
e-companion to Chick, Gans and Yapar: Sequential Learning for Trials of Multiple Correlated Arms ec1

Online Companion: Appendices
Appendix A summarizes notation. Appendix B provides proofs for mathematical claims in the main paper.

Appendix C describes the implementation issues related to our new indices. Appendix D comments on further

practical issues for multi-arm highly adaptive trials and related research questions.

Appendix A: Summary of Principal Notation from the Main Paper.

Table EC.1 summarizes the principal notation in the manuscript.

Table EC.1 Principal Notation.

Symbol Definition

M Number of arms
M The set of arms, {1,2, . . . ,M}
ci Marginal cost of sampling from arm i during the trial
P Adopting population size (number of patients affected by the implementation decision)
Ii One-time cost of implementing arm i at the end of the trial
t= 0,1, . . . Time index; number of patients from whom a sample has been observed
T The time at which the trial is stopped to select an arm
Ti, Ti,l Stopping times used by the adaptive lookahead policies to compute indices
Y t
i Random reward obtained from arm i observed at time t= 1,2, . . .
θi Unknown mean for the reward of arm i
θ Column vector (M × 1) of unknown means
λi Known sampling variance for the reward of arm i
Λ Diagonal matrix (M ×M) of sampling variances
µ0 Mean vector (M × 1) of the prior distribution for θ
Σ0 Variance-covariance matrix (M ×M) of the prior distribution for θ
µt Posterior mean vector of θ given t= 0,1, . . . samples have been observed
Σt Posterior variance-covariance matrix of θ given t= 0,1, . . . samples have been observed
µti Posterior mean for arm i at time t
Σt
i,j Posterior covariance between arms i and j at time t

ut Action chosen at time after t= 0,1, . . . samples have been observed
U The set of available actions
D Arm selected for implementation at the stopping time T
π A policy that gives a sequence {u0, u1, . . .}, a stopping time T , and an arm D
Π The set of all nonanticipating policies
∆∈ (0,1] Discount factor

Appendix B: Mathematical Results

B.1. Proof of Prop. 1

We begin by noting that we can replace E
[
Y T+1
D

∣∣µT ,ΣT
]

in (2) with θD: E
[
Y T+1
D

∣∣µT ,ΣT
]

=

E
[
E
[
Y T+1
D

∣∣θD] ∣∣µT ,ΣT
]

=E
[
θD
∣∣µT ,ΣT

]
, and Eπ

[
E
[
θD
∣∣µT ,ΣT

] ∣∣µ0,Σ0
]

=Eπ
[
θD
∣∣µ0,Σ0

]
.

We can then characterize the value function of the optimal policy, V ∗, using Bellman’s equation. To

that end, we first define the expected net reward of selecting the best arm for implementation, given per-

fect information about the means, to be E
[
maxj∈M {Pθj − Ij}

∣∣µ0,Σ0
]
. This term does not depend on

the policy adopted. To link this expected value with the value function of a given policy, V π(µ0,Σ0), we
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define the opportunity cost of selecting a potentially suboptimal arm D to be LD = maxj∈M {Pθj − Ij} −
∆T (PθD − ID). Then, the value function in (2) can be rewritten as

V π(µ0,Σ0) = E
[

max
j∈M
{Pθj − Ij}

∣∣∣∣ µ0,Σ0

]
− Eπ

[
T−1∑
t=0

∆tcut + LD

∣∣∣∣∣ µ0,Σ0

]
. (EC.1)

Again note that E
[
maxj∈M {Pθj − Ij}

∣∣µ0,Σ0
]

does not depend on the policy π, and the expecta-

tion is finite independent of ∆ ∈ (0,1]. Therefore, V π(µ0,Σ0) can be maximized by minimizing the

second expectation, Eπ
[∑T−1

t=0 ∆tcut + LD

∣∣∣ µ0,Σ0
]
. Let Kπ =

∑T−1
t=0 ∆tcut be the discounted sam-

pling cost, and Lπ = LD be the expected opportunity cost. We can rewrite the second expectation:

Eπ
[∑T−1

t=0 ∆tcut + LD

∣∣∣ µ0,Σ0
]

=Eπ
[
Kπ + Lπ

∣∣µ0,Σ0
]
. Since our problem is infinite horizon, and Kπ and

Lπ are non-negative by definition, the (P) property of Bertsekas and Shreve (1978), chapter 9, is satisfied for

the minimization of Eπ
[
Kπ + Lπ

∣∣µ0,Σ0
]
. Minimizing Eπ

[
Kπ + Lπ

∣∣µ0,Σ0
]

is equivalent to maximizing

V π(µ0,Σ0) (as shown for the case of two arms in the proofs of Prop. 2 and 3 of Chick et al. 2017).

Prop. 9.1 of Bertsekas and Shreve (1978) shows that, given (P), an additional dependence of the state

evolution on the past cannot bring additional expected reward and justifies our restriction of the policy set

to Markov policies. Prop. 9.8 of Bertsekas and Shreve (1978) shows that the optimal policy in (3) satisfies

Bellman’s recursion,

V ∗(µt,Σt) = max

{
max
j∈M
−cj + ∆E

[
V ∗(µt+1,Σt+1)

∣∣ µt,Σt
]
, max
j∈M

E
[
Pθj − Ij

∣∣µt,Σt
]}

, (EC.2)

and given the optimality of Markov policies maxj∈ME
[
Pθj − Ij

∣∣µt,Σt
]

= maxj∈M
{
Pµtj − Ij

}
. �

B.2. Proof of Prop. 2, Discussion on the Impact of Patient Pool Size and Fixed Costs

Note that this proposition allows for any value of ∆∈ (0,1]. First, we rewrite (12) using (9)

V ∗i (µt,Σt, ci, P,I,∆) = sup
πi

Eπi

[
Ti−1∑
r=0

−∆rci + ∆Ti max
j∈M

{
P

(
µtj +

Σt
i,j

Σt
i,i

ZTii

)
− Ij

} ∣∣∣∣µt,Σt

]
. (EC.3)

Second, we rearrange terms to obtain

V ∗i (µt,Σt, ci, P,I,∆) = P ×

{
sup
πi

Eπi

[
Ti−1∑
r=0

−∆r ci
P

+ ∆Ti max
j∈M

{
µtj +

Σt
i,j

Σt
i,i

ZTii −
Ij
P

} ∣∣∣∣µt,Σt

]}
(EC.4)

= P ×

{
sup
πi

Eπi

[
Ti−1∑
r=0

−∆r ci
P

+ ∆Ti max
j∈M

{(
µtj −

Ij
P

)
+

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣µt,Σt

]}
(EC.5)

= P ×V ∗i
(
µt− I

P
,Σt,

ci
P
,1, [0,0, . . . ,0],∆

)
. �

We note that the cost per sample is effectively smaller when P > 1, since the sampling cost is now divided

across the adopting population. In Chick et al. (2019), we observed that correlation affects the optimal

stopping boundary through division of the sampling cost by b(2)−b(1). Let c̃i = ci/(b(2)−b(1)) be the effective

sampling cost. We showed in Chick et al. (2019) that when c̃i < ci, it is optimal to stop later than in

the independent case. We see that P > 1 similarly implies a decrease in effective sampling cost, ci/P < ci.

Therefore, as P increases, the continuation region enlarges, and it is optimal to stop later.

We also observe that the fixed implementation cost of an arm impacts the problem through the expected

reward of that arm. When Ij > 0 for arm j, the mean reward of j decreases by Ij/P . In other words,

the individual level benefit of arm j decreases, and the amount of decrease equals to the fixed cost of

implementation per person.
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B.3. Proof of Prop. 3

Williams (1991) defines two conditions for Zτi to be an uniformly integrable (UI) martingale: (i) Zτi is a

martingale, and (ii) {Zτi : τ ∈Z+} is a UI family. Condition (i) holds because (10) implies E[Zτ+1
i |µτi ] = 0. To

show that condition (ii) holds, it is sufficient to prove that Zτi is bounded in Lp, for some constant K <∞;

that is E[|Zτi |p] < K, for some p > 0 and for all t (Williams 1991). We pick p = 2, and we will show that

E[|Zτi |2]<Σt
i,i for all τ . For any normal random variable Z ∼N (µ,σ2), E[|Z|2] = E[Z2] = σ2 +µ2. Using the

distribution of Zτi given in (10), E[|Zτi |2] = E[(Zτi )
2
] = σ2

Zτ
i

= λiτ

nt
i(nti+τ)

= λi

nt
i(nti/τ+1)

. As τ →∞, σ2
Zτ
i

increases

and converges to Σt
i,i. Then, for any τ , E[|Zτi |2] = σ2

Zτ
i
<Σt

i,i <∞.

For the second part of the lemma, let T be a stopping time for Zτi . Using the optional stopping theorem

for UI martingales (Williams 1991), we can show that ET [ZTi |µt,Σt] = 0. �

B.4. Proof of Theorem 1

Our approach to Theorem 1 takes advantage of the machinery used to prove Theorem 1 of Xie et al. (2016)

(called XFC below), which demonstrates the consistency of cKG-style allocation policies. Our approach

bounds ν∗i (µt,Σt) below and above with the EVI’s of related cKG policies, follows the proof arguments

in XFC to demonstrate that limiting properties of the bounding policies follow those in XFC, and finally

demonstrates that these desired properties carry over from the bounding policies to cPDE itself.

Lower and upper bounds for cPDE allocation index. We can bound ν∗i (µt,Σt) below and above with

the EVI of two variants of the cKGτ policy defined in (23). In these modified policies one pays for exactly

one sample but can use the information from τ ≥ 1 samples, where τ is fixed a priori, and we call the policies

cKG1:τ . As with ν∗i (µt,Σt) we normalize sampling costs by dividing bi ci:

νcKG1:τ
i (µt,Σt) = −1 +

1

ci
E
[
max
j

{
µtj +

Σt
i,j

Σt
i,i

Zτi

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj} (EC.6)

= −1 +
1

ci

[
M′−1∑
l=1

(
b(l+1)− b(l)

)
σZτ

i
ψ

(
|d(l)|
σZτ

i

)]
. (EC.7)

When τ ≡ 1, νcKG1:τ
i (µt,Σt) is equivalent to that of the cKG1 policy in (23) for τ = 1, and we will refer to

it as cKG1. For τ > 1 we will use the name cKG1:τ .

We also note that our proofs make use of the definition of ν∗i (µt,Σt) in (20), as well as of an alternative

form that is derived from (14) by setting ∆ = 0, taking the supremum over Ti ≥ 1, and dividing by ci:

ν∗i (µt,Σt) = sup
Ti≥1

E
[
−Ti +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}. (EC.8)

With these definitions, we can delineate and demonstrate the validity of our bounds.

Lemma EC.1. Let τ̄ =

⌈√
2 minj{λj}

π

maxj{Σ0
j,j}

minj{cj}

⌉
. Then νcKG1

i (µt,Σt)≤ ν∗i (µt,Σt)≤ νcKG1:�τ
i (µt,Σt).

Proof. Beginning with (EC.8), we use (EC.6) to derive a simple lower bound as follows.

ν∗i (µt,Σt) = sup
Ti≥1

E
[
−Ti +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

≥ E
[
−1 +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

Z1
i

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

= νcKG1
i (µt,Σt),
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since Ti ≡ 1 is a special case of the random stopping time Ti over which we take the original supremum.

We next derive a deterministic, finite stopping time, τ̄ , for our upper bound. We begin by considering

the case in which bi = bj for all j ∈ {1, . . . ,M}. Since bj = Σt
i,j/Σ

t
i,i for all j, including i, this implies that

the arm j∗ = arg max{µtj} maximizes maxj

{
µtj +

Σti,j
Σt
i,i
z
}

for all z, and M ′ = 1. In this case νcKG1
i (µt,Σt) =

ν∗i (µt,Σt) = νcKG1:τ
i (µt,Σt) =−1 for all τ ≥ 1, so νcKG1:τ̄

i (µt,Σt) represents an upper bound on ν∗i (µt,Σt)

for any τ̄ ≥ 1.

For the case in which there exist terms b(l+1) − b(l) > 0, so M ′ > 1, we have E
[
maxj

{
µtj +

Σti,j
Σt
i,i
z
}]

>

maxj
{
µtj
}

, and we consider the Bellman equation associated with the index. Here,

ν∗i (µt,Σt) = −1 + max


1
ci

(
E
[
maxj

{
µtj +

Σti,j
Σt
i,i
Z1
i

}]
−maxj

{
µtj
})

E [ν∗i (µt+1,Σt+1)] ,

(EC.9)

where ν∗i (µt,Σt)>−1.

To derive τ̄ , we develop an upper bound for the expected value of stopping, the upper maximand in (EC.9),

that has three properties. First, it depends only on initial problem data and the period, t, and not the data

or associated posterior statistics associated with any given sample path. Second, the upper bound is strictly

decreasing in t. Finally, its limit equals zero as t→∞.

These three properties ensure that, no matter what the starting period and state (µt,Σt), there exists some

finite number of additional samples, τ̄ , after which the upper maximand in (EC.9) falls between zero and

one for all τ ≥ τ̄ . This in turn implies that the normalized cost of sampling of −1 per period will thereafter

dominate any possible improvement in the expected value of sampling, which itself must be bounded above

by one. Thus, there cannot be a sample path on which it is of value to sample beyond t+ τ̄ .

We begin by constructing an upper bound on the expression within the expectation in upper maximand

in (EC.9) as the expression varies with z:

max
j

{
µtj +

Σt
i,j

Σt
i,i

z

}
≤max

j

{
µtj
}

+

(
maxj |Σt

i,j |
Σt
i,i

)
|z|.

The right-hand side of the inequality constructs upper bounds on both the intercept and the (absolute value

of the) slope of the left-hand side’s convex function, as z varies above and below zero.

Next we use the upper bound on the expression to develop an analogous inequality for the expected value

of stopping and proceed to derive a bound that is depends only on initial problem data and on Σt
i,i.

E
[
max
j

{
µtj +

Σt
i,j

Σt
i,i

Z1
i

}]
− max

j

{
µtj
}
≤ E

[
max
j

{
µtj
}

+

(
maxj |Σt

i,j |
Σt
i,i

) ∣∣Z1
i

∣∣] − max
j

{
µtj
}

= E
[∣∣Z1

i

∣∣] (maxj |Σt
i,j |

Σt
i,i

)
= E [|Z|]

(
maxj |Σt

i,j |
Σt
i,i

) (
Σt
i,i

λi/Σi
i,i + 1

)
=

√
2

π

(
maxj |Σt

i,j |
Σt
i,i

) (
Σt
i,i

λi/Σi
i,i + 1

)
≤
√

2

π
max
j

{√
Σt
j,j

}( √
Σt
i,i

λi/Σi
i,i + 1

)



e-companion to Chick, Gans and Yapar: Sequential Learning for Trials of Multiple Correlated Arms ec5

≤
√

2

π
max
j

{√
Σ0
j,j

}( √
Σt
i,i

λi/Σi
i,i + 1

)

≤
√

2

π

(
maxj

{√
Σ0
j,j

}
minj{λj}

) (
Σt
i,i

)3/2
. (EC.10)

The first equality nets out the two maxj
{
µtj
}

terms. Given the standard normal random variable, Z, the

second equality follows from the definition of Z1
i in (10), and the third calculates E[|Z|] =

√
2/π. By definition,

the absolute value of the correlation coefficient is
|Σti,j |√
Σt
i,i

Σt
j,j

≤ 1, so that |Σt
i,j | ≤

√
Σt
i,iΣ

t
j,j , from which the

second inequality follows. Lemma 4 in XFC shows that, for any arm j, Σt+1
j,j ≤ Σt

j,j for all t which implies

the third inequality. To obtain the last inequality, we drop the one in the denominator of the last term of

the right-hand side, substitute minj{λj} for λi, and rearrange terms.

Thus, with the exception of Σt
i,i, our upper bound (EC.10) depends only on initial problem data

and is independent of i. Furthermore, given we sample exclusively from arm i, (8) implies that Σt+τ
i,i =

Σt
i,i

(
minj{λj}

τΣt
i,i

+minj{λj}

)
, which is strictly decreasing in τ and converges to zero as τ →∞. Together (EC.9) and

these facts imply that it cannot be optimal to continue sampling after t+ τ .

Using the tighter bound minj {cj}, we can then find an upper bound on the maximum number of periods

to sample, τ̄ , that is independent of the sampling cost. We then look for the smallest τ such that√
2

π

(
maxj

{√
Σ0
j,j

}
λi

) (
Σt+τ
i,i

)3/2 ≤ min
j
{cj}.

Then substituting Σt+τ
i,i = Σt

i,i

(
minj{λj}

τΣt
i,i

+minj{λj}

)
and rearranging terms. we equivalently look for the smallest

τ so that
τ Σt

i,i + minj{λj}
Σt
i,i minj{λj}

≥
√

2

π

(
maxj

{√
Σ0
j,j

}
λi

)
.

If we drop the minj{λj} from the numerator of the left-hand side, we tighten the constraint and generate

a sufficient condition for a minimum number of samples that is independent of Σt
i,i as well. Carrying the

minj{λj} to the right-hand side and taking the ceiling we find our desired upper uniform bound on the

number of periods,

τ̄ ≡

⌈√
2 minj{λj}

π

maxj
{

Σ0
j,j

}
minj{cj}

⌉
, (EC.11)

beyond which we do not need to sample to calculate ν∗i (µt,Σt).

With the upper bound τ̄ in hand, we proceed to construct our upper bound on ν∗i (µt,Σt). Beginning with

(EC.8) we have

ν∗i (µt,Σt) = sup
Ti≥1

E
[
−Ti +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

= sup
1≤Ti≤τ̄

E
[
−Ti +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

≤ −1 + sup
1≤Ti≤τ̄

1

ci
E
[
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

= −1 +
1

ci
E
[
max
j

{
µtj +

Σt
i,j

Σt
i,i

Z τ̄i

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

= νcKG1:τ̄
i (µt,Σt).
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The second equality holds because, beyond τ̄ , the added sampling costs exceed the expected gains from

additional information, so Ti > τ̄ will be realized with probability zero. The inequality holds because the

sampling cost is increasing in Ti, and the third equality holds because the expected value of sampling, the

term in the square brackets, is increasing in Ti. �

Convergence results for the indices of the bounding policies. The setting and policies we consider for

our index bounds represent special cases of those considered in XFC, which analyzes cKG-style policies for

which the number of samples used to construct an index – what they call βn – is positive and finite. The

policies used in our bounds sample either once or 1≤ τ̄ <∞ times by construction. While XFC considers

policies for which arms need only have a positive probability of being included in the consideration set for

sampling in any period, we assume that the probability equals 1 in every period, and while XFC allows for

sampling from one arm or a pair of arms in any period – and constructs allocation indices for both cases –

we allow only for sampling from a single arm.

One small remaining difference between the two models regards the treatment of sampling costs. Specifi-

cally, our νcKG1:τ̄
i (µt,Σt) subtracts the normalized cost of one sample, −1, from the analogous cKG indices

used in XFC. This difference uniformly shifts the value of all indices we compute by −1, and rather than

comparing the indices to a lower bound of 0, as done by XFC, we compare our index bounds to a benchmark

of −1. With this modification, the proofs of convergence for the indices analyzed in XFC apply directly to

the lower and upper bounds we have constructed above.

The first result, proven in the previous paper, provides a convergence result for the upper bound.

Lemma EC.2. If arm i is sampled infinitely often, then limT→∞ΣT
i,i = 0. In turn, if limT→∞ΣT

i,i = 0, then

limT→∞ ν
cKG1:τ̄
i (µT ,ΣT ) =−1 as well.

Because the previous paper considers policies that can use common random numbers to simultaneously

sample more than one arm, the second result requires some additional care.

Lemma EC.3. If lim infT→∞ ν
cKG1
i (µT ,ΣT ) =−1 for all i, then limT→∞ΣT

i,i = 0 for all i as well.

Proof. The lemma’s proof follows that in XFC, with three modifications. First, when sampling from arm

i, equations (16) and (17) in the current paper defines a(l) = µt(l) and b(l) = Σt
i,(l)/Σ

t
i,i, and d(l) = |(a(l) −

a(l+1))/(b(l+1)− b(l))| so that the summand in (23) is(
b(l+1)− b(l)

)
σZτ

i
ψ

(∣∣∣∣a(l)− a(l+1)

b(l+1)− b(l)

∣∣∣∣ /σZτi ) .
In contrast, equation (11) in XFC defines analogous bj ’s that include the standard deviation of the predictive

posterior,

bj =
Σt
i,j

Σt
i,i

σZτ
i

=
Σt
i,j

Σt
i,i

Σt
i,i√

λi/τ + Σt
i,i

=
Σt
i,j√

λi/τ + Σt
i,i

.

Second, the policies in XFC also allow for simultaneous sampling of pairs of arms using simulation with

common random numbers, and its equation (12) defines analogous terms for paired samples[
bi
bj

]
=

[
Σt
i,i−Σt

i,j

Σt
i,j −Σt

j,j

]
× 1√

P/τ +Qt
,
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where Qt = Σt
i,i + Σt

j,j − 2Σt
i,j and where, in our setting, with sampling errors that are independent across

arms, P = λi +λj . In both cases the analogue of our summand in (23) then becomes(
b(l+1)− b(l)

)
ψ

(∣∣∣∣a(l)− a(l+1)

b(l+1)− b(l)

∣∣∣∣) .
Third, we modify the proof of Lemma 8 in XFC to use only samples of individual arms, rather than

pairwise samples. In particular, at the top of the left column of page 556, the paper’s proof uses statistics

regarding the pairwise sample to prove that, if limT→∞ΣT
i,i > 0 and limT→∞ΣT

j,j = 0, then there exists a t∗ so

that |bi− bj |> 0 for all t≥ t∗. This fact, in turn, implies that the relevant EVI for arm i is strictly positive.

In our case, samples are taken one arm at a time, so the analogous proof expressions are both simpler and

slightly different.

Using the notation for bj ’s provided in XFC, we have the following

bi− bj =
Σt
i,i − Σt

i,j√
λi/τ + Σt

i,i

. (EC.12)

By definition, the absolute value of correlation coefficient is

∣∣∣∣ Σti,j√
Σt
i,i

Σt
j,j

∣∣∣∣ ≤ 1, so for any t we have |Σt
i,j | ≤√

Σt
i,iΣ

t
j,j , and the fact that limT→∞ΣT

i,i > 0 while limT→∞ΣT
j,j = 0 implies that both the numerator and the

denominator of equation (EC.12) converge to strictly positive quantities. With this fact, rest of the lemma’s

proof then follows. �

Proof of the Main Result. Lemma EC.2, together with the fact that νcKG1:τ̄
i (µt,Σt) ≥ ν∗i (µt,Σt),

implies the following.

Lemma EC.4. If arm i is sampled infinitely often, then limT→∞ΣT
i,i = 0. In turn, if limT→∞ΣT

i,i = 0, then

limT→∞ ν
∗
i (µt,Σt) =−1 as well.

Lemma EC.3, together with the fact that ν∗i (µt,Σt)≥ νcKG1
i (µt,Σt), implies the following.

Lemma EC.5. If lim infT→∞ ν
∗
i (µt,Σt) =−1 for all i, then limT→∞ΣT

i,i = 0 for all i as well.

Together Lemma EC.4 and Lemma EC.5 allow us to directly apply the arguments of Theorem 1 in XFC

to demonstrate the asymptotic consistency of the cPDE allocation policy. The normality of the positive

definite prior Σ0 implies that arg max{θi} is uniquely defined (no ties) with probability 1. �

B.5. Proof of Prop. 4

We explicitly prove the result for EVI∗i (µ
t,Σt), as defined in (19), and note that, if instead we begin with

ν∗i (µt,Σt), as defined in (20), we can also use the argument below to construct νi(µ
t,Σt).

We first fix l. Each of the M ′− 1 terms of the summand inside of the expectation of (19) is non-negative

by construction. Thus, if we set Ti = Ti,l, the entire term in the expectation in (21) is less than or equal to

the entire term in the expectation in (19). Because both of these equations take suprema over the same set

of policies πi ∈ Πi, just using a different naming for stopping times Ti and Ti,l, and because both sample

only from arm i, the inequality holds for the given l. The claimed bound then holds because the inequality

is true for all l= 1,2, . . . ,M ′− 1. �
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B.6. Proof of Prop. 5

We explicitly prove the result for EVI∗i (µ
t,Σt), as defined in (19), and note that, if instead we begin with

ν∗i (µt,Σt), as defined in (20), we can also use the argument described below to construct νi,α(µt,Σt).

We proceed directly from the definition of EVI∗i (µ
t,Σt).

EVI∗i (µ
t,Σt) = sup

Ti≥0
ETi

[
−ciTi +

M′−1∑
l=1

(b(l+1)− b(l))
(
−|d(l)|+ZTii

)+ ∣∣∣∣µt,Σt

]

= sup
Ti≥0

ETi

[
M′−1∑
l=1

−ciαlTi + (b(l+1)− b(l))
(
−|d(l)|+ZTii

)+ ∣∣∣∣µt,Σt

]

= sup
Ti≥0

M′−1∑
l=1

ETi

[
−ciαlTi + (b(l+1)− b(l))

(
−|d(l)|+ZTii

)+ ∣∣∣∣µt,Σt

]

≤
M′−1∑
l=1

sup
Ti,l≥0

ETi,l

[
−ciαlTi + (b(l+1)− b(l))

(
−|d(l)|+ZTii

)+ ∣∣∣∣µt,Σt

]
= EVIi,α(µt,Σt)

The first line holds by definition. The second line follows because
∑M′−1

l=1 αl = 1. The third line follows from

the linearity of expectation. The inequality of the fourth line holds because the supremum of a sum is less

than or equal to the sum of the individual suprema. Furthermore, for each summand, samples are only taken

from arm i, the Zi are independent, and the value of l is fixed. So we can label the stopping time Ti by Ti,l

in this setting. The sixth line is by definition. �

B.7. Proof of Prop. 6

We explicitly prove the result for EVIi,α(µt,Σt) and note that, if instead we begin with νi,α(µt,Σt), we can

also use the argument below to prove the convexity of νi,α(µt,Σt) with respect to α.

Let the function f(α)≡EVIi,α(µt,Σt) for any (µt,Σt), then

f(α) =

M′−1∑
l=1

sup
Ti,l

ETi,l

[
−ciαlTi,l + (b(l+1)− b(l))

(
−|d(l)|+Z

Ti,l
i

)+
∣∣∣∣ µt,Σt

]
.

Suppose we have two cost allocations, α1 and α2, along with a weighting 0<γ < 1. Then

f(γα1 + (1− γ)α2)

=

M′−1∑
l=1

sup
Ti,l

ETi,l

[
−(γα1

l + (1− γ)α2
l )ciTi,l + (b(l+1)− b(l))

(
−|d(l)|+Z

Ti,l
i

)+
∣∣∣∣ µt,Σt

]
.

Let {T γl | l= 1,2, . . . ,M ′− 1} be the set of stopping times that maximize f(γα1 + (1− γ)α2), so that

f(γα1 + (1− γ)α2) =

M′−1∑
l=1

E
[
−(γα1

l + (1− γ)α2
l )ciT

γ
l + (b(l+1)− b(l))

(
−|d(l)|+Z

T
γ
l

i

)+
∣∣∣∣µt,Σt

]

=

M′−1∑
l=1

E
[
−(γα1

l + (1− γ)α2
l )ciT

γ
l + (γ(b(l+1)− b(l)) + (1− γ)(b(l+1)− b(l)))

(
−|d(l)|+Z

T
γ
l

i

)+
∣∣∣∣µt,Σt

]

=

M′−1∑
l=1

E
[
−γα1

l ciT
γ
l + γ(b(l+1)− b(l))

(
−|d(l)|+Z

T
γ
l

i

)+
∣∣∣∣µt,Σt

]
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+

M′−1∑
l=1

E
[
−(1− γ)α2

l ciT
γ
l + (1− γ)(b(l+1)− b(l))

(
−|d(l)|+Z

T
γ
l

i

)+
∣∣∣∣µt,Σt

]

= γ

M′−1∑
l=1

E
[
−α1

l ciT
γ
l + (b(l+1)− b(l))

(
−|d(l)|+Z

T
γ
l

i

)+
∣∣∣∣µt,Σt

]

+ (1− γ)

M′−1∑
l=1

E
[
−α2

l ciT
γ
l + (b(l+1)− b(l))

(
−|d(l)|+Z

T
γ
l

i

)+
∣∣∣∣µt,Σt

]

≤ γ
M′−1∑
l=1

sup
Ti,l

ETi,l

[
−α1

l ciTi,l + (b(l+1)− b(l))
(
−|d(l)|+Z

Ti,l
i

)+
∣∣∣∣µt,Σt

]

+ (1− γ)

M′−1∑
l=1

sup
Ti,l

ETi,l

[
−α2

l ciTi,l + (b(l+1)− b(l))
(
−|d(l)|+Z

Ti,l
i

)+
∣∣∣∣µt,Σt

]
= γf(α1) + (1− γ)f(α2) �.

We note that the proof does not depend on the discretization of the stopping times.

B.8. Proof of Corollary 1

The bounding strategy of Theorem 1 is robust and easily can be adapted to prove analogous consistency

results for the cPDELower and cPDEUpper allocation policies as well. In particular, we can use transforma-

tions of the cKG-style policies used to prove Theorem 1 to generate a suitable lower bound for the allocation

index of cPDELower and a suitable upper bound for the allocation index of cPDEUpper. With these bounds

we can again apply our proof approach to show that cPDELower’s and cPDEUpper’s indices inherit the

properties of the bounds.

Bounds on the allocation indices of cPDELower and cPDEUpper. To prove that cPDELower and

cPDEUpper are asymptotically consistent allocation policies, we develop an upper and lower bound on their

allocation indices that scale both one-period sampling costs and the information gains from sampling, based

on the number of arms, M . We keep track of these changes by extending the naming conventions for cPDE

and the cKG policies, used in the proof of Theorem 1, to include scaling factors.

νcKG1·x:τ
i (µt,Σt) = −x +

1

ci
E
[
max
j

{
µtj +

Σt
i,j

Σt
i,i

Zτi

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj} (EC.13)

= −x +
1

ci

[
M′−1∑
l=1

(
b(l+1)− b(l)

)
σZτ

i
ψ

(
|d(l)|
σZτ

i

)]
, (EC.14)

where the normalized one-period sampling cost, −1, is scaled by x. Again, when τ ≡ 1, νcKG1·x:τ
i (µt,Σt) is

equivalent to that of the cKGτ policy in (23) with τ = 1 and per-period sampling cost up by a factor of x,

and we will refer to it as cKG1·x. For τ > 1 we will use the name cKG1·x:τ .

In deriving our bounds we will also use a version of (EC.8) with scaled sampling costs

ν∗·xi (µt,Σt) ≡ sup
τ≥1

E
[
−x · τ +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

Zτi

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}. (EC.15)

With these definitions, we proceed to construct bounds for νi(µ
t,Σt) and νi,α(µt,Σt).

Lemma EC.6. Let τ̄ =

⌈√
2 minj{λj}

π

maxj{Σ0
j,j}

minj{cj/M}

⌉
. Then

1

M
· νcKG1·M
i (µt,Σt)≤ νi(µt,Σt)≤ νi,α(µt,Σt)≤M · ν

cKG1· 1
M

:τ̄

i (µt,Σt).
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Proof. We begin with νi(µ
t,Σt). The allocation-index analogue of (21) is

νi(µ
t,Σt) = max

l=1,...,M′−1

{
sup
Ti,l≥1

ETi,l

[
−Ti,l +

1

ci
(b(l+1)− b(l))

(
−|d(l)|+Z

Ti,l
i

)+
∣∣∣∣µt,Σt

]}

≥
(

1

M ′− 1

)M′−1∑
l=1

{
sup
Ti,l≥1

ETi,l

[
−Ti,l +

1

ci
(b(l+1)− b(l))

(
−|d(l)|+Z

Ti,l
i

)+
∣∣∣∣µt,Σt

]}

≥
(

1

M ′− 1

)
sup
Ti≥1

M′−1∑
l=1

ETi

[
−Ti +

1

ci
(b(l+1)− b(l))

(
−|d(l)|+ZTii

)+ ∣∣∣∣µt,Σt

]

=

(
1

M ′− 1

)
sup
Ti≥1

ETi

[
−(M ′− 1)Ti +

1

ci

M′−1∑
l=1

(b(l+1)− b(l))
(
−|d(l)|+ZTii

)+ ∣∣∣∣µt,Σt

]

≥
(

1

M

)
sup
Ti≥1

ETi

[
−M Ti +

1

ci

M′−1∑
l=1

(b(l+1)− b(l))
(
−|d(l)|+ZTii

)+ ∣∣∣∣µt,Σt

]
≡ 1

M
ν∗·Mi (µt,Σt),

where ν∗·Mi (µt,Σt) is the allocation index of cPDE when normalized sampling costs are multiplied by M .

The first inequality follows from the fact that the average of all M ′ − 1 expectations cannot be greater

than max of those expectations. The second inequality reflects the fact that optimizing the sum of the

expectations with a single stopping time cannot outperform the sum of optimizing each expectation with

a separate stopping time. The second equality is due to the additive nature of expectations. The third

inequality holds because 1
M′−1

(M ′ − 1)Ti = 1
M
M Ti, while 1

M′−1
1
ci

∑M′−1
l=1 (b(l+1) − b(l))

(
−|d(l)|+ZTii

)+ ≥
1
M

1
ci

∑M′−1
l=1 (b(l+1)− b(l))

(
−|d(l)|+ZTii

)+
.

As in Lemma EC.1 we then have

1

M
ν∗·Mi (µt,Σt) =

1

M

(
sup
τ≥1

E
[
−M Ti +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

Zτi

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

)
≥ 1

M

(
E
[
−M +

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

Z1
i

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

)
≡ 1

M
· νcKG1·M
i (µt,Σt),

1/M times the allocation index for cKG1, given normalized sampling costs that are scaled up by a factor of

M , our lower bound on νi(µ
t,Σt).

We continue with the upper bound for the allocation index and begin by assuming that M ′ > 1. Here, the

allocation-index analogue of (22) is

νi,α(µt,Σt) =

M′−1∑
l=1

{
sup
Ti,l≥1

ETi,l

[
−αi Ti,l +

1

ci
(b(l+1)− b(l))

(
−|d(l)|+Z

Ti,l
i

)+
∣∣∣∣µt,Σt

]}

≤
M′−1∑
l=1

{
sup
Ti,l≥1

ETi,l

[
−αi Ti,l +

1

ci

M′−1∑
k=1

(b(k+1)− b(k))
(
−|d(k)|+Z

Ti,l
i

)+
∣∣∣∣µt,Σt

]}

= (M ′− 1) sup
Ti≥1

ETi

[
− 1

M ′− 1
Ti +

1

ci

M′−1∑
k=1

(b(k+1)− b(k))
(
−|d(k)|+ZTii

)+ ∣∣∣∣µt,Σt

]

≤ M ·
(

sup
Ti≥1

E
[
− Ti
M

+
1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

)
≡ M · ν∗·

1
M

i (µt,Σt), (EC.16)
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M times the allocation index of cPDE, given normalized sampling costs that are scaled by a factor 1
M

.

The first inequality holds because, as we introduce the inner summation, we are adding positive sum-

mands. The second equality follows from the fact that, given the inclusion of the inner summation, each

supTi,l≥1 within the outer summation optimizes over the same inner summation, and we can use single

stopping time, Ti, for all (M ′ − 1) identical optimization problems within the outer summation. The outer

summation then sums the per-period sampling costs across their αi’s and scales up the inner summa-

tion by (M ′ − 1). The second inequality follows from the fact that (M ′ − 1) Ti
M′−1

= M Ti
M

, while (M ′ −

1)
(

maxj

{
µtj +

Σti,j
Σt
i,i
Zτi

}
− maxj{µtj}

)
≤M

(
maxj

{
µtj +

Σti,j
Σt
i,i
Zτi

}
− maxj{µtj}

)
.

To determine an upper bound on the maximum number of periods to sample, we scale unit sampling costs

by x= 1
M

in (EC.15). Then using the same argument that generated (EC.11), we have

τ̄ ≡

⌈√
2 minj{λj}

π

maxj
{

Σ0
j,j

}
minj{cj/M}

⌉
(EC.17)

for νi,α(µt,Σt).

In turn, we continue with (EC.16) and use our definition of τ̄ to proceed as in Lemma EC.1.

M · ν∗·
1
M

i (µt,Σt) = M ·
(

sup
Ti≥1

E
[
− Ti
M

+
1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

)
= M ·

(
sup

1≤Ti≤τ̄
E
[
− Ti
M

+
1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

)
≤ M ·

(
sup

1≤Ti≤τ̄
E
[
− 1

M
+

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

ZTii

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

)
≤ M ·

(
E
[
− 1

M
+

1

ci
max
j

{
µtj +

Σt
i,j

Σt
i,i

Z τ̄i

} ∣∣∣∣ µt,Σt

]
− 1

ci
max
j
{µtj}

)
≡ M · ν

cKG1· 1
M

:τ̄

i (µt,Σt).

The second equality holds because, beyond τ̄ , the added sampling costs exceed the expected gains from

additional information, so Ti > τ̄ will be realized with probability zero. The first inequality reflects the fact

that sampling costs are increasing in Ti. The second inequality follows from the fact that the sampling cost

is fixed, for a single period, while the expected information benefit of sampling is increasing in Ti.

Finally, as in Lemma EC.1, we consider the case in which M ′ = 1. Here, bi = bj for all j ∈ {1, . . . ,M}.

Since bj = Σt
i,j/Σ

t
i,i for all j, including i, the arm j∗ = arg max{µtj} maximizes maxj

{
µtj +

Σti,j
Σt
i,i
z
}

for all z,

M ′ = 1, and

1

M
· νcKG1·M
i (µt,Σt) = νi(µ

t,Σt) = νi,α(µt,Σt) =M · ν
cKG1· 1

M
:τ̄

i (µt,Σt) =−1

for all τ̄ ≥ 1. Thus, the bounds are trivially satisfied in this case as well. �

Limiting Behavior and Proof of Corollary 1. Having constructed appropriate lower and upper bounds,

the limiting results we developed for ν∗i (µt,Σt) carry over to νi(µ
t,Σt) and νi,α(µt,Σt) as well.

Lemma EC.7.

i) If arm i is sampled infinitely often, then limT→∞ΣT
i,i = 0. In turn, if limT→∞ΣT

i,i = 0, then limT→∞M ·

ν
cKG1· 1

M
:τ̄

i (µT ,ΣT ) =−1 as well.
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ii) If lim infT→∞
1
M
· νcKG1·M
i (µt,Σt) =−1 for all i, then limT→∞ΣT

i,i = 0 for all i as well.

Proof. For part (i) we note that the arguments of Lemma EC.4 directly apply to ν
cKG1· 1

M
:τ̄

i (µT ,ΣT ) to

demonstrate that limT→∞ ν
cKG1·M:τ̄
i (µT ,ΣT ) =− 1

M
as well. If instead we multiply ν

cKG1· 1
M

:τ̄

i (µT ,ΣT ) by

M and let T →∞ we obtain the desired limit.

Analogously, for part (ii) we note that the arguments of Lemma EC.5 directly apply to νcKG1·M
i (µt,Σt)

to demonstrate that, if lim infT→∞ ν
cKG1·M
i (µt,Σt) =−M for all i, then limT→∞ΣT

i,i = 0 for all i as well. If

instead we divide νcKG1·M
i (µt,Σt) by M and let t→∞ we obtain the desired limit. �

As before, the bounds of Lemma EC.6 imply that the limiting behavior of Lemma EC.7 also carries over

to cPDEUpper and cPDELower.

Lemma EC.8.

i) If arm i is sampled infinitely often, so limT→∞ΣT
i,i = 0, then limT→∞ νi,α(µT ,ΣT ) =−1 as well.

ii) If lim infT→∞ νi,α(µT ,ΣT ) =−1 for all i, then limT→∞ΣT
i,i = 0 for all i as well.

iii) If arm i is sampled infinitely often, so limT→∞ΣT
i,i = 0, then limT→∞ νi(µ

T ,ΣT ) =−1 as well.

iv) If lim infT→∞ νi(µ
T ,ΣT ) =−1 for all i, then limT→∞ΣT

i,i = 0 for all i as well.

Proof. Parts (i) and (iii) follow part (i) of Lemma EC.7, along with the fact that νi(µ
t,Σt) ≤

νi,α(µt,Σt) ≤M · ν
cKG1· 1

M
:τ̄

i (µT ,ΣT ). Parts (ii) and (iv) follow part (ii) of Lemma EC.7, along with the

fact that 1
M
· νcKG1·M
i (µt,Σt)≤ νi(µt,Σt)≤ νi,α(µt,Σt). �

Together parts (i) and (ii) of Lemma EC.8 can be used directly in the proof of Theorem 1 in XFC to prove

the claimed consistency results for cPDEUpper. Similarly, parts (iii) and (iv) of Lemma EC.8 can be used

in the proof of Theorem 1 in XFC to prove the consistency of cPDELower. �

B.9. Proof of Prop. 7

The proof follows directly by observing that the set of KG policies, indexed by τ = 1,2, . . ., is a subset of

nonanticipative policies. �

B.10. Proof of Corollary 2

Recall from Assumption 1 that each arm i∈ {1, . . . ,M} need not be considered for sampling in every period,

only that, almost surely, it be considered infinitely often as the stopping horizon increases without bound:

P{limT→∞
∑T

t=1 1{i ∈Mt}=∞}= 1. The allocation policies cPDE, cPDEUpper, and cPDELower include

all arms in every Mt, so they trivially satisfy the condition.

Randomized versions of these policies can similarly satisfy the inclusion condition. One simple approach

for deciding which arms should be a part of Mt for any of the allocation policies is to calculate each arm’s

allocation index before deciding which to include in Mt.

Consider the first randomization scheme of Section 7.2. At each time t we use random allocation to assign

exactly one arm to Mt. With probability p we make a random allocation at time t so that, given a random

allocation, each of the M arm has probability 1/M of being selected randomly for inclusion in Mt. In

addition, with probability (1− p) we select an arm with a maximal allocation index at time t, and, given an
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index-maximizing allocation, each of the mt
max ∈ {1, . . . ,M} maximizing arms has a probability 1/mt

max of

being selected.

All together, in each period, t, the randomization scheme includes each arm i as the one and only element

of Mt with probability

pti =

{ p

M
if i does not have a maximal allocation index in period t

p

M
+ 1−p

mtmax
if i has a maximal allocation index in period t,

and then samples that arm with probability one. Thus, every arm has a positive probability of at least p/M

of being included in each consideration setMt. In fact, each arm has a strictly positive probability of being

sampled in each period t.

By the second Borel-Cantelli Lemma, limT→∞
∑T

t=1
p

M
=∞ implies P

{
limT→∞

∑T

t=1 1{i∈Mt}=∞
}

=

1, satisfying part (iii) of Assumption 1. Therefore, the randomized cPDE, cPDEUpper, and cPDELower

allocation policies all continue to satisfy the conditions that assure consistency.

B.11. Consistency of TTVS Versions of cPDE, cPDELower, and cPDEUpper

We consider the application of top-two value-sampling (TTVS) randomization (Russo 2020) to cPDE, cPDE-

Lower, and cPDEUpper allocation policies and demonstrate that it maintains property (iii) of Assumption 1,

that P
{

limT→∞
∑T

t=1 1{i∈Mt}=∞
}

= 1. This implies that the TTVS versions of these policies are asymp-

totically consistent. Here, we explicitly demonstrate the consistency of the cPDE allocation index, ν∗i (µt,Σt),

and we note that the same argument holds for the other indices as well.

We operationalize TTVS randomization as follows. We first calculate the cPDE allocation indices of all

M arms and order them from largest to smallest, breaking ties lexicographically. We call the ordered indices

ν∗(1)(µ
t,Σt)≥ ν∗(2)(µ

t,Σt)≥ · · · ≥ ν∗(M)(µ
t,Σt). We then remove the top-ranked arm, with index ν∗(1)(µ

t,Σt),

from the consideration setMt with probability p, and we leave it in with probability 1−p. Thus, every arm

has a probability of at least 1− p of inclusion in every period.

In turn, for p < 1 we have 1− p > 0, and limT→∞
∑T

t=1(1− p) =∞, and the second Borel-Cantelli Lemma

implies that P
{

limT→∞
∑T

t=1 1{i∈Mt}=∞
}

= 1, satisfying part (iii) of Assumption 1. Therefore, the

TTVS randomized cPDE allocation policy continues to satisfy the conditions that assure consistency, and

the same argument applies to cPDEUpper and cPDELower as well. �

Appendix C: Implementation Details: New Allocation Indices and Stopping Indices

This section provides additional details for the implementation for our new allocation indices and stopping

indices. Appendix C.1 discusses the selection of optimal weights to find the smallest value of cPDEUpper,

the useful upper bound on cPDE. Appendix C.2 compares the values of the EVI’s used in the EVI-based

allocation indices and stopping indices (cPDE-type and cKG-type policies), to give a sense of the tightness of

the various bounds which define those policies. Appendix C.3 discusses computation times to solve the partial

differential equation (PDE) to compute the EVI and allocation index for cPDE, and offers an algorithm to

speed the computation of the cPDE stopping time. Appendix C.4 gives the algorithm we used to determine

the Gauassian process regression estimate using data from a pilot study, to support the selection of a prior

distribution for the dose-finding trial in Section 6.4.
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C.1. Weights for the cPDEUpper Policy

Prop. 5 shows that EVIi,α(µt,Σt) is an upper bound on EVI∗i (µ
t,Σt) for any set of weights, α≥ 0, that sum

to 1. Prop. 6 shows there is a least upper bound α∗ obtainable by the convexity of EVIi,α. The results of

this section suggest that optimizing α∗ does not necessarily offer large gains relative to using equal weights

with αl = αk for l, k ∈ {1, . . . ,M ′}, as this optimization adds computation time to the algorithm without

significant benefit in a numerical application. It would only be recommended to consider optimizing α for

settings where observations are particularly expensive.

We test different weights to calculate the EVI of cPDEUpper and present results for one of the experiments

detailed in Section 6.2. We set M = 80, P = 104, Ii = 0, λi = 0.01, µ0
i = 0, and ci = 1 for all i, with prior

covariance determine by σ2 = 0.5, ζ = 100/(80− 1)2.

Table EC.2 The expected sample size, E[T], expected opportunity cost, E[OC], and
expected total cost, E[TC], for the cPDEUpper allocation policy with equal weights and weights

α∗ for the problem in Section 6.2 with ζ = 100/(80− 1)2 and P = 104 for all i.

Allocation Stopping E[T] ± S.E. E[OC] ± S.E. E[TC] ± S.E.

cPDEUpper (α∗) cKG∗ 12 ± 0.20 96 ± 7.44 108 ± 7.46
cPDEUpper (Equal) cKG∗ 14 ± 0.28 91 ± 6.97 105 ± 6.97
cPDEUpper (α∗) cPDELower 17 ± 0.36 68 ± 5.60 86 ± 5.63
cPDEUpper (Equal) cPDELower 26 ± 0.68 61 ± 5.64 87 ± 5.64

Table EC.2 presents the results of experiments that aim to measure the value of optimization over α. The

cPDEUpper (Equal) allocation index uses equal weights to allocate sampling costs. To obtain the optimal

weight vector α∗ for cPDEUpper (α∗), we use Matlab function fmincon. We experiment with different

numbers of optimization iterations and found that 8 iterations generated results that are close to the optimal

weights for this particular problem. At each time t= 0,1, . . ., we calculate weights using 8 iterations of fmincon

function and use resulting weight vector as α∗ for the cPDEUpper (α∗) allocation index. The optimization

adds considerably to run time, however. Table EC.2 shows that the performance does not significantly

improve beyond that with equal weights. Therefore, we use cPDEUpper (Equal) in our experiments.

C.2. Comparison of the EVSI for Several Stopping Times

Each heuristic introduced in Section 4.1 (cPDE, cPDELower, cPDEUpper, cKG∗, and cKG1) uses a different

set of lookaheads to approximate the EVSI of further sampling. In this section, we compare the values of

the EVSI-based stopping indices of these policies to understand how they differ from each other and, in

particular, how tightly cPDELower and cPDEUpper may bound cPDE.

We present three sets of experiments. Each uses a different numerical example and provides slightly different

insights into differences among the indices and how their relative values may affect trial performance.

Our first set of experiments uses a stylized 3-arm problem to compare how indices vary with changes

in the value of a prior mean. We set M = 3, P = 1, Ii = 0, ci = 1, λi = 106 and n0
i = 5 for all i= 1,2,3. Thus

Σ0
i,i = λi/n

0
i = 2× 105. The correlation matrix is

ρ̃0 =

 1 0.5 −0.5
0.5 1 0.25
−0.5 0.25 1

 , (EC.18)
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and we fix the prior means for arms 2 and 3 to be 0.5 and 0, respectively, so that differentiating the three

means becomes difficult for µ1
0 near zero. We then record how arm 1’s indices change with its prior mean.

Figure EC.1 plots the results for the first set of experiments. Its horizontal axis marks the prior mean of

arm 1 for each experiment, as it ranges from -3 to 3 times the standard deviation
√

Σ0
i,i, and the vertical

axis plots the heuristics’ indices for arm 1 at t= 0 for that prior mean.

Figure EC.1 EVI for different stopping indices for arm i= 1 as a function of arm i= 1’s prior mean.
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For the problem used to generate Figure EC.1, the number of undominated arms is M ′ = 2 for values of µ1
0

lower than 44.72 and is M ′ = 3 for the values greater than 44.72. When M ′ = 2, the indices of cPDELower

and cPDEUpper are very close to that of cPDE. When M ′ > 2, the index of cPDEUpper is somewhat higher

than that of cPDE. The index of cPDELower is close to that of cPDE, and the difference between the indices

of cPDELower and cPDE is largest when µ1
0 is around zero and differentiating among 3 arms is difficult.

Since cPDELower takes only the maximum value among undominated arms, it is possible that cPDELower’s

EVI estimate falls farther away from cPDE’s estimate as M ′ increases.

Figure EC.1 also shows that indices from cKG1 and cKG∗ are lower than those from cPDE, cPDELower

and cPDEUpper for all prior mean values we tested. We observe that, for high µ1
0, indices from cKG1 and

cKG∗ are below zero, while indices from cPDELower, cPDEUpper and cPDE are positive. Since index-based

policies stop the trial when indices from all arms fall below zero, we expect cKG-based stopping indices to

stop much earlier than cPDE-based stopping indices (and observe this in experiments).

In summary, cKG1 severely and cKG∗ slightly underestimates EVI for all mean prior values, cPDEUpper

overestimates EVI slightly only when M ′ > 2, and cPDELower offers a good estimate for EVI except when

M ′ > 2 and the prior means of arms are close in value.

The second set of experiments resembles those found in Frazier et al. (2009). Here, we explore how

indices vary across different arms at a given period during the realization of a sample path. We set M = 80,

P = 104, Ii = 0, ci = 1 and λi = 0.01 for all i. The covariance across arms is determined by ζ = 16/(M − 1)2

and σ2 = 0.5. We start with a prior mean of 0 for all arms and then randomly sample from 10 arms to obtain

a new prior mean. Figure EC.2 shows the index values of heuristics for arms i= 1,6, . . . ,76.

In contrast with Figure EC.1, the indices for cPDELower and cPDE are similar for all arms in Figure EC.2.

As expected, the indices for cKG1 and cKG∗ underestimate the index of cPDE, which in turn is less than
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Figure EC.2 EVI for different stopping indices for several arms during a realization of a sample path.
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that of cPDEUpper. Importantly, the ratio of these indices is not constant across arms, so there does not

seem to be an obvious heuristic ‘fudge factor’ which one might use to convert from one index to another.

When we sort arms in decreasing order of their EVI estimates, the rankings obtained for cPDELower and

cPDE results are identical here, while those for cPDEUpper, cKG∗, and cKG1 differ from that for cPDE. The

state (µt,Σt) for which this figure was drawn, therefore, illustrates a situation where the allocation policies

associated with cPDELower and cPDE would choose the same arm, but the other associated allocation

policies may differ in their choice.

Our third set of experiments provides insight into the behavior of indices as the number of arms in

a problem increase. We run a set of experiments in which we vary the number of arms from M = 5 to

M = 100. We set P = 104, Ii = 0, ci = 1, and λi = 0.01 for all i. The covariance across arms is determined

by ζ = 100/(M − 1)2 and σ2 = 0.5. We start with a prior mean of 0 for all arms and then randomly sample

from 5 arms to obtain a set of posterior means.

Figure EC.3 The EVI∗i less the EVI for different stopping indices for arm i= 5 as a function of number of arms.
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Figure EC.3 shows the difference between EVI estimates for cPDE with the EVI of several different

stopping indices. The vertical axis represents the difference in EVI between cPDE and the approximate

EVIs from the cPDELower, cPDEUpper, cKG∗, and cKG1 stopping times. The horizontal axis shows the

number of arms in the problem. The plot does not indicate a particular relation between the number of



e-companion to Chick, Gans and Yapar: Sequential Learning for Trials of Multiple Correlated Arms ec17

arms and the accuracy with the four approximate EVIs and the EVI of cPDE. The bounds cPDELower and

cPDEUpper on cPDE both are reasonably close, as compared to the approximation based on fixed-duration

lookaheads, cKG∗. As expected, cKG1 has the poorest approximation of the EVI of cPDE, and is therefore

not recommended as a stopping time at all. In an analogous figure with P = 106, the EVI approximation for

cKG∗ approached the quality of that of cPDELower, which were both modestly less good than cPDEUpper’s

EVI as an approximation to the EVI of cPDE.

C.3. Computational Improvement for the cPDE Stopping Time.

A naive implementation of the cPDE stopping time would recompute EVI∗i (µ
t,Σt), the solution of a PDE,

for each arm at each time step. Such repeated computation would be tedious. To be more precise, Figure EC.4

depicts the log of the CPU times for computing different indices as a function of the number of arms, M .

The average CPU time required to compute the EVI of the cPDE stopping index, EVI∗i (µ
t,Σt), is orders of

magnitude larger (3-5 seconds to compute the index for each arm) than for the EVI of other policies. The

average CPU per index does not strongly depend on the number of arms because they require computation

proportional to the number of arms which might become best, M ′, which tends to be smaller than M .

Figure EC.4 Average CPU times, per arm, to compute the indices of different stopping times, as a function of

number of arms.
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Fortunately, the lower and upper bounds of EVI∗i (µ
t,Σt) introduced in Section 4.1 can be used to decrease

the computation time of the cPDE stopping time. The indices for cPDELower and cPDEUpper can be found

by grid interpolation of a standardized PDE which need be pre-computed only once prior to sampling. Thus,

we can reduce the number of PDEs solutions with this technique if the bounds on cPDE justify the question

of whether to continue or not. The numerical results in Section 6.3 provide empirical evidence that CPU

time can be improved dramatically.

Algorithm 1 uses the following three facts: (1) if an upper bound on the value of continuing with arm

i suggests that there is no value in sampling from arm i, then there is no value in sampling from arm i:

EVIi,α(µt,Σt) ≤ 0 implies EVI∗i (µ
t,Σt) ≤ 0; (2) if a lower bound on the value of continuing with arm i

justifies continuing, then arm i justifies continuing: EVIi(µ
t,Σt)> 0 implies EVI∗i (µ

t,Σt)> 0; and (3) if at

least one arm i∈M has EVI∗i (µ
t,Σt)> 0 then it is optimal to continue.
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Algorithm 1: cPDE stopping time: version to avert computing unneeded PDE solutions.

Result: Return Boolean variable stop with true to stop sampling, false to continue.

stop← 0; % Initialize Boolean variable stop = 0 to continue;

for i in 1, . . . ,M do
Calculate the cPDELower stopping index, EVIi(µ

t,Σt) ;

if EVIi(µ
t,Σt)> 0 then

return stop; % If any EVIi > 0 then return stop = 0 to continue

end
end

for i in 1, . . . ,M do
Calculate the cPDEUpper stopping index, EVIi,α(µt,Σt);

if EVIi,α(µt,Σt)> 0 then
Calculate the cPDE stopping index, EVI∗i (µ

t,Σt) ;

if EVI∗i (µ
t,Σt)> 0 then

return stop; % If any EVI∗i > 0 then return stop = 0 to continue.

end
end

end

return stop← 1; % Nothing justified continuation, so return stop = 1 to stop

We use this algorithm to drastically reduce the time to compute the cPDE stopping time in applications.

It initially assumes that continuing should happen until proven otherwise. It first checks if any index for

cPDELower would suggest continuing. If no such index exists, it then checks if any index for cPDEUpper

suggests stopping. Only if such an upper bound suggests that continuing may be justified is the PDE

computation for cPDE’s index, EVI∗i , needed.

C.4. Computations for the Gaussian Process Prior.

Section 5.2 presents a method to use data from a pilot study to develop an empirical Bayes prior distribution

for the unknown mean rewards of arms, specified by µ0,GPR,Σ0,GPR, as well as an estimate for sampling

variance, specified by ΛGPR. Section 6.4 illustrates the use of such a prior distribution. Algorithm 2 gives

pseudocode that describes how this was done for our numerical experiments.

In summary, the trial manager first specifies a subset of arms to use in the pilot study, an initial number

of patient observations to make for each arm. The trial manager also specifies a functional form for the

estimated responses of each arm as a function of pilot data. We chose a Gaussian process regression model

(GPR) with squared exponential kernel from (25) and assumed a constant sampling variance across arms

(so that ΛGPR is a diagonal matrix with common diagonal λGPR
i = λGPR).

Then, the trial manager uses standard GPR tools (in our case, Matlab’s fitrgp with MLE parameter

fitting) to compute the GPR estimate for the unknown means and sampling variance. This results in GPR

estimates µ0,GPR,Σ0,GPR and λGPR.
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Algorithm 2: Determine a prior distribution N (µ0,GPR,Σ0,GPR) for the unknown mean
rewards, θ, and an estimate for sampling variances ΛGPR based on a pilot study with Gaus-
sian process regression (GPR).

Result: Return prior mean and variance, (µ0,GPR,Σ0,GPR), for unknown mean rewards, θ,

and sampling variances, ΛGPR.

Inputs: A subset of arms, M0, to be tested in pilot study; an initial number of observations, n0, per

arm in the pilot study; and model for GPR and sampling with parameter Γ0,GPR. (We assumed the

kernel in (25) and common sampling variance, λGPR
i = λGPR, so that Γ0,GPR = (σ2, ζ, λGPR)) ;

Initial sampling : Observe outcomes from n0 patients for each arm j ∈M0 in the pilot study and

compute their sample means, ȳpilot,j ; Initialize number of samples per arm in the pilot, n← n0 ;

Fit : Use Matlab’s fitrgp function to estimate model parameters Γ0,GPR using the MLE option;

Compute (µ0,GPR,Σ0,GPR) and ΛGPR from Γ0,GPR;

Diagnostic check : If the effective sample size, λGPR/Σ0,GPR
j,j , for all arms j is less than the number of

observations in the pilot so far, Then go to Step Return ;

Check pilot size: if n< 2n0 then
increment n by 1, observe one more outcome from each arm in the trial;

update the sample means, ȳpilot,j , for each j ∈M0;

go to Step Fit
else

go to Step Alternative Fit

end

Alternative Fit : Use Matlab’s fitrgp function to estimate model parameters Γ0,GPR using the

Bayesian optimization option; Compute (µ0,GPR,Σ0,GPR) and ΛGPR from Γ0,GPR;

Return GPR estimate for prior (µ0,GPR,Σ0,GPR) and sampling variances ΛGPR ;

In some simulated pilot studies, the GPR estimate exhibited poor fit based on these initial samples. For

example, the estimated effective sample size for some of the arms (estimated values of λGPR/Σ0,GPR
j,j ) exceeded

the number of observations in the pilot, a result associated with extremely high estimated correlations across

arms. In such cases, where the fit of the GPR estimate was poor, we obtained one more observation from

each arm in the pilot study, with the goal of obtaining a better fit. Additional observations were obtained

until the fit was good, or until an upper limit on the number of observations was reached. In our case, we

set that limit to be twice the initial sample size in the pilot. If after reaching that limit, diagnostics tests

were still not satisfied, we used an alternative method for fitting the GPR model. In particular, we used

the Bayesian optimization option of Matlab’s fitrgp function. In all 1000 sample paths, we found that the

addition of a few sample points, along with the use of two alternative Gaussian process regression fitting

procedures, was able to result in a GPR prior that satisfied diagnostic tests for goodness of fit.

We found those diagnostic tests to be practically important. Without accounting for both of them, correla-

tion across arms might be significantly overestimated (for 2-4% of simulated pilot studies in our experiments),
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resulting in unjustified overconfidence about the values of the mean rewards as well as strong under-sampling.

The diagnostic checks that result in additional pilot study samples (for a subset of sample paths) and refit-

ting of the model avoids those problems which might otherwise arise due to numerical issues unrelated to

the value of the arms of the trial.

Appendix D: Further Comments on Practical and Research Questions

Regulators expect frequentist operating characteristics of a clinical trial to be reported. In Appendix D.1

we illustrate Monte Carlo estimates of statistical power for some of our proposed policies, consistent with

guidance by the FDA (2019) for complex innovative trials. Appendix D.2 discusses a non-exhaustive set of

interesting issues related to our approach to clinical trial designs.

D.1. Frequentist Performance Measures

We use a synthetic Phase II/III dose-finding example motivated by Section 6.4 but with some differences

to allow us to control the gap between the performance of the best arm and that of other arms. To control

the minimal difference to detect, we used a triangular shaped curve for the patient responses in which we

denote the difference between the response for the best arm and for the second best arms to be δ. We set

θ11 = 0 and θj = −|j − 11|δ2000 for j = {1, . . . ,21}/{11}. For a dose finding trial described by Bornkamp

et al. (2007), the difference to detect for the best arm is 1.3, which guided the range of δ values we tested.

Figure EC.5 shows power curves for six policies, including the Fixed stopping time with sample size 150

(not atypical sample size for such a trial, Bornkamp et al. 2007, Huang et al. 2015). The horizontal axis

marks the difference to detect, δ. The vertical axis reports power, the fraction of 1000 simulation trials in

which the policy correctly identifies the best arm.

In Figure EC.5, the cPDELower-cPDELower and cPDEUpper-cPDEUpper policies exceed the commonly-

used 80% power threshold for all δs. The cKG∗-cKG∗ policy’s power is not as high for δ = 0.3 and δ = 0.5,

and it attains a power higher than 80% for larger δs. When our heuristics used as allocation policies and

paired with the Fixed stopping time with a sample size of 150, they satisfy the 80% power requirement for

a difference to detect of 0.7 or more.

Thus, our new allocation and stopping indices have appropriate power in this example. More generally,

power is larger for larger P , and power is smaller for larger ci.

Figure EC.5 Power curve for different policies
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D.2. Population Size, Recruitment Rates, Precision Medicine and Other Points

There are many other interesting and valuable issues for pushing the value-based MAMS approach, or for

trial designs in general. We comment on a few of them here, and note their potential for future research.

Adopting population size. The adopting population size, P , is assumed to be a fixed constant, and to not

explicitly depend on the stopping time of the trial, T , nor on the posterior mean responses µT above and

beyond the dependence of the selected arm for implementation, arm D, on µT . This makes sense in the

context of many nonpharmaceutical trials and ensuing technology assessment decisions (NICE 2014), or for

pharmaceutical trials with market exclusivity agreements whose duration is of a fixed length (FDA 2015).

For a fixed horizon for exploitation of pharmaceuticals, for example associated with patent protection, it

may be useful to model an adopting population size P (T ) that is decreasing in T . Also, it may be useful

to allow for the size of the adopting population to depend more strongly on the mean reward of the arm

selected for adoption, so that P (µTD, T ) depends on T and the mean reward of the selected arm. Such influence

might come from a greater fraction of adoptions for ‘better’ arms, for example. There are some interesting

cases where this phenomenon has been modeled, such as Willan and Eckermann (2010). Strong empirical

evidence in general for the best form for P (µTD, T ) is to be determined, although Gaessler and Wagner (2019)

present interesting and relevant data for patent and data protection in the time to exploit a pharmaceutical

technology, when taken from a firm-perspective point of view. At present, we note that such generality can

be obtained within our social welfare maximizing framework by putting P (µTD, T ) in for P in the main

reward function of (2), with similar changes elsewhere. Analysis of this more general formulation and further

empirical study of the effects of such influence of T and µTD on P are interesting topics for further work.

QALY and cost information collection. Our base model also presumes that health outcomes that are

convertible to money (such as QALYs) and treatment costs can be collected for each patient during the trial

and monitored sequentially. This may represent an additional burden for many trials, even if outcomes are

already monitored for safety. That said, QALY information is already collected in many trials (Gold et al.

1996, Angus et al. 2001, Ferguson et al. 2013, Flight et al. 2019, Karakike et al. 2019) and such information

may be needed anyway in a health-economic assessment for a technology adoption decision that follows the

trial (NICE 2014). Although QALY estimates are sometimes assessed with delays on the order of a year

or two (Forster et al. 2019), it may be sufficient to have estimators which have the same bias across arms

for the purpose of allocating arms. The inference of such potential future QALYs and costs using surrogate

measures during a longitudinal study represents an area of further interest.

Online and offline learning. Ahuja and Birge (2016) look at an adaptive design with a fraction of patients

allocated to each arm and aim to improve outcomes of those in the trial while finding the most effec-

tive alternative with high probability, a so-called online learning approach. Their model assumes two arms

and Bernoulli outcomes. Bandit problem-based approaches also model the rewards of patients in a trial

(Williamson and Villar 2020) but might not model patients affected after the adoption decision is made. This

would seem implementable with related work for online learning with an EVSI framework (Ryzhov et al.

2010, Chick et al. 2017).
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Prior distribution selection. Alternative methods for specifying the prior distribution may exist. For exam-

ple, Qu et al. (2015) propose methods to infer an unknown covariance structure and provide convergence

results. They do not guarantee asymptotic consistency of their estimators.

Escalation studies for dose-range assessment. For dose finding, Phase I/IIa trials may use dose escalation

studies to find a maximum tolerable dose, so as to avoid the risk of excess toxicity from high dosing in later

stages of a trial. Toxicity may lead to side effects, which would reduce health benefits, thus lowering the

overall effectiveness (explaining our dose-response curves in Section 6.4 which have initially increasing health

benefits in dose followed by a decreasing health benefit at higher doses, due to side effects and/or the costs

of higher dosing). For the pilot study in Section 6.4, we presume that all doses tested have the same sample

size. In practice, we may wish to order the assignment of doses to patients during the pilot study using

standard techniques for dose escalation, with lower doses tested first, such as the well-known 3+3 design, or

some alternative designs which have been found to be more effective (e.g. Huang et al. 2015, Wheeler et al.

2019). Thus, our pilot study can be run in a way consistent with these practical considerations.
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