
This article was downloaded by: [128.91.108.209] On: 11 April 2022, At: 09:15
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

Management Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

False Discovery in A/B Testing
Ron Berman, Christophe Van den Bulte

To cite this article:
Ron Berman, Christophe Van den Bulte (2021) False Discovery in A/B Testing. Management Science

Published online in Articles in Advance 30 Dec 2021

.  https://doi.org/10.1287/mnsc.2021.4207

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2021, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/mnsc.2021.4207
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


False Discovery in A/B Testing
Ron Berman,a Christophe Van den Bultea

aMarketing, TheWharton School of the University of Pennsylvania, Philadelphia, Pennsylvania 19104
Contact: ronber@wharton.upenn.edu, https://orcid.org/0000-0002-8594-3627 (RB); vdbulte@wharton.upenn.edu,

https://orcid.org/0000-0001-9708-1596 (CVdB)

Received: March 10, 2020
Revised: March 15, 2021; May 24, 2021
Accepted: June 2, 2021
Published Online in Articles in Advance:

https://doi.org/10.1287/mnsc.2021.4207

Copyright: © 2021 INFORMS

Abstract. We investigate what fraction of all significant results in website A/B testing is
actually null effects (i.e., the false discovery rate (FDR)). Our data consist of 4,964 effects
from 2,766 experiments conducted on a commercial A/B testing platform. Using three dif-
ferent methods, we find that the FDR ranges between 28% and 37% for tests conducted at
10% significance and between 18% and 25% for tests at 5% significance (two sided). These
high FDRs stem mostly from the high fraction of true null effects, about 70%, rather than
from low power. Using our estimates, we also assess the potential of various A/B test de-
signs to reduce the FDR. The twomain implications are that decisionmakers should expect
one in five interventions achieving significance at 5% confidence to be ineffective when de-
ployed in the field and that analysts should consider using two-stage designs with multiple
variations rather than basic A/B tests.
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1. Introduction
Marketers increasingly use online experiments (A/B
tests) to inform their decisions. Such experimentation
is facilitated by various A/B testing platforms like
Adobe Target, Google Optimize, Monetate, Optimi-
zely, and VWO. These platforms make it easy to ran-
domly allocate users to treatment conditions and to
measure their responses.

Despite the increasing popularity of website A/B test-
ing, practitioners using it are often disappointed with
the results. First, the great majority of effects are very
small and statistically nonsignificant.1 The same has
been observed in digital advertising experiments (Blake
et al. 2015, Lewis and Rao 2015, Johnson et al. 2017a,
Gordon et al. 2019). Second, even when the intervention
exhibits a statistically significant (or significant, for
short) uplift, deploying it often generates no notable im-
provement in the field (Goodson 2014). In other words,
the result does not replicate, implying that the original
test result was a false positive or false discovery.

This study investigates false discovery in A/B test-
ing by analyzing data from nearly 5,000 effects tested
in 2,766 experiments run on Optimizely, the largest
online A/B testing platform with roughly 35% of mar-
ket share.2 Specifically, we answer three questions. (i)
How prevalent are false discoveries? (ii) To what ex-
tent does this prevalence stem from a high fraction of
true nulls versus low power? (iii) What can firms do

to improve their false discovery rate (FDR)? The an-
swers to these questions not only quantify various
facets of the false discovery problem affecting A/B
testing but also point to promising ways to address it.
In the process, we also explore a few additional ques-
tions, such as whether the FDR varies systematically
across industries and experimenters’ experience.

Our study provides three main insights. First, false
discoveries are indeed quite prevalent in website A/B
testing. Of all effects displaying statistical significance at
5%, about one in five are truly null. At 10% significance,
the FDR is about one in three. Possible malpractice in
data analysis, such as not accounting for multiple com-
parisons, will produce even higher FDRs.

Second, the disappointingly high FDR stems mostly
from a high fraction of true nulls rather than high type
I or type II error rates. Specifically, the main culprit is
that true nulls account for about 70% of all the effects
being tested. A similarly high fraction of null effects
has been observed on Microsoft’s Bing (Deng 2015),
and our study generalizes this finding to a much great-
er set of experimenters, organizations, and industries.
In contrast, inadequate power contributes only little to
the high FDR. The average power in the experiments
we analyze is 65%–70% at 10% significance, and the
FDR of tests at that level of significance would still be
20% even if power was 100%. Neither would tighten-
ing the significance level fully resolve the high-FDR
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problem (e.g., the FDR remains 18%–25% at 5% signifi-
cance and 5%–8% at 1% significance). For decision
makers, these findings imply that possible disappoint-
ment with A/B testing stems not from deficiencies of
the method itself but from the interventions being test-
ed in the experiments.

Even so, our third insight pertains to improvements
in the design of A/B tests that can reduce the FDR.
Specifically, a simulation informed by our empirical
estimates indicates that analysts should consider us-
ing two-stage designs with multiple variations rather
than basic A/B tests. For parameter values represen-
tative of our sample of experiments, the FDR for
one-sided tests at 5% significance improves from
24% to 12%.

We proceed as follows. Section 2 presents a formal
definition of the FDR and its relation to the fraction of
true nulls and the type I and II error rates. Section 2
also describes three methods to estimate the fraction
of true nulls and the FDR. Section 3 shows how false
discoveries not only cause unnecessary switching
costs and disappointment with rolling out false dis-
coveries with zero effect, but also lower the expected
gains in effectiveness from running experiments. Sec-
tion 4 describes the research setting and the data. Sec-
tion 5 presents the main results, followed by Section 6
which documents various contingencies. Section 7 in-
vestigates how the design of A/B tests can be im-
proved to lower the FDR, and Section 8 discusses to
what extent the findings generalize beyond our specif-
ic research setting. Section 9 concludes with implica-
tions for decision makers and analysts.

2. False Discovery Rate
2.1. Definition
A basic A/B test is designed to assess the difference in
outcomes of two versions of a web page. We call this
difference the effect θ. The false discovery rate is the
probability that a measured effect θ̂ reflects a true null
(θ � 0), even though θ̂ is statistically significant at
some level of significance α. In this section, we define
the FDR in mathematical terms and state its relation
to the type I and II error rates.

Let θ be the true effect, and let its estimate θ̂ be de-
clared significant if the test statistic lies in a rejection re-
gion Γ. For simplicity of exposition, we assume that the
test is based on a z score. For a two-sided test at
α � 0:05, Γ � {z :| z |≥ 1:96}. Considering a set of experi-
ments where the true effect θ varies, the FDR is then
Pr(θ � 0 | z ∈ Γ). In contrast, the type I error rate α is the
probability that a significant measurement actually
stems from a null, i.e., α � Pr(z ∈ Γ | θ � 0). The type II
error rate β is the probability that a nonsignificant result
stems from a nonnull effect, i.e., β � Pr(z ∈ Γ | θ≠ 0).
The power of the test or the probability that the

measurement of a true nonnull effect is significant,
Pr(z ∈ Γ | θ≠ 0), is simply 1− β.3 Finally, denote the
probability that the true effect is null as Pr(θ � 0) � π0.4

Using Bayes rule, we can express the FDR as

Pr(θ � 0 | z ∈ Γ) � Pr(z ∈ Γ |θ � 0)Pr(θ � 0)
Pr(z ∈ Γ)

� Pr(z ∈ Γ |θ � 0)Pr(θ � 0)
Pr(z ∈ Γ |θ � 0)Pr(θ � 0)
+Pr(z ∈ Γ |θ≠ 0)Pr(θ≠ 0)

� απ0

απ0 + (1− β)(1−π0) : (1)

In a properly conducted and analyzed experiment,
the FDR is a function of three elements: the probabili-
ty that effects are truly null π0, the type I error rate or
significance level α, and the power 1− β.

Note how the FDR differs from the type I error rate
α. Whereas α � Pr(z ∈ Γ | θ � 0), the FDR equals Pr(θ �
0 | z ∈ Γ) (i.e., the conditioning is reversed). Figure 1
displays the FDR as a function of π0 and power 1− β
for a fixed value of α � 0:05. For many combinations
of π0 and power, the FDR is higher than α. For exam-
ple, with α � 0:05, π0 � 70%, and power at 80%, the
FDR is 12.7%. Even with power at 100%, the FDR re-
mains elevated at 10.4%.

Taking derivatives of Equation (1) confirms that
the FDR increases with the fraction of true nulls π0

and with the significance level α and decreases with
the power 1− β. Equation (1) also shows that any
practices that increase α above its nominal level
(e.g., 0.05) will increase the FDR at that level. Such
practices include improperly testing multiple hy-
potheses and improperly testing hypotheses after
peeking at the data (Benjamini and Hochberg 1995,
Johari et al. 2017).

A second way to present the FDR and its relation to
type I and II error levels is through the matrix shown
in Table 1. It organizes measured effects (events)
based on whether they stem from a true null or not
and whether they are declared significant or not. The
expected fraction of observations that are true nulls is
π0, and a fraction α of those will expectedly be de-
clared significant. Of the expected 1−π0 fraction of
nonnulls, a fraction 1− β will expectedly be declared
significant. Hence, the expected fraction of all signifi-
cant results that are false positives or false discoveries
is the same as in Equation (1).

Finally, the FDR can also be defined starting from a
mixture model. This has proven useful for quantifying
the FDR empirically (e.g., Efron 2012). Let f (z | θ) be
the probability density function (pdf) of the z scores
conditional on the effect θ. Also, let f0(z) � f (z | θ � 0),
which is the standard Normal, and f1(z) �∫

θ≠0
f(z | θ)h(θ)dθ, where h(θ) is the pdf of the nonnull

effects, such that

Berman and Van den Bulte: False Discovery in A/B Testing
2 Management Science, Articles in Advance, pp. 1–21, © 2021 INFORMS



f (z) � π0f0(z) + (1−π0)f1(z): (2)

Again, using Bayes rule, we can express the proba-
bility that a measured effect with a specific z score
stems from the null as

Pr(θ � 0 |z) � f (z |θ � 0)Pr(θ � 0)
f (z)

� π0f0(z)
π0f0(z) + (1 − π0)f1(z) : (3)

Integrating the expression in (3) over the rejection
region Γ that corresponds to the significance level α
and its critical z score z∗ results in

Pr(θ � 0 | | z | ≥ z∗)
� π0(1− F0(z∗) + F0(−z∗))
π0(1− F0(z∗) + F0(−z∗) + (1−π0)(1− F1(z∗) + F1(−z∗))

� π0α

π0α+ (1−π0)(1− β) : (4)

2.2. Estimation
We estimate π0 using three methods (A, B, and C) that
use different inputs and modeling assumptions. Meth-
od A uses normal mixture modeling, an approach
many researchers and data scientists are familiar with.
Method B also uses normal mixture modeling but al-
lows the estimation of the FDR, as first shown by
Efron et al. (2001). It also allows the estimation of av-
erage power. The key idea underlying Method B has

generated a multitude of specific implementations
(e.g., Efron 2012, Scott et al. 2015), and the one we use
extends Method A. Method C is a nonparametric ap-
proach originally developed by Storey (2002, 2003)
and Storey and Tibshirani (2003), and it allows the es-
timation of π0, the FDR, and average power.

Methods B and C use different aspects of the data to
identify the value of π0 used to estimate the FDR.
Method B identifies π0 from the presence of too large
a spike in the middle and too many observations far
into the tails of the distribution of z scores compared
with the standard Normal when π0 � 1. Method C
identifies π0 from the shape of the distribution of p-
values compared with the uniform distribution when
π0 � 1. Other similarities and differences across the
three methods are shown in Table 2. Together, they
span various dimensions among the approaches cur-
rently used to compute the proportion of true nulls
and the FDR (for a recent review, see Korthauer et al.
2019).

2.2.1. Method A. Let θ̂i be the estimated effect size
from test i. We assume that the true effect comes
from a mixture of nulls and nonnulls; the effect size
θi is zero (null) with probability π0 and θi ~N (µ,σ2)
otherwise. Consistent with the central limit theorem,
we assume that θ̂i ~N (θi, s2). Here, σ represents the
variation among the nonnull effects, and s represents
the estimation error. The likelihood of an estimated

Figure 1. (Color online) How FDR at Multiple Power Levels Varies with π0 When α � 0:05

Table 1. True Nulls and Type I and II Error Rates

Called significant (discovery) Called not significant Total

Null is true απ0 (1− α)π0 π0

Alternative is true (1− β)(1−π0) β(1−π0) 1−π0

Total απ0 + (1− β)(1−π0) (1− α)π0 + β(1−π0) 1

Berman and Van den Bulte: False Discovery in A/B Testing
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effect is

f (θ̂i) � π0φ(θ̂i;0, s2) + (1−π0)φ(θ̂i;µ,σ2 + s2), (5)

where φ(x;λ,τ2) is the pdf of the normal distribution
with mean λ and variance τ2. From Equation (5), we
estimate the four model parameters π0, µ, σ, and s us-
ing maximum likelihood estimation (MLE).

2.2.2. Method B. Method A assumes that s2 is com-
mon across tests, regardless of sample size and the
conversion rates in the A/B test. This does not take
into account the different standard error (s.e.) used in
each test. Method B addresses this limitation.

We incorporate the observed s.e. ŝi and assume
θ̂i ~N (θ, ŝ2i ). The likelihood of θ̂i conditional on ŝi is

f (θ̂i | ŝi) � π0φ(θ̂i;0, ŝ
2
i ) + (1−π0)φ(θ̂i;µ,σ2 + ŝ2i ): (6)

Equivalently, the test statistic (asymptotic z score)
zi � θ̂i =̂si has the following conditional likelihood:

f (zi | ŝi) � π0φ(zi;0, 1) + (1−π0)φ(zi;µ=̂si, 1+ σ2=̂s2i ),
(7)

which is the empirical analog of Equation (2). Note
that the distribution of the nonnull z score is still Nor-
mal but with mean and variance decreasing in ŝi
(Hung et al. 1997, Lu and Stephens 2019). Based on
Equation (7), we estimate π0, µ, and σ using MLE.

To estimate the FDR over the entire set of m test re-
sults, we plug the value of ŝ2i and the MLE estimates
of π0, µ, and σ2 into Equation (4) where Φ(·) is a nor-
mal cumulative distribution function (cdf),

P̂r(θi � 0 | ŝ i, | z |> z∗)
� π̂0α

π̂0α+ (1− π̂0)(1−Φ(z∗; µ̂=̂si, 1+ σ̂
2
=̂s2i ) + Φ(−z∗; µ̂=̂si, 1+ σ̂

2
=̂s2i ))
(8)

and integrate over the empirical distribution of ŝi:

F̂DR(z∗) �
∑m

i�1P̂r(θi � 0 | ŝi, | z |> z∗)
m

: (9)

2.2.3. Method C. Both Methods A and B make the
parametric assumption that the distribution of the non-
null effects is normal. Method C uses a nonparametric

approach with the p-values as its input. The key idea
is that under the null hypothesis, the p-values will be
uniformly distributed, whereas under the alternative,
the distribution of p-values will be skewed toward
low values. Consequently, the fraction of effect sizes
with very high p-values provides a good estimate
of π0.

To quantify the FDR, Method C uses Table 3, which is
the empirical analog of Table 1. In the table, m, the total
number of effects, and S, the number of significant ef-
fects, are both observed. In contrast, m0, the number of
true nulls, and F, the number of false positives, are not
observed. As the number of estimated effects m in-
creases, the fraction F

m0
converges to the nominal signifi-

cance level α, and the fraction T
m1

converges to the power
1− β. Also, FDR � E

F
S

[ ]
.5

As noted, the only observed values in Table 3 are m
and S, but because F � αm0 � απ0m as m becomes very
large, all we need to fill out the table and compute the
FDR is an estimate of π0 (Storey 2002, 2003; Storey
and Tibshirani 2003). Specifically, we compute π0 us-
ing the method proposed by Storey and Tibshirani
(2003) and implement it using the default settings in
the R package qvalue (Storey et al. 2019). The estima-
tion consists of the following four steps.

1. Denote pj as the p-value of effect j.
2. For a range of λ � 0:05,0:1, : : : , 0:95, calculate

π̂0(λ) �
#{tests with pj > λ}

m(1−λ) :

3. Fit the natural cubic spline ĝ of π̂0(λ) on λ.
4. Set the estimate of π0 to be π̂0 � ĝ(1).
Instead of using the fraction of observations with p >

0.95 or p > 0.99, this approach borrows strength from
the entire distribution by fitting a flexible curve and
taking the estimate at the limit of λ � 1. We use boot-
strapping to compute confidence intervals (C.I.s) for
π̂0. To compute the FDR at a specific significance level
α, we again follow Storey and Tibshirani (2003):

F̂DR(α) � m · π̂0 · α
#{tests with pj ≤ α} : (10)

We calculate the FDR at the three levels of α most
commonly used in the social sciences, 10%, 5%, and

Table 2. Estimation Methods

Method A Method B Method C

Inputs (DV*) Effect size* z score* and s.e. p-value*
DV distribution under H0 Normal Standard Normal Uniform
DV distribution under H1 Normal (homoskedastic) Normal (heteroskedastic) Nonparametric
Estimation of π0 Yes Yes Yes
Estimation of FDR No Yes Yes
Estimation of power No Yes Yes

Note. DV, dependent variable.

Berman and Van den Bulte: False Discovery in A/B Testing
4 Management Science, Articles in Advance, pp. 1–21, © 2021 INFORMS



1% (Leahey 2005, Brodeur et al. 2020), and “bookend”
these with two additional levels, 20% and 0.1%.

3. The Cost of False Discoveries
Implementing false discoveries generates two kinds of
costs. The first is a cost of omission: the gain foregone
by deploying a false rather than true discovery. The
second is a cost of commission: the costs incurred by
deploying a false discovery rather than sticking with
the current practice. We discuss each in turn.

Assume a decision maker runs an A/B experiment
with one test and one control condition, where the
control is the current implementation. The decision
maker uses a one-sided test and switches to the treat-
ment if the effect θ̂ is positive and statistically signifi-
cant at level α (θ̂=̂s > z1−α).

The gain in effectiveness from such an experiment is
zero if the observed effect is not significant; it is also
zero if the observed effect is significant but the true ef-
fect θ is null, and it is non-zero with a value of θ other-
wise. If the effects and the observed data are generated
according to the normal mixture model introduced,
then the expected gain (EG) in effectiveness for a given
ŝ equals (see Online Appendix A)

EG � (1−π0) ·Φ µ− z1−α · ŝ									
ŝ2 + σ2

√( )
· µ+ σ2									

ŝ2 + σ2
√ φ

µ−z1−α· ŝ						
ŝ
2+σ2

√
( )

Φ
µ−z1−α· ŝ						

ŝ
2+σ2

√
( )

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

�Pr(θ≠0) ·Pr(θ̂=̂s>z1−α |θ≠0
) ·E θ|θ̂=̂s>z1−α,θ≠0

[ ]
:

(12)

These expected gains decrease with π0 and increase
with µ and σ because the latter drive larger true ef-
fects. The expected gains decrease with ŝ because lack
of precision lowers the ability to detect and implement
interventions with true effects larger than zero. More
surprising is that the gains in effectiveness decrease in
z1−α when z1−α ≥ 0 (i.e., the gains decrease as one
tightens the significance level α used to declare dis-
coveries). The reason is that fewer positive true effects
are declared significant, i.e., Pr(θ̂=̂s > z1−α | θ≠ 0)
goes down, and this dominates the increase in the ex-
pected true effect conditional on significance
E[θ | θ̂=̂s > z1−α,θ≠ 0]. The decision maker seeking
to maximize EG should use z1−α � 0 or α � 0:50, i.e.,

should roll out any treatment with a positive observed
effect regardless of significance level. This decision
rule is consistent with prior analyses by Stoye (2009),
Manski and Tetenov (2016), and Feit and Berman
(2019).

Because Pr(θ≠ 0 | θ̂=̂s > z1−α)� 1− FDR from one-
sided tests, Equation (12) implies

EG � Pr(θ̂=̂s > z1−α) · [1− FDR]
·E θ | θ̂=̂s > z1−α,θ≠ 0

[ ]
: (13)

Hence, the expected gain in effectiveness is the
probability of declaring a discovery multiplied by
the probability that a discovery is true rather than
false multiplied by the expected true effect given that
it is nonnull and its estimate is declared a discovery.
Consequently, given a set of significant findings, the
expected boost in effectiveness decreases with the
FDR. We quantify how these expected gains are affect-
ed by π0, µ, σ, ŝ

2, and α in Section 7.
Of course, decision makers may not seek to simply

maximize EG without taking into consideration the
cost of deploying false discoveries. Switching from
the baseline to the newly discovered treatment may
trigger switching costs. For many experiments, the lat-
ter will be low, like changing the background color of
a web page. However, for some, it may be quite sub-
stantial, like building and rolling out the infrastruc-
ture to enable a new shipping policy. Switching costs
are incurred for both false and true discoveries, with

expected frequency απ0 +Φ
µ−z1−α· ŝ						

ŝ2+σ2
√
( )

(1−π0). In addi-

tion, top management may worry that deploying false
discoveries will harm their efforts to instill a test and
learn culture, and the analytics team may worry about
their credibility within the firm. These costs of disap-
pointment are incurred only for false discoveries, with
expected frequency απ0. Furthermore, decision mak-
ers and analysts may care more about avoiding losses
than making equally sized gains, and hence, they may
want to sharpen the significance level to avoid inter-
ventions with a positive observed effect but a true
negative effect. In short, depending on their cost of
switching and disappointment and their level of loss
aversion, decision makers and analysts may want to
use a value of α < 0:50 in their decision rule.

Implementing a false discovery results in forgoing
the expected gain from experimentation and incurring

Table 3. False Positives and False Discoveries

Called significant (discovery) Called not significant Total

Null is true F m0 − F m0

Alternative is true T m1 −T m1

Total S m – S m

Berman and Van den Bulte: False Discovery in A/B Testing
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various costs. The consequences may vary across or-
ganizations. For instance, large organizations with
high-volume traffic to their websites and plenty of an-
alytics and engineering resources will be able to
quickly detect the lack of improvement and will have
the resources to test new ideas and implement im-
provements. Hence, they will forgo the gains of a true
discovery for a shorter period compared with smaller
organizations. However, the same organizations operat-
ing on a massive scale typically care about even very
small forgone improvements.

4. Data
4.1. Research Setting
Our data come from Optimizely, an online A/B test-
ing platform. It helps experimenters with designing,
delivering, monitoring, and analyzing different ver-
sions of web pages. This section describes the plat-
form as it operated during the data window. An A/B
test is a randomized, controlled experiment where
there are two (A and B) or more versions of a web
page, called web page variations. When an online
user visits the experimenter’s website, the platform as-
signs this visitor to one of the variations randomly,
which is then displayed to the visitor. The assignment
is usually implemented by saving a cookie file on the
visitor’s device indicating their assigned variation.
Each visitor is assigned to a single variation for the
duration of the experiment.

The platform monitors actions that the visitor takes
on the website after viewing the assigned variation and
records them in the log of the experiment. The moni-
tored actions are chosen by the experimenter and are
called “goals.” These goals can include engagement,
clicks, page views, revenue, or other actions defined by
the experimenters. In this study, we focus on engage-
ment as the goal, which is defined as clicking anywhere
on the tested variation and is the default and most pop-
ular goal on the platform. This allows us to compare

performance on the same goal across experiments and
results in the largest set of experiments for us to study.

The platform logs the number of unique visitors
and the number of unique engagement clicks, also
called conversions. The conversion rate of each varia-
tion is defined as the number of conversions divided
by the number of visitors. In each experiment, the ex-
perimenter designates one variation as the baseline.
The baseline may, but need not, be in use before the
experiment started. The performance of all other var-
iations is compared with the baseline, and statistics
are computed relative to the baseline.

The platform reports the result of a one-sided t test
comparing each variation with the baseline. The tests
are performed at 5% significance and called “chance
to beat the baseline.” Figure 2 presents the dashboard
displayed to the experimenter. The test statistic is only
displayed after the numbers of visitors to the baseline
and to the variation both reach 100.

4.2. Set of Experiments Studied
Our raw data contain all 8,598 experiments that were
registered on the platform during the month of April
2014. The data contain daily values of visitor and con-
version counts for each variation in each experiment,
from which we calculate the metrics and statistics
used in the analysis.

We exclude experiments that have one or more of
the following characteristics.

1. Having all conversion rates at 100% or all conver-
sion rates at 0%

2. Having a conversion rate above 100%
3. Having less than 100 visitors to the baseline or to

all its variations
4. Not having engagement as a goal
5. Ending after November 30, 2014 (the end of our

data window)
6. Having no traffic for six consecutive days or all

traffic assigned to one variation for six consecutive
days

Figure 2. (Color online) Experimenter Dashboard: Overview
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The first three criteria remove experiments with
poorly measured effect sizes or poor statistical infer-
ence. The final criterion excludes experiments that
very likely were terminated de facto by reconfiguring
the website before the experimenter notified the plat-
form about the experiment’s termination. Knowing
when an experiment was ended is necessary for us to
determine whether an experiment’s result would have
been declared statistically significant.

Our final data set consists of 4,964 effect sizes from
2,766 experiments run by 1,349 experimenter accounts.6

Thirty-six percent of experiments have more than one
nonbaseline variation. Only 15% of the experiments list
engagement as the only goal, and it is possible that
some experimenters pursued a primary goal other than
engagement. We take the number of variations and
number of goals into account in our analyses.

4.3. Descriptive Statistics
Table 4 reports several characteristics of the experi-
ments. The median number of variations excluding
the baseline was one, and the median number of goals
was three. Experimenters varied quite a bit in the
number of prior experiments they had run on the plat-
form, with the median being 97. On the last day, the
typical (median) experiment had run for 15 days.

Table 5 reports descriptive statistics for the 4,964
variations we are analyzing. The variables are sample
size, effect size, lift, and z score.

Sample size includes the number of visitors to the
baseline and nonbaseline variation. The effect size of a
nonbaseline variation is the difference in conversion
rates between that variation and the baseline, whereas
the lift is the percentage difference in conversion rates
from the baseline. Lift is reported as “improvement”
on the dashboard (Figure 2). The asymptotic z score is
computed as the effect size divided by its standard

error computed as
																			
cb(1−cb)

nb
+ cv(1−cv)

nv

√
, where cb and cv

are the observed conversion rates for the baseline and the
variation, respectively, and nb and nv are the sample sizes,
respectively.

Figure 3 shows that effect sizes and especially z
scores exhibit long tails. This is confirmed by their
kurtosis being much higher than that of a normal dis-
tribution (30 and 451, respectively, versus 3) and by
Shapiro–Francia tests rejecting the null that either var-
iable is normally distributed (p < 0.0001). The red hor-
izontal line in the histogram of p-values crosses the
vertical axis at 1.8%. Because there are 40 bins, the
mass under that line amounts to 72% of the p-values.

Reflecting the experience of many practitioners us-
ing A/B tests, the effect sizes tend to be very small
and frequently nonsignificant; only 26% are signifi-
cant at α � 10%, 20% are significant at α � 5%, and
13% are significant at α � 1%.

4.4. Comparison with More Recent Experiments
The experiments from 2014 that we analyze are similar
to those run in 2017 and 2018 on the same platform, as
reflected in basic descriptive statistics for 21,836 ex-
periments run between November 2016 and Septem-
ber 2018 (Thomke 2020, pp. 110–112). The fraction of
experiments with only a single nonbaseline variation
barely changed (64% versus “about 70%”), as did the
mean number of nonbaseline variations (1.8 versus
1.5). The average run time of experiments increased
slightly from 3.7 to 4.4 weeks. The four industries that
experimented the most remained the same: retail, me-
dia, hi-tech, and professional or financial services.
Thomke (2020, p. 111) reports that “19.6% of all experi-
ments achieved statistical significance on their primary
metric.” We find that 26% of all experiments in our
data reached 5% significance (one sided) on engage-
ment.7 As in the 2016–2018 data, this number splits

Table 4. Summary Statistics of Experiments

Mean Median Standard deviation Min Max

No. Nonbaseline Variations 1.83 1 2.26 1 64
Total Goals 4.18 3 5.72 1 158
Past No. Exp. 248.84 97 390.50 1 2,917
Length 26.04 15 28.23 1 162

Notes. N � 2,766. Values are computed on the last day of the experiment.

Table 5. Summary Statistics of Effects

Mean Median Standard deviation Min Max

Sample Size (base + focal) 61,009 3,781 556,159 201 34,724,196
Effect Size −0.001 −0.001 0.043 −0.639 0.464
Lift 0.023 −0.001 0.749 −0.821 24.374
z score 0.105 −0.067 6.939 −80.432 196.084

Notes. N � 4,964. Values are computed on the last day of the experiment.
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almost evenly between positive and negative effects.
In short, even though the performance metric on
which the tests are performed differs, the pattern of
significance did not change markedly.

5. Results
5.1. How Many Effects Are True Nulls?
Table 6 reports the estimates of π0 from Methods A, B,
and C. For A and B, it also reports estimates of the
other model parameters. Column B/C reports esti-
mates of Model B where π0 is restricted to the estimate
obtained fromMethod C.

Method A estimates π0 to be 67% (95% C.I.,
64%–69%). As noted earlier, this method does not take
into account how standard errors differ across tests.
Method B does and estimates π0 to be 80% (95% C.I.,
78%–81%). Method B has less restrictive assumptions
and fits the data markedly better (Δ− 2LL � 2, 230).

Whereas Methods A and B assume normality for the
nonnull effects, Method C does not make any paramet-
ric assumptions on those effects. Its estimate of π0 is
72% (95% C.I., 65%–78%). Given the differences be-
tween the estimates from Methods B and C, we reesti-
mate the model in Method B after restricting π0 to the
value estimated from Method C, corresponding to the

red horizontal line in the histogram of p-values in
Figure 3. This restricted model fits worse (Δ− 2LL � −73)
but produces very similar estimates of µ and σ. Hence,
we believe that the 72% estimate of π0 is credible across
methods.

True nulls amounting to 70% of all effects may
sound high, yet it is consistent with an earlier report
that the true null rate in experiments conducted on
Microsoft’s search engine Bing was over 80% (Deng
2015). Also, it compares favorably with academic

Figure 3. (Color online) Histograms of Effect Sizes, z Scores, and p-Values

Note. N � 4,920, covering 99.1% of the data.

Table 6. Estimates of π0 and Other Model Parameters

Method

A B C B/C

π0 0.6654*** 0.7976*** 0.7162*** 0.7162
(0.0145) (0.0087) (0.0349)

µ −0.0036* −0.0032 −0.0030
(0.0018) (0.0026) (0.0022)

σ 0.0714*** 0.0759*** 0.0693***
(0.0017) (0.0022) (0.0017)

s 0.0133***
(0.0004)

−2LL −20,145 −22,375 −22,302
Note. N � 4,964; s.e. values are in parentheses.

*p < 0:05; ***p < 0:001.
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psychology where the true null rate has been estimat-
ed to be about 90% (Johnson et al. 2017b).

Both Methods A and B allow the first component of
the mixture to capture the spike at zero. Rescaling ef-
fect sizes by their standard error results in a density of
z scores with longer tails compared with effect sizes. It
is these longer tails that result in a higher estimate of
σ and π0 in Method B compared with Method A.

Method C is less sensitive than Method B to ex-
treme z scores because their transformation into p-val-
ues using the normal cdf squeezes extreme z scores
into the unit interval. Consequently, Method C does
not require as large a π0 to account for extreme z
scores as Method B does.

5.2. How Many Discoveries Are False?
Table 7 reports the FDRs for two-sided tests at five
levels of significance. Method B implies an FDR of
37% at α � 10%, which was the default level used by
the platform to declare significance. At 5% signifi-
cance, the FDR is 25%, meaning that as many as one
of four significant results remains a false discovery.
The FDR decreases as one tightens the significance
level further but remains higher than α.

Remember that Method C produces a lower esti-
mate of π0 than Method B does (72% instead of 80%).
This results in a lower estimate of the FDR at each sig-
nificance level α as implied by Equation (1) and Figure
1. Using the same estimate of π0 from Method C to es-
timate the FDR using the model of Method B leads to
nearly identical FDR estimates in Method B/C. The
FDR equals 28% at α � 10% and 18% at α � 5%.

An FDR of 18% for website A/B tests conducted at
α � 5% may seem surprisingly high. Yet, it compares
favorably with FDRs for tests at the same level of sig-
nificance in medical research, which experts believe
range between 20% and 50% (Benjamini and Hechtlin-
ger 2013), and with FDRs in psychology, where analy-
ses of three different bodies of test results reported
FDRs of 41%, 58%, and 81% (Gronau et al. 2017).

5.3. Is Low Power the Culprit for the High FDRs?
Variation in the FDR is induced not only by differ-
ences in α and π0 but also by differences in the power
1− β. We therefore investigate how the FDR varies

with power, i.e., the probability of correctly rejecting
the null hypothesis at a specific α.

Using the estimates from Methods B, C, and B/C,
and rearranging Equation (1), we compute the aver-
age power as

̂Power(α) � α
π̂0

1 − π̂0

1 − F̂DR(α)
F̂DR(α) : (14)

The results are reported in Table 8. The power of
the tests at 20% or 10% significance is 66% or higher.
Hence, the high FDRs of these tests do not result from
low power. Conversely, the power at 1% or 0.1% sig-
nificance is only 21%–45%, yet the FDRs are only
1%–8%. Hence, power does not seem to be the main
determinant of the FDR among the test results. Rather,
it is the high value of π0.

8

Figure 4 provides additional evidence that lack of
power is not a major contributor to the FDR in our
data. The middle line shows how the FDR computed
using Method C varies with α. This line reflects the
FDR at the actual power levels, which of course, also
vary with α. The bottom line (minFDR) shows how
the FDR varies in a population of experiments where
power is 100% using Equation (1). The top line
(maxFDR) shows how the FDR varies in a population
of experiments where the power is at its minimum,
which is α in unbiased tests, resulting in an FDR of π0.
The fairly narrow gap between the middle and bottom
lines again indicates that lack of power is not the main
driver behind the FDR values we observe. Even if
power was 100%, the FDR would still be 11% at α �
0:05 and 20% at α � 0:10.

5.4. Heterogeneity in the FDR
The results so far pertain to the average experiment.
Conceivably, the fraction of true nulls (π0), the distri-
bution of the nonnulls (µ and σ), and the precision of
the tests (̂si) may vary across experiments. This sec-
tion, therefore, explores how the FDR and its key driv-
ers vary with four traits of experiments: (i) the past ex-
perience of the experimenter, (ii) the number of goals
in the experiment, (iii) the number of variations in the
experiment, and (iv) the industry of the experimenter.
We do not consider sample size because its effect on
the FDR is already accounted for through ŝ2i .

Table 7. FDR (Percentage) at Various Significance Levels

α (%)
Method

B C B/C

20.0 51.0 40.0 40.7
10.0 36.7 27.8 28.0
5.0 24.6 18.0 18.3
1.0 8.2 5.5 6.0
0.1 1.5 0.8 1.2

Table 8. Power (Percentage) at Various Significance Levels

α (%)
Method

B C B/C

20.0 76.9 77.1 74.9
10.0 69.0 66.8 66.1
5.0 61.3 58.6 57.4
1.0 44.8 44.2 40.3
0.1 26.3 31.9 21.2
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The experience of the experimenter may be associat-
ed with the FDR in various ways. Greater experience
in running experiments may help the experimenter to
generate more ideas that are not null (decrease π0) and
nonnulls that have bigger effects (µ farther away from
zero or higher σ). However, causality may also run the
other way; people who had more positive experiences
when implementing A/B tests (lower FDR) may run
more experiments. This would also result in experi-
ence being associated with a lower π0, µ being farther
away from zero, a higher σ, and a lower FDR. Finally,
the association between experience and FDR could be
negative if experienced experimenters run out of ideas
and start “scraping the bottom of the barrel.”

Our analysis focuses only on effects in terms of en-
gagement. However, 85% of the experiments tracked
more than one goal. It is fair to assume that the greater
the number of goals tracked, the less likely it is that
boosting engagement is the main objective of the in-
tervention tested. Additionally, because an interven-
tion meant to affect a goal other than engagement is
more likely to have a true null effect in engagement, a
larger number of goals may be associated with higher
π0 and hence, a higher FDR.

The third variable we investigate is the number of
variations in the experiment. Experimenters testing
many variations concurrently may be “scraping the
bottom of the barrel,” resulting in a higher π0, a lower
average effect among nonnulls (lower µ), and fewer
ideas that really move the needle (lower σ). Converse-
ly, such experimenters may be “swinging for the
fences” and be “going for the long tail” (Azevedo et al.
2020), which could translate into a large fraction of
nulls (higher π0) but also more outliers among the non-
nulls (higher σ). Note that including a greater number of
variations may result in less traffic per variation, which

would harm the power and increase the FDR, but that
mechanism is already accounted for through ŝ2i .

We extend the model in Method B and make π0, µ,
and σ a function of the three covariates. We use a logit
transformation for π0 because it is bounded between
zero and one, we use a log transformation for σ because
it is nonnegative, and we use a linear expression for µ as
it is unbounded. We measure the experimenters’ experi-
ence as the number of experiments they ran previously
on the platform. We use a log transformation, which is
consistent with the learning curve effect and protects the
results from being affected by outliers in the highly
skewed distribution (see Table 4). Similarly, we use a log
transformation on the number of goals to protect the re-
sults from artifacts because of outliers. Finally, we mean
center the three covariates so the intercepts map roughly
into the estimates fromMethod B in Table 6. Five experi-
ments accounting for nine observations are lost because
of missing values for the number of past experiments.

Table 9 shows the results. Adding the nine parame-
ters notably improves the fit compared with Model B

Figure 4. (Color online) How FDR at Actual, Minimum, andMaximum Power Varies with αWhen π0 � 72%

Table 9. Method B Mixture Model with Parameters as a
Function of Covariates

logit(π0) µ log (σ)
Intercept 1.3202*** −0.0020 −2.6560***

(0.0572) (0.0027) (0.0312)
log(Past No. Exp) −0.1136** 0.0059*** 0.0045

(0.0367) (0.0015) (0.0215)
log(Total Goals) 0.2251** 0.0110** 0.1614***

(0.0714) (0.0035) (0.0419)
No. Nonbaseline Variations −0.0517*** −0.0010*** −0.0338***

(0.0066) (0.0001) (0.0058)

Notes. N � 4,955 from 2,761 experiments. −2LL � −22,516; s.e. values
are in parentheses.

**p < 0:01; ***p < 0:001.
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reported in Table 6 (Δ− 2LL � 182,df � 9, p < 0:001;
ΔBIC � 117). Greater past experience is associated
with a lower π0 and an above-average µ, a combination
expected to translate into a lower FDR. In contrast, a
larger number of goals is associated with not only a
higher π0 but also a higher µ and σ. Whereas a larger
fraction of true nulls is associated with a higher FDR, a
higher mean and a higher variation among the nonnulls
are associated with greater power and hence a lower
FDR. Overall, this combination does not translate into
an unambiguously upward or downward shift in the
FDR. Finally, a larger number of nonbaseline variations
is associated with a lower π0, a lower µ, and a lower σ,
which again do not translate into a clear upward or
downward shift in the FDR. Adding fixed effects for
the four main industries (retail, media, hi-tech, and fi-
nancial and professional services) and adding an
account-specific random effect on π0 barely affect the
point estimates, but the coefficient of the number of
goals on π0 loses statistical significance because of a
higher standard error (see Online Appendix B.1).

To gain clarity in how the three covariates are associat-
ed with the FDR, rather than just π0, µ, and σ, we com-
pute the FDR by tercile of each covariate. Results are re-
ported in Online Appendix B.2. The main insight is that
the FDR decreases monotonically as we move from the
bottom to the top tercile in experience but does not show
a monotonic change across terciles in the other covari-
ates. For instance, the FDR at 5% significance is 24% in
the first tercile of experience (1–40 experiments), de-
creases to 19% in the middle tercile (41–202 experiments),
and reaches 13% in the top tercile (203 or more experi-
ments). For the other two covariates, the FDRs in the bot-
tom and top terciles vary only between 16% and 17%.

Applying Method C for the data from each of the top
four industries separately shows that π0 and the FDR
values vary little across these industry verticals. Howev-
er, they have a lower π0 and lower FDRs than the re-
maining industries. Reasons could be that these four in-
dustries have greater experience and greater sample size
than average (see Table B.2 in the online appendix).

5.5. The Probability That a Particular Effect
Is Null

Managers may want to know the probability that a
particular effect is a true null, taking into account its
standard error but regardless of a specific significance
cutoff. This is known as the local fdr and is given by
Equation (3), which we present again with subscripts
for observation i:

Pr(θi � 0 | zi) � π0f0(zi)
f (zi) : (15)

We compute the local fdr for each observation using
the estimates of π0 and f (zi) fromMethod C.

Figure 5 plots the local fdr against the z scores be-
tween −5 and 5. The left panel of Figure 6 plots the lo-
cal fdr against the observed effect sizes between −0.3
and 0.3, whereas the right panel shows the boxplot by
5% quantiles. The left panel shows dispersed dots
rather than a single smooth line because of differences
in precision across effect sizes. These plots give ana-
lysts and managers a sense of how likely a particular
effect is a true null. Overall, of all observed effects,
only 19.2% have a local fdr of 50% or less, and only
10.1% have a local fdr of 10% or less.

6. Robustness to Key Assumptions
In this section, we investigate features of the data or
behaviors of the experimenters that might inflate or
deflate the estimates of π0 and the FDR. The first pos-
sible concern pertains to the fact that we assess en-
gagement effects, whether or not that was the primary
goal of the experiment. The second and third concerns
pertain to possible malpractice by the experimenters
in declaring test results to be discoveries: improperly
conducting multiple comparisons and improperly
testing hypotheses after peeking at the data (Benjami-
ni and Hochberg 1995, Johari et al. 2017). Finally, we
also report the FDRs if analysts used one-sided tests
on positive effects only rather than two-sided tests to
declare discoveries.

6.1. Experiments with Engagement as the
Only Goal

Our analyses so far assumed that experiments were
designed to test treatment effects in terms of engage-
ment. If many experiments were designed to affect a
goal other than engagement, then our estimates of π0

Figure 5. (Color online) Probability That an Effect Is a True
Null (Local fdr) by z Score
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and the FDR values would be overly pessimistic. Say
many interventions were designed to boost sales and
not engagement. In that case, one would expect less
systematic difference in engagement across arms of
the experiment than when the goal was engagement,
which would translate into a higher π0 and a higher
FDR assuming no change in power. We therefore re-
peat the main analyses but now restricted to the 682
(13.8%) effect sizes of the 424 (15.3%) experiments
tracking only engagement. Online Appendix B.3 re-
ports the equivalent of Tables 6 and 7 for this subset
of effects. The parameter estimates from Method A
are similar to those for the full data set. Notably, π̂0 is
only slightly lower (63% versus 67%) and well within
the error margin. The parameter estimates from Meth-
od B show greater differences. Notably, π̂0 is some-
what lower (71% versus 80%), and this corresponds to
somewhat lower FDRs for tests at the 20%, 10%, and
5% significance levels. The FDRs for tests conducted
at 1% or 0.1% significance, in contrast, are not affected.
Similarly, Methods C and B/C result in only slightly
lower π0 (69% versus 72%) and FDR values.

In short, the engagement-only experiments exhibit
only moderately fewer true nulls and false discover-
ies, with the latter difference vanishing at more strin-
gent significance levels. The main conclusions implied
by the analyses in Sections 5.1 and 5.2 hold.

6.2. Click Instead of Engagement
We repeat the analysis for the 1,065 experiments
where a click on a specific link in the page was desig-
nated as the goal, which yields a total of 1,985 effects.

The mean and median effect sizes are both virtually
zero. An FDR analysis using Method C produces an
estimate of π0 of 75%, which is similar to that for

engagement. The FDR estimates are very similar as
well (36%, 23%, 15%, 4%, and 1%).

6.3. Improper Multiple Comparisons
When experimenters test more than one variation in
an experiment, they may declare the result of the ex-
periment to be a discovery if any one of the variations
yields a significant result based on the p-value unad-
justed for multiple comparisons. This behavior inflates
the effective type I error rate above its nominal level
(e.g., 0.05), which in turn, inflates the FDR. Specifi-
cally, if k effects are tested with the same levels of α
and β, then the type I error rate in declaring at least
one effect significant when all are actually null equals
1− (1− α)k. This is traditionally referred to as the
family-wise error rate. Also, the type II error rate
equals βk. Consequently, the FDR equals (Ioannidis
2005, Maniadis et al. 2014)

FDR(k) �
π0 1− (1−α)k

( )
π0 1− (1− α)k

( )
+ (1−π0)(1− βk)

: (16)

Taking derivatives shows that FDR(k) increases in k
when 1− β > α. Unless an experiment is massively un-
derpowered for the chosen significance level, this con-
dition will be met.

The FDR values reported were computed for the
case where experimenters properly declared discover-
ies variation by variation, an assumption that need
not hold. Hence, we investigate the following ques-
tion. What would the FDR be in our set of experi-
ments if experimenters engaged in improper multiple
comparison testing and declared an experiment as sig-
nificant if any variation reached significance? To an-
swer this question, we use the estimates of π0 and β

Figure 6. (Color online) Probability That an Effect Is a True Null (Local fdr) by Effect Size

Notes. (Left panel) Observed effect size. (Right panel) Five-percent quantiles of effect sizes. Boxes cover the interquartile range of local fdrs in a
given quantile of effect size.
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(i.e., 1 − power) from Method C reported in Table
8 and enter those in Equation (16). The values re-
ported in Table 10 show howmuch improper multiple
comparisons would inflate the FDR. For significance
levels between 1% and 10%, the FDR roughly doubles
when multiple comparisons involve five or more
variations.

This analysis relies on estimates of average power
to obtain β values. Online Appendix B.4 describes an
alternative approach, which produces very similar re-
sults without relying on average power.

The presence of multiple variations can lure experi-
menters into conducting multiple comparisons, and
doing so improperly is associated with higher FDRs.
This may seem at odds with the finding in Section 5.4
that the FDR did not increase systematically with the
number of variations. This apparent paradox is ex-
plained by the fact that the FDR values reported in
Section 5 assume that experimenters do not engage in
improper multiple comparisons (i.e., they do not de-
clare the result of the experiment as a discovery if any
of its variations yield a significant result but rather,
declare discoveries variation by variation). Hence,
FDR values reported in Section 5 need no correction
for multiple comparisons.

6.4. Optional Stopping
A second possible malpractice that can make FDR
estimates overly conservative (i.e., optimistic) is that
experimenters peeked at the results and stopped the
experiment only after it reached a desired significance
level. This behavior is often referred to as “data peek-
ing” or “optional stopping,” and it is a concern in the
A/B testing world (Wald 1945, Pocock 1977, Johari
et al. 2017).

Engaging in optional stopping results in declaring
more findings significant than is justified. In terms of
Table 3, a fraction u of the m – S experiments that
would be called insignificant without optional stop-
ping now shifts to the left column. Following Ioanni-
dis (2005), we assume that this fraction u is the same
across rows, i.e., that it does not depend on whether
the true effect is null or not. Optional stopping then
changes the FDR � E F

S

[ ]
to FDR(u) � E

F+u(m0−F)
S+u(m−S)
[ ]

. Also,

the expression in Equation (1) changes to (Ioannidis
2005, Maniadis et al. 2014)

FDR(u) � π0 α+ u(1− α)( )
π0[α+ u(1− α)] + (1−π0) 1− β+ uβ

( ) : (17)

The u bias inflates the true type I error rate above its
nominal level α to α+ u(1− α) but also increases the
power. Taking the derivative of FDR(u) shows that
the net effect of the u bias on the FDR is positive when
α < 1− β or equivalently, FDR < π0. As noted, this
condition likely holds in the great majority of cases.

Because the FDR values we reported use the nomi-
nal value of α, it is possible that these values are bi-
ased downward. To address this possibility, we
assume that the FDRs on the penultimate day of the
experiment are free of any such bias. If experimenters
delayed stopping the experiment by one day in the
hope of getting more statistical significance, either
through a bigger effect size or a larger sample size,
then the value of the last day may be biased but not
that of the day before.

First, we express FDR(u) as

FDR(u) � E
FT−1 + u(m0 − FT−1)
ST−1 + u(m − ST−1)

[ ]
≈ E FT−1 + u(m0 − FT−1)[ ]

E ST−1 + u(m − ST−1)[ ] , (18)

where T – 1 denotes the penultimate day and T is the
final day, and the approximation follows Storey and
Tibshirani (2003). Next, we use the property that m0 −
FT−1 converges to π0,(T−1)m(1−α) as m grows large.
We then apply Method C to the data from the penulti-
mate day to estimate π0,(T−1) and estimate u as ST−ST−1

m−ST−1
(i.e., the fraction of effects declared not significant in
the penultimate day that is declared significant in the
final day). We then estimate FDR(u) as

F̂DR(u) � π̂0,(T−1)m(α+ û(1− α))
ST

: (19)

Table 11 reports three values for each nominal α
level: (i) the u bias-inflated α, (ii) the standard FDR
computed using Method C ignoring u bias, and (iii)
FDR(u), which takes the bias into account. The values
are computed on the 4,672 effects from experiments

Table 10. The Increase in FDR Because of Improper
Multiple Comparisons

α(%) Power

FDR(k) (%)

k � 1 k � 2 k � 3 k � 4 k � 5 k � 6

20.0 0.771 40 49 56 60 63 65
10.0 0.668 28 35 42 47 51 55
5.0 0.586 18 23 28 33 37 41
1.0 0.442 5 7 8 10 12 13
0.1 0.319 1 1 1 1 1 2

Table 11. The Increase in α and the FDR Because of
Optional Stopping Delay of One Day

α(%) α+ u(1−α) (%) FDR (%) FDR(u) (%)

20.0 21.1 39.7 42.9
10.0 11.0 27.4 31.0
5.0 6.1 17.5 21.8
1.0 1.4 5.3 7.6
0.1 0.5 0.7 4.0

Note. N � 4,672.
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running at least two days and having a sample size of
100 or more in both the baseline and the other focal
variation on the penultimate day.

As expected, FDR(u) is higher than FDR. However,
the increase is small. This implies that the conclusions
from the main analysis remain qualitatively valid
even if all experimenters engaged in optional stopping
by delaying the end of their experiments by one day.9

6.5. FDR from One-Sided Tests
Finally, we also compute the FDR for the case where
analysts and decision makers declare discoveries only
for positive effects and do so using one-sided rather
than two-sided tests. Because Method C cannot be
used for one-sided tests, we calculate the FDR using
Method B only. The FDR is 52% at α � 10%, 38% at α
� 5%, 14% at α � 1%, and 3% at α � 0.1%. As expected
given that the estimate of µ is essentially zero, the
FDRs from one-sided tests at significance level α are
nearly identical to those from two-sided tests at 2 ·α
calculated using the same Method B (compare Table
7). Calculating the FDR using the nonparametric
method of Pounds and Cheng (2006) produces similar
values: 47%, 34%, 11%, and 2%.

7. How Can Firms Lower Their FDR?
Firms can use five main levers to lower the FDR: (i) re-
ducing α, (ii) boosting the power by increasing the
precision 1=̂si, and identifying candidate interventions
that are less likely to be true nulls and that are larger
given that they are not null, which implies (iii) de-
creasing π0, (iv) shifting µ away from zero, or (v) in-
creasing the variance of true effects σ2. Note that shifting
µ and σ away from zero increases the odds of having a
large true effect and hence also boosts the power of the
test.

We start our analysis with quantifying the marginal
effects of these parameters on the FDR and the ex-
pected gain from experimentation EG using one-sided
tests. We do so using the estimates from Method B for
π0, σ, and µ; the observed ŝi; and α � 0:05. Calculating
Equation (11) for each observation and then integrat-
ing over the empirical distribution of ŝi, we obtain
FDR � 38% and EG � 0.0050 or a lift of 1.10%, which
places EG at the 70th percentile of all observed lifts
and the 37th percentile of all positive observed lifts.
Using these empirically informed values of the FDR
and EG as baseline, we then vary each parameter one
by one. Table 12 shows that π0 is the dominant con-
tributor to improvements in FDR and EG. It also
shows that, except for changes induced by tightening
α, lowering the FDR is associated with increasing the
EG.

Changing π0, µ, and σ requires changing the quality
of the interventions being generated. That may be

difficult to achieve directly. We therefore discuss sev-
en possible strategies to change the design of the A/B
test and lower the FDR. The first three involve only α
and the sample size, and our empirical estimates im-
ply that they do not hold much promise. The next
three rely on using two-step experimental designs or
two-step analyses of multiple variations to identify
the best one. The last approach also involves picking
the best out of several variations, but the assessment
occurs in a single step and does not require special de-
signs or holdout samples.

7.1. Tightening Significance Level α or Boosting
Power Through Sample Size

Because the significance level α is fully within the ex-
perimenter’s control, one might conclude from Equa-
tion (1) that the simplest way of reducing the FDR is
to lower α (Benjamin et al. 2018). Indeed, our analyses
indicate that the FDR decreases from 18% to 1% when
one sharpens the significance level from α � 0:05 to
α � 0:001. However, decreasing the FDR by sharpen-
ing α comes at a cost because the type I and type II er-
ror rates are not independent. Specifically, using the
average values reported in Tables 7 and 8, it is far
from obvious that a 17-point decrease in FDR from
18% to 1% is worth a 27-point decrease in power (i.e.,
the ability to correctly detect true nonnulls) from 59%
to merely 32%.

Another way to reduce the FDR is to boost the pow-
er of experiments (e.g., Camerer et al. 2018). Doing so
for a given α and true effect size requires a larger sam-
ple size and hence likely a longer run time. Power can
also be increased by reducing the error variance
through stratification. This requires not only more so-
phisticated algorithms but often also relevant covari-
ates (Berman and Feit 2019, Bhat et al. 2020). We do
not expect either procedure to markedly improve the
FDR in the experiments we analyzed because they al-
ready had nearly adequate power: roughly 60%–70%
at both α � 0:1 and α � 0:05. Moreover, our estimate of
π0 � 0:72 implies that even if power was increased to
100%, the FDR would not fall below 20% at α � 0:1
and 11% at α � 0:05.

Finally, experimenters may target a specific level of
FDR when planning their experiments. Because the
goal of A/B testing is to identify better practices,

Table 12. Marginal Effects of Key Parameters on the FDR
and the Expected Gains from One-Sided Tests

Parameter Change (%) Change FDR (%) Change EG (%)

π0 −10 −24.9 39.4
σ +10 −2.5 12.7
µ +10 −0.3 0.6
ŝ i −10 −2.4 2.1
α −10 −5.4 −0.6
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experiments need to be designed to avoid type II er-
rors. In contrast, for diagnostic testing and decision
making, avoiding type I errors may matter only to the
extent that it avoids making false as opposed to true
discoveries. If or when the error rate α is less impor-
tant than the FDR, why not design experiments
accordingly?

Experimenters would, in consultation with decision
makers or after a formal analysis of the value of infor-
mation, choose target levels of power and FDR and
then identify the level of α implied:

α � Power
FDR

1 − FDR
1 − π0

π0
: (20)

Table 13 shows the significance levels required for
three levels of power ranging from 70% to 90% and
for four levels of FDR ranging from 5% to 30%, as-
suming π0 � 72%. Note that the significance level α
does not need to be sharper than 1%.

Given α and β, the next step is to compute the re-
quired sample size as usual. Calculations reported in
Online Appendix B.5 show that if the true effect is at
the 90th percentile of the observed effect sizes in our
data, then the current median sample size per varia-
tion (roughly 1,900) is almost sufficient for a test with
α � 0.10 and power � 80%, which results in an FDR of
24% when π0 � 72%. However, if the true effect is only
at the 75th percentile, then the required sample size is
10 times larger than the current median. If the effect is
just better than two-thirds of all observed effects, then
the sample size must be 50 times the median.

In short, except for large effects, the three ap-
proaches relying only on changing α or sample size
are not very promising venues to lowering the FDR.
Smarter approaches are desired, even for firms enjoy-
ing massive traffic but chasing very small effects.

7.2. Two-Step Testing
Replication is a straightforward way to reduce the
number of false discoveries. Instead of declaring a dis-
covery based on a single experiment, one can (1) take
significant results as “potential discoveries,” (2) run a
replication of the first experiment, and (3) declare the
effect a discovery only if it is again statistically signifi-
cant in the same direction. There are at least three
methods to operationalize this idea.

The simplest way is to plan a replication only after
a significant effect has been observed. This decreases
the chance of a false positive from α to α2. The down-
side is that without increasing the sample size, the
power decreases from 1− β to (1− β)2. It is, therefore,
preferable to combine the two z values into a single
test, which amounts to reducing the expected stan-
dard error by a factor of

		
2

√
.

If one is precommitted to two-step testing, then further
efficiency or power gains can be made by (1) running
multiple candidate interventions in a first “screening” or
“pilot” stage, (2) replicating only the largest or the most
significant effect in a second “validation” stage, and (3)
optimally splitting the total sample across the first- and
second-stage experiments. One can also set different lev-
els of α and β in each stage so as to achieve a given FDR
at minimum sample size. This two-stage approach has
attracted considerable attention (Zehetmayer et al. 2005,
Zehetmayer and Posch 2012, Sarkar et al. 2013, Deng et al.
2014). Two main insights are that two-stage designs give
a big boost in power and reduction in FDR over single-
stage designs and that splitting subjects equally across
stages is not quite optimal.

A variant is to run only a single experiment with
multiple interventions, split the sample into an explor-
atory part and a validation part, use the exploratory
subsample to identify the most promising candidate
intervention, and then use the other subsample to val-
idate and assess that candidate (Anderson and Ma-
gruder 2017). This variant of the two-stage approach
can have the benefit of a compressed time window
but only if having enough subjects for both subsam-
ples does not require running the test just as long as
in a genuine two-stage design.

The key benefit of all the two-step approaches involv-
ing multiple treatments is that they allow one to identify
the most promising out of several candidates in terms of
effect size. This in turn increases the power and reduces
the FDR because the largest observed effect is less likely
to come from the null and is more likely to reflect a large
true effect. Consequently, this approach is especially
valuable when the distribution of true effects exhibits
long tails (Azevedo et al. 2020). As the histogram of ob-
served effects and formal tests of kurtosis suggest and
as the estimates of π0 and σ indicate, the true effects in
our data indeed exhibit long tails.

7.3. Pick the Best Without Testing
As our discussion of the expected gains from experi-
mentation noted, these will be maximized by simply
declaring any positive effect a discovery. This
amounts to using α � 50% and will of course come
with a high FDR. In a simple A/B test, the FDR will
equal the fraction of true nulls. However, just as with
a preplanned two-step study, an A/B test in which
one picks the best out of multiple treatments will

Table 13. Levels of α Required for Combinations of Power
and FDR When π0 � 72%

Power (%)

FDR

0.05 0.10 0.20 0.30

90 0.018 0.039 0.088 0.150
80 0.016 0.035 0.078 0.133
70 0.014 0.030 0.068 0.117
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result not only in a higher EG but also a lower FDR.
We therefore investigate “pick the best without any
testing” as another possible improvement over tradi-
tional A/B testing.

7.4. Simulation Analysis
In this section, we use simulation to compare the per-
formance of the replication approach against the tradi-
tional one-shot approach and pick the best without
testing. We do so on two criteria: the FDR and the ex-
pected gain from experimentation EG. We expect rep-
lication to dominate the traditional A/B test on both
metrics. Compared with pick the best, it is obvious
that replication does worse on EG and better on FDR.
Hence, the decision to use replication versus pick the
best will depend on the relative gap in performance
on each metric and how much the decision maker
wants to avoid false discoveries even if this comes
with forgoing gains.

We proceed as follows. We simulate data for 5,000
experiments, where in each experiment, we fix the
conversion rate of the baseline and draw conversion
rates for k � 1, : : : , 10 variations by adding effect sizes,
which are drawn according to a mixture model where
the effect is zero with probability π0 and drawn from
N (µ,σ2) with probability 1−π0. The sample size for
each experiment is drawn from a log-normal distribu-
tion with mean and variance based on the empirical
distribution of the 2,766 experiments we study.

Given the parameters of each experiment (sample
size, and baseline and variation conversion rates), we
simulate Bernoulli draws as the conversion of each
member of the sample. We then calculate the observed
effect size and pick one of the variations as the one be-
ing implemented in the field based on the three ap-
proaches we compare. For the traditional approach,
we pick any variation that passes a one-sided signifi-
cance test with α � 0:05 for implementation. For the
replication approach, we pick the variation with the
largest observed effect size; test whether it passes a
one-sided significance test with α � 0:05; if it does,
replicate the baseline and the variation Bernoulli
draws; and measure the effect in the replication. The
result is selected for implementation if the joint z
score (using Stouffer’s method) of the initial test and
the replication passes the one-sided hypothesis test.
Finally, for pick the best, we select the variation with
the largest observed effect size and if it is positive,
choose it for implementation. If no variation is se-
lected for implementation, we assume that the ex-
perimenter stays with the baseline.

The sample size for each variation is set as follows.
Given the sample size n of the experiment drawn as de-
scribed and given the number of variations k in the ex-
periment, the sample size of each variation is n

k+1 in the
case of the traditional and pick the best approaches and

n
k+3 for replication because an additional baseline and
variation condition must be allowed for replication.10

Because we know for each effect whether it comes
from the null or not, we calculate the FDR as the pro-
portion of all implemented variations whose true ef-
fect is null. The expected gain EG is computed as the
average implemented effect size across all experi-
ments, i.e., zero if the baseline was selected or the true
effect size of the variation if it was selected.

We set µ � −0:0032 and vary π0 � (0:6, 0:7, 0:8) and
σ � (0:04,0:08,0:16). We present the results for the pa-
rameter values (µ,π0,σ) � (−0:0032, 0:7, 0:08), which
closely match our empirical estimates. Online Appen-
dix C presents the results for the remaining combina-
tions of parameter values.

Figure 7 shows the FDR for each approach with k
ranging from 1 to 10. The replication approach has the
lowest FDR, and it remains constant around 12%. The
FDR for the traditional approach is about twice as
high and increases from 24% for k � 1 to 29% for k �
10. The reason is that the sample size, and hence pow-
er, decrease with k. This also happens for the replica-
tion, but that gets neutralized by selecting the largest
variation out of k. Clearly, pick the best, which is
equivalent to a one-sided test with α � 0:50, performs
the worst. The FDR improves from π0 � 70% when k
� 1 to about 40% when k � 10. In short, replication
dominates both alternatives in terms of FDR.

Figure 8 shows the expected gains EG for each ap-
proach with k ranging from 1 to 10. Consistent with
Section 3, pick the best dominates. However, the gap
with replication is rather small and remains fairly
constant with k. Both dramatically outperform the tra-
ditional approach after k is larger than one. The reason
is that both pick the best and replication benefit from
selection when k increases.

In short, A/B tests with replication clearly dominate
the traditional approach. Whether it dominates the pick
the best approach depends on the trade-off that a deci-
sion maker makes between forgoing expected gains and
avoiding the cost of implementing a false discovery.

8. To What Extent Do Our
Findings Generalize?

The question of how well our findings generalize has
three facets, which we address in turn.

8.1. Generalizing to Other Companies
Because Optimizely is the market leader among A/B
testing platforms in the United States, its customer
base likely is representative of U.S. companies relying
on such platforms. However, it is not representative
of extremely sophisticated and intensive users of A/B
testing that have developed their own internal plat-
forms like Google, Microsoft Bing, Amazon, or
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Booking.com. These companies often chase extremely
small effects but do so using extremely large sample
sizes, and it is therefore hard to speculate a priori
about their typical FDR. Nevertheless, we suspect that
the average FDR on Microsoft Bing (before replica-
tion) is not very different from what we estimated in
our sample because their analysts report an estimate
of 80% for π0, recommend using 80% power, and note
that using α � 5% is common (Deng 2015, Dmitriev
et al. 2017).

8.2. Generalizing to More Recent Experiments
As noted in Section 4.4, the experiments we analyze
from 2014 are similar to those run on the same plat-
form in 2017 and 2018 in the number of variations,
run time, industry, symmetry of positive versus

negative significant findings, and fraction of signifi-
cant findings. Also, the pattern that the FDR decreases
as an experimenter gains experience with A/B testing
(Section 5.4) is likely offset by the influx of new users
of A/B testing. In short, we see no reason to expect
our findings to be widely off the mark of current A/B
testing but very much welcome new investigations
leveraging recent data.

8.3. Generalizing to More Recent
Testing Practices

We calculated standard statistics for mainstream A/B
tests. We doubt that two-stage designs or other meth-
ods developed recently to reduce the FDR (e.g., Deng
et al. 2014) are used outside a small set of extremely
sophisticated users. Also, our FDRs are expectedly

Figure 8. (Color online) Expected Gains from Experimentation (EG) for Three Testing Approaches

Figure 7. (Color online) False Discovery Rates for Three Testing Approaches
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similar to those obtained when the statistical analysis
corrects for multiple comparisons, like Optimizely’s
Stats Engine (Pekelis et al. 2015), other FDR-control
methods, and Bayesian testing. The reason is that we
declared discovery or not for each variation separate-
ly. However, to the extent that users today do not en-
gage in “data peeking” or optional stopping or that
the platform automatically corrects for it, then our
FDR estimates may be higher than those currently
generated. Even so, the impact of optional stopping
on the FDR in the experiments we study is probably
slight given the evidence in Section 6.4 and in Berman
et al. (2018).

9. Conclusion
We investigate the false discovery rate in website A/B
testing, i.e., the fraction of all significant results that
are actually null effects. Our data consist of 4,964 ef-
fects from 2,766 experiments conducted on a commer-
cial A/B testing platform.

Using three different methods, we find that the
FDRs range between 28% and 37% for tests conducted
at 10% significance and between 18% and 25% for
tests at 5% significance. In other words, about one in
five results significant at p ≤ :05 is actually a true null.

These elevated FDRs stem from the high rate of true
nulls (about 70%) and not from lack of statistical pow-
er on average, which we calculate to be roughly 70%
at α � 0:1 and roughly 65% at α � 0:05. Moreover, our
estimate of π0 � 0:72 implies that even if power was
increased to 100%, the FDR would not fall below 20%
at α � 0:1 and 11% at α � 0:05. These findings support
earlier suspicions that some of the frustrations with
A/B testing stem from the ineffectiveness of the inter-
ventions being tested rather than from inadequacies
of the method itself (Fung 2014).

More experienced experimenters tend to achieve
lower FDRs, whereas the number of variations or
goals in the experiment is not associated with higher
or lower FDRs. The negative association between ex-
perience and FDR operates through both a lower rate
of true nulls and a larger true effect size. We also find
that the industries that are the heaviest users of A/B
testing on this platform have lower FDRs. Our data
do not allow us to determine whether the association
reflects learning, larger sample sizes, or self-selection.

We use our estimates to shed some light on what
changes to the basic A/B testing design might lead
to a lower FDR. For the typical effect size (certainly
up to the 75th percentile), tightening α and increas-
ing sample size to keep power roughly constant
hold little promise. This is likely also true for compa-
nies enjoying massive traffic but chasing very small
effects. Much more promising are two-stage designs
like replication. Even better is a two-stage design

with multiple variations. This not only lowers the
FDR but also increases the expected gain from
experimentation.

Although our setting is a specific A/B testing plat-
form, we expect our findings to be representative of
many website A/B tests because our data consist of
nearly 5,000 effects from 2,766 experiments, and the
platform accounts for about 35% of the market for A/
B testing services. Even so, several companies that use
A/B tests very intensively, like Amazon, Facebook,
and Microsoft, have developed their own internal
platforms and are, therefore, probably not represented
in our data. Such very experienced experimenters
would likely enjoy lower FDRs than the typical ac-
count in our data does, were it not for the fact that
they tend to chase even smaller effects than those we
study. A second possible concern about the generaliz-
ability of our findings is that, after we collected our
data, Optimizely and other platforms shifted from
classical hypothesis testing toward FDR control meth-
ods and Bayesian hypothesis testing to account for
multiple comparisons and optional stopping (e.g., Pe-
kelis et al. 2015, Deng et al. 2016, Johari et al. 2019).
However, these newer procedures by themselves do
not affect the fraction of true nulls. Furthermore, our
FDR calculations properly avoided multiple compari-
sons and are unlikely to be much affected by improp-
er optional stopping, which is what these newer meth-
ods account for. Hence, the increasing popularity of
FDR control methods and Bayesian hypothesis testing
likely increases the external validity of our FDR
values.

Taking a big picture perspective, one may ask what
an estimate of π0 � 70% implies about firm efficiency
assuming that the baseline represents current practice.
One possible explanation for the high fraction of true
nulls is that managers struggle with generating good
ideas to assess through A/B testing (Kohavi et al.
2020) either because their current practices are already
close to the optimum or because the objective func-
tions do not vary much in a wide range around the
optimum (the flat maximum principle) (Sinha and
Zoltners 2001). The second possible explanation is the
opposite. Managers struggle to generate good ideas
because of a lack of diligence, talent, or skill, suggest-
ing a low rather than high efficiency. The third viable
explanation is that experimenters engage mostly in
deliberate local search through small deviations from
current practice, stemming from a kaizen philosophy
of continuous and disciplined improvement through a
stream of small interventions. Given the presence of
three viable explanations, one should not infer from
our findings that the average firm using A/B testing
is already operating near optimally.

For decision makers, our findings have four impli-
cations. (i) Have realistic expectations about your
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success with finding winners in your tests. Of the
nearly 5,000 effects tested, the typical effect was 0,
about 70% of them were probably really 0, and only
20% were significant at α � 5%. (ii) Have realistic ex-
pectations about your success with rolling out test
winners. Even among those interventions that beat
the baseline in your experiments at α � 5%, expect one
of five to have zero effect when implemented in the
field. (iii) To reduce the risk of false positives, focus
on generating better ideas to test or swing for the fen-
ces by generating riskier ideas. (iv) Keep working at
it. You may get better over time at reducing the frac-
tion of false discoveries among your test results.

For analysts, our findings have two implications. (i)
To lower the FDR, consider using two-stage designs
with replication and A/B/n tests with multiple varia-
tions. (ii) Think about your choice of the type I error
rate α. To be of greatest use to the organization, it
should be informed by comparing the expected gains
in effectiveness from experimentation against loss
aversion, switching costs, and disappointment costs.
If the goal is to maximize the expected gain in effec-
tiveness or to minimize regret about effectiveness
(Stoye 2009, Manski and Tetenov 2016, Feit and Ber-
man 2019), then simply pick the best variation without
testing, which amounts to setting α � 50% in a one-
sided test.

For researchers in academia, large in-house analytics
teams, and platform providers, our findings raise at
least three research questions. (i) What interventions are
associated with a lower FDR, and how does that map
into the primitives π0, µ, and σ? (ii) Do some companies
and industries have lower FDRs, and if so, why? Is it
because of differences in the quality and variance of
ideas or in the way they are being tested (e.g., sample
size, two-stage designs)? Also, if the FDR improves
with experience because of learning, what exactly is be-
ing learned, and how can it be fostered? (iii) What is the
optimal FDR? Statistical decision theory does not pro-
vide an answer unless the decision maker declares their
objective function. There are at least five elements that
should be considered: the expected gain from experi-
mentation EG, the setup cost of running an experiment
of a given size, the switching cost of discoveries, the dis-
appointment cost of false discoveries, and the degree of
loss aversion. The optimal FDR will be a function of the
weights on these components, and these weights are
likely to vary across decisions and contexts.
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Endnotes
1 See https://vwo.com/blog/cro-industry-insights/ (accessed
March 2, 2020).
2 See https://www.datanyze.com/market-share/testing-and-
optimization (accessed February 12, 2020).
3 Even though the type II error rate is a function of α, the true effect
θ, and the experimental design D, we write β instead of β(α,θ,D)
for simplicity.
4 Although the true effect on a continuous outcome like a conver-
sion rate cannot be exactly zero, statisticians have long consid-
ered the existence of true null effects having a strictly positive
probability of occurring. This notion of true nulls is consistent
with negligibly small effects, centered at zero, that require unfea-
sibly large samples to detect (Hodges and Lehmann 1954, Berger
and Delampady 1987, Masson 2011, Deng 2015).
5 This expression is not defined when there are no discoveries (S � 0).
To account for such cases, one defines the FDR as E[FS | S > 0]Pr(S > 0)
(Benjamini and Hochberg 1995), or one uses the positive false discov-
ery rate (pFDR) � E[FS | S > 0]where the expectation conditions on hav-
ing at least one positive (i.e., significant) test result (Storey 2002, 2003).
When the number of effects tested m is large, S > 0 is almost certain
for any α > 0, and the refinement in the formal definition of the FDR
and the distinction between FDR and pFDR are moot.
6 Throughout the paper, the term experimenter refers to a unique
platform account identifier (ID), which may be used by multiple in-
dividuals. Hence, we use the term experimenter to denote either a
unique individual or a set of individuals running A/B tests using
the same account ID.
7 Thomke (2020) does not specify the level of significance and
whether the tests are one-sided or two-sided tests or apply to the
experiments’ extreme or average variation. Consistent with Optimi-
zely’s dashboard, we assume that Thomke (2020) refers to one-
sided tests at 5% significance. Finally, we assume that the numbers
of Thomke (2020) pertain to the most extreme lift.
8 Hoenig and Heisey (2001), Yuan and Maxwell (2005), Gelman and
Carlin (2014), and McShane et al. (2020) express reservations about
calculating power ex post using estimates from a single study, a
small number of studies, or studies subject to publication bias. Be-
cause our power calculations use nearly 5,000 z scores not subject to
publication bias, those reservations do not apply.
9 The FDR(u) analysis assumed that waiting one more day in-
creases the chance of reaching significance equally among null
and nonnull effects. In a sensitivity analysis, we computed an al-
ternative FDR(u), where the fraction u of new discoveries is not
split between null and nonnull effects in a π0=(1−π0) ratio but in
a κ=(1− κ) ratio where κ varies from 0% to 100%. Except for the
case of α � 0:01, varying κ does not affect the FDR(u) values by
much.
10 Using the same sample size per arm in both steps of a preplanned
replication design is not quite optimal. Our simulation therefore
does not capture the full gains in FDR achievable by an optimally
designed preplanned replication study.
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