

7

In
te

ri
m

 p
ri
c
e

10
4

p
i

, W
 with  = 0.1

p
i

, W
 with  = 0.5

p
i

, W
 with  = 0.9

Figure EC.6 Optimal sample sizes and interim prices for different values of n0. The OWR scheme is the Nash

bargaining outcome for all values tested.

(a) Optimal number of patient pairs under OWR (n∗,W).
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(b) Nash bargaining interim price under OWR (p∗,Wi ).
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Variance of outcomes, ΣX . Figure EC.7 displays the comparative statics results for the variance of1922

outcomes, ΣX . The effect of ΣX is similar to that of n0. The scale of the y-axis of Figure EC.7b was chosen to1923

match that of other similar figures in this section for ease of comparison. What is not visible in Figure EC.7b1924

(without zooming in) is a slight decrease in interim price as ΣX increases from 0 to approximately 5.5×1011,1925

followed by an even slighter increase as ΣX grows larger.1926

Variable cost per patient part in the post-marketing trial, vDC. Figure EC.8 displays the comparative1927

statics results for the variable cost per patient pair of the post-marketing trial, vDC . Figure EC.8a shows1928

that the optimal sample size of an OWR scheme is decreasing with vDC . Figure EC.8b displays that the1929

interim price of an OWR scheme is increasing with vDC .1930



e-companion to Yapar, Chick, Gans: Conditional Approval and Value-based Pricing ec41

Figure EC.7 Optimal sample sizes and interim prices for different values of ΣX . The OWR scheme is the Nash

bargaining outcome for all values tested.
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(b) Nash bargaining interim price under OWR (p∗,Wi ).
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Figure EC.8 Optimal sample sizes and interim prices for different values of vDC . The OWR scheme is the Nash

bargaining outcome for all values tested.

(a) Optimal number of patient pairs under OWR (n∗,W).

0 1 2 3 4

Variable cost of the trial (v
DC

) 10
5

0

100

200

300

400

500

600

700

800

N
u

m
b

e
r 

o
f 

P
a

ti
e

n
t 

P
a

ir
s

n
,W

(b) Nash bargaining interim price under OWR (p∗,Wi ).
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Total number of patients in the target population, N . Figure EC.9 displays comparative statics results1931

for the total number of patients in the target population, N . Figure EC.9a shows that the optimal sample1932

size of an OWR scheme is increasing with N . For much larger N (data not shown), we see that the optimal1933

sample size appears to be proportional to
√
N , a result consistent with related analytical results (Alban1934

et al. 2023, Prop. 5). Figure EC.9b displays that the interim price of an OWR scheme is decreasing with N .1935

Appendix F: Justification of Discussions Regarding Assumptions in §71936

Our model and analysis assume that risk neutral players share the economic surplus induced by health1937

gains, net of costs, and that there does not exist a distinct, incumbent manufacturer that would attempt1938

to maintain its sales by lowering the price of the standard of care. In this appendix, we justify claims in §71939
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Figure EC.9 Optimal sample sizes and interim prices for different values of N . The OWR scheme is the Nash

bargaining outcome for all values tested.

(a) Optimal number of patient pairs under OWR (n∗,W).
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(b) Nash bargaining interim price under OWR (p∗,Wi ).
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regarding the relaxation of both assumptions. First, in Appendix F.1, we characterize how the bargaining1940

outcomes of our model influence the probability that the new health technology will be cost-effective, one1941

measure of the payer’s risk (e.g., Barton et al. 2008, Danzon et al. 2018). Second, in Appendix F.2, we address1942

the probability that the entire conditional approval process itself is cost-effective. Third, in Appendix F.3,1943

we delineate the influence that potential price reductions by an incumbent manufacturer may have on the1944

outcome of negotiations between the payer and the company.1945

F.1. Probability that a New Treatment is Cost-Effective1946

The payer in our model is risk-neutral, an assumption that is consistent with the literature. That said,1947

Barton et al. (2008) note that, even if it is not used to determine the optimal decision, the probability of1948

cost-effectiveness can complement expected value of information calculations, describing risk or uncertainty1949

surrounding the optimal choice. In this section, we consider the Nash bargaining solution’s probability1950

of cost-effectiveness. In each case, these probabilities are based on population averages - for example the1951

probability the mean incremental net monetary benefit is positive, given information available at the time1952

of the assessment of the probability. The uncertainty regards population-average health benefits that stem1953

from the finite sample used to inform their means and does not reflect the probability that a health outcome1954

is cost-effective for a given, randomly chosen patient from the population. See O’Hagan and Stevens (2002),1955

for example, for further discussion.1956

A new treatment is considered cost-effective compared to the standard of care if its INMB, based on1957

an expected population-wide benefit, exceeds zero. Note also that cost-effectiveness depends on the new1958

treatment’s price, as well as on data available regarding its INMB-p compared to the standard of care.1959

Table EC.5 presents the probability that the new treatment is cost-effective for various values for the1960

bargaining power parameter, β, calculated using the information available at the time of initial submission.1961

(We recall that corresponding prices for each β are found in Table 2.) At the immediate approval price1962
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associated with a given β, p∗0, the probability is defined as P(CE(p∗0) | µ0 + pS − vN ≥ 0) ≜ P(θ − (p∗0 −1963

pS) > 0 | µ0 + pS − vN ≥ 0), where θ ∼ Normal(µ0,Σ0) and the condition µ0 + pS − vN ≥ 0 ensures the1964

immediate approval price can be negotiated. For OIR and OWR conditional approval schemes, the probability1965

is calculated separately for interim and reappraisal prices. The probability of the new treatment being cost-1966

effective at an interim price, pi, is defined as P(CE(pi))≜ P(θ− (pi− pS)> 0).1967

Note that the reappraisal price of a conditional approval scheme is defined only if the new treatment is

approved at reappraisal. For an OIR scheme, the event that the treatment is approved upon reappraisal,

denoted by A1, is associated with reappraisal price p∗1, and we define the probability of the new treatment

being cost-effective, conditional on approval, as

P(CE(p∗1) | A1)≜ P (θ− (p∗1 − pS)> 0 |M1 + pS − vN ≥ 0) ,

where p∗1 is a function of M1, as defined in Prop. 1, M1 depends on the data collected in the OIR post-

marketing trial in (2), and the probability is calculated with respect to θ∼ Normal(µ0,Σ0) and the OIR data’s

sample mean
∑n∗

j=1X
j/n∗ | θ ∼ Normal(θ,ΣX/n

∗). The OWR scheme’s reappraisal price, p∗,W1 , is similarly

conditioned on the new treatment’s approval at reappraisal, denoted by AW
1 , and we define the marginal

probability of the new treatment’s cost-effectiveness, conditional on approval, as

P(CE(p∗,W1 ) | AW
1 )≜ P

(
θ− (p∗,W1 − pS)> 0 |M1 + pS + fr/(N − 2n∗,W/rmax)− vN ≥ 0

)
,

where p∗,W1 is a function of M1 by its definition in (23), M1 depends on the data collected in the OWR1968

post-marketing trial in (2), and the probability is calculated with respect to θ and the OWR data’s sample1969

mean
∑n∗,W

j=1 Xj/n∗,W | θ∼ Normal(θ,ΣX/n
∗,W).1970

The relationship between the probability of being cost-effective under immediate approval price, P(CE(p∗0) |1971

µ0 + pS − vN ≥ 0), and the probability of being cost-effective at the interim prices, P(CE(p∗i )) and1972

P(CE(p∗,Wi )), follows that among the prices p∗0, p
∗
i and p∗,Wi . Not surprisingly, the results in each column of1973

Table EC.5 are consistent with those in Table 2: P(CE) decreases as price increases.1974

In Table EC.5, we also see that the probability of being cost-effective at the immediate approval price,1975

P(CE(p∗0) | µ0+pS−vN ≥ 0), is consistently lower than that at the reappraisal price, conditioned on approval,1976

P(CE(p∗1) | A1) and P(CE(p∗,W1 ) | AW
1 ), assuming β < 1. The additional data obtained through conditional1977

approval increases the probability that Votrient is cost-effective even though it also increases the expected1978

reappraisal price.1979

Table EC.5 also reveals a connection between the probability the new technology is cost-effective (a measure1980

of risk, Barton et al. 2008) and the company’s Nash bargaining power, β. In the immediate approval column,1981

the probability the new technology is cost-effective, conditional on the event the technology is immediately1982

approved, decreases at the negotiated prices, given immediate approval, as the company’s market power β1983

increases. In the OIR and OWR columns, the probability of cost-effectiveness from an OIR or an OWR1984

scheme, conditional on approval at the reappraisal, also decreases as β increases. And for the special case1985

in which the company extracts all surplus value, β = 1, Table EC.5 shows that the probability of cost-1986

effectiveness is 0.5 for Nash bargaining prices, a result which is consistent with Danzon et al. (2018). (The1987

row in Table EC.5 for β = 1 has entries that are not statistically different from 0.5 with 95% confidence.)1988
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Table EC.5 Votrient Case Study: Probability of Votrient being cost-effective at prices in Table 2. Standard errors in all
estimates are between 4× 10−5 and 6× 10−5, and the 95% CI for values in the bottom row all contain 0.5.

Immediate Approval OIR OWR with fr = 0

P(CE(p∗0) | µ0 + pS − vN ≥ 0) P(CE(p∗i )) P(CE(p∗1) | A1) P(CE(p∗,Wi )) P(CE(p∗,W1 ) | AW
1 )

β = 0.1 0.65641 0.27582 0.77092 0.63362 0.81914
β = 0.3 0.62293 0.32168 0.72827 0.60469 0.77827
β = 0.5 0.58849 0.37044 0.67502 0.57519 0.72193
β = 0.7 0.55337 0.42138 0.61084 0.54530 0.64598
β = 0.9 0.51789 0.47368 0.53804 0.51517 0.55143
β = 1.0 0.50005 0.50005 0.50001 0.50005 0.50008

In the following three propositions, we show that the effect of the company’s bargaining power on the1989

probability of cost-effectiveness at the immediate approval and reappraisal prices holds beyond this specific1990

case-study. Prop. EC.5 is for the probability of cost-effectiveness, conditional on the event the technology is1991

immediately approved; Prop. EC.6 is for the probability of cost-effectiveness from an OIR scheme, conditional1992

on approval at the reappraisal; and Prop. EC.7 is for the probability of cost-effectiveness from an OWR1993

scheme, conditional on approval at the reappraisal.1994

Prop. EC.5. The probability of cost-effectiveness of the new technology conditional on immediate1995

approval, P(CE(p∗0) | µ0 + pS − vN ≥ 0), is 0.5 if µ0 + pS − vN = 0. And if µ0 + pS − vN > 0, P(CE(p∗0) |1996

µ0 + pS − vN ≥ 0) decreases with 0<β < 1 and is 0.5 when β = 1.1997

Proof. We recall the value of p∗0 from Prop. 2. Then, we have

P(CE(p∗0) | µ0 ≥ vN − pS) = P(θ− (p∗0 − pS)> 0 | µ0 + pS − vN ≥ 0)

= P(θ− (vN +β(µ0 + pS − vN )− pS)> 0 | µ0 + pS − vN ≥ 0)

= P(θ > vN +β(µ0 + pS − vN )− pS | µ0 + pS − vN ≥ 0).

We first analyze the case of µ0 + pS − vN = 0. We use µ0 = vN − pS to write P(CE(p∗0) | µ0 ≥ vN − pS) =1998

P(θ > µ0 | µ0 ≥ vN − pS). Because θ∼ Normal(µ0,Σ0), P(θ > µ0 | µ0 ≥ vN − pS) = 0.5.1999

We next analyze the case of µ0 + pS − vN > 0. If 0 < β < 1, we have P(CE(p∗0) | µ0 ≥ vN − pS) = P(θ >2000

vN + β(µ0 + pS − vN ) − pS | µ0 + pS − vN ≥ 0) = P(θ − µ0 > −(1 − β)(µ0 + pS − vN ) | µ0 + pS − vN ≥ 0).2001

The right-hand side of the inequality in the probability is negative given µ0 + pS − vN > 0, and we have2002

θ− µ0 ∼ Normal(0,Σ0). Therefore, P(θ− µ0 >−(1− β)(µ0 + pS − vN ) | µ0 + pS − vN ≥ 0)> 0.5 if 0< β < 1.2003

And as β increases, the right-hand side of the inequality in the probability decreases in the absolute value and2004

therefore P(CE(p∗0) | µ0 ≥ vN −pS) decreases as β increases. Finally, when β = 1, P(CE(p∗0) | µ0 ≥ vN −pS) =2005

P(θ > µ0 | µ0 ≥ vN − pS) = 0.5 because θ∼ Normal(µ0,Σ0). □2006

Prop. EC.6. The probability of cost-effectiveness of the new technology at the OIR reappraisal price,2007

conditional on the approval at the reappraisal, P(CE(p∗1) | A1), decreases with 0 < β < 1 and P(CE(p∗1) |2008

A1) = 0.5 if β = 1.2009
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Proof. We recall the value of p∗1 from Prop. 1. Then, we have

P(CE(p∗1) | A1) = P (θ− (p∗1 − pS)> 0 |M1 + pS − vN ≥ 0)

= P (θ− (vN +β(M1 + pS − vN )− pS)> 0 |M1 + pS − vN ≥ 0)

= P (θ > vN +β(M1 + pS − vN )− pS |M1 + pS − vN ≥ 0)

=E[1{θ>vN+β(M1+pS−vN )−pS} |M1 + pS − vN ≥ 0]

=E[E[1{θ>vN+β(µ1+pS−vN )−pS} |M1 = µ1] |M1 + pS − vN ≥ 0]

=E[P(θ > vN +β(µ1 + pS − vN )− pS |M1 = µ1) |M1 + pS − vN ≥ 0],

where the fourth equality follows from the definition of probability, the fifth equality follows from the law of2010

total expectation, and the final equality again follows from the definition of probability.2011

We first analyze the case of β = 1. We write P(CE(p∗1) | A1) = E[E[1{θ>µ1} |M1 = µ1] |M1 + pS − vN ≥ 0].2012

Because θ | µ1 ∼ Normal(µ1,Σ1), E[E[1{θ>µ1} |M1 = µ1] |M1+pS −vN ≥ 0] =E[0.5 |M1+pS −vN ≥ 0] = 0.5.2013

We next show that P(CE(p∗1) | A1) decreases in β for β ∈ (0,1). We use θ | µ1 ∼ Normal(µ1,Σ1) to write2014

P(θ > vN +β(µ1 + pS − vN )− pS |M1 = µ1) =E[1−Φ((vN +β(µ1 + pS − vN )− pS −µ1)/Σ1) |M1 = µ1].2015

To simplify the notation, we define f(µ1, β)≜ 1−Φ((vN +β(µ1 + pS − vN )− pS −µ1)/Σ1). We have the

following by definition: f(µ1, β) :R× [0,1]→R, f(µ1, β) is integrable, ∂f(µ1, β)/∂β exists, and

|∂f(µ1, β)/∂β |=
∣∣∣∣−(µ1 + pS − vN )ϕ

(
vN +β(µ1 + pS − vN )− pS −µ1

Σ1

)∣∣∣∣≤ |µ1 + pS − vN | ,

where |µ1 + pS − vN | is Lebesque integrable because E [|µ1 + pS − vN |]≤ σM1
− vN + pS <∞. Then,

∂E[E[f(µ1, β) |M1 = µ1] |M1 + pS − vN ≥ 0]

∂β
=E

[
E
[
∂f(µ1, β)

∂β
|M1 = µ1

]
|M1 + pS − vN ≥ 0

]
=E

[
E
[
−(µ1 + pS − vN )ϕ

(
vN +β(µ1 + pS − vN )− pS −µ1

Σ1

)
|M1 = µ1

]
|M1 + pS − vN ≥ 0

]
< 0.

This shows that P(CE(p∗1) | A1) decreases with β. □2016

Prop. EC.7. The probability of cost-effectiveness of the new technology at the OWR reappraisal price,2017

conditional on the approval at the reappraisal, P(CE(p∗,W1 ) | AW
1 ), decreases with 0 < β < 1. And if β = 1,2018

P(CE(p∗,W1 ) | AW
1 ) = 0.5 if fr = 0 and P(CE(p∗,W1 ) | AW

1 )< 0.5 if fr > 0.2019

Proof. We recall the value of p∗,W1 from (23). Then, we have

P(CE(p∗,W1 ) | AW
1 )) = P

(
θ− (p∗1 − pS)> 0 | AW

1

)
= P

(
θ− (vN +β(M1 + pS − vN )+β

fr
N − 2n∗,W/rmax

− pS)> 0

∣∣∣∣AW
1

)
= P

(
θ > vN +β(M1 + pS − vN )+β

fr
N − 2n∗,W/rmax

− pS

∣∣∣∣AW
1

)
=E[1{θ>vN+β(M1+pS−vN )+β fr

N−2n∗,W/rmax
−pS} | A

W
1 ]

=E[E[1{θ>vN+β(µ1+pS−vN )+β fr
N−2n∗,W/rmax

−pS} |M1 = µ1] | AW
1 ]

=E
[
P
(
θ > vN +β(µ1 + pS − vN )+β

fr
N − 2n∗,W/rmax

− pS

∣∣∣∣M1 = µ1

)∣∣∣∣AW
1

]
,
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where AW
1 = {M1 + pS − vN − fr/(N − 2n∗,W/rmax)≥ 0}, the fourth equality follows from the definition of2020

probability, the fifth equality follows from the law of total expectation, and the final equality again follows2021

from the definition of probability.2022

We first analyze the case of β = 1. We write2023

P(CE(p∗,W1 ) | AW
1 )) =E

[
P
(
θ > µ1 +

fr
N − 2n∗,W/rmax

∣∣∣∣M1 = µ1

)∣∣∣∣AW
1

]
.

Because θ | µ1 ∼ Normal(µ1,Σ1), P(CE(p∗,W1 ) | AW
1 )) = 0.5 if fr = 0 and P(CE(p∗,W1 ) | AW

1 ))< 0.5 if fr > 0.2024

The proof that P(CE(p∗,W1 ) | AW
1 )) decreases in β for β ∈ (0,1) follows the same steps found in the proof2025

of Prop. EC.6. □2026

How β impacts the probability of cost-effectiveness at the interim prices, p∗i and p∗,Wi , depends on other2027

parameters, however. The relationship between P(CE(p∗i )) and β depends on the values of µ0 + pS − vN2028

and vDC + fDC/n
∗, following a similar argument to that in §3.4 about the relationship between p∗i and β.2029

And the relationship between P(CE(p∗,Wi )) and β analogously depends on the values of µ0 + pS − vN and2030

(n∗,WvDC+fDC+fr)/(n
∗,W(2/rmax−1)), following an argument similar to that in Appendix C.1.4 regarding2031

the relationship between p∗,Wi and β.2032

Remark EC.8. Price reduction schemes are a form of risk sharing that operate by lowering the sticker2033

price of a drug to decrease the probability that a new health technology is cost ineffective if immediately2034

approved (e.g., Claxton 2007). A sticker price can be somewhat arbitrary, however, and is not part of our2035

model. Nevertheless, this type of risk-sharing model corresponds well to the discounting of a new health2036

technology that is not cost effective at the sticker price, so that the discounted price makes it marginally2037

cost effective at the mean INMB. This results in the INMB being positive or negative with equal probability,2038

precisely what we find in the Immediate Approval column of Table EC.5 when β = 1.2039

F.2. Probability a Conditional Approval Scheme (CA) Itself is Cost-effective2040

Conditional approval (CA) schemes may provide additional information regarding the cost-effectiveness of a2041

treatment, but CA schemes themselves are costly. A social planner may ask whether the CA scheme is worth2042

it and may also wish to assess whether the total cost of the CA – data collection, technology adoption, and2043

negotiated prices – is offset by the health benefits, net of treatment costs, that may accrue to all N patients2044

who are involved in the CA scheme, whether or not they participate in the trial.2045

To model the cost-effectiveness of an OIR scheme for a new treatment under consideration, we define a

random variable VOIR that represents the payer’s INMB from such a scheme:

VOIR ≜

{
n∗(θ− p∗i + pS), if Ā1 occurs,

n∗(θ− p∗i + pS)+ (N − 2n∗/rmax)(θ− p∗1 + pS), if A1 occurs,

where the event A1 denotes approval at reappraisal and Ā1 its complement. We similarly define a random

variable VOWR for the OWR scheme as:

VOWR ≜

{
n∗,W(2/rmax− 1)(θ− p∗,Wi + pS)− fr, if ĀW

1 occurs,

n∗,W(2/rmax− 1)(θ− p∗,Wi + pS)+ (N − 2n∗,W/rmax)(θ− p∗,W1 + pS), if AW
1 occurs.
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Thus, unlike the quantities calculated within P(CE(p∗1) | A1) and P(CE(p∗,W1 ) | AW
1 ), the terms defined2046

in VOIR and VOWR include the costs of the trial and of reversal. As before, the random variable VA ≜2047

N(θ− p∗0 + pS) models the payer’s INMB from immediate approval.2048

The probability that an OIR scheme is cost-effective, as compared to immediate rejection, is then P(VOIR ≥2049

0), with respect to the joint distribution of θ and sample mean of the OIR data. The probability that an2050

OIR scheme is cost-effective, as compared to immediate approval, is P(VOIR ≥ VA), and compared to the2051

OWR scheme it is P(VOIR ≥ VOWR). Similarly, the probabilities of cost-effectiveness of an OWR scheme2052

compared to other options are P(VOWR ≥ 0), P(VOWR ≥ VA), and P(VOWR ≥ VOIR). Observe that, unlike2053

P(CE(p∗1) | A1) and P(CE(p∗,W1 ) | AW
1 ), these probabilities are not conditioned on approval. Rather, they2054

include all outcomes, including those for which the end result of conditional approval is rejection.2055

In Figure EC.10, we plot the probability that the CA process is more cost-effective than each of the other2056

options. These plots can also be interpreted as the probability that the Nash bargaining outcome is cost-2057

effective, the probability taken over sample paths of the data collection process. We recall that the Nash2058

bargaining outcome for Votrient is an OWR scheme if fr < £24 × 107 and is an OIR scheme otherwise.2059

The probability that immediate approval is cost-effective compared to immediate rejection, P(VA ≥ 0) =2060

P(CE(p∗0)), is reported in Table EC.5.2061

In Figure EC.10a, the reversal cost is fr = 0 and the OWR scheme is optimal for the Votrient case study.2062

Here, Figure EC.10a shows that the probability that OWR is more cost-effective than OIR far exceeds 0.5,2063

except when β→ 1, the case when the negotiation converges to that of a Stackelberg game. However, OWR2064

is less likely than immediate approval to be cost-effective overall, even though OWR results in the highest2065

expected joint surplus. (The probabilities in Figure EC.10a might not be precisely 0.5 when β = 1 because2066

trial costs might not be zero and because of the opportunity cost of patient outcomes for those who received2067

the sub-optimal treatment during the trial.)2068

Remark EC.9. These observations add nuance to a high-level observation of Barton et al. (2008): In2069

the context of collaborative bargaining, technology adoption based on a threshold for the probability of2070

cost-effectiveness may or may not be consistent with the fact that a given conditional approval scheme gives2071

positive expected net health-economic value to patients.2072

Figure EC.10b shows analogous graphs for fr = 30× 107, a case in which an OIR scheme is optimal. The2073

figure shows that the probability that an OIR scheme delivers positive value exceeds 50% if the company’s2074

bargaining power is not too high (β < 0.6). Even though OIR is the bargaining outcome, the probability that2075

it is more cost-effective than OWR always falls below 0.5. Here, a small but nontrivial chance that VOWR is2076

highly suboptimal, due to high reversal costs, drags the expected value of OWR below that of OIR.2077

Remark EC.10. In both Figure EC.10a and Figure EC.10b, the optimal conditional approval scheme2078

is cost effective with probability less than 50% when the company’s bargaining power is high (β ≥ 0.8 and2079

β ≥ 0.6, respectively). At the same time, the oft-assumed Stackelberg model corresponds to β = 1> 0.8> 0.6.2080

This suggests that, if the company’s bargaining power is high, then these CA schemes themselves have a risk2081

of being cost-ineffective as compared to immediate adoption or rejection.2082
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Figure EC.10 Votrient Case Study: The probability that OIR and OWR conditional approval schemes

themselves are cost-effective, given different values of the bargaining power parameter β. Error bars are omitted

because all standard errors from Monte Carlo simulation with 108 samples are less than 10−4.
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(b) fr = 30× 107, where OIR is optimal.
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F.3. Competition from the Manufacturer of the Standard of Care2083

We now analyze how competition between the manufacturer of the standard of care, who we call the incum-2084

bent, and that of the new treatment would impact bargaining outcomes and prices. As a response to the2085

submission of the new treatment made by the company, the incumbent might consider discounting the price2086

of the standard of care, which would change the INMB of the new treatment and, in turn, could change2087

the company’s and payer’s bargaining outcome for the new treatment. For simplicity we analyze the case in2088

which only the OIR scheme is under consideration.2089

Payoffs with Competition from Incumbent. We now define the players’ payoffs in the presence of a2090

potential discount on the price of the standard of care. If the new treatment is rejected at the reappraisal2091

stage, the remaining patients are treated with the standard of care, and the payer reimburses the incumbent2092

at the discounted price pS − d1, where d1 ≥ 0 denotes the discount offered at reappraisal. In this case, the2093

payer’s payoff given rejection is V1(R1) ≜ (1− t)Nd1, and the company’s payoff is Π1(R1) ≜ 0. As in the2094

base model, the payoffs and surplus from approval at the reappraisal are given in (5), (8), and (10). At the2095

initial submission stage, if the new treatment is immediately rejected, all future patients continue using the2096

standard of care, and the payer reimburses the incumbent at the discounted price pS − d0, where d0 ≥ 02097

denotes the discount amount offered at the initial submission stage. Here, the payer’s payoff is V0(R0)≜Nd02098

and the company’s payoff is Π0(R0)≜ 0. The payoffs from immediate approval are given in (4), (7), and the2099

first equation of (12). The payoffs and surplus from conditional approval are derived below in this section2100

and given in (EC.32)–(EC.34).2101

Recall that rejection of the new treatment at reappraisal or initial submission corresponds to the Nash2102

bargaining solution’s disagreement outcome. (See Appendix A.) For the case in which the incumbent offers2103

a discount on the price of the standard of care, the disagreement outcome of the payer increases by the2104
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discount, while that of the company remains zero. In comparison to the base model analyzed in 3, the new2105

bargaining solution reflects the payer’s ability to extract a higher proportion of the surplus, a difference that2106

corresponds to the offered discount.2107

Analysis of the Reappraisal Stage. We first consider the reappraisal stage, discussing when and how2108

the payer would negotiate a discount with the incumbent, as well as how a discount would impact bargaining2109

between the payer and company. We denote the variable production cost of the standard of care by vS . We2110

assume that the incumbent has a non-negative margin, vS ≤ pS .2111

The first case occurs when the joint surplus from the new treatment is negative, µ1−vN +pS < 0. Here, the2112

new treatment is rejected regardless of the discount amount. Given that there is no incentive for the incum-2113

bent to agree to a discount, its value would be d∗1 = 0, the new treatment would be rejected at reappraisal,2114

and the price of the standard of care would remain pS .2115

In the second case, the joint surplus from the new treatment is non-negative but lower than the margin2116

on the standard of care, pS − vS >µ1 − vN + pS ≥ 0. Here, the payer could ask the incumbent for a range of2117

d1’s that would in theory be agreeable to both, so that d1 ∈ (µ1 − vN + pS , pS − vS ]. For all d1 in this range,2118

the new treatment would be rejected, the price of the standard of care would be updated to pS − d1 for the2119

remaining patients, and the payer and company would both receive their respective disagreement outcomes.2120

While a three-way bargaining model is beyond the scope of this paper, we note that the exact value of d12121

would depend on the relative bargaining power of the payer and incumbent. For simplicity, we assume here2122

that d1 is determined before negotiation between the payer and company begins, and we denote the discount2123

amount that would arise from negotiation between the payer and incumbent by d∗1 = pS − pS , where pS ≥ vS2124

is the value of the incumbent’s outside option.2125

Finally, the third case occurs when the joint surplus from the new treatment is positive and higher than2126

the margin on the standard of care, µ1 − vN + pS ≥ pS − vS ≥ 0. Here, the payer asks the incumbent for2127

d∗1 = pS −pS , the maximum amount of discount that satisfies the incumbent’s participation constraint. Nash2128

bargaining between the payer and company is successful if the joint surplus from approval exceeds the total2129

disagreement payoff, (1−t)N(µ1+pS−vN )≥ (1−t)Nd∗1, so that µ1 ≥ vN −vS ≥ vN −pS , with the reappraisal2130

price p∗,d1 ≜ vN +β(µ1+ pS −d∗1− vN ) = vN +β(µ1+ pS − vN ). We observe that the reduction in the price of2131

the new treatment, due to competition, follows the payer’s threat of continuing with the standard of care at2132

a discounted price, p∗,d1 ≤ p∗1.2133

Analysis of the Initial Submission Stage. Recall that S0(A0) and S0(CA
I) are the expected joint sur-2134

pluses from immediate and conditional approval at initial submission, assuming that there is no competition.2135

We denote the analogous joint surplus from conditional approval under competition by S0(CA
I, pS).2136

We first define the payer’s and company’s payoffs from conditional approval at the time of initial submis-

sion. We recall that M1 is the random pre-posterior mean to be observed at the end of the post-marketing

trial, with distribution given in (3), and we use the results for the reappraisal stage to define the payer’s

expected value of conditional approval:

V0(CA
I, pi, pS , n, t)≜ n(µ0 − pi+ pS)
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+(1− t)N EM1



pS − pS +(1−β)((M1 + pS − vN )− (pS − pS)), M1 ≥ vN − vS ,

pS − pS , vN − vS >M1 ≥ vN − pS ,

0, vN − pS >M1.

∣∣∣∣∣∣∣µ0, n0

 .
(EC.32)

The company’s analogous expected value is

Π0(CA
I, pi, pS , n, t)≜ n(pi− vN )− fDC −nvDC

+(1− t)N EM1

[{
β((M1 + pS − vN )− (pS − pS)), M1 ≥ vN − vS ,

0, vN − vS >M1.

∣∣∣∣∣µ0, n0

]
. (EC.33)

Then, we sum the players’ payoffs, denote the total payoff by S0(CA
I, pS , n, t), find the sample size and

duration of the post-marketing trial that maximizes the total payoff and define S0(CA
I, pS):

S0(CA
I, pS , n, t) ≜ n(µ0 + pS − vN )− fDC −nvDC

+(1− t)N EM1



M1 + pS − vN , M1 ≥ vN − vS ,

pS − pS , vN − vS >M1 ≥ vN − pS ,

0, vN − pS >M1.

∣∣∣∣∣∣∣µ0, n0

 , (EC.34)

where

(n∗,d, t∗,d)≜ argmax
(n,t)

{S0(CA
I, pS , n, t)|0≤ 2n≤Ntrmax; 0≤ t≤ 1}. (EC.35)

We define

S0(CA
I, pS)≜ S0(CA

I, pS , n
∗,d, t∗,d). (EC.36)

By comparing S0(CA
I, pS , n, t) in (EC.34) to S0(CA

I, n, t) in (13), we observe that, for any given pair of n

and t, we have S0(CA
I, pS , n, t)≥ S0(CA

I, n, t). In particular, this is true for the optimal conditional approval

trial for the case of no competition, where n= n∗, t= t∗. Thus,

S0(CA
I) = S0(CA

I, n∗, t∗)≤ S0(CA
I, pS , n

∗, t∗)≤ S0(CA
I, pS).

The last inequality follows directly from the definitions in (EC.35) and (EC.36).2137

In summary, in the OIR scheme, competition from the incumbent can lead to an increase in the payer’s2138

disagreement outcome. This shift leads to an increase in the bargaining surplus for conditional approval.2139

We now analyze different outcomes of the initial submission stage case by case. The first case occurs when2140

S0(A0)< 0 and S0(CA
I, pS)< 0. Then, the new treatment is immediately rejected, regardless of the discount,2141

so that d∗0 = 0 and and the price of the standard of care remains pS .2142

In the second case, S0(A0)≥ S0(CA
I, pS) and pS − vS >S0(A0)/N ≥ 0. Here, the new treatment would be2143

immediately approved if the incumbent offered no discount at initial submission, but the joint surplus per2144

patient from immediate approval is lower than the incumbent’s margin on the standard of care. Therefore,2145

the payer could ask the incumbent for a range of d0’s such that d0 ∈ (S0(A0)/N,pS − vS ]. For all d0 in this2146

range, the new treatment would be immediately rejected, and the price of the standard of care would be2147

updated to pS − d0 for the remaining patients. As with the reappraisal stage, the exact value of d0 would2148

depend on the relative bargaining powers of the payer and incumbent, and we denote the discount amount2149

that would arise from the negotiation between the payer and incumbent by d∗0 = pS − pS .2150
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The third case occurs when S0(A0) ≥ S0(CA
I, pS) and S0(A0)/N ≥ pS − vS ≥ 0. The payer can ask the2151

incumbent for a discount d∗0 = pS − pS , and the Nash bargaining outcome is immediate approval if the joint2152

surplus from immediate approval exceeds the total disagreement payoff, S0(A0) =N(µ0 + pS − vN )≥Nd∗02153

which holds if µ0 ≥ vN − pS . Because S0(A0)/N = µ0 − vN + pS ≥ pS − vS implies µ0 ≥ vN − vS ≥ vN − pS ,2154

the bargaining is successful, the new treatment would be immediately approved with the price p∗,d0 = vN +2155

β(µ0 + pS − d∗0 − vN ) = vN +β(µ0 + pS − vN ). As with the reappraisal price, we have p∗,d0 ≤ p∗0.2156

In the fourth case, S0(A0)<S0(CA
I, pS) and pS − vS >S0(CA

I, pS)/N ≥ 0. Here, the treatment would be2157

conditionally approved if the incumbent offered no discount, but the joint surplus from conditional approval2158

is less than the margin on the standard of care. Again, the payer could ask the incumbent for a range of d0’s2159

such that d0 ∈ (S0(CA
I, pS)/N,pS − vS ]. For all d0 in this range, the new treatment would be immediately2160

rejected and the price of the standard of care would be updated to pS − d0 for the remaining patients, with2161

the exact value of d0 depending on the relative bargaining power of the payer and incumbent. We denote the2162

discount amount that would arise from the negotiation between the payer and incumbent by d∗0 = pS − pS .2163

The fifth and final case occurs when S0(A0) < S0(CA
I, pS) and S0(CA

I, pS)/N ≥ pS − vS ≥ 0. Here, the

payer asks the incumbent for a discount d∗0 = pS − pS and the Nash bargaining outcome is conditional

approval, S0(CA
I, pS) ≥ N(pS − pS). In turn, S0(CA

I, pS)/N ≥ pS − vS ≥ pS − pS , and the Nash bargain-

ing outcome is conditional approval. The interim price at the Nash bargaining outcome is calculated by

using (EC.33) and Π0(CA
I, pi, pS , n

∗,d, t∗,d) = β(S0(CA
I, pS)−N(pS − pS)), where N(pS − pS) is the total

disagreement outcome at the initial submission stage. Then,

p∗,di = p∗,d0 +(1−β)(fDC/n
∗,d+ vDC)

−β
(N −n∗,d)(pS − pS)

n∗,d +β
(1− t∗,d)N(pS − pS)

n∗,d

(
1−Φ

(
vN − pS −µ0

σ∗,d
M1

))
. (EC.37)

We observe that the p∗,di that arises in the fifth case includes the immediate approval price plus the payer’s2164

share of data collection costs, an analogue to p∗i in Prop. 3. The price p∗,di differs from p∗i in its additional,2165

last two terms, however. The term β(N −n∗,d)(pS − pS)/n
∗,d reflects the potential discount on the standard2166

of care that the payer forgoes by conditionally approving the new treatment, and the final term in p∗,di is a2167

partial compensation for the company’s potential profit loss at reappraisal. A comparison between p∗,di and2168

p∗i depends on the values of n∗,d and n∗. If n∗,d ≥ n∗, we have p∗,di ≤ p∗i .2169

Summary of Outcomes. There are three types of outcomes in the presence of competition. The first2170

outcome occurs when the incremental value from the new treatment is so low that it would be rejected even2171

if there is no discount on the standard of care’s price. Then, the new treatment is rejected and the price of2172

the standard of care remains unchanged. The second outcome is when the incremental value from the new2173

treatment is high enough to be approved if there were no competition but is lower than the incumbent’s2174

margin on the standard of care. Then, the incumbent offers to provide the standard of care at a discounted2175

price, and the new treatment is rejected. The third and final type of outcome is when the incremental value2176

from the new treatment is higher than the incumbent’s margin. Then, the new treatment is approved at a2177

price that is lower than the price under no-competition, because the payer uses the competition from the2178

incumbent as a credible threat.2179
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We now compare the bargaining outcomes under competition to the ones under no-competition. New2180

treatments whose expected INMB satisfies µ1 < vN −pS are rejected under both circumstances. Those whose2181

expected INMB satisfies vN − pS ≤ µ1 < pS − vS are approved under no-competition but rejected under2182

competition. Even though these new treatments are rejected when there is competition, their submission2183

leads the incumbent to offer a price discount on the standard of care. Finally, new treatments whose expected2184

INMB satisfies pS − vS ≤ µ1 are approved under both circumstances, but the reappraisal price of the new2185

treatment is weakly lower under competition.2186

At the initial submission stage, the bargaining outcome for the payer and company is the one that gen-2187

erates the highest joint surplus between the two players. The joint surplus from conditional approval under2188

competition is weakly higher than the one under no-competition, i.e., S0(CA
I, pS)≥ S0(CA

I). This is a result2189

of the increase in the payer’s expected payoff from the reappraisal stage due to the potential discount that2190

the incumbent might offer at the conclusion of the post-marketing trial.2191

Furthermore, at initial submission, the new treatment is rejected if max{S0(A0), S0(CA
I, pS)}< pS − vN2192

under competition, while the rejection condition is max{S0(A0), S0(CA
I)}< 0 under no-competition. Due to2193

the increase in both the joint surplus from conditional approval and the rejection threshold, the region for2194

immediate approval depicted in Figure 3c would be smaller under competition, while regions for conditional2195

approval and rejection would be larger. The immediate approval price is weakly lower if there is competition.2196

The effect of competition on the interim price is indeterminate because it depends on the details of the2197

bargaining between the payer and the incumbent.2198

An analysis of competition with OWR conditional approval schemes is reserved for future work.2199
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