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1 Introduction

Personal digital devices now generate streams of data that describe human behav-

ior in great detail. The temporal frequency, geographic precision, and novel content

of the “digital exhaust” generated by users of online platforms and digital devices

offer social scientists opportunities to investigate new dimensions of economic

activity. The COVID-19 pandemic has demonstrated the potential for real-time,

high-frequency data to inform economic analysis and policymaking when tradi-

tional data sources deliver statistics less frequently and with some delay.

In this paper, we discuss the suitability of smartphone data for quantifying

movement and social contact. We show that these data cover a significant fraction

of the US population and are broadly representative of the general population in

terms of residential characteristics and movement patterns. We use these data

to produce a location exposure index (“LEX”) that describes county-to-county

movements and a device exposure index (“DEX”) that quantifies the exposure of

devices to each other within venues. These indices track the evolution of inter-

county travel and social contact from their sudden collapse in spring 2020 through

their gradual, heterogeneous rises over the following months. Where possible, we

compare these smartphone movement data to measures of population changes,

expenditure, and travel during the pandemic. We do not find evidence that the

dramatic pandemic-induced changes in behavior sharply altered the reliability of

smartphone data.

We publish these indices each weekday in a public repository available to non-

commercial users for research purposes.1 Our aim is to reduce entry costs for those

using smartphone movement data for pandemic-related research. By creating

publicly available indices defined by documented sample-selection criteria, we

1The indices and related documentation can be downloaded from https://github.com/
COVIDExposureIndices.
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hope to ease the comparison and interpretation of results across studies.2 More

broadly, this paper provides guidance on potential benefits and relevant caveats

when using smartphone movement data for economic research.

Researchers in economics and other fields are turning to smartphone movement

data to investigate a great variety of social science questions. Chen and Pope (2020)

use similar smartphone data covering almost 2 million users in 2016 to document

cross-sectional variation in geographic movement across cities and income groups.

Athey, Ferguson, Gentzkow, and Schmidt (2020) use smartphone data covering

more than 17 million devices spanning January to April 2017 to document experi-

enced segregation. We focus on the distinctive advantages of the data frequency

and immediacy. A growing body of both theoretical and empirical research inves-

tigates human movement, social contact, and economic activity in the context of

the COVID-19 pandemic.3 Our indices provide empirical measures of these phe-

nomena, complementing private-sector real-time measures of social distancing and

movement.4 We describe properties of smartphone data, compare the residential

distribution and movement patterns of devices to those in traditional data sources,

produce publicly available indices that can be used to easily compare results across

studies, and investigate potential measurement issues that arise in the context of

the ongoing pandemic.

2Examples of research using our indices thus far include Akovali and Yilmaz (2020), Althoff,
Eckert, Ganapati, and Walsh (2020), Brinkman and Mangum (2020), Gupta, Nguyen, Rojas, Raman,
Lee, Bento, Simon, and Wing (2020), Monte (2020), Rodriguez, Tabassum, Cui, Xie, Ho, Agarwal,
Adhikari, and Prakash (2020), Wilson (2020), and Yilmazkuday (2020a,b).

3In addition to the research using our indices, see Greenstone and Nigam (2020) on the value
of social distancing, Maloney and Taskin (2020) on private social distancing, Brzezinski, Deiana,
Kecht, and Van Dijcke (2020) on the effect of government-ordered lockdowns, Engle, Stromme,
and Zhou (2020) on correlates of observed social distancing, Farboodi, Jarosch, and Shimer (2020)
on optimal policy, Glaeser, Gorback, and Redding (2020) on cases and mobility, Almagro, Coven,
Gupta, and Orane-Hutchinson (2020) on racial disparities in cases and commuting, and Xiao (2020)
on the value of contact-tracing apps.

4For example, Unacast reports distance traveled; Google’s community mobility reports capture
visits to different venue types; and SafeGraph reports time spent at and away from home. Relative
to these measures, our indices are designed to summarize travel and overlapping visits relevant for
COVID-19 circumstances in an IRB-approved public release.
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2 Data

Our smartphone movement data come from PlaceIQ, a location data and analytics

firm. In this section, we describe how PlaceIQ processes devices’ movements to

define visits to venues, and how we select the devices, venues, and visits included

when we compute our exposure indices. We then compare these devices and their

movements to residential populations and movements reported in traditional data

sources.

2.1 Device Visit Data

PlaceIQ aggregates GPS location data from different smartphone applications using

each device’s unique advertising identifier. The raw GPS data come as pings

that register whenever the application requests location data from the device.5

These pings are joined with a map of two-dimensional polygons, corresponding

to buildings or outdoor features such as public parks, which we denote “venues.”

A timestamped set of pings within or in the close vicinity of a polygon constitutes

a “visit.”6 Since a device’s location is measured with varying precision, PlaceIQ

assigns each visit an attribution score based on ping characteristics and geographic

features. We retain all visits with an attribution score greater than a minimum

threshold. See Appendix A.1 for details.

2.2 Sample Selection

2.2.1 Devices covered

For the typical smartphone in the PlaceIQ data, we observe about six months of

movements, but there is considerable heterogeneity across devices. Each Android

5The set of applications is not revealed to us. Some applications collect location data only when
in active use, while others collect location data at regular intervals.

6If a device pings multiple times during a visit, then we have information about visit duration.
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and iOS smartphone has an identifier that uniquely identifies the device at any

given time, and the device’s unique advertising identifier can be refreshed by the

user and may be refreshed by some system updates. Thus, the average lifespan

of an advertising identifier is less than that of a physical phone. Even devices

observed over a long time period may not ping regularly. Ping frequency reflects

a device’s applications, settings, and movements.

To focus on devices whose movements can be reliably characterized, we restrict

the set of devices included in the computation of our indices to those that pinged

on at least 11 days over any 14-day period from November 1, 2019 through the

reporting date.7 The earliest date for which we report our indices is January 20,

2020, so this criterion selects a set of devices based on a window of at least 80 days

of prior potential activity. Later reporting dates have longer windows. Given the

reduced movement associated with the COVID-19 pandemic, a criterion using a

fixed window of prior potential activity would exclude devices that temporarily

reduced their movements. As of December 31, 2020, 75 million devices met this

device selection criterion. On any given day, about 20 million of these devices ping

at least once, as depicted in Figure B.6.

For a subset of devices, we can assign a residential location with reasonable

confidence based on the duration of their residential visits since November 1, 2019.

Appendix A.2 describes our home assignment algorithm. In short, we assign home

locations based on where devices repeatedly spend time at night. We use Census-

reported demographic characteristics for block groups, which contain about 600 to

3,000 people, as proxies for device demographics. Since many people temporarily

moved to other residential locations during the pandemic, we assign a device to a

block group of residence based on the block group of its first home location after

November 1, 2019. As of December 31, 2020, 64 million devices have an assigned

block group of residence.

7During pre-pandemic months, using lower thresholds would only modestly increase the num-
ber of devices included.
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In the context of the COVID-19 pandemic, a potential concern is that devices

may not generate pings when sheltering in place, due to their lack of movement.

Indeed, there was a general decline in the number of devices generating pings in

March 2020, presumably due to pandemic-induced declines in movement.8 When

defining our exposure indices in the next section, we discuss how they are impacted

by devices sheltering in place and suggest potential adjustments.

Even absent a pandemic, the number of devices appearing in the data varies

meaningfully over time. This may reflect changes in smartphone ownership pat-

terns, smartphone device settings, app usage, PlaceIQ app coverage, seasonal

variation in behavioral patterns, or an Android or iOS operating system update.

These are unlikely explanations for the sharp decline starting in March 2020, as

that decline coincides with the COVID-19 outbreak in the United States and there

has not been a major OS update or major shift in PlaceIQ app coverage since the

beginning of 2020. When publishing our indices, we also publish the number of

devices underlying these values so that researchers can assess when changes in the

exposure indices may not reflect true changes in behavior.9

2.2.2 Venues covered

Venues include commercial establishments, public parks, residential locations, and

polygons lacking an identified business category. When assigning devices’ homes,

only residential locations are relevant. When tracking devices’ movements across

geographic units in the LEX, visits to all such venues are informative.

When measuring potential social contact by the DEX defined in Section 3, we

8 Devices are less likely to ping when users shelter in place because users are less likely to open
movement-related apps that use location services and the phone’s operating system may pause
location services to save battery life. For example, the iOS “significant-change location service”
only updates the user’s position when it changes by at least 500 meters (Apple, 2020).

9For example, the number of devices drops about 10 percent during April 14-18, 2020, which
presumably reflects a change in smartphone data provision rather than a common change in be-
havior. Such variation will be absorbed by day fixed effects in difference-in-differences research
designs.
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restrict attention to venue categories in which most venues are sufficiently small

that visiting devices would be exposed to each other. In particular, we omit the cat-

egories “Residential”, “Nature and Outdoor”, “Theme Parks”, “Airports”, “Uni-

versities”, as well as venues without a category identified by PlaceIQ.10 Finally,

note that PlaceIQ excludes certain venue categories for privacy reasons, such as

hospitals, schools, and places of worship.

There are 750,000 venues with identified commercial categories included in our

DEX calculations. Since a venue corresponds to a building, certain types of build-

ings can belong to multiple categories, e.g., a restaurant inside a shopping mall.

Our LEX calculations include venues in unidentified categories and residential

locations, for a total of 149 million venues.

The identified venues in each commercial category are not necessarily represen-

tative of all such businesses. In most categories, the coverage of chains is high, but

a much smaller share of independent businesses are identified.11 Table A.2 reports

the number of venues within each venue category in the DEX. The largest category

is restaurants, which has about 200,000 distinct venues.12 There is little variation

in the number of venues from January to December 2020.

2.2.3 Locations covered

We report our indices for all US states and most US counties. Many US counties

have few residents and therefore few devices in the PlaceIQ data. The indices we

report are restricted to counties with reasonably large device samples. To imple-

ment this restriction, we assign each device to a unique daily “residential county”,

where that device had the highest (cumulative) duration of time at residential lo-

10Appendix C.1 presents DEX values for two alternative sets of venues. The first includes
all identified commercial establishments, weighting them by inverse area. The second measures
overlapping visits to residences.

11See Appendix C of Couture, Gaubert, Handbury, and Hurst (2020) for details.
12Note that many of these venues, such as shopping malls, contain multiple restaurant establish-

ments. US County Business Patterns reports there were about 570,000 establishments in NAICS
7225 in 2017.
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cations on that date. We report our indices only for the 2,018 counties that were the

residential county of at least 1,000 devices on every day from January 6 to 12, 2020.

These counties account for more than 96 percent of the US residential population.

2.3 Representativeness

Smartphone data cover a significant fraction of the US population. However, dif-

ferences in smartphone ownership and app use, sample selection rules specific to

research applications, and the use of small geographic units may produce unrepre-

sentative samples.13 For example, older adults are less likely to own smartphones,

making smartphone-derived samples unbalanced across age groups.14

In this section, we compare the residential distribution and movement patterns

of devices in our sample to those in traditional data sources. This analysis re-

quires restricting our sample to devices assigned a residential block group, which

constitute about 80 percent of the devices in our sample.15

Panel A of Figure 1 shows that geographic units with larger residential popula-

tion have more devices in our sample residing in them. Regressing the log number

of devices on the US Census Bureau’s 2019 estimate of log residential population

yields an R2 of 0.96 for states and 0.95 for counties. On average, the number of

devices in our sample is about one-tenth of the total population.

Panel B of Figure 1 investigates the distribution of devices across residential

block groups within each county. The panel shows the share of devices living in

block groups in ten population deciles ranked by income, share white, education,

13SafeGraph, another location data provider, found that about 10 percent of block groups contain
30 to 40 percent of the devices in their data, leading to “disproportionately and sometimes im-
possibly high” numbers of devices relative to the Census-reported residential population (Squire,
2019).

14The Pew Research Center estimates that 81 percent of US adults own a smartphone. That
rate varies from 96 percent for ages 18–29 to only 53 percent for those over 65 years. See https:
//www.pewresearch.org/internet/fact-sheet/mobile/.

15This restricted sample is the same that we will later use to compute our indices broken down
by demographic group.
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and population density. For instance, the top-right chart shows that about 10

percent of devices live in each decile of a county’s block group median household

income distribution. Similarly, about 10 percent of devices live in each decile when

we rank block groups within their county by the share of their residents who are

white or college graduates. When looking at deciles ranked by population density,

denser block groups are somewhat underrepresented: only about 7 percent of

devices live in block groups in the highest population-density decile.

In Appendix Figure B.1, we reproduce Panel B of Figure 1 using national pop-

ulation deciles instead of within-county population deciles. We find greater over-

representation of block groups with low population densities and large shares of

white residents.16 Given that our sample is more representative within counties

than across counties, we suggest that researchers focus on applications of our in-

dices that exploit intertemporal variation within counties or make cross-county

comparisons of changes over time. Applications relying on cross-county differ-

ences in levels may be prone to sample-selection biases.

16When examining SafeGraph data, Squire (2019) reports the opposite pattern: SafeGraph data
have fewer devices in block groups with more white residents. This suggests that representativeness
may vary across smartphone data providers or sample-selection criteria.
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Panel C of Figure 1 depicts residential migration patterns. We compare state-

to-state residential migration in 2019 in our smartphone data to state-to-state flows

in the 2017-2018 Internal Revenue Service (IRS) Migration Data. To make this

comparison, we restrict attention to the 5.5 million devices in the PlaceIQ data

with non-missing home assignments in both the first and last week of 2019. At

the state level, the two migration measures are highly correlated: regressing the

PlaceIQ share on the IRS share yields an R2 exceeding 0.8. At the county level, the

correlation is weaker, with an R2 of 0.47.17

Panel D of Figure 1 examines travel from home to commercial venues by depict-

ing the distributions of trip lengths in our smartphone data and the 2017 National

Household Transportation Survey (NHTS). For the PlaceIQ data, we show trips to

venues included in the DEX computation.18 For the NHTS, we show trips within

the trip-purpose categories that most closely match DEX venues.19 The figure de-

picts two trip-length distributions for each data source, one for people or devices

living in block groups within the top quartile of the population density distribution,

and one for people or devices living in the bottom quartile. The smartphone and

NHTS trip-length distributions are remarkably similar, and both show a greater

propensity to make shorter trips in more densely populated areas.

Overall, the patterns documented in Figure 1 suggest the potential of broadly

representative smartphone data for use in economic research. That said, we encour-

age researchers using these data to evaluate the precision and representativeness of

their sample in their particular context. To help researchers assess whether our in-

dices are suitably precise for their research application, we publish the underlying

number of devices for each index, day, and geographic unit.

17We exclude the 98% of county pairs that have no migration in both the IRS and smartphone
data.

18A trip is from home if the device’s previous visit was its home within the previous hour. We
estimate driving distance (trip length) as 1.5 times the straight-line distance between the home and
venue.

19These NHTS categories are “buy goods”, “buy services”, “buy meals”, “other general errands”,
“recreational activities”, and “exercise”.
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3 Exposure Indices

In this section, we describe the location exposure index, which measures movement

between counties or states, and the device exposure index, which measures average

exposure of devices to each other within commercial venues.

3.1 Notation and Preliminaries

We use the following notation when defining the LEX and DEX. Let i index devices,

j index venues, g index geographic units (counties or states), and t and d index dates.

Let pi jt ∈ {0, 1} and pigt ∈ {0, 1} equal one if device i pinged in venue j or geography

g, respectively, on date t. Define pit ≡ maxg pigt as an indicator that equals one if

device i pinged in any geographic unit on date t. Let rigt ∈ {0, 1} equal one when

device i resided in g at date t, where we assign residence based on the geographic

unit in which the device spent the most time in residential venues on that date.20

Next, we define sets of devices and venues based on these indicators. Let

I j,d ≡
{
i : pi jd = 1

}
and Ig,d ≡

{
i : pigd = 1

}
denote the sets of devices that pinged in

venue j or geographic unit g, respectively, on date d. Let Gg,d ≡
{
i : rigd = 1

}
denote

the set of devices that reside in geographic unit g on date d. Let Ji,d ≡
{
j : pi jd = 1

}
denote the set of venues where device i pinged on date d.

3.2 Location Exposure Index (LEX)

The LEX is a matrix that answers the following query: Among smartphones that

pinged in geographic unit g′ on date d, what share of those devices pinged in

geographic unit g at least once during the previous 14 days? We report the LEX as

a daily G×G matrix, in which each cell reports, among devices that pinged on day

d in the column location g′, the share of devices that pinged in the row location g at

20In the event of a tie, the geographic unit of residence is assigned based on visits to non-residential
locations.

11



least once during the previous 14 days (conditional on pinging anywhere during

the previous 14 days). Thus, each element of this matrix is

LEXgg′d ≡

∑
i∈Ig′ ,d

1
{∑d−1

t=d−14 pigt > 0
}

∑
i∈Ig′ ,d

1
{∑d−1

t=d−14 pit > 0
} =

∑
i 1

{
i :

(
pig′d = 1 &

∑d−1
t=d−14 pigt > 0

)}
∑

i 1
{
i :

(
pig′d = 1 &

∑d−1
t=d−14 pit > 0

)} .
We define the LEX to summarize people’s movements with pandemic-related

applications in mind. The index describes the share of people in a given location

who have been in other locations during the prior two weeks. Thus, if COVID-19

cases surge in county g, LEXgg′d describes the potential exposure of county g′ to

the infectious disease via prior human movement from county g to g′ (conditional

on pinging anywhere in the US in the last 14 days). We chose the 14-day period of

exposure based on the incubation period commonly cited by public-health author-

ities during the ongoing pandemic.21 We chose to focus on all devices pinging in a

given location rather than only residents because all human movement is relevant

for potential disease exposure. Because a device can visit multiple locations both

on a given day and during the preceding 14 days, LEXd is not a transition matrix,

its columns do not sum to one, and it is not amenable to aggregation. The temporal

frequency and geographic units were selected to protect device user privacy in the

context of a public data release. To complement the LEX, we also report a more

aggregated statistic: the fraction of devices in geographic unit g′ that in the last

two weeks were in any geographic unit g , g′.

Starting in March 2020, there was a general decline in the number of devices

generating pings, presumably due to individuals restricting their movements in

response to the pandemic. Both the numerator and denominator of LEXgg′d restrict

attention to devices that ping in g′ on day d (i ∈ Ig′,d), so the LEX captures the

locational histories of devices that are “out and about” in geographic unit g′ on

21The CDC’s COVID-19 FAQ page: “Based on existing literature, the incubation period (the
time from exposure to development of symptoms) of SARS-CoV-2 and other coronaviruses (e.g.
MERS-CoV, SARS-CoV) ranges from 2–14 days.”
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date d and does not capture the locational histories of devices sheltering in place

and not generating any pings. This is relevant in the context of the ongoing

pandemic: the index captures non-local exposure associated with “active” devices

that are moving around within location g′. For applications that require measuring

exposure for the entire population of devices, including those that do not generate

pings, we have published the daily number of devices that ping in each county, so

that researchers can adjust their computations.

3.3 Device Exposure Index (DEX)

The DEX is a county- or state-level scalar that answers the following query: How

many distinct devices does the average device living in g encounter via overlapping

visits to commercial venues on each day? To compute the DEX, we first calculate

the daily exposure set of device i as the number of distinct other devices that visit

any commercial venue that i visits on date t:

EXPi,d =
⋃
j∈Ji,d

I j,d.

The DEX is then defined as the average size of the exposure set for devices that

reside in geographic unit g on date d:

DEXg,d ≡
1
|Gg,d|

∑
i∈Gg,d

|EXPi,d|.

As an average, the DEX can be aggregated to larger spatial units.22 Note that the

DEX values are necessarily only a fraction of the number of distinct individuals

that also visited any of the commercial venues visited by a device, since only a

fraction of individuals, venues, and visits are in the device sample.

We have defined the DEX to summarize social contact with pandemic-related

22For example, metropolitan and micropolitan areas are defined as collections of counties.
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applications in mind. The index captures overlapping visits to venues on the same

day, which is relevant for potential virus exposure. We chose to define overlapping

visits as visits to a venue on the same day rather than during the same hour based

on both sample size and the concern that SARS-CoV-2 can persist in circulating air

and on surfaces for multiple hours.

Note that devices sheltering in place would drop out of the sample used to

compute the DEX if they did not generate any pings. As a result, the DEX may

underestimate the reduction in exposure following the COVID-19 outbreak. We

therefore implement a simple adjustment of the DEXg,d denominator as one means

of addressing the potential sample selection problem associated with devices shel-

tering in place. Define a counterfactual set of pinging devices G∗g,d such that any

device in G∗g,d but not in the observed Gg,d is sheltering in place with |EXPi,d| = 0.

The adjusted DEX is

DEXadjusted
g,d =

|Gg,d|

|G∗g,d|
DEXg,d.

We assign the counterfactual set G∗g,d to be the largest number of devices observed

on any day from January 20, 2020 to February 14, 2020 in geographic unit g, so that

|̂G∗g,d| = max
d∈[20 Jan 2020,14 Feb 2020]

|Gg,d|.

Given that |Ĝ∗g,d| is an upper bound, DEXadjusted
g,d likely overestimates the drop in

exposure following the COVID-19 outbreak. On the other hand, as noted above,

the unadjusted DEXg,d likely underestimates the drop in exposure.23 Together, these

series should offer useful bounds. As mentioned before, even absent a pandemic

there is meaningful variation in the number of devices in the sample that affect the

DEX.
23In practice, while the average absolute difference between the state-level unadjusted and ad-

justed DEX values is 7 percent, the two indices have a correlation coefficient of 0.996 in levels and
0.992 in first differences. Figure 5 shows that the population-weighted mean values of the unad-
justed and adjusted DEX track each other closely over time. The adjusted DEX should not be used
when |Gg,d| > |G∗g,d|, which will occur as social contact resumes and devices stop sheltering in place.
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For devices that have a home assigned, we compute DEX values by the de-

mographic characteristics of their residential block group. We only report these

demographic DEX values at the state level, due to sample size and privacy consid-

erations.

DEX by income Within each state g, we partition all census block groups into

four median income quartiles with an equal number of block groups. We index

these quartiles by q ∈ {1, 2, 3, 4}. Within each state g on each day d, we denote by

Gg,q,d the set of devices i that have a home in a block group within quartile q.24 The

DEX by income is

DEX-incomeg,q,d =
∑

i∈Gg,q,d

EXPi,d

|Gg,q,d|
.

DEX by education The DEX by education is the same as the DEX by income,

except that the four quartiles are based on the college share within each block

group.25

DEX by race/ethnicity We report DEX values by racial/ethnic categories available

in the Census of Population. For each r ∈ {Asian,Black,Hispanic,White}, we report

a weighted average of device-level exposure:

DEX-raceg,d,k =
∑

i∈Gg,q,d

wi,rEXPi,d∑
i∈Gg,q,d

wi,r
,

where wi,r is the residential share of race/ethnicity r in device i’s block group.26

24Note that the residential block group is not necessarily within geographic-unit-of-residence g.
This allows for cases where a device leaves their assigned home to shelter in place somewhere else.
That is, a device can relocate, but it maintains its originally assigned demographics.

25The college share is the share of adults 25–65 years old with at least a four-year college degree.
26To be precise, the categories “Asian,” “Black,” “Hispanic,” and “White” are shorthand for

non-Hispanic Asian, non-Hispanic black, all Hispanic, and non-Hispanic white residents. These
four categories are sufficiently large to be reported for many geographic units. We only report the
DEX-race for a given racial/ethnic group in states where the weighted number of devices for that
group is at least 1,000 devices every day from January 6 to 12, 2020.
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4 Tracking activity during the 2020 pandemic

We present movement patterns captured by our smartphone data indices during

the pandemic. These patterns generally align well with those found in other data

sources when such comparisons are possible.

4.1 Comparisons to population and expenditure data

Given researchers’ widespread use of smartphone data to study movement during

the pandemic, it is important to assess whether the pandemic has altered the relia-

bility of smartphone data. However, within one year of the virus spreading, there

have been few opportunities to benchmark smartphone data to traditional data

sources that are published less frequently and with a substantial lag. Even when

traditional data are available, pandemic-induced changes in behavior may have

caused smartphone movement data to diverge from the benchmark. As discussed

in Section 2, sheltering in place reduces the ratio of active devices to residential pop-

ulation. Similarly, a shift to online shopping would alter the relationships between

movement and expenditure. Nonetheless, in this section we compare the distribu-

tion of smartphone residences and visits during the pandemic to population and

expenditure data.

First, we compare Census state-level population estimates for July 2018, July

2019, and July 2020 to state-level numbers of smartphones at those times.27 Re-

gressing the log smartphone population on the log Census population estimate

for each state yields an R2 of 0.97 for 2018 and 2019 and 0.94 for 2020.28 Looking

27The US Census Bureau released state-level population estimates for July 1, 2020 on December
22, 2020. Population estimates for July 1, 2020 for smaller geographic units are scheduled to be
published in the following six months. The Census estimates annual population changes based on
births and deaths reported in vital statistics and migration evident in administrative data such as
IRS tax returns and Medicare enrollments. Thus, the July 1 estimates reflect residential patterns
across the various dates that households filed their tax returns.

28Looking at state-level population changes from July 2018 to July 2019 and from July 2019 to
July 2020, we find an R2 of 0.3 in both cases. The smartphone-data changes exhibit much greater
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at the residential distribution of devices across block groups by their 2014-2018

demographic characteristics, Figure B.7 shows that the pre-pandemic tendency for

devices to disproportionately reside in block groups with lower population densi-

ties and higher shares of white residents became slightly more pronounced during

the pandemic. In sum, smartphone and Census residential counts diverged slightly

more during the pandemic. This gap may reflect real movements not captured by

Census methods rather than a decline in the reliability of smartphone data.

Second, we compare smartphone visits to expenditure data during the pan-

demic. Figure 2 depicts a comparison of smartphone visits to credit card expendi-

ture from Affinity Solutions (Chetty, Friedman, Hendren, Stepner, and The Oppor-

tunity Insights Team, 2020). We show data from January to December 2020 across

three business categories: grocery, restaurant, and arts, entertainment, and recre-

ation (A&E). For A&E trips and, to a lesser extent, restaurants, expenditure and

smartphone visits show similar patterns of a sharp drop in late March and a slow

recovery from April onward. Most at-home substitutes for A&E services belong

to different expenditure categories, so the close relationship between movement

and expenditure in this category is reassuring. For groceries however, changes in

average grocery expenditure are unrelated to changes in smartphone visits to gro-

cery stores. We conjecture that this divergence reflects changes in behavior, such as

increased purchases of delivered groceries and greater expenditure per in-person

visits.29

4.2 Movement between US states and counties

To illustrate the movement detail captured by the county-to-county LEX, we ex-

amine links to Manhattan (New York County), one of the early US epicenters of

the pandemic. The maps in Figure 3 depict the share of active devices in each

variance than Census-data changes.
29Kim Severson, “7 Ways the Pandemic Has Changed How We Shop for Food,” New York Times,

8 Sep 2020.
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Figure 2: Smartphone visits and Affinity expenditures
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Panel C: Arts, Entertainment, and Recreation (A&E)
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Notes: This figure depicts total smartphone visits to grocery stores, restaurants, and arts,
entertainment, and recreation (A&E). A&E includes visits to movie theaters, museums,
nightclubs, bars, theme parks, and theatres. Credit card data for the same categories
comes from Affinity Solutions (Chetty, Friedman, Hendren, Stepner, and The Opportunity
Insights Team, 2020). Both series are normalized relative to the January 4-31 average and
smoothed using a 7-day moving average.
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US county that had pinged in Manhattan during the previous two weeks on the

last Saturday of February, May, August and November 2020. The February panel

shows a clear role for physical distance, as counties closer to Manhattan typically

have a larger share of devices that have been in Manhattan during the previous

two weeks, but it also makes clear that physical distance and county-to-county

movements are distinct.

The LEX suggests a swift decline in travel between New York County and other

counties at the pandemic’s onset. From February to May 2020, Figure 3 shows a

broad decline in the share of active devices that had been in New York County

during the previous two weeks. The decline was relatively greater in counties

farther from New York City, making movements connected to New York County

more spatially concentrated in the spring. These connections later rose, without

returning to pre-pandemic levels. As noted previously, the LEX captures inter-

county movement by active devices. Total inter-county movement also declined to

the extent that fewer devices pinged due to not moving.

To assess the reliability of LEX values more systematically, we compare changes

in state-level LEX values to measures of highway and airport traffic. We group

pairs of states based on the distance between their population-weighted centroids

and compute the daily mean value of LEXgg′d for each group. Figure 4 depicts

the mean daily LEX value using a 7-day moving average for each distance-defined

group of state pairs relative to its value on March 7, 2020.
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Figure 4: State-level LEX values by distance between states
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Notes: This figure depicts average LEX values for pairs of states grouped by the distance between
their population-weighted centroids. Each series depicts a 7-day moving average relative to its
value on March 7, 2020. The Transportation Security Administration (TSA) throughput series re-
ports the number of travelers passing through TSA checkpoints on each day. Monthly seasonally
adjusted vehicle miles traveled comes from the Federal Highway Administration (series TRFVO-
LUSM227SFWA).

Figure 4 shows differential declines in smartphone movements by distance that

align well with the differential declines in vehicular and airport travel measures.

Although the average LEX value declines for all state pairs through late April,

pairs of states that are farther apart tended to exhibit larger relative declines. By

mid-April, state-level LEX values at all distances were down 40 percent relative

to their earlier levels. For comparison, monthly total vehicle-miles traveled, a

measure that reflects both intrastate and interstate travel, fell by about 40 percent

from February to April.30 The steepest decline observed is for state pairs that

include Alaska or Hawaii where across-state movements depend heavily on air

30We computed this figure using monthly seasonally adjusted vehicle-miles-traveled estimates
from the Federal Highway Administration (series TRFVOLUSM227SFWA at https://fred.
stlouisfed.org).
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travel even during the pandemic. The Alaska and Hawaii line closely tracks the

decline in daily checkpoint totals at US airports reported by the Transportation

Security Administration (TSA) two weeks earlier, as the LEX captures inter-state

movements using a fourteen-day window. Inter-state travel at all distances began

to rise in late April 2020, with short-distance travel peaking over the summer.

Long-distance travel has continued to climb.

4.3 Visits to commercial venues

Figure 5 traces the evolution of social contact over the course of the pandemic

by plotting the population-weighted average of the county-level DEX values over

2020, relative to its level on March 7. Visits to commercial venues rose during

February 2020, similar to behavior observed in February 2019. There is a sharp

rapid decline in activity in March at the onset of the pandemic in the United States.

The DEX reached a minimum in mid-April at about 25 percent of its early March

level, then rose to just over 60 percent by mid-June. It remained around this level

through most of the summer and autumn before rising rapidly in the final weeks

of 2020.31

Some of this DEX variation is consistent with policy differences across jurisdic-

tions. Appendix Figure B.5 depicts the evolution of the county-level DEX around

policy events, controlling for county and time fixed effects. As in Brzezinski,

Deiana, Kecht, and Van Dijcke (2020), we find that some of the DEX decline co-

incided with the timing of shelter-in-place orders, after which the DEX dropped

by approximately 20 percent. Given the large number of potential confounding

forces, these regressions are only suggestive.

The geographic and demographic detail of smartphone movement data should

allow researchers to investigate important questions leveraging information not

31Figure B.3 maps county-level DEX values on the last Saturday of February, May, August, and
November 2020. Figure B.4 plots the interquartile range of the DEX over time.
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Figure 5: DEX and DEX-A over time
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Notes: This figure shows the population-weighted mean unadjusted and adjusted device exposure
indices (DEX and DEX-A) over time. The series are smoothed using a 7-day moving average and
normalized relative to their value of March 7, 2020.

available in other data sources. For example, Figure B.8 depicts DEX changes

by educational attainment and race. This reveals limited differences in visits to

commercial venues along these demographic dimensions. That may suggest a lim-

ited role for heterogeneous exposure rates within commercial venues in explaining

differences across demographic groups’ infection and mortality rates during the

pandemic.

5 Conclusion

These initial applications of our indices demonstrate the potential of smartphone

movement data to quantify movement and social contact with high frequency

and spatial precision. We have also articulated a number of caveats relevant for

researchers using such data. We hope that our publicly available indices will

support deeper and varied investigation of human movement during the ongoing

pandemic.
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Appendix – For Online Publication

A Data appendix

A.1 Smartphone visits data

Each observed visit consists of a device, a venue, a timestamp, and an attribution

score. PlaceIQ’s attribution scores are larger when a device is more likely to have

been within a venue, based on the number and density of pings, data source of

pings, and proximity of the pings to the polygon defining the venue. We retain

all visits with an attribution score greater than a threshold value recommended

by PlaceIQ based on their experience correlating their data to a diverse array of

truth sets, including consumer spending data and foot-traffic counts. PlaceIQ

also reports a lower bound for the visit’s duration based on the time between

consecutive pings at the same venue.

We also clean the visit data to remove simultaneous visits. For instance, when

two venues are in close proximity to one other, a single visit event may have an

attribution score for both venues that exceeds the threshold value recommended

by PlaceIQ. We retain only the visit to the venue with the highest attribution score.

In other cases, the polygons of two different venues overlap.32 When two polygons

overlap, we retain polygons with an identified business category over those lacking

a category.

Table A.1 summarizes the smartphone movement data after this cleaning for

days between January 20 and March 1, 2020. On the average day, there were

176 million visits produced by 33 million devices visiting 40 million residential

and non-residential venues. The average device appears in the data for 25 days

between January 20 and March 1, but a notable number appear on only one day.
32This could happen, for instance, if the basemap contains one polygon representing a business

establishment and a second polygon representing both that building and the accompanying parking
lot.
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After we apply the device selection criteria we use when computing the LEX and

DEX indices (devices that pinged on at least 11 days over any 14-day period from

November 1, 2019 through the reporting date), there are 152 million visits from 23

million devices visiting 37 million venues on an average day. The selected devices

appear in the data between January 20 and March 1 for 35 days on average.

Table A.1: Summary statistics for cleaned visits and indices samples

Cleaned visits sample Indices sample

Mean SD 5th 95th Mean SD 5th 95th

Devices 33.43 1.92 31.15 36.58 22.80 0.49 22.05 23.61
Venues 40.46 0.81 39.17 41.51 36.88 0.92 35.35 38.28
Visits 175.85 11.33 154.15 191.12 151.56 11.30 132.59 166.74
Duration 25.81 14.31 1.00 41.00 34.91 9.89 11.00 41.00
Notes: This table summarizes PlaceIQ data for January 20, 2020 to March 1, 2020 after our
cleaning of the visits as described in the text. The counts of devices, venues, and visits are
stated in millions per day. Duration is the number of days between a device’s first and last
appearance in the data (between January 20 and March 1).

A.2 Home assignments

Residential venues are a distinct category in the PlaceIQ data. This allows us

to construct a weekly panel of home locations for a subset of devices using the

following assignment methodology:

1. For each week, we assign a device to the residential venue where its total

weekly visit duration at night (between 5pm and 9am) is longest, conditional

on it making at least three nighttime visits to that venue within the week.33 If

a device does not visit any residential location on at least three nights, then

on initial assignment that device-week pair has a missing residential location.

33Since we only observe minimum duration, there are instances where total duration is 0 across
all residential locations. In these cases, we assign the residential venue as the venue a device makes
the most nighttime visits.
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Table A.2: Venue categories in DEX

Retail 209,274
Restaurants 200,839
Gas Station/Convenience Stores 118,307
Night Clubs/Bars 88,784
Banks 79,150
Shipping 36,745
Hotels 32,303
Home Improvement Stores 27,097
Grocery Stores 25,770
Financial Services 23,238
Pharmacies 22,408
Car Dealerships 20,644
Beauty Stores 15,556
Big Box Stores 11,558
Real Estate Offices 9,732
Gyms 9,289
Car Rental 8,999
Pay Day Loan 6,043
Storage 5,935
Movie Theaters 4,632
Library 1,962
Liquor Stores 1,193

Notes: This table lists the venue categories that enter the computation of the Device Exposure
Index (DEX) and shows the total number of distinct venues on 30 June 2020 in each category.
Some venues belong to multiple categories, so the number of distinct venues (about three-
quarters of a million) is smaller than the sum of all rows in this table.

2. After this preliminary assignment, we fill in missing weeks and adjust for

noisiness in the initial panel using the following interpolation rules:

Rule 1: Change “X · X" to “X X X”: If the residential assignment for a week is

missing and the non-missing residential assignment in the weeks before

and after is the same, we replace the missing value with that residential

assignment.

Rule 2: “a X Y X b” to “a X X X b” where a , Y and b , Y: If a device

has a residential assignment Y that does not match the assignment X in
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the week before or after, we replace Y with X as long as Y was not the

residential assignment two weeks before or two weeks after.34

3. After step 2’s interpolation, for any spells of at least four consecutive weeks

where a device is assigned the same residential venue, we assign that venue

as a device’s “home” for those weeks. Spells of less than four weeks are set

to missing.

4. If a device has more than one home assignment and the pairwise distance

between them is less than 0.1 kilometers, we keep the home that appears for

the most weeks.

5. If a device has the same home assignment in two non-consecutive periods and

no other home assignments in between, then we assign all weeks in between

to that home assignment.

34For cases where a device’s residential location is bouncing between two places (“Y X Y X X”)
we are not able to ascertain whether Y or X is more likely to be a device’s residence in a given week
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B Figures appendix

Figure B.1: Balance of devices’ residences across block groups by national demo-
graphic deciles
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Notes: This figure shows the total share of devices living in census block groups corresponding to
the national deciles for each of the four demographic categories.
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Figure B.2: Ratio of devices to residents by county
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Notes: This figure depicts ratio of smartphone devices to residential population for each
county in the contiguous United States. The number of devices is the average number
of devices contributing to the county-level DEX during January 20 through February 28,
2020. We report our indices for 2,018 counties that account for about 97 percent of the
national population.
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B.1 DEX values by block-group demographics

Figure B.8 reveals variation in the reduction in activity across educational attain-

ment and race. Panel A depicts each DEX-education quartile relative to the aggre-

gate DEX on March 7 using a 7-day moving average. Prior to the onset of COVID-19

in the U.S., residents of block groups with more college graduates were more ex-

posed to other devices than average.35 In March, exposure fell for residents of all

block groups, but residents of block groups with more college graduates exhibited

a proportionately greater decline. As a result, by the end of March 2020, there was

little discernible difference in device exposure across neighborhoods with different

shares of college graduates. Exposure for all education quartiles rose during late

spring and plateaued in the summer. Initial differences across quartiles reemerged,

though greatly attenuated.

Panel B of Figure B.8 depicts device exposure by racial/ethnic demographics

using a 7-day moving average. Prior to the pandemic, devices living in block groups

with more Black, Hispanic, and White residents had similar levels of exposure,

while devices living in block groups with more Asian residents had higher DEX

values. From mid-March onwards, all four demographic groups exhibit fairly

similar exposure levels.

The limited variation in device exposure across different demographic groups

after March 15 may imply a limited role for heterogeneous exposure rates in ex-

plaining differences in these demographic groups’ infection and mortality rates

during the pandemic. Researchers investigating these questions could combine

these local measures of social contact by demographic traits with other observed

demographic differences that may explain disparate outcomes.

35This is consistent with the finding that devices from higher-income neighborhoods visit more
places (Chen and Pope, 2020).
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Figure B.4: Interquartile range of DEX over time

Panel A: Raw Device Exposure Index
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Panel B: Normalized to March 7, 2020
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Notes: This figure shows the population-weighted median and interquartile range of the device
exposure index over time.

A9



Figure B.5: Changes in DEX relative to lockdown policies

Panel A: Using All Variation
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Panel B: Only Using Cross-State Variation within Commuting Zones
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Notes: Each plot in this figure presents the coefficients estimated in a regression of the county-level
device exposure index on dummies for the time since a given policy change. In Panel A, these
regressions also include county and date fixed effects. In Panel B, the regressions include county
and commuting zone-by-date fixed effects. Each plot presents the results for a different state-wide
policy, each drawn from Raifman, Nocka, Jones, Bor, Lipson, Jay, and Chan (2020). Each point
represents the coefficient on the dummy for a given number of days since the policy was instituted,
with the bands reflecting 95% confidence bounds on those estimates.
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Figure B.6: Number of devices active per day
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Notes: This figure depicts the number of devices meeting the sample selection criteria defined
in Section 2.2 that pinged at least once on each day from January 20 to December 31, 2020. See
footnote 9 for a discussion of the April 14-18, 2020 anomaly.
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Figure B.7: Evolving share of devices by block-group demographic decile

0
.0

5
.1

.1
5

P
ro

p
o
rt

io
n
 o

f 
D

ev
ic

es

1 2 3 4 5 6 7 8 9 10

Population Density

0
.0

5
.1

.1
5

P
ro

p
o
rt

io
n
 o

f 
D

ev
ic

es

1 2 3 4 5 6 7 8 9 10

Median Household Income

0
.0

5
.1

.1
5

P
ro

p
o
rt

io
n
 o

f 
D

ev
ic

es

1 2 3 4 5 6 7 8 9 10

Share White

0
.0

5
.1

.1
5

P
ro

p
o
rt

io
n
 o

f 
D

ev
ic

es

1 2 3 4 5 6 7 8 9 10

Share College Educated

Deciles by Population

Nov−19 Apr−20

Oct−20

Notes: This figure depicts the share of devices residing in block groups in each county-
specific decile of population density, median household income, share of white residents,
and share of residents over 25 years with a bachelor’s degree or higher. These block group
characteristics are from the 2014-2018 American Community Survey. Device shares are
determined by the share of devices living in block group j in month t conditional on a
device having a block group of residence assigned in month t.
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Figure B.8: DEX values by block-group demographics

a) DEX by educational attainment
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b) DEX by race/ethnicity
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Notes: These plots depict the state-level DEX by demographic groups on each day from January
20 to December 31, 2020. For each state, the demographic DEX time series is smoothed using a
7-day moving average and then divided by the level of the aggregate DEX on March 7, 2020. The
depicted series is a device-weighted average over all states. Panel A depicts this series for DEX by
education and Panel B depicts this series for DEX by race/ethnicity as defined in Section 3.
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C Indices appendix

C.1 Density DEX including large venues

The baseline DEX excludes visits to large venues. To appropriately measure device

exposure in both large and small venues, we need to adjust for venue size. To that

end, we have calculated a version of the DEX that includes visits to all identified

business establishments, including large venues, scaling exposure by the land area

of the venue.

First, we calculate the density-weighted exposure of device i on date d as the

number of distinct devices that visited the same commercial venues, each weighted

by the inverse area of the densest establishment that both devices visited:

EXPDensity
i,d =

1∑
j∈Ji,d

a−1
j

∑
i′

max
j:Ji,d∩Ji′ ,d

a−1
j ,

where a j is the land area of establishment j, Ji,d ∩ Ji′,d is the set of venues visited

by both i and i′ on date d, and the maximum of an empty set is defined to be zero.

The density-weighted DEX is then defined as the average density-weighted

exposure for devices that reside in geographic unit g on date d:

DEXDensity
g,d ≡

1
|Gg,d|

∑
i∈Gg,d

EXPDensity
i,d .

Figure C.1 shows that the inclusion of large venues, adjusted for density, does

not meaningfully alter time-series patterns in the DEX.

C.2 Residential DEX

We complement the DEX with a “residential” DEX that tracks exposure at residen-

tial venues. This index is calculated using the same formula as the baseline DEX
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Figure C.1: Comparison of device exposure indices
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Notes: This figure depicts three different versions of the DEX for California, Illinois, New York, and
Texas. The solid blue line depicts the baseline DEX as defined in the main text. The Density DEX
depicts the density-weighted DEX defined in Appendix C.1. The residential DEX depicts the DEX
for residential visits defined in Appendix C.2. Each series depicts a 7-day moving average relative
to its value on March 7, 2020.

but tracks overlapping visits to residences, rather than commercial venues. We

exclude visits to residences within 0.1km of a device’s own residence, since we are

unable to rule out that these “visits” may simply be time spent at home.

Figure C.1 shows that exposure in residential venues did not dip by as much

during the lockdown period of late March and early April but recovered to a similar

level by late May.
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