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Abstract. We propose and analyze the first model for clinical trial design that integrates
each of three important trends intending to improve the effectiveness of clinical trials that
inform health-technology adoption decisions: adaptive design, which dynamically adjusts
the sample size and allocation of interventions to different patients; multiarm trial design,
which compares multiple interventions simultaneously; and value-based design, which fo-
cuses on cost-benefit improvements of health interventions over a current standard of care.
Example applications are to seamless phase II/III dose-finding trials and to trials that test
multiple combinations of therapies. Our objective is to maximize the expected population
health-economic benefit of health-technology adoption decisions less clinical trial costs. We
show that unifying the adaptive, multiarm, and value-based approaches to trial design can
reduce the cost and duration of multiarm trials with efficient adaptive look ahead policies
that focus on value to patients and account for correlated rewards across arms. Features
that differentiate our approach from much other work on stochastic optimization include
stopping times that balance sampling costs and the expected value of information of those
samples, performance guarantees offered by new asymptotic convergence proofs, and the
modeling of arms’ potentially different sampling costs. Our proposed solution can be com-
puted feasibly and can randomize patients. The class of trials for the base model assumes
that health-economic data are collected and observed quickly. Related work from Bayesian
optimization can enable the further inclusion of trials with intermediate duration delays
between the time of treatment initiation and observation of outcomes.
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1. Introduction
The UK National Institutes of Health Research
(NIHR) (2020) states that it is “keen to see the design,
development and delivery of more efficient, faster, in-
novative studies to provide robust evidence to inform
clinical practice and policy.” Other regulators, re-
searchers, and funders of trials also call for more effi-
cient clinical trial designs with a goal of expanding

and better allocating the financial and clinical resour-
ces available to assess health technologies (EU 2014,
FDA 2016, Hudson et al. 2016, EMA 2017).

Concerns regarding ineffective use of resources
have many facets and range from the time it takes to
assess new health technologies to the mismatch be-
tween the statistical criteria used to evaluate the medi-
cal efficacy of treatments and the cost-effectiveness
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measures that drive adoption decisions and clinical
guidance (NICE 2014) to the challenge of recruiting
patients to multiple, related two-arm trials, each in-
cluding a separate control arm, among others. These
concerns are relevant for high-stakes drug trials that
cost more than a billion dollars (DiMasi et al. 2016), as
well as for public sector-funded research that assesses
nonpharmaceutical treatment options and that may
cost a few millions (NIHR 2018, Forster et al. 2021).

A variety of innovative approaches to trial design
have been proposed to address these challenges, in-
cluding adaptive trial designs, multiarm trials, and
value-based trials. This paper proposes what appears
to be a first framework to bring together all three of
these trends and applies it to an interesting class of
trials: those for which the delay between the time a
treatment is administered and the time an outcome is
observed is short to moderate, treatment costs and
health-economic metrics are estimable during the trial,
and public health or related cost-benefit criteria are of
interest (NIHR 2020). We consider these three ap-
proaches in turn and then discuss our model.

Adaptive clinical trials use information accumulat-
ed during a trial to modify the experimental design as
the trial progresses. Here, the adoption of multiple
stages of sampling allows the designer to modify the
sample size of the trial, to adapt the allocation of pa-
tients among arms, and/or to drop inferior arms
based on the outcomes observed so far, with the goal
of improving a trial’s cost, duration, or information
gain. The advantages of adaptive trials are discussed
widely (Berry 2012, Chow 2014, Ahuja and Birge 2016,
Ellenberg and Ellenberg 2017, Pallmann et al. 2018).

Multiarm trials allow for the comparison of multi-
ple interventions, rather than a single alternative, with
a common placebo or control, such as the current stan-
dard of care, and can reduce the number of patients
required for a trial. For example, the European Medi-
cines Agency (EMA) and the U.S. Food and Drug Ad-
ministration (FDA) have advocated the use of multi-
arm trials for pediatric rare diseases, for which patient
recruitment is difficult (EMA 2017).

Multiarm, multistage (MAMS) trials use the first two
approaches together (Sydes et al. 2012, Wason and Jaki
2012, Jaki and Hampson 2016, Boeree et al. 2017). Arms
can represent individual treatments or combinations of
options (Cai et al. 2013), with or without controls (Mag-
aret et al. 2016), as well as the dose levels considered in
phase II/III dose-finding trials (Huang et al. 2015). Plat-
form trials allow arms to dynamically enter and leave
trials (Adaptive Platform Trials Coalition et al. 2019).
New information systems are being developed to sup-
port data needs of adaptive trials (Lock 2019).

Value-based trials respond to calls, such as that
from the National Health Service (NHS) England

(2017) to, “examine how best to ‘bake in’ an assess-
ment of value and real world cost as an integral and
default part of future NHS research studies rather
than see this a separate ‘optional extra.’” Value-based
trials focus on incorporating health benefits and costs
into the design of the trials themselves using the ex-
pected value of sample information (EVSI). EVSI has
been used in health economics, for example, to assess
the expected benefit of collecting additional data to
improve a health-technology adoption decision or to
further prioritize research for health-resource alloca-
tion decisions (Claxton and Posnett 1996, Fenwick
et al. 2020). Such benefits are typically based on
population-level health benefits relative to treatment
costs, often using quality-adjusted life-year (QALY)
criteria rather than traditional hypothesis tests of the
significance of differences in average clinical effective-
ness. Value-based trials can be used to rank the ex-
pected health-economic merit of research proposals
(Berry and Ho 1988, Lewis et al. 2007), and EVSI tech-
niques have been developed to drive the design of ful-
ly adaptive, value-based, two-arm trials (Pertile et al.
2014, Chick et al. 2017, Forster et al. 2021).

Value-based trials use real-valued outcomes to model
the cost-QALY assessments used in health-technology
adoption decisions (Chick et al. 2017). Although Flight
et al. (2019) report that many adaptive trials collect these
data, they find that few actually use such value-based
criteria in trials design. Nevertheless, they identify re-
searchers who suggest designing trials with value-based
criteria in mind and join others in recommending the
use of cost-effectiveness in clinical trial design (Nixon
et al. 2009, Meltzer and Smith 2011, Draper 2013, NIHR
2020). Williamson and Villar (2020) further argue for the
ability to incorporate real-valued, rather than Bernoulli,
outcomes in the MAMS setting and note the large frac-
tion of trials with continuous outcomes.

The operations research community has worked to
improve clinical trials with various approaches related
to the value-based approach here (e.g., Kouvelis et al.
2017, Villar and Rosenberger 2018, Alban et al. 2020,
Bastani and Bayati 2020, Anderer et al. 2021, Bravo et
al. 2021).

Although there is much active research regarding
adaptive, multiarm, and value-based trials, current
work typically studies only one or two of the three ap-
proaches at a time. This paper brings all three togeth-
er, first for a more restricted class of trials (a) with
short to moderate delay between the time a treatment
is administered to a patient and the time outcomes are
observed, (b) that include QALY and treatment costs
as end points, and (c) that takes the cost-benefit per-
spective of a social planner (NIHR 2020). We then
follow with extensions that address a wider range of
settings, as well as practical issues that arise in trials.
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1.1. Overview
Section 2 presents the base model: a fully sequential,
value-based trial with multiple, potentially correlated
arms. Fully sequential means that that the trial design
permits decisions regarding which treatment to allocate
and whether to stop the trial after each subject’s data
are observed. Correlated arms allow, for example, for
similar doses to have similar average treatment effects.
Its objective is to maximize the expected health benefit,
less clinical trial and patient treatment costs. Our design
balances the marginal cost of enrolling additional pa-
tients in the trial with the expected value of the informa-
tion to be gained from that patient’s outcome.

Section 3 characterizes the optimal trial design for
either discounted or undiscounted rewards. Comput-
ing the optimal solution suffers from a curse of di-
mensionality, however.

Section 4 introduces a pair of heuristic policies that
do not suffer from the curse of dimensionality, one for
sequentially allocating treatments to patients who en-
roll in the trial and another for choosing when to stop
the trial as patient data are observed. Both heuristics
make decisions on the basis of indices that we calcu-
late using the EVSI of dynamic, forward-looking, po-
tentially adaptive sampling plans, an approach that
has proven useful in other settings, with arms that are
not correlated (Chick and Gans 2009, Chick and
Frazier 2012, Smith and Villar 2018). The new policies
also extend the fixed look ahead approach of the
so-called correlated knowledge gradient (cKG), which
has proven useful in Bayesian optimization (Frazier
et al. 2009), to adaptive look ahead policies.

For the case of undiscounted rewards, Section 4
also provides theoretical results regarding the asymp-
totic consistency of the allocation heuristic as the sam-
ple size grows without bound. The proof provides a
novel variation of that in Xie et al. (2016) (hereafter re-
ferred to as XFC), for the asymptotic consistency of
certain fixed step look ahead indices, that applies to
adaptive look ahead indices.

Although the heuristic policies developed in Section
4 eliminate the curse of dimensionality, their indices
remain computationally intensive to evaluate, and
Section 5 describes two additional sets of policies that
require less computation and serve to benchmark
their performance. A first set of comparators follows
from easily calculated lower and upper bounds on the
heuristics’ indices, bounds that can be used to more
efficiently implement the core heuristics and be used,
in their own right, as the indices of more quickly com-
puted policies. A second set of comparators follows
other policies found in the literature. The most natural
of these is the cKG policy of Frazier et al. (2009), which
selects the arm by maximizing the EVSI of a related
fixed look ahead-based index. Section 5 also discusses
additional comparators and implementation issues.

Section 6 discusses the specification of a prior distri-
bution for the vector of the arms ’ mean rewards. It
proposes a practical way to use pilot study data to
specify a prior for phase II/III dose-finding trials.

Section 7 reports the results of simulations that as-
sess the performance of our heuristics and their com-
parators in multiarm settings. The first set of experi-
ments shows that, for fixed sample sizes, our new
allocation indices outperform those that assume inde-
pendent arms or that focus on estimation, rather than
optimizing reward, and they perform similarly to
cKG-type allocation policies that account for correla-
tion. The second set of experiments shows that it is
important for stopping times to account for the poten-
tial of further sampling from multiple arms when set-
ting a sample size and that response-adaptive stop-
ping holds promise. The third set of experiments
illustrates how to use pilot study data to develop a
prior distribution for a phase II/III dose-finding trial
that is robust to a potential misspecification of the pri-
or in a representative study.

The second and third sets of experiments also assess
a simple, forward simulation-based method of select-
ing a fixed stopping time that performs surprisingly
well when used in conjunction with adaptive alloca-
tion policies. Although the systematic analysis and
optimization of this scheme as its own dynamic stop-
ping time are beyond the scope of this paper, the re-
sults suggest that this approach merits additional
research.

The paper’s core analysis is applicable to trials with
short to moderate delay between the time a treatment
is administered to a patient and the time outcomes are
observed, that include QALY and treatment costs as
end points, and that take the cost-benefit perspective
of a social planner. Section 8 extends the paper’s ap-
proach to a broader set of settings and addresses a
number of important practical considerations. It pro-
vides approaches for addressing the delays noted and
the need to randomize the allocation of subjects to
treatment arms and offers a discussion about the
breadth of application of real-valued outcomes and
other topics.

Online Appendix A summarizes notation. Online
Appendix B gives proofs of mathematical claims.
Online Appendix C presents implementation details.
Online Appendix D discusses additional issues about
clinical trials.

2. Model for Fully Sequential Trials with
Multiple Correlated Arms

We present a Bayesian, decision-theoretic model of an
adaptive clinical trial that compares multiple interven-
tions. We seek a sequential sampling policy that dy-
namically decides the interventions to which patients
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should be allocated, as well as the time at which the
trial should stop, in order to maximize the expected
monetary value of health benefits generated for the
target population less the cost of the trial and any
costs incurred in health-technology adoption. We use
correlation among beliefs regarding the population-
mean rewards of the interventions to capture potential
similarities among the alternatives.

2.1. Trial Design and Outcomes
We consider a clinical trial that evaluates M ≥ 2 alter-
native interventions, which we refer to as arms. For a
controlled trial, the standard of care intervention
and/or a placebo can be included among the M arms.
The arm selected for implementation at the end of the
trial will be used to treat P patients. The value of P
may represent many years’ worth of patients treated
over the arm’s useful life, and we assume P is fixed, as
is the case for fixed horizon market exclusivity and
many nonpharmaceutical health-technology adoption
decisions, although the model is amenable to more
general P. (See Online Appendix D.2.) We let M �
{1, 2, : : : ,M} denote the set of arms in the trial.

Before selecting an arm to implement, we can sam-
ple from it to obtain information regarding trial sub-
jects’ outcomes. Sampling from an arm requires mon-
ey and time. There is a cost ci per observation for arm
i ∈M. We model sampling as occurring sequentially
at equally spaced times, t � 0, 1, : : : . The index t also
represents the total number of patient observations
seen. We let T denote the (potentially random) time at
which we stop the trial and select an arm to
implement.

At time t � 0, 1, : : : ,T− 1, we decide which arm pa-
tient t + 1 will receive and can use the data observed
from the first t patients in doing so. We denote by Et

i
the random variable whose realization is the effective-
ness of arm i ∈M observed for patient t � 1, 2, : : : ,T.
We assume that the clinical effectiveness of each arm
can be expressed in monetary terms so that Et

i de-
scribes the effect that arm i has on the clinical condi-
tion of the tth patient converted to a financial value,
for example with QALY data and willingness to pay
parameters (e.g., 20,000£/QALY) (NICE 2014). We let
the random variable Ct

i denote the patient-level cost of
arm i, which may include medical procedures, drugs,
and the effect of potential complications, again con-
verted to a financial value. Then, the net monetary
benefit (NMB) of arm i for patient t is

Yt
i � Et

i − 1CECt
i , (1)

where 1CE � 1 if the trial evaluates cost-effectiveness
and 1CE � 0 if it evaluates only effectiveness (see also
Section 8.3). Here, ci is the marginal cost for an extra
patient in the trial, whereas Ci is the marginal cost of

treatment and complications whether the patient is in
the trial.

2.2. Bayesian Prior and Inference
Each Yt

i has an unknown mean θi and a known sam-
pling variance λi. Here, θi can be interpreted as the pop-
ulation mean of the treatment effect for arm i, and λi

captures random differences in how individual patients
respond to arm i. We assume that observations are inde-
pendent and normally distributed, conditional on the
unknown mean, so that Yt

i | θi ~N (θi,λi) for t � 1, 2, : : :
and i ∈M. Let θ � (θ1,: : : ,θM)T be the vector of un-
known means, and let K � diag(λ1, : : : ,λM) be the posi-
tive definite, diagonal matrix of sampling variances. We
will derive results assuming the λi values are known.

A prior distribution or prior for θ describes our ini-
tial uncertainty about the M arms’ mean effectiveness.
This initial belief about θ is distributed according to a
multivariate normal prior, with θ ~N (µ0,R0). We as-
sume that R0 is positive definite. It can be nondiago-
nal, which would imply that initial beliefs about the
means are correlated. We discuss the inference pro-
cess in Section 4.1, the specification of a prior and
plug-in estimators for K in Section 6, and their use in
Section 7.4.

2.3. Decisions and Timeline: Allocation,
Stopping, and Selection

At each time t, we observe the outcome of the tth pa-
tient’s intervention, and we use this observation to up-
date our beliefs about the mean arm effects. Then, we
choose either to stop the trial or to continue and include
one more patient. A decision to stop is followed by the
selection of an arm for implementation, and a continua-
tion decision requires the choice of an arm to allocate to
the next patient. For now, we assume the time to ob-
serve the results from a patient to be short enough that
it does not delay the decision for the next patient. We
discuss delayed observations in Section 8.1.

To track our choices, we define a number of varia-
bles. At each time t, we choose an action ut from the
set of available actions U � {1, 2, : : : , 2M}, with M ac-
tions for continuation and M actions for stopping. We
let ut ∈ {i | i � 1, 2, : : : ,M} denote the allocation of arm
ut to the t + 1st patient, and we let ut ∈ {i | i �
M+ 1,M+ 2, : : : , 2M} denote the stopping of the trial
and selection of arm D � ut −M for implementation.
After an action ut ∈ {i | i � 1, 2, : : : ,M} is chosen, the ob-
servation Yt+1

ut is realized before the next period’s deci-
sion. We then compute the belief about unknown
means, θ, at time t + 1, (µt+1,Rt+1), using the belief at
time t, (µt,Rt), the observation Yt+1

ut , and Bayes’ rule,
as Section 4.1 discusses. At the first occurrence of
ut ∈ {i | i �M+ 1,M+ 2, : : : , 2M}, the trial stops, so that
the stopping time is T � t.
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Formally, we define Ht � {µ0,R0,u0,Y1
u0 ,u

1,Y2
u1 , : : : ,

ut−1,Yt
ut−1} to be the history of a trial up to time t. In

turn, we define a nonanticipating policy π :Ht →M to
be a function that maps the history at each time t �
0, 1, : : : to an action, ut, that either continues the trial
at time t and tests arm ut or stops the trial at time T �
t and implements arm D � ut −M. We define Π to be
the set of all such nonanticipating policies.

Informally, a policy has three features. A stopping
time specifies if sampling is to stop at a given time
(T � t) or not (T > t). An allocation policy specifies
which arm to assign if sampling continues. A selection
decision specifies which arm to select for implementa-
tion when sampling stops.

2.4. The Optimal Multiarm Fully Sequential Value-
Based Trial Design Problem

We seek to maximize the expected NMB to the popu-
lation of P patients to be treated by arm D upon stop-
ping the trial, net of the costs of sampling and any po-
tential fixed costs of implementing arm D, given the
results of the trial. To describe this objective, we need
some additional notation. Let Δ ∈ (0, 1] be a discount
factor. Let Ii denote the expected value of a one-time
fixed cost associated with implementing arm i ∈M at
the end of a trial. It is the sum of all investment costs
required to implement the chosen arm, such as capi-
tal, training, and infrastructure costs for the healthcare
system. Let Eπ be the expectation induced by π.

Given the prior distribution θ ~N (µ0,R0) and a
policy π ∈Π, this objective function is

Vπ(µ0,R0)�Eπ

∑T−1
t�0

−Δtcut+ΔT PE YT+1
D |µT,RT

[ ]
−ID

( ) | µ0,R0

[ ]
,

(2)

where the random stopping time T ≥ 0 equals zero if
it is optimal to stop immediately, rather than sam-
pling, in which case the sum of the discounted sam-
pling costs is defined to be zero.

We focus on the problem of choosing a policy π∗ ∈Π
that maximizes (2), the expected discounted value
when Δ < 1, or the expected net reward when Δ � 1. To
ensure that we will not sample costlessly over an infi-
nite horizon, we require that Δ < 1, that all ci > 0, or
both. We call this problem the optimal multiarm fully se-
quential value-based trial design problem:

V∗(µ0,R0) � sup
π∈Π

Vπ(µ0,R0): (3)

This problem is a multiarmed stoppable bandit with
correlated mean rewards. We write Vπ∗ (µ0,R0) as
V∗(µ0,R0) to simplify notation. We may also write
V∗(µ0,R0;Ξ) to emphasize the role of parameters Ξ
(say, ci,P,Δ, or the set Π for the supremum) in deter-
mining V∗.

This model can help assess the maximum amount
one should pay for a fully adaptive trial rather than
for a trial in the set Πfix of traditional designs with a
fixed sample size (T � Tfix). The variable costs of ob-
servations, c � (c1, c2, : : : , cM), for an adaptive trial may
exceed those of a fixed sample size trial, cfix. The maxi-
mum that one should pay for a fully adaptive trial the
cost of such a traditional fixed sample size trial is
V∗(µ0,R0;c,Π) −V∗(µ0,R0; cfix,Πfix).

3. Theoretically Optimal Multiarm Fully
Sequential Trial

Proposition 1 uses Bellman’s equation to characterize
the optimal allocation policy, stopping time, and se-
lection decision for the multiarm, fully sequential,
value-based trial design problem in (3).

Proposition 1. If ci > 0 for all i ∈M, Δ < 1, or both, then
there exists a Markov policy π∗ ∈Π that is optimal, and

V∗(µt,Rt)�max max
j∈M

−cj+ΔE V∗(µt+1,Rt+1) |µt,Rt;ut�j
[ ]

,
{

max
j∈M

Pμt
j−Ij

{ }}
: (4)

Bellman’s Equation (4) implies that, at each time t, we
compare the expected value of 2M potential actions.
Each of the first M potential actions, in the left maxi-
mization within the curly braces in (4), represents the
expected value of sampling once for a given arm and
then implementing the optimal policy from t + 1 for-
ward. The second M potential actions, in the right
maximization within (4), represent the expected val-
ues of immediately stopping and implementing a giv-
en arm.

Proposition 1 shows that there exist an optimal al-
location policy, stopping time, and selection decision
that satisfy Bellman’s equation. Bellman’s equation,
in turn, motivates the use of indices to guide alloca-
tion and stopping decisions. When one of the right
maximands, maxj∈M{Pμt

j − Ij}, maximizes (4), it is
optimal to stop, and the optimal selection decision
picks the maximizer at random if there is more than
one such arm. We can therefore rewrite the problem
in (3) as

V∗(µ0,R0)�sup
π∈Π

Eπ

∑T−1
t�0

−Δtcut+ΔTmax
j∈M

PμT
j −Ij

{ } | µ0,R0

[ ]
:

(5)

In contrast, if at least one of the left maximands of (4)
exceeds the right maximand, then it is optimal to
continue and to allocate the next observation to the
maximizing arm, at random if there is more than one
such arm.
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We can also define allocation and stopping indices
that reflect the expected value of information (EVI). At
any time t � 0, 1, 2, : : : , we can define an EVI-based
stopping index to be

EVI∗(µt,Rt) � sup
π∈Π

Eπ

∑T−1
r�0

−Δrcut+r + ΔTmax
j∈M

Pμt+T
j − Ij

{ } | µt,Rt

[ ]

−max
j∈M

Pμt
j − Ij

{ }
, (6)

the expected incremental value obtained from addi-
tional sampling rather than stopping immediately and
selecting the arm with the greatest expected reward.
We use EVI rather than EVSI as we account for the
cost of sampling, whereas EVSI traditionally does not,
and we allow for a potentially response-adaptive
number of further observations rather than a fixed
step look ahead.

Here, EVI∗(µt,Rt) ≥ 0 by construction, and EVI∗
(µt,Rt) > 0 if and only if it is optimal to continue sam-
pling rather than stopping immediately. Thus, the as-
sociated optimal stopping time falls before or at time t if
and only if EVI∗(µt,Rt) � 0.

The EVI of allocating at least one observation to arm
i ∈M and then proceeding optimally is straightfor-
ward to define using the notation of the Bellman’s
equation:

−ci +ΔE[V∗(µt+1,Rt+1) | µt,Rt; ut � i] − max
j∈M

Pμt
j − Ij

{ }
:

(7)

The allocation index analogue to (6) is more delicate
to construct. To ensure that the first decision allocates
an observation to i, it requires that T ≥ 1 and that
ut � i.

The associated optimal allocation policy allocates the
next sample to i ∈M that maximizes the index in (7),
with ties broken at random. We note that the term in
(7) can be negative, when it is strictly preferable to
stop rather than sample from i.

4. Heuristic for Approximating Optimal
Sequential Sampling

Numerical evaluation of the optimal indices (6) and
(7) is challenging. Although maxj∈M{Pμt

j − Ij} is
straightforward to calculate, the computation of the
expected value of allocating one patient to arm i ∈M
and continuing optimally, −ci +ΔE[V∗(µt+1,Rt+1) |
µt,Rt; ut � i], suffers from a curse of dimensionality;
there are MT possible sequences for sampling M arms
over T time steps.

To address this challenge, we replace the original,
optimal indices with heuristic ones. Section 4.1 recalls
the inference process for sampling from the ith arm
that our analysis requires. Section 4.2 describes our
main heuristic index and how to compute it. This

computation involves solving a so-called free bound-
ary problem for a heat equation, a type of partial
differential equation. Thus, we will refer to it as the
correlation partial differential equation (cPDE) index,
where “c” stands for correlation. Section 4.3 provides
asymptotic consistency results for cPDE.

4.1. Updating Equations for Sampling from a
Single Arm

Measurements from arm i impact the posterior
distribution of all arms’ means. Consider the case of
allocating τ patients to arm i, starting at time t, and let
Yt+1
i ,Yt+2

i , : : : ,Yt+τ
i denote the τ observations. Each ob-

servation is normally distributed with mean θi and
variance λi, and the mean of these observations is
Y

τ

i �
∑t+τ

r�t+1Y
r
i=τ ~N (θi,λi=τ).

Bayes’ rule provides the following posterior mean
and covariance (Frazier et al. 2009):

µt+τ � µt + Y
τ

i − μt
i

λi=τ + Σt
i,i
Rtei, and

Rt+τ � Rt − RteieiTRt

λi=τ + Σt
i,i
, (8)

where ei is a M × 1 vector with a one in row i and ze-
ros elsewhere.

It will be useful to define Zτ
i ≡ μt+τ

i −μt
i to express

the change in the mean belief of arm i:

µt+τ � µt + Zτ
i

Σt
i,i
Rtei: (9)

For notational simplicity, let the effective sample size
for arm i at time t be defined as nti � λi=Σ

t
i,i. The distri-

bution of Zτ
i for a given τ and information at time t is

then (DeGroot 2004)

Zτ
i ~N 0,σ2Zτ

i

( )
where σ2Zτ

i
� λiτ

nti n
t
i + τ

( ) : (10)

4.2. Adaptive Sampling from a Single Arm Before
Selection: cPDE Heuristic

We approximate the optimal index for each arm i in
(6) with that associated with a heuristic index that is
based on the solution to an optimal stopping problem,
which at each time t � 0, 1, 2, : : : , maximizes the EVI of
repeatedly sampling only from arm i before selecting a
best arm to implement. Our heuristic index combines
the benefits of analogues that have been shown to be
effective in related problems with correlated arms but
whose values depend on an a priori fixed number of
samples (Frazier et al. 2009) with those of indices that,
like ours, are based on optimal stopping but with in-
dependent arms (Chick and Gans 2009, Chick and
Frazier 2012). This section defines our main heuristic
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index and establishes some properties that simplify its
calculation.

Let Πi denote the set of all policies that sample only
from arm i before an arm is selected as best, and con-
sider the problem starting at time t, with the prior be-
lief (µt,Rt). Each πi ∈Πi has an associated relative
stopping time Ti and an absolute stopping time of
t+Ti. Such “adaptive look ahead” stopping times for
indices have subscripts (e.g., Ti,Ti,l) to distinguish
them from the stopping time for the overall clinical
trial T, which does not have a subscript. Under the as-
sumption that we are sampling only from arm i, start-
ing at time t, the problem in (4) and (5) then becomes

V∗
i (µt,Rt) �max −ci+ΔE V∗

i (µt+1,Rt+1) | µt,Rt
[ ]

,
{

max
j∈M

Pμt
j− Ij

{ }}
(11)

� sup
πi∈Πi

Eπi

∑Ti−1

r�0
−Δrci +ΔTimax

j∈M
Pμt+Ti

j − Ij
{ } | µt,Rt

[ ]
,

(12)

where the index of summation r covers the Ti − 1 periods
starting at t, over which we (conceptually) continue to al-
locate patients to arm i, and an optimal adaptive look
ahead of T∗

i � 0 implies that we stop immediately and se-
lect the alternative with the greatest expected value.

4.2.1. Scale Invariance. In the remainder of this sec-
tion, we assume for simplicity that P � 1 and Ij � 0 for
all j ∈M. Proposition 2 shows that our results can eas-
ily be scaled for different values of P and Ij.

Proposition 2. Let I � [I1, I2, : : : , IM] and 0 � [0, 0, : : : , 0].
Let V∗

i ( µt,Rt; ci,P, I,Δ) denote the problem in (12) with its
parameters explicitly stated. Then,

V∗
i (µt,Rt; ci,P, I,Δ) � P × V∗

i µt − I
P
,Rt;

ci
P
, 1,0,Δ

( )
: (13)

Following the development in Section 3, we define a
stopping index for policies πi ∈Πi to be the expected
value of sampling from arm i, beyond stopping and
selecting the current best, Vπi

i (µt,Rt) −maxj∈M{μt
j}.

Subtraction of a constant maxj∈M{μt
j} does not impact

the structure of the optimal solution for arm i. Given
P � 1 and Ij � 0, we can use (9) to rewrite (12) so that
posterior means at the adaptive look ahead time Ti ≥ 0
are expressed as a function of ZTi

i and that the EVI of
sampling from arm i is

EVI∗i (µt,Rt) � sup
πi

Eπi

∑Ti−1

r�0
−Δrci +ΔTi max

j∈M
μt
j +

Σt
i,j

Σt
i,i
ZTi
i

{ }
| µt,Rt

[ ]

−max
j∈M

μt
j : (14)

Our proposed cPDE stopping time continues sampling
at time t (declares T > t) if EVI∗i (µt,Rt) > 0 for at least

one arm, maxi∈MEVI∗i (µt,Rt) > 0, and stops (declares T
� t) otherwise.

We similarly define the allocation index for i to be a
version of (7) that is restricted to sampling from arm i
and is normalized by dividing by the sampling cost ci,

ν∗i (µt,Rt) ≡ 1
ci

(
− ci + ΔE V∗

i (µt+1,Rt+1) | µt,Rt; ut � i
[ ])

� 1
ci
ΔE V∗

i (µt+1,Rt+1) | µt,Rt; ut � i
[ ]

− 1,

(15)

to reflect the expected value per monetary unit of ob-
servation when ci values differ across arms.

Our proposed cPDE allocation policy allocates one
observation at time t to the arm i ∈M that maximizes
ν∗i (µt,Rt), with ties broken randomly. Note that, al-
though the index ν∗i (µt,Rt) reflects the possibility that
Ti > 1, the allocation policy samples the index-
maximizing arm only once before recalculating the
arms’ ν∗i (µt,Rt) values, a distinction that also arises in
related cKG policies.

4.2.2. Useful Simplifications. We now provide two
simplifications for (14) and (15) that will be useful to
prove claims of asymptotic consistency in Section 4.3.
The first is based on an idea of Frazier et al. (2009). To
this end, we define intercept and slope parameters for
the linear functions in (14):

aj � μt
j and bj � Σt

i,j =Σ
t
i,i: (16)

We denote by M′ the number of undominated arms
whose functions, aj + bjz, are maximal for some value
of z ∈ R and by (l) the arm that has the lth lowest slope
among undominated arms. Frazier et al. (2009) shows
that without loss of generality the ordering is strict.
We let g(z) be a function that returns the index with
the largest a(l) + b(l)z value when evaluated at z ∈ R.
We break ties by choosing the largest (ordered) index.
The new ordering implies that sup {z | g(z) � (l)} �
min{z | g(z) � (l+ 1)}, and we express the intersection
point, in z, between arms (l) and (l+ 1) as

d(l) � (a(l) − a(l+1)) =(b(l+1) − b(l)): (17)

This allows the maximization of M terms in (14) to be
replaced with a sum ofM′ ≤M terms:

EVI∗i (µt,Rt) � sup
πi

Eπi

[∑Ti−1

r�0
−Δrci +ΔTi

(
ag(0) + bg(0)ZTi

i

+∑M′−1

l�1
(b(l+1) − b(l)) − | d(l) | +ZTi

i

( )+) | µt,Rt
]
− ag(0):

(18)

The second simplification applies for undiscounted re-
wards (Δ � 1) and proceeds in three steps. (1) The ag(0)
terms in (18) are constants and cancel out. (2) Let T∗

i be
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the optimal adaptive look ahead time determined by
the solution to (18). Because we temporarily constrain
the allocation decision to sample only from arm i, the
expectation over π∗

i can be replaced with one over T∗
i .

(3) Proposition 3 shows we can eliminate the term
ET∗

i
[bg(0)ZT∗

i
i | µt,Rt].

Proposition 3. Zτ
i is a uniformly integrable martingale.

ETi[ZTi
i | µt,Rt] � 0 for any stopping time Ti.

Thus, when Δ � 1, the stopping index for arm i becomes

EVI∗i (µt,Rt)

�sup
Ti≥0

ETi −ciTi+
∑M′−1

l�1
(b(l+1)−b(l)) −|d(l) |+ZTi

i

( )+ |µt,Rt

[ ]
, (19)

and taking the expectation over Ti ≥ 1 and dividing
by ci, the allocation index is then

ν∗i (µt,Rt)

�sup
Ti≥1

ETi −Ti+ 1
ci

∑M′−1

l�1
(b(l+1)−b(l)) −|d(l) |+ZTi

i

( )+ |µt,Rt

[ ]
: (20)

When Δ � 1, we can explicitly compute (19) by
changing the terminal reward function in Chick and
Frazier (2012), max {0,Zi}, to account for correlation,∑M′−1

l�1 (b(l+1) − b(l))(− |d(l) | +ZTi
i )+. For Δ < 1, a similar

substitution for the terminal reward in Chick and
Gans (2009) applies to (18).

4.3. Asymptotic Properties of the New cPDE
Allocation Policy

For the case of undiscounted rewards (Δ � 1), we can
demonstrate that the cPDE allocation policy is asymp-
totically consistent. That is, we show that the selection,
at each t, of an arm with maximal index ν∗i (µt,Rt) in
(19) appropriately converges as a fixed stopping time,
T � Tfix, becomes arbitrarily large.

Our proof takes advantage of machinery that is
used in XFC to prove the consistency of certain cKG
allocation policies. Moreover, its approach uses a nov-
el argument for indices that can be “sandwiched” be-
tween related cKG allocation indices and allows us to
show that a broader set of allocation policies is asymp-
totically consistent, including related adaptive polices
in Sections 5.1 and 8.2.

To state the conditions of our proofs precisely, we
make explicit the assumptions and conditions related
to those stated in XFC. In particular, the assumptions
allow smaller subsets of arms, Mt ⊆M, to be consid-
ered for allocation in any given period t.

Assumption 1. (i) µ0, R0, and K are known. (ii) R0 and K

are positive definite. (iii) P limT→∞
∑T

t�11{j ∈Mt} � ∞
{ }

� 1
for each j ∈M. (iv) Δ � 1 and cj > 0 for each j ∈M.

Given these explicit assumptions, we are ready to
state our consistency result for cPDE.

Theorem 1. Suppose Assumption 1 holds. Then, (i)
limT→∞ΣT

i,i � 0 almost surely for each i; (ii)
limT→∞ν∗i (µt,Rt) � −1 almost surely for each i; (iii)
limT→∞μT

i � θi almost surely and in L2 for each i; and
(iv) limT→∞argmax {μT

i } � argmax {θi} almost surely
for each i.

The convergence of ν∗i (µt,Rt) to −1 implies that the
EVI per unit cost of sampling converges to 0. The −1
arises from subtracting the normalized cost per sam-
ple in (15).

5. Assessing cPDE: Comparator Policies
This section presents comparator policies for use in
the numerical experiments we conduct in Section 7.
Section 5.1 presents new adaptive look ahead policies
based on bounds on cPDE’s indices. Sections 5.2 and
5.3 recall existing comparator polices from the litera-
ture. Section 5.4 summarizes the results of preliminary
numerical tests of the quality and computational in-
tensity of these comparators.

5.1. New Adaptive Look Ahead Comparators
Based on Bounds for cPDE

We introduce upper and lower bounds on the cPDE indi-
ces in (19) and (20) given undiscounted rewards (Δ � 1).
The bounds prove to be useful for implementing cPDE,
and they also provide computationally efficient indices
that serve as basis of their own allocation policies and stop-
ping times. We present the bounds and then define the al-
location policies and stopping times that they determine.

5.1.1. Useful Bounds for cPDE Indices. The second
term of the expectations in (19) and (20) is piecewise
linear, and at each intersection point, d(l), l � 1,
2, : : : ,M′ − 1, there is a kink. We can exploit this struc-
ture by allowing the supremum to differ for each
piece, l, of the sum and let Ti,l denote the (adaptive
look ahead) stopping time for piece l. If we consider
one piece at a time, we obtainM′ − 1 lower bounds for
the associated index, the maximum of which is the
tightest of the lower bounds.

Proposition 4. EVI i(µt,Rt) ≤ EVI∗i (µt,Rt) and νi(µt,
Rt) ≤ ν∗i (µt,Rt),where
EVI i(µt,Rt) ≡ max

l�1,2, : : : ,M′−1

sup
Ti,l≥0

ETi,l −ciTi,l + (b(l+1) − b(l)) − |d(l) | +ZTi,l
i

( )+ | µt,Rt

[ ]{ }
,

(21)

and νi(µt,Rt) is constructed as in (21), taking stopping
times to be Ti,l ≥ 1 and dividing by ci.

Alternatively, we can allocate the sampling cost of
arm i among the M′ − 1 pieces and sum their values
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after maximizing each separately. This leads to a class
of upper bounds for EVI∗i (µt,Rt) and ν∗i (µt,Rt) that use
a sum ofM′ − 1 optimizations with allocated costs.

Proposition 5. Let α � (α1,α2, : : : ,αM′−1) be vector
weights to be used to allocate samples, such that αl ≥ 0 for
all l and

∑M′−1
l�1 αl � 1. Then, EVIi,α(µt,Rt) ≥ EVI∗i (µt,Rt)

and νi,α(µt,Rt) ≥ ν∗i (µt,Rt), where

EVIi,α(µt,Rt) ≡ ∑M′−1

l�1

sup
Ti,l≥0

ETi,l −ciαlTi,l + (b(l+1) − b(l)) − | d(l) | +ZTi,l
i

( )+ | µt,Rt

[ ]
,

(22)

and νi,α(µt,Rt) is constructed as in (22), taking stopping
times to be Ti,l ≥ 1 and dividing by ci.

The structure of an arbitrary subproblem l from (21)
or (22) is the same as that of a stopping problem in
which a single arm with unknown mean reward is
compared with a known standard. It can be computed
with standard techniques (Chick and Gans 2009,
Chick and Frazier 2012).

Proposition 6. EVIi,α(µt,Rt) and νi,α(µt,Rt) are convex
in α.

Proposition 6 says that there is a least upper bound
EVIi,α∗ (µt,Rt) that can be found by minimizing over α.
That said, we use equal weights, αl � 1=(M′ − 1), in all
experiments unless otherwise specified. Numerical re-
sults in Online Appendix C.1 provide the rationale for
our choice.

5.1.2. Comparator Allocation Policies and Stopping
Times. The bounds on ν∗i (µt,Rt) and EVI∗i (µt,Rt) can
themselves be used as indices that form the basis of
associated allocation policies and stopping times. The
cPDELower allocation policy allocates the next observa-
tion to the arm with the greatest lower bound,
νi(µt,Rt), and the cPDELower stopping time continues
sampling if and only if the greatest of the arms’ lower
bounds, maxi∈MEVI i(µt,Rt), is strictly positive. The
cPDEUpper allocation policy and cPDEUpper stopping
time use the upper bounds, νi,α(µt,Rt) and
EVIi,α(µt,Rt), to make analogous decisions, where α
implicitly has equal weights unless otherwise speci-
fied. We use these bounds and policies to help us ana-
lyze our main index, cPDE.

5.1.3. Consistency. The bounding strategy of Theo-
rem 1 in Section 4.3 is robust and is easily adapted to
prove analogous consistency results for the new
cPDELower and cPDEUpper allocation policies.

Corollary 1. The consistency results for cPDE, with index
ν∗i (µt,Rt), stated in Theorem 1 also hold for cPDELower,

with index νi(µt,Rt), and for cPDEUpper, with index
νi,α(µt,Rt).

5.2. Adaptation of the Correlated
Knowledge Gradient

The cPDE allocation policy and stopping time of Sec-
tion 4.2 and the cPDELower and cPDEUpper policies
of Section 5.1 rely on indices that reflect optimal,
adaptive solutions to stopping problems. In contrast,
the cKG approach of Frazier et al. (2009) computes al-
location indices based on a fixed duration stopping
time and is a useful comparator. In our notation, the
cKG approach sets Ti in (19) to a specified τ and bases
its indices on the incremental expected value of taking
exactly τ more sample(s) and then stopping. This
leads to a family of cKG-type lower bounds for
EVI∗i (µt,Rt) that account for sampling cost:

EVIcKGτ

i (µt,Rt) ≡ −ciτ+
∑M′−1

l�1
(b(l+1) −b(l))σZτ

i
ψ |d(l) |=σZτ

i

( )
,

(23)

where ψ(x) ≡ E[(X− x)+] is the loss function of a stan-
dard normal random variable X ~N (0, 1).

In Section 7, we will compare cPDE and its variants
to two cKG-type policies. The first sets τ � 1, and the
second optimizes over τ and is denoted as
EVIcKG∗

i (µt,Rt) ≡ supτ≥1EVI
cKGτ

i (µt,Rt).
Proposition 7. EVI∗i (µt,Rt) ≥ EVIcKG∗

i (µt,Rt) ≥ EVIcKG1
i(µt,Rt).

When implementing allocation policies, the KG ap-
proach uses the ratio of the EVI to the sampling cost
rather than their difference. For consistency with ex-
tant KG literature, we also use a ratio, suitably shifted
so it can be compared with zero as with our new indi-
ces defined. Thus, we use the following cKGτ alloca-
tion index for the cKGτ allocation policy:

cKGτ ≡ 1
ciτ

∑M′−1

l�1
(b(l+1) − b(l))σZτ

i
ψ |d(l) | =σZτ

i

( ){ }
− 1:

(24)

In turn, we define the cKG∗ allocation index with re-
spect to the supremum of the index cKGτ in (24) over
τ ≥ 1. Although the knowledge gradient is typically
used for allocation indices, we also assess the perfor-
mance of cKG∗ as a stopping time.

5.3. Other Existing Comparator Policies
In gauging the performance of cPDE policy, we also
consider other allocation policies that exist in the liter-
ature. To assess the benefit of accounting for correla-
tion among unknown means, we define so-called
ESPB indices that (incorrectly) assume the arms are
statistically independent. That is, they also use (19)
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and (20) but with an initial prior distribution that has
Σ0
i,j � 0 for i≠ j.
To more broadly assess the benefit of information-

based indices, we also define policies that do not
make use of the expected value of information. The
Equal allocation policy assigns arms in round robin
fashion, and the Random allocation policy picks arms
randomly with equal probability. The Variance alloca-
tion policy selects the arm with the largest posterior
variance for its unknown mean. It effectively seeks to
estimate the mean reward of each arm.

Finally, the Fixed stopping time always stops after a
given predetermined number of samples, Tfix. One
can use optimization to choose Tfix to maximize
Vπ(µ0,R0) over sets of policies with fixed sample size,
and we do so in Section 7.

5.4. Quality and Computational Issues for EVI
Approximations

5.4.1. Quality of Stopping Indices to Approximate
EVI∗i . We find that the stopping index for cKG1 se-
verely underestimates and that for cKG∗ somewhat
underestimates EVI∗i for all mean prior values. We
find that EVIi,α overestimates EVI∗ only when M′ > 2,
whereas EVI i offers a good estimate for EVI∗ except
when M′ > 2 and the prior means of arms are close in
value. See Online Appendix C.2.

5.4.2. Computational Speed. Experiments reported in
Online Appendix C.3 show that ν∗i takes two orders of
magnitude more time to compute than do νi and νi,α.
These latter allocation indices in turn require an order
of magnitude longer to compute than that for cKG∗
and two orders of magnitude more time than that for
cKG1 . These policies therefore represent a broad
cross-section of speed-accuracy trade-offs. Online
Appendix C.3 also reports how the bounds on EVI∗i
defining cPDEUpper and cPDELower can be used to
dramatically reduce the time to compute the cPDE
stopping time.

6. Prior Distribution for Phase II/III Dose-
Finding Trials

The performance of allocation policies and stopping
times depends on the specified prior distribution. In
general, prior means, μ0

i , variances and covariances,
Σ0
i,j, for the unknown means, θ, can be elicited from

medical experts or derived from the results of earlier
phases of a trial. One may choose to articulate cova-
riances with a parametric family as in Section 6.1. Sec-
tion 6.2 suggests a method for using pilot data to de-
velop an empirical Bayes estimator for the prior and
sampling distributions for a phase II/III dose-finding
trial to identify the most cost-effective dose. We assess
the use of these priors with numerical experiments in

Section 7. An approach applicable to factorial trial de-
signs has been described elsewhere (Chick et al. 2019).

6.1. Covariances for the Unknown Mean Rewards
Here, we focus on converting knowledge about the re-
lationship among arms’ mean rewards into a prior co-
variance matrix, R0, and explain an approach that ap-
plies to dose-finding trials that compare multiple dose
levels of the same drug.

In our example, we include the current standard of
care as a control, indexed by i � 1, and other dose lev-
els by i � 2, 3, : : : ,M. The dose level of arm i is denoted
by hi for all i ∈M, so the control has dose level h1 � 0.
In the context of (5), our formulation of dose finding
optimizes the expected net benefit of an intervention,
net of costs, rather than identifying the so-called ED95,
the smallest effective dose level at which 95% of sub-
jects have a desired clinical effect.

The efficacy of different dose levels of a drug is of-
ten modeled using a dose-response curve. (For an ex-
ample, see Section 7.4.) In our context, the problem of
finding a maximal θi can be seen as that of maximiz-
ing a discretized version of an unknown continuous
function.

A common approach to the generation of such an
unknown function assumes that it is a realization of a
Gaussian process and parameterizes its priors by the
choice of a mean function and a covariance function
(Frazier et al. 2009). We use a squared exponential
(Gaussian) kernel to model the covariance; for given
parameters σ2 and ζ, the covariance between arms i
and j is

Σ0
i,j � σ2exp −ζ(hi − hj)2

{ }
: (25)

Here, σ2 is the variance of each of the unknown means
and is the same for all arms. The smoothness of the in-
ferred function for the mean, from which our θi val-
ues are discretized, is determined by ζ. Large values
of ζ imply that the correlation among arms is low and
that the function value can change quickly. Other ker-
nels can also be employed (Rasmussen and Williams
2006, Chen et al. 2013).

6.2. Manipulating Prior Distribution
for Robustness

This section proposes the use of pilot study data and
Gaussian process regression (GPR) to obtain parame-
ter estimates for a model such as the one in Section
6.1. We then manipulate that prior, with a goal of sup-
porting a decision maker who is concerned with the
potential for misspecification of the prior distribution.

Let M0 ⊆M be the set of arms sampled during the
pilot study. We assume the pilot study initially ob-
tains n0,j observations from each arm j ∈M0 in the pi-
lot study. We use the simulated pilot data, GPR with
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the covariance kernel in (25), and Matlab’s fitrgp func-
tion to estimate the prior mean µ0,GPR, covariance
R0,GPR, and sampling variance ΛGPR. If diagnostics
suggest that a few more observations would benefit
the quality of the estimates, we add some or check an
alternative method of fitting the parameters. When
the pilot is completed, we let ypilot,j denote the sample
mean for arm j ∈M0. We call this the GPR estimate
for the pilot data and can use it as a prior distribution
for the adaptive trial. See Online Appendix C.4 for
details.

Next, we explore two manipulations of the initial
prior distribution to assess their potential to safeguard
trial performance if the prior is misspecified. The first
manipulation draws upon two observations of Powell
and Ryzhov (2012). They note that, for reward maxi-
mization problems with the cKG1 allocation policy, a
prior mean that is manipulated to be too high, rather
than too low, induces initial sampling for a wider
range of arms, as cKG1 is forced to check whether
arms are optimal. They also note that, if a prior has
been misspecified, a systematic increase in prior var-
iances can induce more sampling, reducing the risk of
premature stopping and a poorly selected arm. We
formalize these observations by defining a Robust prior
whose mean is a constant, at the maximum of the
sample means from the pilot and of the GPR estimate,
plus a “fudge” factor for uncertainty, zα, times a stan-
dard error:

μ0,ROB
i �max{max

j1∈M0

ypilot,j1 , max
j2∈M

μ0,GPR
j2 )}

+ zαsqrt(max
j3∈M

(Σ0,GPR
j3,j3 )),

for all i ∈M. We also double the range of uncertainty
for the Robust prior, with R0,ROB � 4R0,GPR.

We call the second manipulation of the original prior
distribution the Tilted prior. It is similar to the Robust
prior but has slightly more elevated means for low-
dose levels and slightly less elevated means for
higher-dose levels. Specifically, the Tilted prior has

μ0,TILT
i � max {max

j1∈M0

ypilot,j1 , max
j2∈M

μ0,GPR
j2 )}

+ 2zα(1 − i=M)sqrt(max
j3∈M

(Σ0,GPR
j3,j3 ))

for all i ∈M, and we set R0,TILT � 4R0,GPR. The Tilted
prior encourages initial sampling at lower doses be-
fore higher doses, a feature that can help to address
safety concerns in early-stage trials (Huang et al. 2015,
Wheeler et al. 2019).

7. Numerical Assessment of cPDE for
Clinical Trials

We use numerical experiments to assess the effective-
ness of cPDE, our main heuristic index for the value

of sampling information. We compare its performance
with that of our other new allocation and stopping in-
dices from Section 5.1 and with that of the indices in-
troduced in Sections 5.2 and 5.3. Our experiments use
examples calibrated for comparison with previous re-
search, as well as those estimated from published data
from a dose-finding trial.

Section 7.1 describes the performance metrics we
use and how they were estimated. Section 7.2 com-
pares the performance of various allocation policies for
a given sample size. It shows that both the cPDE and
cKG family, all EVI-based policies that account for
correlation among arms, perform well as compared
with allocation policies that do not model correlation
or that focus on minimizing the variance of posterior
means. Section 7.3 explores the effectiveness of the
new stopping times and finds that response-adaptive
stopping times based on multiarm multistep look
aheads can be beneficial for maximizing our trial de-
sign objective in (5). Section 7.4 demonstrates the ma-
nipulations of the Gaussian process regression model
in Section 6.2 that help select a prior distribution for a
phase II/III dose-finding trial.

7.1. Metrics for Analysis and
Experimental Details

Our experiments assess how the cPDE family of indi-
ces performs with respect to other allocation and stop-
ping indices. In doing so, we allow the allocation and
stopping indices of a policy to be based on different
criteria. For example, the policy π that combines the
cPDE allocation policy and the cPDEUpper stopping
time is referred to as the cPDE-cPDEUpper policy,
and it has expected reward V cPDE− cPDEUpper(µ0,R0).
To emphasize a specific fixed value of Tfix � τ with the
Fixed stopping time, we may refer to the cPDE-τ poli-
cy or its expected reward as V cPDE−τ(µ0,R0).

We use three main undiscounted (Δ � 1) metrics to
measure the performance of a policy π: the expected sam-
ple size E[T] , opportunity cost, and total cost. The ex-
pected opportunity cost measures the regret of the selec-
tion decision D, E[OC] � Eπ maxj Pθj − Ij

{ } − PθD − ID( ) |[
µ0,R0]. The expected total cost, E[TC] � Eπ[∑T−1

t�0 cut |
µ0,R0] +E[OC] , is the sum of the expected sampling
cost and the expected opportunity cost. Minimizing
E[TC] is equivalent to maximizing our main objective
function, Vπ(µ0,R0), in (3). We may also report the
probability of correctly selecting the “true best,” P(CS),
and the average CPU time required to compute a
policy’s indices.

We estimate expected values for each metric using
Monte Carlo simulation. Each replication of the simu-
lation is a sample path within which allocation and
stopping decisions are based on the policies and the
specified prior distribution.
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For each experiment, we estimate expected values
by calculating the average and standard error over
1,000 (or more) sample-path replications. We use com-
mon random numbers (CRNs) to sharpen comparisons
for the difference in performance between pairs of poli-
cies. Namely, we used CRN to match any unknown pa-
rameters (e.g., θ) for all policies and to match the sam-
ples Yt

i | θ for a given θ and for all policies as well. We
denote the sample average of simulation replications,
which estimates the expectation, by E[·].

7.2. Do the New Allocation Policies Improve the
Speed of Learning?

This section focuses on assessing the effectiveness of
each allocation policy as a function of sample size by
pairing all allocation policies with the Fixed stopping
time. We use the synthetic problem setup of Frazier
et al. (2009), who first proposed cKG, to facilitate com-
parisons with prior literature on sequential optimiza-
tion with correlation across arms. Although that prob-
lem is not explicitly a phase II/III dose-finding trial, it
corresponds to a linear structure of M arms and is
therefore amendable to the assessment described in
Section 6 for such trials. We do so here.

7.2.1. Experimental Setup. We run four experiments
with M � 80 arms in which we set ci � 1, Ii � 0, and
λi � 0:01 for all i. (Sampling costs were not explicitly
modeled in that earlier paper.) In all four experiments,
the prior mean equals zero for all arms, and σ2 � 0:5.
The four experiments vary the strength of the covari-
ance across arms, with ζ equal to either 16=(80− 1)2 or
100=(80− 1)2 in (25), and the adopting population
size, with P equal to either 106 or 108.

7.2.2. Numerical Comparison of the Allocation Poli-
cies. Figure 1 displays the results of pairing each allo-
cation policy with the Fixed stopping time for P � 106.
Results with P � 108, a larger adopting population size,
are similar to those reported here (data not shown). The
left panel of Figure 1 plots results for a lower correla-
tion, ζ � 100=(80− 1)2, and the right panel plots results
for a higher correlation, ζ � 16=(80− 1)2. The horizontal
axes mark the sample size of the Fixed stopping time.
The vertical axes display the log10 of the average oppor-
tunity cost for that sample size.

In both panels of Figure 1, pairwise differences
among cKG1 , cKG∗ , cPDEUpper, cPDELower, and
cPDE are not statistically significant (95% confidence
interval (CI)) after T � 100 observations. Variance and
Random are also not significantly different from each
other at T � 100. All other pairwise differences are sig-
nificant at T � 100. The drop in the curve for Equal al-
location policy as the sample size approaches 80 oc-
curs as each arm is sampled exactly once.

Figure 1 provides two key insights. First, all EVI-
based allocation policies that model correlation
perform well, and performance improves with higher
correlation. Second, all other allocation policies per-
form less well. ESPB, an EVI-based policy that as-
sumes independence across arms, performs poorly
when correlation is present, as do Equal and Random,
which use roughly balanced sampling. For example,
cPDE needs 20 observations to obtain the same
amount of information as is acquired by ESPB with
100+ observations. Variance’s focus on estimation,
through minimization of the posterior variance of all
unknown means, also yields poorer performance.

7.3. Do the New Stopping Times Improve the
Total Value of the Trial?

Section 7.2 showed that EVI-based indices that
account for correlation perform well when used in al-
location policies. We now address whether cPDE or
its variations work well as stopping times, with an
ability to effectively balance the expected value of in-
formation with the cost of sampling, to improve the
total value of the trial in (5). For the special case of
two arms, (a) the cPDELower, cPDE, and cPDEUpper
stopping times are equivalent, and (b) these adaptive
stopping times are optimal for the special case of two
arm trials with patients allocated in pairs to those
arms (Chick et al. 2017). In particular, the use of
cPDE-type stopping times results in a higher expected
reward than that does any fixed sample size policy in
such cases.

For multiarm trials, however, it may be that a fixed
length trial design (with stopping time Tfix) with
response-adaptive sampling can provide a larger ex-
pected reward than does a design with a stopping
time that looks at the EVI of future sampling from
one arm (such as cKG-type or cPDE-type stopping
times). This would occur if value of adaptively sam-
pling from multiple arms can outweigh the benefit of
optimal sampling with adaptive look ahead from one
arm.

7.3.1. Experimental Setup. The experimental setup is
the same as in the preceding section, with a popula-
tion of P � 106 patients and the relatively lower level
of correlation, ζ � 100=(80− 1)2, in (25). These parame-
ters obtain average sample sizes of 100–200 for most
policies, which is not atypical for a preliminary phase
II dose-finding trial (Huang et al. 2015).

7.3.2. Numerical Comparison. Table 1 presents Monte
Carlo estimates of E[T], E[OC], and E[TC] for policies
that combine cKG-type and cPDE-type indices and
four fixed length policies. The Fixed stopping time
with sample size 200 approximates the average sam-
ple size of the adaptive policy with the lowest E[TC]
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in this experiment, the cPDELower-cPDEUpper poli-
cy. Similarly, the Fixed stopping times with sample
sizes 130 and 150 approximate the average sample
sizes of the cPDE stopping time for each allocation in-
dex. The Fixed stopping time with sample size of 493
is found by optimizing VcKG1−Tfix(µ0,R0) over policies
with fixed sample size Tfix ∈ [1, 10,000] and the cKG1
allocation policy (using Monte Carlo). For each alloca-
tion policy, we order stopping times by E[TC]. Results
with ζ � 16=(80− 1)2 are similar to those reported here
and lead to the same qualitative conclusions (data not
shown). Although we did not test cPDE allocation be-
cause it requires orders of magnitude more CPU time
to compute than do the cKG1 and cPDELower alloca-
tion policies, the heuristic presented in Online Appen-
dix C.3 allows us to speed up computation of the
cPDE stopping time to more easily assess it here.

Although the standard errors for individual policies
in Table 1 may seem large, our use of CRN reduces the
standard errors of differences between pairs of policies.
The E[TC] values for the cKG1 -200, cKG1 -cPDEUpper,

cPDELower-cPDEUpper, and cKG1 -cPDE policies are
not statistically different from each other. The other
policies perform significantly worse than the best five
(95% CI).

The first, and perhaps most important, observation
from Table 1 for this experiment with 80 arms is that
there is clearly a benefit from optimizing a fixed stop-
ping time with an adaptive allocation policy (here
with cKG1 and Tfix � 493), rather than using a cPDE-
type or cKG-type stopping time, to reduce E[TC].
Thus, an adaptive sample size based on optimal
adaptive look ahead from only one arm at a time is in-
sufficient in this multiarm context, even though it is
optimal (up to a diffusion approximation) for the two-
arm contexts noted.

This result suggests a new stopping time; at each
time t, one checks if there is a fixed number of addi-
tional observations, τ, such that the value of continu-
ing to sample is positive. Namely, one continues to
sample beyond time t if there is a τ ≥ 1 such that
VcKG1−τ(µt,Rt) > 0, and one stops otherwise. Similar

Figure 1. (Color online) Log of the Expected Opportunity Cost, E[OC], for Several Policies with a Fixed Stopping Time for ζ �
100=(80− 1)2 (Left Panel) and ζ � 16=(80− 1)2 (Right Panel), with P � 106

Table 1. The Expected Sample Size, E[T]; the Expected Opportunity Cost, E[OC]; and the Expected Total Cost, E[TC], for
Several Policies

Allocation Stopping E[T] S.E. E[OC] S.E. E[TC] S.E. P(CS) CPU

cKG1 Fixed-493 493.00 0.00 316.16 59.20 809.16 59.20 0.94 4.78
cKG1 Fixed-200 200.00 0.00 860.05 64.93 1,060.05 64.93 0.89 2.88
cKG1 cPDEUpper 201.53 4.81 970.52 101.48 1,172.05 101.41 0.92 43.21
cKG1 cPDE 129.01 2.49 1,209.29 107.88 1,338.30 107.84 0.89 105.67
cKG1 Fixed-130 130.00 0.00 1,481.04 118.90 1,611.04 118.90 0.85 2.50
cKG1 cPDELower 105.80 2.78 1,679.28 162.51 1,785.07 162.40 0.87 20.66
cKG1 cKG∗ 44.57 1.67 4,055.20 435.52 4,099.70 435.50 0.76 8.38
cPDELower cPDEUpper 205.27 4.89 863.78 88.44 1,069.05 88.45 0.91 154.12
cPDELower cPDE 150.06 3.10 1,022.07 91.65 1,172.13 91.64 0.89 309.70
cPDELower Fixed-200 200.00 0.00 1,182.68 116.86 1,382.68 116.86 0.87 118.61
cPDELower cPDELower 111.59 2.72 1,570.55 141.91 1,682.14 141.85 0.87 82.73
cPDELower Fixed-150 150.00 0.00 1,592.77 190.85 1,742.77 190.85 0.85 89.39
cPDELower cKG∗ 58.77 2.31 2,835.05 301.35 2,893.81 301.20 0.79 49.58
Variance Fixed-200 200.00 0.00 7,387.00 598.42 7,587.00 598.42 0.66 0.11
Variance Fixed-150 150.00 0.00 8,212.30 670.81 8,362.30 670.81 0.66 0.10

Note. Also shown are the standard error (S.E.) of the Monte Carlo estimate of those quantities, the probability of correct selection, P(CS), and
average CPU time (seconds per simulated trial).

Chick, Gans, and Yapar: Bayesian Sequential Learning for Correlated Interventions
Management Science, Articles in Advance, pp. 1–20, © 2021 The Author(s) 13



stopping times would check if V cPDE−τ(µt,Rt) > 0 or
V cPDELower−τ(µt,Rt) > 0 for each t but may require
more CPU time to compute.

A further exploration of such new adaptive stop-
ping times is an area for future research and beyond
the scope of this paper. However, Table 1 provides
some additional observations, which might inform
further work. First, as with Section 7.2, there is clearly
a benefit to use an adaptive allocation policy that
seeks to optimize (e.g., cKG1 , cPDELower) as opposed
to estimate (e.g., Variance), for a given stopping time.

Second, for each adaptive stopping time tested
here, the cPDELower allocation policy was more
effective than the cKG1 allocation policy. Thus, the
cPDELower allocation policy may be useful when an
adaptive stopping time is used. The cKG1 allocation
policy is much faster to compute and was therefore
more practical to assess empirically here.

Third, we compare the best of the policies with adap-
tive sample sizes with the best of the policies with a
similar fixed sample size. Specifically, cPDELower-
cPDEUpper has an average sample size (E[T] ≈ 205)
similar to that of cKG1 -200. We note that cPDELower-
cPDEUpper has a very similar expected total cost to
cKG1 -200 (1, 069 > 1, 060) and a (statistically significant-
ly) better P(CS) (0:912 > 0:887), even though value-
based heuristics seek to optimize E[TC] rather than
P(CS). Similarly, cPDELower-cPDE has a better E[TC]
and P(CS) than cPDELower-150 (1, 172 < 1, 742 and
0:895 > 0:851), and cKG1 -cPDE has a better E[TC] and
P(CS) than cKG1 -130 (1338 < 1611 and 0:893 > 0:850).
Thus, a response adaptive sample size may be valuable
relative to trials with fixed sample sizes, for E[TC],
E[OC], and P(CS), for a given expected sample size.

In summary, there is value in allowing stopping
times to be response adaptive. The results indicate
that there is more value in finding a stopping time
with optimal fixed look ahead in a way that allows for
multiple arms to be response adaptively sampled,
when compared with (a) optimal adaptive look ahead
that allows for sampling from only one arm or (b) op-
timal fixed look ahead with multiple arms allocated to
improve response estimation rather than response
optimization. These comments assume that one is con-
fident that the prior distribution is specified well.

7.4. How to Pragmatically Choose a Prior
Distribution for a Dose-Finding Trial?

Section 7.3 made numerical assessments for synthetic
experiments under the assumption that the problem
configurations were sampled from the trial manager’s
prior distribution. In theory, the trial manager’s beliefs
about the unknown mean rewards should determine
the prior. In practice, a trial designer may seek reas-
surance about selecting a prior for the unknown mean

rewards so that it is robust to the risk of misspecifica-
tion, as discussed in Section 6.2.

This section explores pragmatic ways to specify a
prior distribution that has “good” results when
applied to a representative phase II/III dose-finding
trial. Our experiments illustrate how to apply our pro-
posed trial design and are not intended to make clini-
cal recommendations.

7.4.1. Experimental Setup. Here, we presume that arm
1 is a control, with a dose of zero. We then have arms 2,
3, … , 17 that represent 16 positive dose levels, with
doses proportional to 2(i−1)=2, so that doses are evenly
spaced on a log scale. It is known that health benefits
may increase in effectiveness as effective levels are
achieved and then may decrease as toxic levels are
achieved (Dimmitt et al. 2017). Such effectiveness bene-
fits and toxicity levels are often described individually
with logistic curves (Gadagkar and Call 2015), and we
use logistic curves here for illustrative purposes.

Specifically, we assume the ground truth for arm
17, with dose level 2(17−1)=2 � 256, corresponds to the
maximum dose identified from a previously con-
ducted phase I/IIa dose-ranging trial. Such trials
study safety and tolerability (Berry et al. 2002, Born-
kamp et al. 2007). We may use such dose-ranging data
to guide our simulated seamless phase II/III dose-
finding trial. For that trial, observations are simulated
according to a ground truth that is unknown to the
modeler. For the unknown ground truth, we assume
that the true ED50 (dose level effective for 50% of pa-
tients) is four, so that the maximum dose tested is
28−4 � 16 times stronger than the ED50 dose. We then
compute the difference of those logistic functions,
with assumed parameters so that toxicity effects of
particularly high doses result in deleterious outcomes:

θi � 4500
1+ exp [−2 × ((i− 1)=2− 4)]
− 7000
1+ exp [−1:5 × ((i− 1)=2− 8)] :

We assume the unknown true sampling standard de-
viation is

���
λi

√ �US$4240 for all i. We set the popula-
tion size to be P � 2 × 105, and we assume Ii �US$0
and ci �US$8500 for all i. The true optimal of these
dose levels is then arm 12, which has health benefit

4500
1+exp [−2×((12−1)=2−4)] ≈ 4286, which is 4286=4500 ≈ 95%
of the maximum effective benefit. Although this mod-
el can be further refined for applications, its structure
is appropriate for generating relevant insights.

7.4.2. Simulated Pilot Study. We use the empirical
Bayes approach of Section 6.2 to obtain the GPR prior
distribution based on simulated pilot study data. We

Chick, Gans, and Yapar: Bayesian Sequential Learning for Correlated Interventions
14 Management Science, Articles in Advance, pp. 1–20, © 2021 The Author(s)



then run our seamless phase II/III dose-finding trial
to maximize (5).

To develop the GPR prior, we chose the set M0 of
arms to sample during the simulated pilot study to be
the control (dose level 0) and four other doses (2.0, 4.0,
6.0, and 8.0). One replication of a simulated pilot
study was generated by 10 initial observations each
from the assumed ground truth for the control (dose
level 0) and the four other doses (2.0, 4.0, 6.0, and 8.0).
We then derive the two manipulations of that prior,
the Robust and Tilted priors of Section 6.2.

Figure 2 depicts the GPR estimate from a represen-
tative simulated pilot study (left panel), along with its
associated Robust prior (center panel) and Tilted prior
(right panel). Here, we set zα � 0:5. In each panel, the
horizontal axis shows the dose levels of the arms, and
the vertical axis shows the dollar value of the mean re-
sponse. The dashed lines represent the prior means,
μ0
i , and the gray bands surrounding the means dis-

play a confidence band that is61 sqrt(Σ0
i,i) wide.

To estimate the effectiveness of our policies for
phase II/III dose-finding trials with these priors, we
use the ground truth, θi, to simulate 1,000 sets of pilot
study data. For each set of pilot data, we compute its
GPR estimate and obtain each realized prior distribu-
tion (GPR, Robust, and Tilted). We then compute each
policy ’s performance characteristics for each prior by
averaging over simulated pilots and trials. We use
CRN to sharpen comparisons among policies.

7.4.3. Results. Table 2 summarizes a subset of results.
The table lists policies with the lowest E[TC] first for a
given prior distribution, so that the best policies ap-
pear first for a given prior. We do not display results
with the cKG∗ stopping time as results were poor in
comparison with other stopping times. As in Section
7.3, we assessed certain fixed sample sizes with adap-
tive allocations. The optimal τ to minimize E[TC] over
cKG1 -τ policies depends upon the prior distribution.
Thus, the Fixed sample size reported in Table 2 differs

for the GPR, Robust, and Tilted priors. The average
E[TC] values for the GPR and Tilted priors are dis-
played in Figure 3, which shows the expected cost of
sampling, E[OC], and E[TC] as a function of the sam-
ple size (averaged over 4,000 random pilot studies).
Note that E[TC] is relatively flat near the optimal fixed
sample size, so minor variation in the optimal τ for a
given prior is not likely to drastically change results.

Our first observation is that most insights from Sec-
tion 7.3 apply here as well. For example, response
adaptive stopping rules with a fixed sample size cho-
sen to optimize VcKG1−τ performed best for each of the
three prior distributions tested. We found two differ-
ences from the insights of Section 7.3. The first is that
the cPDE stopping time tended to be as good or better
than the cPDEUpper stopping time. The second is that
the Variance allocation policy performed relatively
better here, as compared with expectations from Sec-
tion 7.3, although adaptive allocation policies still per-
form best. These mild deviations might be explained
because Section 7.3 averaged results over randomly
sampled dose-response curves, whereas this section
assumes a single underlying ground truth that is rep-
resentative of a single unimodal dose-response curve.

Our second observation is that the Robust and Tilted
priors provided an effective reduction in E[TC] for each
given policy in Table 2. For example, the E[TC] with
cKG1 -cPDE is approximately 1:96 × 107 with the Ro-
bust and Tilted priors and is 2:47 × 107 with the GPR
prior, a 20% decrease in expected total cost. Similar re-
sults were obtained with fixed stopping times, such as
for cKG1 -1,100 and cPDELower-1,100 (data not shown).
We also observed that the Tilted prior was best at
encouraging lower doses to be tested initially more
frequently than did the Robust prior, which in turn, fa-
vored lower initial doses more than the GPR prior, as
expected, for all policies with adaptive allocation poli-
cies (data not shown).

In summary, the Robust and Tilted priors, which
were manipulations of a GPR prior estimated from pi-
lot data, resulted in a higher expected reward (lower

Figure 2. Actual Dose-Response Curve, θ, Together with the GPR Estimate fromOne Simulated Pilot Study (Left Panel) as well
as Its Associated Robust Prior (Center Panel) and Tilted Prior (Right Panel)
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E[TC]) in this example with a representative dose-
response curve. These results suggest that the Robust
or Tilted priors may be useful manipulations, along
with an adaptive allocation policy and fixed stopping
time τ optimized to maximize the value of that alloca-
tion policy. Here, we chose τ to optimize the predicted
expected value of a cKG1 -τ policy for reasons of com-
putational speed in computing rewards. Future work
would include assessing whether optimizing τ for the
cPDELower-τ policy or whether using the response
adaptive stopping times suggested in Section 7.3
might further improve rewards.

8. Additional Considerations for Clinical
Trial Applications

This section discusses some important practical con-
siderations for clinical trials. In many trials, there are

delays between treatment initiation and the time at
which outcomes are observed. Section 8.1 proposes
approaches to handle such delayed observations. Sec-
tion 8.2 describes practical ways to manage randomi-
zation, an important technique to manage bias or con-
founding (Piantadosi 1997). Section 8.3 notes that our
proposed allocation policies also apply to trials with
normally distributed observations, even if QALY data
are not available. Online Appendix D addresses the
evaluation of frequentist power curves and issues to
further enhance the framework for clinical trials.

8.1. Delay Between Treatment Initiation and
Observation of Outcome

We have assumed so far that each patient’s outcome
is observed before the next patient arrives. Although
many trials satisfy this property (Flight et al. 2017),

Table 2. The Expected Sample Size, E[T]; the Expected Opportunity Cost, E[OC]; and the Expected Total Cost, E[TC], for
Several Policies Using the Gaussian Process Regression Prior, Robust Prior, and Tilted Prior Distribution

Prior Allocation Stopping E[T] S.E. E[OC] S.E. E[TC] S.E. P(CS)

GPR cKG1 Fixed-1,060 1,060.0 0.0 1.12E+07 1.85E+06 2.02E+07 1.85E+06 0.52
GPR cPDELower Fixed-1,060 1,060.0 0.0 1.14E+07 1.88E+06 2.04E+07 1.88E+06 0.51
GPR Variance Fixed-1,060 1,060.0 0.0 1.41E+07 1.57E+06 2.31E+07 1.57E+06 0.55
GPR cKG1 cPDE 541.4 12.8 2.01E+07 3.09E+06 2.47E+07 3.07E+06 0.54
GPR cKG1 cPDEUpper 1,104.8 25.1 1.60E+07 2.69E+06 2.54E+07 2.67E+06 0.51
GPR cPDELower cPDEUpper 1,081.6 24.5 1.66E+07 2.76E+06 2.58E+07 2.73E+06 0.51
GPR cPDELower cPDE 601.5 15.7 2.10E+07 3.19E+06 2.61E+07 3.18E+06 0.51
Robust cKG1 Fixed-565 565.0 0.0 1.11E+07 1.65E+06 1.59E+07 1.65E+06 0.46
Robust cPDELower Fixed-565 565.0 0.0 1.29E+07 1.87E+06 1.77E+07 1.87E+06 0.45
Robust cKG1 cPDE 689.3 15.1 1.38E+07 2.38E+06 1.96E+07 2.37E+06 0.49
Robust Variance Fixed-565 565.0 0.0 1.72E+07 1.72E+06 2.20E+07 1.72E+06 0.52
Robust cPDELower cPDE 825.3 20.0 1.54E+07 2.61E+06 2.25E+07 2.59E+06 0.49
Robust cKG1 cPDEUpper 1,202.1 27.6 1.29E+07 2.23E+06 2.31E+07 2.21E+06 0.45
Robust cPDELower cPDEUpper 1,158.4 26.7 1.33E+07 2.32E+06 2.32E+07 2.29E+06 0.46
Tilted cKG1 Fixed-595 595.0 0.0 0.95E+07 1.33E+06 1.46E+07 1.33E+06 0.46
Tilted cPDELower Fixed-595 595.0 0.0 1.24E+07 1.87E+06 1.75E+07 1.87E+06 0.44
Tilted cKG1 cPDE 684.6 15.1 1.38E+07 2.38E+06 1.96E+07 2.37E+06 0.48
Tilted Variance Fixed-595 595.0 0.0 1.61E+07 1.57E+06 2.12E+07 1.57E+06 0.52
Tilted cKG1 cPDEUpper 1,207.4 27.7 1.13E+07 2.04E+06 2.15E+07 2.02E+06 0.45
Tilted cPDELower cPDE 835.3 19.7 1.57E+07 2.60E+06 2.28E+07 2.58E+06 0.45
Tilted cPDELower cPDEUpper 1,168.0 25.9 1.36E+07 2.38E+06 2.36E+07 2.35E+06 0.45

Note. Also shown are the standard error (S.E.) of theMonte Carlo estimate of those quantities and the probability of correct selection, P(CS).

Figure 3. (Color online) The Expected Opportunity Cost, E[OC]; the Expected Total Cost, E[TC]; and the Expected Sampling
Cost, E[SC], with cKG1 Allocation Index and Fixed Stopping Rule, as a Function of Sample Size for Dose-Response Application
in Section 7.4 (for GPR Prior in the Left Panel and for Tilted Prior in the Right Panel)
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many trials do not. For the case of two-armed trials
with a protocol that specifies a fixed duration delay,
Chick et al. (2017) solve for fully sequential stopping
times with correlated arms by randomizing patients
in pairs. For multiarm trials with delayed observa-
tions, randomizing M patients to all M arms may be
inefficient.

ForM > 2 arms, we propose a simple heuristic to ac-
count for delays based on batch allocations. Suppose
there are Bt “pipeline” patients whose treatment has
started but whose outcomes are not yet observed at
time t. One can approximate the EVI of an allocation
for Bt + 1 patients, given (µt,Rt) and the existing as-
signment for the Bt “pipeline” patients, with related
Bayesian ranking and selection techniques with batch
allocation policies based on EVI-type criteria. This en-
tails the assessment of M approximations for the EVI
of those M ways of assigning an arm to the Bt+1 st pa-
tient. There are several approximations available for
mean rewards of correlated arms (Chick and Inoue
2001, Fu et al. 2007, Wu and Frazier 2016). Experi-
ments in those papers suggest this approach may be
useful and effective in our context, at a loss of the ben-
efit of adaptive look ahead.

8.2. Randomized Allocation Policies and Their
Asymptotic Properties

The base models for cPDE-type and cKG1 allocation
policies do not randomize. We present three ways to
introduce randomization in our framework and then
comment on how such randomization might help ad-
dress statistical issues of confounding.

Our first type of randomized allocation adapts an idea
of Williamson et al. (2017) for two-armed trials with
Bernoulli outcomes. Instead of action i representing
the choice of arm i, we let it represent a probabilistic
assignment, which favors but does not always choose
arm i. Specifically, at each time t, we allocate to each
arm via random draw with probability p=M, and with
additional probability (1− p), we allocate to an arm
with the maximal allocation index, with ties for the
maximizer broken randomly. These randomized ver-
sions of our cPDE family of allocation policies possess
the desirable asymptotic consistency properties estab-
lished for their nonrandomized analogues.

Corollary 2. The consistency results stated in Theorem 1
also hold for the randomized versions of the cPDE, cPDE-
Lower, and cPDEUpper allocation policies.

Our second type of randomized allocation is motivated
by top-two value-sampling (TTVS) allocation (Russo
2020). TTVS adaptively and randomly allocates
among the two arms that have the highest expected
value of perfect information for each t. TTVS does not
consider the cost of sampling, which would be infinite
to obtain perfect information. Instead, we implement

TTVS for cPDE-type indices that account for sampling
costs and allow them to differ across arms by sam-
pling the arm with the largest allocation index with
probability 1− p and the arm with second largest in-
dex with probability p. The resulting allocation
policies also inherit the asymptotic convergence prop-
erties of Corollary 2. (See Online Appendix B.11.)
Here, we denote by TTVS-Lower the allocation policy
that uses TTVS randomization for the cPDELower al-
location index.

Figure 4 compares the performance of a random-
ized cPDELower allocation policy for p � 0, 0.2, and
0.4 against the Equal, Random, Variance, and TTVS-
Lower (for p � 0.2 and 0.4) allocation policies, all with
the Fixed stopping time. It is based on the same prob-
lem setup as that in Figure 1 in Section 7.2, and the
key features of two graphs are also the same. Figure 4
shows that the performance of the randomized cPDE-
Lower allocation policy is not strongly impaired when
an arm is randomly selected with p ∈ {0:2, 0:4}. Ran-
domized cPDELower (p � 0.2) required approximately
25%–30% more observations than cPDELower to
achieve similar levels of log(E[OC]). Results for the
randomized cPDEUpper and cKG∗ allocation policies
are similar to those for the randomized cPDELower
allocation. For a given randomization probability, p,
results for the randomized TTVS-Lower are even less
impaired than is the case for randomized cPDELower.
Randomized TTVS-Lower (p � 0.2) required approxi-
mately 7%–15% more observations than cPDELower
to achieve similar levels of log(E[OC]). This is because
the randomized arm selected with TTVS-Lower is the
second most informative arm, whereas randomization
with cPDELower can pick any arm. Thus, randomiza-
tion maintains asymptotic consistency and can work
well with small sample sizes.

A third type of randomized allocation selects a batch of
treatments for randomization across a batch of pa-
tients. For example, the cKGτ allocation of XFC can be
used to force an allocation of two arms to two patients
at a time. To randomize q ≥ 2 arms to q patients at a
time, one can adapt the techniques mentioned in Sec-
tion 8.1 for delays, which allows for allocation of arms
in batches.

These three randomization techniques can be
adapted to help balance covariates, addressing some
issues of bias or confounding (Piantadosi 1997). For
example, in the first model one can reserve some frac-
tion of the randomization probability to allocate with
probabilities that are proportional to those for known
randomization techniques, such as propensity score
methods (PSMs), to achieve desired balance (Rosenbaum
and Rubin 1983, Li and Li 2019). The randomization
probability p < 1 can be spread flexibly over the M arms
and vary over t. A sufficient condition for convergence
to hold is that the pit with

∑M
j�1pjt � p are chosen to fulfill
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part (iii) of Assumption 1. Alternatively, if a batch of q
arms is to be allocated to a batch of patients (third type
of randomization), one can allocate them to help ad-
dress bias using PSM or group-sequential techniques
(Villar et al. 2018). Or, one might adapt TTVS by ran-
domizing arms to q patients with probability roughly
proportional to the EVSI per unit sampling cost,
ν∗i + 1+ ε, for some small ε > 0, a regret-weighted vari-
ation on Thompson sampling (Russo 2020). Such is-
sues of potential confounding are applicable to adap-
tive trials more broadly (Berry 2011, Lipsky and
Greenland 2011), and a study of how results for those
other trials apply to our proposal is an area for future
research.

8.3. Trials with Real-Valued Outcomes but With-
out QALY Information

Our proposed allocation policies can be applied to
other clinical trials with real-valued outcomes, even if
cost and QALYs are not observed, if they can be mod-
eled by a normal distribution. This can be done by set-
ting 1CE � 0 in (1). Our allocation policies would then
seek to minimize for any modeler-specified stopping
rule, such as a traditional fixed sample size, the E[OC]
from the trial. The numerical results for allocation pol-
icies in Section 7.2 therefore are relevant to nonvalue-
based trials with other such real-valued outcomes.
Settings where health outcomes cannot be converted
to monetary values would seem to prevent the appli-
cation of our value-based stopping rules.

9. Discussion and Conclusions
This paper responds to calls from regulators and fun-
ders of clinical trials that seek innovative, efficient trial
designs (EU 2014, FDA 2016, Hudson et al. 2016, EMA
2017, NHS England 2017, NIHR 2020). It formulates a
novel Bayesian, decision-theoretic model for fully se-
quential sampling for adaptive multiarm clinical trials
with correlated mean rewards. It adopts a value-based
framework to help answer the following questions:

When beliefs regarding mean outcomes from arms are
correlated, to which arms should patients be allocated
as the trial evolves? When should one stop patient re-
cruitment in an adaptive, value-based trial and imple-
ment the selected arm?

We provided structural results that characterize the
optimal solution for such fully sequential, value-based
trials with multiple correlated arms. We constructed
the cPDE index, a heuristic approximation of the opti-
mal EVI of optimal sampling, which combines the
benefits of modeling correlation and optimal stopping
times for valuing additional information. The cPDE
and associated allocation policies possess asymptotic
convergence and strong empirical performance.

It is known that cPDE-type policies are optimal
adaptive stopping times when allocating patient pairs to
two arms (Chick et al. 2017). It is also known that allo-
cation policies that are based on the EVI of further sam-
pling from one arm can be very effective (Frazier et al.
2009, Russo 2020, this paper). Section 7 suggests that,
for multiarm trials such as dose-finding trials, optimal
stopping requires evaluating the EVI of potential fur-
ther adaptive sampling from multiple arms over mul-
tiple steps. Also, the cKG1 or cPDELower allocation,
with a dynamically optimized sample size, and a ma-
nipulated prior distribution have desirable perfor-
mance in our numerical experiments. The present
work extends past KG work by accounting for
practical issues in multiarm trials such as delayed ob-
servations, randomization, stopping times, and the
development of practical methods for constructing a
prior distribution based on pilot study data. It also
contributes to an understanding of potential future
developments for multistep adaptive look ahead stop-
ping times that balance the cost of learning and the ex-
pected benefits of that learning.

The types of trials handled by our base model are
those for which the outcomes are observed quickly af-
ter treatment initiation, whose data allow for cost-
benefit information to be accumulated during the trial,
and which take a social planner’s perspective. We

Figure 4. (Color online) Log of the Expected Opportunity Cost, E[OC], for Several Policies with a Fixed Stopping Time for P �
106 (Left Panel) and P � 108 (Right Panel)
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extend our base model to account for randomization
and provide a heuristic to handle short to intermediate
delays in observing outcomes. The online companion
presents theory and practical implementation details.
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