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Social network design for inducing effort
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Abstract
Many companies create and manage communities where consumers observe and
exchange information about the effort exerted by other consumers. Such communi-
ties are especially popular in the areas of fitness, education, dieting, and financial
savings. We study how to optimally structure such consumer communities when the
objective is to maximize the total or average amount of effort expended. Using net-
work modeling and assuming peer influence through conformity, we find that the
optimal community design consists of a set of disconnected or very loosely con-
nected sub-communities, each of which is very densely connected within. Also, each
sub-community in the optimal design consists of consumers selected such that their
“standalone” propensity to exert effort correlates negatively with their propensity to
conform and correlates positively with their propensity to influence others.
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1 Introduction

Over the last two decades, marketers have become increasingly keen on leveraging
peer influence among customers. Numerous firms and platforms connect consumers
who do not know each other into online communities and allow them to observe each
others’ activity to increase the level or consistency of the effort they exert to achieve a
goal. Members of the ALS community on PatientsLikeMe share data allowing them
to see what actions are taken by other patients and whether their progress is fast,
slow, or about average. Opower, now part of Oracle, works with many utilities to
share energy consumption information from similar households in one’ s vicinity to
reduce energy consumption. Online platforms like Crowdrise and Razoo allow users
to observe each others’ charitable donations.

In all these examples, a manager is interested in leveraging norm-based peer influ-
ence to increase the overall or average effort exerted towards a goal. As the examples
demonstrate, in areas ranging from healthcare to energy consumption and re-use,
many companies bring consumers together and create communities with the hope
that the information exchange among them will improve their overall level of activ-
ity, motivate them to use products and services in more and better ways, and share
information about their experiences in general. On platforms where individual users
are strangers, marketers are increasingly involved in connecting users.

This notable change in marketers’ mindset is due to the renewed appreciation that
peer influence can be leveraged among people who hardly know each other (Uetake
and Yang 2020). In the absence of a clear benchmark about what is appropriate or
desirable, people tend to conform to what others do, even when those others are
strangers. This insight goes back to famous experiments showing that whether people
put into a group with strangers stated that a light dot was moving or not (Sherif
1935) or that one line was longer than another (Asch 1956) was influenced by what
those strangers stated. More recently, field experiments have shown that people are
more likely to re-use towels in a hotel, to make charitable donations, to consume less
energy, to consume less water, to exercise, to pay overdue taxes, and to rate movies
when they see or are told that others do so, even when they have no prior connection
to these others (e.g., Frey and Meier 2004; oldstein et al. 2008; Martin and Randal
2008; Shang and Croson 2009; Chen et al. 2010; Allcott 2011; Ferraro and Price
2013; Ayres et al. 2013; Allcott and Rogers 2014; Hallsworth et al. 2017). Along
similar lines, a recent field study documented that physicians were more likely to
keep prescribing a new drug if their colleagues in the same practice or hospital did
so, even if those were not the peers they turned to for discussing treatment options or
referring patients (Iyengar et al. 2015).

Online settings offer an important advantage for social network design: Infor-
mation about people’s attributes can be restricted to those relevant for the specific
purpose of the community (Centola 2018). In several online communities geared
towards peer support, the social designer allows members to form their own con-
nections but restricts the information about other members to only purpose-pertinent
traits while omitting characteristics like age, gender or race. PatientsLikeMe is an
example. Doing so can be useful for increasing the salience of peers most likely to
induce the desired behavior. Many companies and organizations focusing specifically
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on leveraging social conformity rather than peer support, like Opower, go one step
further. They even take the decision of whom to connect to entirely out of the mem-
bers’ hands and connect people with what is hoped to be the socially optimal set of
peers. In communities designed and joined to achieve a specific purpose, that pur-
pose becomes the focus for identity and other bases of tie formation lose salience.
Consequently, members of highly focused and purpose-oriented communities are
remarkably likely to accept an exogenously imposed network structure, unlike what
we observe in purely affectively oriented friendship networks or in general-purpose
platforms like Facebook (e.g., Centola and van de Rijt 2015).

In this paper, we study the optimal design of communities with the goal of improv-
ing overall community activity when consumers’ effort or activity level can be
manipulated through peer influence. Specifically, we address the following research
questions: How should a manager or social planner design a community to maxi-
mize its total effort by connecting individuals to others to act as reference groups?
Which consumer’s information should be shared with which other consumer? Should
a manager choose multiple small communities, or a single large community? More
specifically, is it more effective to have all community members exchange informa-
tion with every other member, to organize members in distinct sub-communities, or to
have star-like structures where some members are more central than others? Should
some consumers effort or activity be made more prominent than that of others? The
answers to these questions are not trivial. Indeed, the need to study the optimal com-
position of individuals in such communities analytically have been highlighted by
Uetake and Yang (2020).

Our analysis focuses on a community design problem with three properties. First,
the community manager (“designer”) seeks to maximize the average (or total) level of
effort or activity that community members exert towards a goal, like losing weight or
consuming less electricity. Second, the designer has the opportunity to set a reference
group for each consumer by forming ties between consumers (e.g., by forming virtual
or physical groups or by managing the person-to-person flow of information). Third,
the decision to exert effort is subject to normative peer influence, such that people
incur a disutility when they deviate from the descriptive norm set by the community
members they are connected to.

The first two properties are present in the examples we provided, and need no fur-
ther discussion. The third property, though quite familiar to behavioral researchers,
may require elaboration. Social conformity to the descriptive norm set by peers’
behavior occurs quite frequently when people are not sure about what the adequate
or appropriate behavior is or when people do not want to deviate from their group’s
norm by over- or under-achieving because they may be embarrassed or they may be
subject to criticism. People consorm even when deviating from the norm is not sub-
ject to punitive action or when status concerns and other signaling considerations
are ruled out (e.g., Asch 1956; Cialdini and Goldstein 2004; Cialdini et al. 1990;
Festinger 1954; Kelman 1958; Zafar 2011). As Bernheim and Exley (2015) note, con-
formity in such situations arises through a preference mechanism rather than a belief
mechanism. Consequently, the consumer model in our analysis of optimal reference
group design is set up differently from the model by Bernheim (1994) emphasizing
belief rather than preference mechanisms of conformity.
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Identifying the optimal design for a community is not trivial even under a fairly
straightforward social influence relationship such as conformity. How should a com-
munity’s social network be designed such that the overall activity of the community
be maximized (or, in some cases, minimized)? It may intuitively seem like the com-
munity should be organized around the most influential and active individual, in a
star-like structure. A closer examination, however, suggests that the immediate intu-
itive design solutions are not necessarily optimal. Moreover, a secondary intuition
may suggest that individuals should be connected based on activity level, pairing
high and low activity individuals directly to set the high activity individual as the
reference. However, the optimal network configuration considers not only the direct
impact of social influence when two individuals are connected, but also the indirect
impact through the rest of the community.

Our analysis shows that even with the inclusion of the indirect impact, the opti-
mal reference group design can be characterized and the following key results can
be derived. (1) The optimal community consists of a set of disconnected or very
loosely connected sub-communities, each of which is very densely connected within.
(2) In this design, each sub-community consists of members selected such that their
“standalone” propensity to exert effort correlates negatively with their propensity
to conform and correlates positively with their propensity to influence others. In
other words, the best selective matching is achieved within sub-communities between
which few ties exist. Also, because every connection is a conduit of influence, confor-
mity is leveraged to the maximum within sub-communities that are internally densely
connected. Finally, the improvement from optimally linking community members
increases with the size of the community and with the heterogeneity in members’
(i) propensity to exert effort in isolation, (ii) social influence, and (iii) susceptibil-
ity to social influence. Intuitively, greater community size or heterogeneity offers
greater degrees of freedom to the community designer in assigning specific people to
sub-communities to achieve optimal matching.

These insights are derived from our benchmark model where peer influence
operates through conformity. In the extensions, we also consider the case where
individuals choose their behavior to be better than or different from others. When
individuals seek to out-compete their peers rather than to conform, the optimal
network structure for inducing maximum total or average effort is the completely
connected network where every member is connected to every other member.

Putting people into groups where one is exposed to information from others can
be done conveniently in online as well as offline networks. As to the propensities to
exert effort, to be influential, and to be susceptible to influence, these can be assessed
directly using questionnaires administered when people sign up to become members
of the network (e.g., Flynn et al. 1996; Duckworth et al. 2007) or indirectly using
easy-to-observe correlates of these propensities (e.g., Aral and Walker 2012).

Our findings are relevant for communities geared towards self-improvement,
including branded online communities. From Lego to Harley Davidson to Sephora,
many brands today are building the infrastructure to leverage the social connections
among customers, converting them into sales dollars and affinity for the brand. In
some cases like Nike’s online community, consumers are encouraged to connect to
others while using the brand to work to achieve a goal, such as keeping active, eating
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healthier, keeping attention at work, etc. We investigate how the community manager
would like to design (or at least nudge) who gets connected with whom in such goal-
oriented online brand communities. Like Bagozzi and Dholakia (2002) and Dholakia
et al. (2004), we focus on social normative influence as the key mechanism through
which peer influence operates in such online communities, but the behavior we focus
on is effort exertion rather than participation and involvement in the community.

The rest of the paper is organized as follows. Section 2 provides a summary of the
relevant literature and this paper’s contributions to it. Section 3 presents the model
setup. Section 4 characterizes the optimal community design. Section 5 describes
under what circumstances managers in charge of designing communities can benefit
the most from this exercise. Section 6 presents extensions and factors that influence
the key results. Section 7 concludes with implications for practice and research.

2 Related Literature in Marketing and Network Science

2.1 Network Optimization

Network optimization has a long history in applied mathematics, graph theory and
operations research, where the focus has been on transportation and distribution net-
works, and the key trade-off has been between travel time and cost (e.g., Newman
2010, pp. 541-548). Another area of application has been the optimal structure of
electrical power grids, where the stability of the grid has been the key considera-
tion (e.g., Lewis 2011, pp. 331-335). Vulnerability of networked physical systems
to internal node or link failure or to outside attack resulting in node or link removal
has also attracted quite a bit of attention in manufacturing, logistics, warfare, and
counter-terrorism (e.g., Lewis 2011, pp. 375-430). Of course, how to optimally
design networks taking into consideration speed vs. cost, stability, vulnerability, and
the ability to fight off or recover from outside attack has also been of great interest
in computer science (e.g., Goldenberg et al. 2005). Obviously, our work differs from
this prior work in the planner’ s objective and trade-offs. More fundamentally, it dif-
fers in that the nodes are sentient beings who act to achieve their own objectives and
are subject to conformity. A partial exception is a paper by Cerdeiro et al. (2017)
who consider a setting where the designer chooses a computer network architecture,
nodes individually choose their security level, and a strategic attacker targets one
node in order to minimize the connectivity of the structure. They show that decen-
tralized security choices can lead to both over- and under-investment in security, and
that network design can be a powerful tool to mitigate such protection inefficien-
cies. Even though there are similarities in setting (a central planner chooses structure
whereas nodes choose action), key trade-off (“contagion” among nodes creating a
trade-off by affecting low and high effort nodes in opposite directions) and main
insight (optimal structure improves social welfare), their work does not consider how
preference heterogeneity or heterogeneity in social conformity affects the optimal
design. Consequently, the analyses identify different optimal designs.
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Over the last twenty years, the endogenous choice of both actions and links
has attracted considerable attention among game theorists (for a review, see Vega-
Redondo 2016). Our work also considers both dimensions of choice, but differs in
a key respect. Previous analyses of optimal choice in action and link formation con-
sidered settings where both decisions are made by network members. Our work, in
contrast, assumes that network members choose the action but the network manager
chooses the network structure. For instance, a recent paper by Goyal et al. (2017)
shares several features with our analysis. In both analyses, (i) both actions and links
are chosen to maximize an outcome, (ii) network members experience peer influence
leading them to prefer to conform to the behavior of their contacts, and (iii) differ on
their preferred action. However, whereas they study a setting where individual utility-
maximizing network members choose both their own actions and their own contacts,
we consider a setting where a community manager sets the network structure to maxi-
mize social welfare (operationalized as total utility).1 This distinction matters greatly.
Goyal et al. (2017) find that, if left to their own devices, network members will tend to
end up in a network structure of densely clustered subgraphs where they connect only
with people like themselves. That is, preference heterogeneity combined with social
conformity results in a highly Balkanized world.2 Our analysis shows that a social
planner can achieve higher social welfare by designing a network of densely clus-
tered subgraphs consisting of members who are heterogeneous along both preference
and influence/susceptibility dimensions.

2.2 Social Influence and Community Formation

Marketing practitioners and academics have long been keen on understanding how
to best leverage peer influence in social groups. Research attention at first focused
on documenting peer influence in field settings (e.g., Van den Bulte and Lilien 2001;
Aral et al. 2009). More recent research has focused on identifying the mechanisms
at work (e.g., Chen et al. 2011; Iyengar et al. 2015), characterizing which customers,
if any, exert a disproportional amount of influence on others (e.g., Aral and Walker
2012; Goldenberg et al. 2009; Iyengar et al. 2011; Katona et al. 2011), and leveraging
either homophily or peer influence through efficiently targeted marketing effort (e.g.,
Hill et al. 2006; Godes and Mayzlin 2009; Goel and Goldstein 2013; Bimpikis et al.
2016; Ascarza et al. 2017). This prior work relies on an existing community structure,
be it static or evolving, as a given for the marketer. Most recently, research has started
to view communities and social networks among individuals as an outcome or even
a choice variable. Some of this work investigates how marketing actions might alter
the network to the marketers’ benefit (Ansari et al. 2018) and how network structures
result endogenously from members’ choices affected by a marketer’s or platform
manager’s policies (Hartmann 2010; Iyer and Katona 2015; Phan and Godes 2018;
Wei et al. 2016). Other work compares the effectiveness of various exogenously given

1Another difference is that in Goyal et al. action is binary, whereas in the present study it is continuous.
2Similar results are obtained by Bojanowski and Buskens (2011), Neary (2012), Advani and Reich (2015),
and Ellwardt et al. (2016).
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network structures for a particular marketing objective (Murtha et al. 2014; Peres and
Van den Bulte 2014).

The present study raises the hitherto unaddressed question of optimal community
design. More specifically, we investigate the following question: How can a man-
ager or central planner design a community such that the overall effort expended
by members is maximized? Unlike prior work involving comparative assessments of
multiple network structures, we seek to directly characterize the optimal structure.
Unlike prior work where the network is exogenously given, we endogenize network
structure as a decision made by a central planner or community manager. Unlike
prior work where marketers aim to improve their marketing ROI by targeting specific
nodes within a fixed network and assume such targeting can generate peer influence,
we allow peer influence to organically develop as an outcome of the endogenous
grouping decision. We take the view of a marketer or community manager interven-
ing by choosing the network structure, i.e., choosing the pattern of ties connecting
the given set of nodes.

Researchers, managers, and policymakers are becoming increasingly interested
in using interventions that manipulate individual behavior through social influence
(Carrell et al. 2013; Cerdeiro et al. 2017; Haag and Lagunoff 2006; Kraut et al. 2012;
Valente 2012). One recent example is the formation of communities where members
can determine their individual behavior by using others’ behaviors as a reference
point. Our study is part of this emerging research on effective community design but
differs in the intervention and objectives being analyzed.3 Prior studies focused on
seeding ideas or a marketing promotion within an existing social network to achieve
virality. Such studies concluded that targeting particularly influential or influence-
able individuals is useful to attain the virality goals. These studies, however, do not
address the question about how communities should be designed, if possible, as such
optimal designs can improve the gains above and beyond the improvement that comes
from optimal seeding.

A key insight from prior research, which we accept as a premise to our model, is
that endogenous tie formation by people subject to social conformity does not ren-
der community design ineffective. Allcott and Kessler (2015) show that a majority
of customers receiving Opower social comparison reports for free from their elec-
tric utility are willing to pay for such information without being able to select the
people they receive benchmark information about. Five field experimental studies in
the realm of health behavior and physical fitness by Centola (2010), Centola (2011),
Zhang et al. (2015a), Rovniak et al. (2016), Zhang et al. (2016) similarly document
people’s willingness to relinquish their agency in network formation and allow them-

3Community design is also an important area of study in organizational behavior and management litera-
tures. There are, however, key differences with our work. First and most importantly, while these studies
investigate links between network structure and outcomes, they do not attempt to optimize structure. Sec-
ond, social conformity is not the root motivation for employee behavior. Financial incentives influence
employee behavior. Finally, in optimization of collective employee effort, there is a concern for free-riding
because firm objectives can be reached even when an individual is not exerting effort. In the context that
we study, individuals’ goals are not tied to an overall objective and they do not gain utility from others’
progress unless they also exert effort.
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selves to be placed in a network structure designed by the manager of a community
they join. Another example is that every year, millions of freshmen students across
the globe willingly agree to be assigned—often in explicitly random fashion—to
dormitory rooms, student cohorts, study groups and course project teams by the edu-
cational institutions they join in their pursuit of an education. In short, community
design is accepted by many people joining communities built and managed to help
them reach a specific objective. Furthermore, there is ample evidence that exogenous
assignment to particular apartments, offices, or dorm rooms has long-run effects on
both the subsequent pattern of organically developed social ties (e.g., Festinger et al.
1950; Van den Bulte and Moenaert 1998; Hasan and Bagde 2013) and the level of
achievement many months after the initial assignment (e.g., Hasan and Bagde 2013;
Sacerdote 2001). In short, evidence shows that endogenous tie formation does not
render community design ineffective.

That community or network design affects interaction and outcomes even after
members form social ties organically is consistent with a core proposition of Fes-
tinger’s (1954) theory of conformity through social comparison: People dislike being
in a state of discordance with peers, and often resolve that state of cognitive dis-
sonance by changing their attitude and behavior rather than severing the social ties
with their discordant peers. It is this very tendency that underlies social conformity
through descriptive norms, documented amply in both lab and field experiments.
The same behavioral principle of discordance aversion explains the pervasive ten-
dency for organic networks to exhibit tie transitivity, balance, and clustering (e.g.,
Cartwright and Harary 1956; Davis 1970).

The pattern of network formation among the 432 members of an online health-
buddy community run by the Medical Office at MIT is quite informative (Centola and
van de Rijt 2015). After joining, members were provided with a home page contain-
ing “a detailed dashboard with a real-time chart that kept track of their daily activities,
exercise intensity levels, and exercise minutes.” Members were assigned to one of
six separate sub-communities of 72 people each, and were randomly assigned six
anonymous health buddies from their own sub-community, of whom they could see
the complete profile information (age, gender, race, BMI, exercise interests, dietary
preferences, and overall level of fitness) as well the exercise records. Of particular
interest is that, over the course of five weeks, program participants were allowed to
add and drop buddies, i.e., to rewire their ego-network of buddies. Participants were
not able to prevent anyone from linking to them. This set-up provided six independent
observations of network evolution.

Strikingly, over the 5 weeks in which 432 member were tracked, only 51 tie
changes were initiated. The propensity to change ties was not associated with activity
level within the program (Centola and van de Rijt 2015, pg. 23). Community mem-
bers quite accepted being placed in pre-formed networks. This shows that, once one
has joined a community focused on behavior change, members can be much more
accepting of their randomly allocated ties than theoretical models of highly strategic
endogenous network formation imply. This is also supported by the experience of a
similar health buddy program at the University of Pennsylvania, PennShape, where
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people were not allowed to change their network at all. In each of the four imposed
network structures each comprising 186 members (for a total of 744 participants), the
retention rate was above 95% by the end of eleven weeks (Centola 2018, pg. 165).

The pattern in the changes that did occur in the MIT experiment is also strik-
ing: “all six networks exhibited the same general pattern of social selection. In every
case, health buddies were selected predominantly on the basis of similarities in . . .
just three traits: age, gender, and BMI” (Centola 2018, pg. 150). Characteristics that
were also observable and more directly associated with health and fitness, including
“favorite exercise, dietary preferences, exercise intensity, typical exercise minutes,
and exercise experience, were not significant factors for selection” (Centola 2018, pg.
150). That homophily was only muted in this online, purpose-oriented community
need not be surprising. The more narrowly specified an explicitly designed online
community is, “ the less relevant every other feature of a person becomes until only
a few features, or perhaps even one feature, defines who she is, how she behaves,
and why she seeks social interaction” and with whom she interacts (Centola 2018,
pg. 156). More surprising is that, given the members’ goal of engaging in more rig-
orous exercise routines than they would otherwise follow, traits directly associated
with health and fitness were not among the bases of homophily. Instead, community
members, to the extent that they rewired their network, sought out demographic refer-
ence points rather than performance-based reference points (Centola and van de Rijt
2015, pg. 25). This shows that, once one has joined a community focused on health
behavior change, peers’ behavior or diligence need not be as strongly predictive of tie
formation as theoretical models of strategic network formation imply (Centola and
van de Rijt 2015, pg. 26). Along similar lines, studying the evolution of an organic
email network of university students and faculty, Kossinets and Watts (2006) found
that having a common interest and purpose (taking a common class) was strongly
associated with tie formation, that homophily in status, gender and age was absent,
and that people did “not strategically manipulate their networks” (pg. 90).

3 Model Setup and Equilibrium

We consider a set of n individuals or consumers who decide how much effort to
exert in order to reach an objective they hold. A manager whom we will refer to as
the “designer” wants to organize these individuals into a community and facilitate
information exchange among them in order to maximize the total or, equivalently,
the average amount of effort exerted. Since communities are networks of individuals,
we will treat the problem as a network design problem and use terminology from
network science. Any two individuals may be connected to each other, and if i and
j are connected, we denote the tie by i ∼ j . A network, denoted generically by
G, is simply the collection of the individuals and their undirected ties. We start by
characterizing the “out-of-community” effort in the absence of any reference groups,
and then move to establishing the equilibrium effort when ties are present between
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community members. 4 Let the consumer’s out-of-community utility from exerting
effort at level yi be:

ui = αiyi − 1

2
y2
i (1)

where αi is the idiosyncratic reward from working towards an objective, and 1
2y2

i

is the quadratic cost of effort. Consumers are heterogeneous with respect to how
much they care about the objective. If the objective is preserving energy, for instance,
consumers vary in how much they value the environmental and financial benefits of
consuming less energy. We assume αi ∈ [0, 1] but the results easily scale, mutatis
mutandis, to larger bounded intervals for αi .

A consumer exerting effort when there is a reference group gains utility not only
from the benefits of working towards her objective, but also from the conforming to
the activity of others in the community. We represent the in-community utility as:

ui = αiyi − 1

2
y2
i + 1

2

∑

j∼i

[1 − ρij (yi − yj )
2] (2)

In the expression, j ∼ i denotes any individual j that is connected to i and vice
versa, and ρij > 0 calibrates the social influence of j on i and is common knowledge.
The last term

∑
j∼i[1 − ρij (yi − yj )

2] captures the utility from adhering to the
descriptive norm, and is the component which represents peer influence. To make the
problem as realistic as possible, we introduce two characteristics for social influence.
First, it can be asymmetric between the individuals, as is often the case in real life.
The influential bloggers are not necessarily influenced by the individuals who follow
them. Formally, we allow the influence between any two connected consumers to be
asymmetric (ρij �= ρji) and also allow the activity of i to be greatly influenced by
j ’s activity (ρij � 0) or at a marginal rate (ρij → 0). ρij need not equal ρik , k �= j ,
such that i may be influenced by different individuals in his network at different rates.
Second, we do not assume that the degree of social influence is a function of one
individual’s personality traits but ρij jointly reflects both the ability of j to influence
others, and the susceptibility of i to be influenced by others:

ρij = λi · χj , (3)

where λi > 0 calibrates how sensitive i is to observed peer behavior and χj > 0
calibrates how much influence j has over others. In reality, it would be unrealistic to
assume that one individual has the same level of influence over every other individ-
ual. It would be equally unrealistic to assume that an individual is influenced by every
other person to the same degree. This flexible modeling approach is important. While
these individual-level influence and susceptibility parameters significantly increase
the complexity in our derivations, they are central to the insights about character-
ization of the optimal network design. Note, ρij and αi are calibrated against the
marginal cost of effort, which is assumed to take a constant value of 1. Also notice
that the heterogeneity among individuals allows designers to take into account all
types of individuals ranging in effort and social influence to design a community.

4We use the terms effort and activity interchangeably.
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This framework captures an individual’ s desire to exert effort and to conform to
the behaviors of others they are connected to. Specifically, conformity enters the util-
ity function directly through the quadratic term, consistent with how Bernheim and
Exley (2015) model descriptive normative influence as a preference mechanism. In
Section 6.2, we investigate the optimal network design for settings in which individ-
uals want to out-compete their connected peers by exerting more effort than them,
rather than adhere to the descriptive norm set by their peers.

When a customer i exerts effort alone, his utility-maximizing level of activity is
αi . Thus we also refer to αi as the out-of-community effort level. However, when he
is maximizing the utility given in Equation (2), the chosen effort level is a weighted
average of αi and the activity of his contacts:

y∗
i = αi + ∑

j∼i ρij yj

1 + ∑
j∼i ρij

(4)

The optimal individual effort in (4) is not specific to the utility function formula-
tion in (2). Other formulations, for instance ui = αiyi − 1

2y2
i − 1

2

∑
j∼i ρij (yi −yj )

2,
also lead to the expression in (4). All of our subsequent analyses are based on (4)
and hold with any utility specification that gives (4). The utility specification in (2)
has the benefit that the individual is never better off outside the community such that
participation is guaranteed, if ρij ∈ [0, 1] for all i and j .

We consider a Nash equilibrium where all individuals choose their effort simulta-
neously. In what follows, y∗

i denotes the equilibrium effort of individual i and vector
y∗ collects the equilibrium effort levels of all the community members. Proposition 1
establishes the existence and uniqueness of the equilibrium.5 All proofs are in the
Online Appendix.

Proposition 1 Given a set of out-of-network activity levels α, influence levels ρ > 0,
and a fixed community network G, there exists a unique equilibrium of individual
activities, y∗. Customer i’s equilibrium activity satisfies:

y∗
i = αi +

∑

j∼i

ρij (y
∗
j − y∗

i ) (5)

The equilibrium is given by

y∗ = L−1α (6)

5In a “larger” model, one may want to consider how individuals react to the choices of the community
network designer, taking into account that the latter has connected him or her to a non-representative group
of individuals. We abstract away from such considerations. In a model where individuals are fully aware
of the non-representativeness of their ties and prefer to conform to the population average rather than their
distinct peers, {αi, λi , χi}ni=1 are common knowledge, and individuals act fully rationally accordingly,
each individual should be able to infer and act towards an unbiased estimate of the population average
effort. This seems to render the problem of network design much less relevant. Hence, the effectiveness
of community network design relies on the premise that individuals will conform to their ties, even when
they might be aware that these ties are non-representative.
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where L is a square “influence matrix” of size n, given by

Lij =
{ −ρij , if i ∼ j

0, otherwise

Lii = 1 −
∑

j∼i

Lij .

Proposition 1 demonstrates (i) how an individual’s in-community activity is linked
to not only his own out-of-community activity, but also the activity of the other indi-
viduals, and (ii) how social influence is determined by both ρij and the structure of
the community. Equations 5 and Eq. 6 imply that an individual’ s equilibrium in-
community effort can sometimes be lower than his out-of-community effort, that the
same is true for the overall level of effort, and that any connection can influence any-
one’ s equilibrium level of effort. Consequently, to increase the total collective effort
exerted by customers or community members, managers may need to purposely
design the community structure.

4 Optimal Community Design

Given the utility formulation in (2), the total effort T ≡ ∑
i∈G y∗

i can be maxi-
mized by determining which consumers’ information should be shared with which
other consumer, and the designer has to answer this question simultaneously for all
community members. Suppose we consider only two individuals with α1 > α2. It is
easy to see that placing a tie between them increases their joint activity iff consumer
1 influences consumer 2 more than consumer 2 influences consumer 1 (that is, iff
ρ21 > ρ12). When applying such a pairwise comparison rule for n > 2, any two indi-
viduals would be connected iff (ρij − ρji)(αj − αi) > 0. However, the following
example shows that this pairwise design rule could lead to worse outcomes than the
empty network (i.e., where everyone is isolated), let alone a comprehensive design
rule that considers not only the direct but also the indirect influence of consumers on
each other.

Consider a 4-person community. The individuals are characterized by their
individual parameters as follows:

α =

⎛

⎜⎜⎝

0.0
1.5
0.5
0.1

⎞

⎟⎟⎠ , λ =

⎛

⎜⎜⎝

2.0
1.5
0.5
0.1

⎞

⎟⎟⎠ , χ =

⎛

⎜⎜⎝

1
1
1
1

⎞

⎟⎟⎠

The community design produced by the pairwise rule is given in the community
below on the left. All consumers are placed in a star structure where consumer 1
is connected to every other consumer. The equilibrium activity of each consumer is
written next to each node. Applying the pairwise design rule results in a network
structure where the total effort exerted T is 1.86, an 11% decrease compared to the
empty network where each individual is disconnected from everyone else (in which
case T = ∑

i αi = 2.1).
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Now consider the community below on the right where the total activity is 2.32,
a 10% increase compared with the empty network. In this community, the only tie is
between consumers 1 and 3. Connecting these two results in a net increase in their
effort from 0.50 to 0.71. The community on the right is actually the optimal design
as no other community configuration results in higher total activity.

10.41 2 0.85

3 0.4740.13

10.29 2 1.5

3 0.4340.1

This example illustrates that designing a community based on direct pairwise
influence can be not only suboptimal but even detrimental to population-level effort.
Optimal community design requires going beyond the immediate returns to adding a
link between two individuals and taking into account the spillovers to other connected
nodes.

Designing a community without any simplifications implies searching for the best
network, and this is by no means a trivial task. For n consumers to select from,

there are 2
n(n−1)

2 possible network configurations, and we wish to find the network
that leads to the highest collective effort.6 Moreover, the problem is nonlinear, as
evidenced by (6). To tackle this difficult problem, we temporarily relax the discrete-
ness of tie creation. Specifically, we allow the firm to not only create a connection
between two consumers but also do so at varying levels of tie strength. For instance,
a social community may change the frequency at which consumers hear from each
other. Although this relaxation enlarges the set of possible configurations, it facili-
tates the mathematical analysis. Let sij = sji ∈ [0, 1] be the strength of the link
between i and j . When sij = 0, the two consumers do not hear from each other,
or, equivalently, there is no connection between them. The equilibrium activity of a
consumer then becomes a variant of that in Equation (4), weighted for tie strength:

y∗
i = αi + ∑n

j=1 sij ρij yj

1 + ∑n
j=1 sij ρij

(7)

The Nash result in Equation (6) can be similarly expressed as L−1α and using the
following influence matrix L:

Lij = −ρij sij ,

Lii = 1 −
∑

j∼i

Lij

6This number is 64 for n = 4, larger than 32,000 for n = 6, and is considerably larger for any greater
sized population (e.g., n > 100).
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4.1 What is the Optimal Tie Strength for Inducing Effort?

We now assess how changing the strength of the tie between two consumers affects
the overall effort level in the community.

Lemma 1 The marginal effect of the strength of the tie between individuals i and j

on the activity of each community member, ∂y∗/∂sij , is given by:

∂y∗

∂sij
= L−1v∗

ij , (8)

where the vector v∗
ij is defined as below using ei to denote the i-th basis vector and

ej to denote the j -th basis vector (i.e., ei is all zeros except for the i-th entry):

v∗
ij ≡ ρij (y

∗
j − y∗

i )ei + ρji(y
∗
i − y∗

j )ej .

The change in the overall community activity in response to a change in a specific
tie’s strength equals ∂T /∂sij = ∑n

k=1 ∂y∗
k /∂sij . Lemma 1 says that the marginal

effect of increasing sij on the collective effort T is positive iff

∂T /∂sij = 1′L−1v∗
ij > 0 (9)

Linking two consumers exhibiting conformity raises the effort of the lower-activity
consumer, and lowers that of the higher-activity consumer. Optimal community
design consists of finding the best trade-off between these two opposing effects, oper-
ating not just directly on the two focal individuals who are being connected but also
indirectly on others in the community who in turn affect the focal two. The totality
of these effects is taken into account and summarized in Equation (9).

Lemma 2 Hold constant all the tie weights in a community except for sij . If
∂T /∂sij > 0 at any particular value of sij , then ∂T /∂sij > 0 at all values of sij .

If the marginal effect of sij on T is positive at some point, it will remain positive as
one increases (or decreases) sij . This remarkable result implies that creating medium-
strength ties is generally not optimal. If strengthening the connection between two
consumers in a community increases the total activity (T ) in the community, then the
tie should be pushed to full strength sij = 1. Conversely, if weakening a tie between
two individuals increases the activity T , the link should be removed completely. Put
differently, the optimal tie strength is “ bang-bang” and to maximize total activity,
the community designer must add ties at the extensive rather than intensive margin:
it is the presence or absence of a tie rather than its strength which helps to maximize
total activity.

4.2 What is the Optimal Community Structure for Inducing theMaximum Effort?

We now turn to the key question: How to structure the community of n individuals
to maximize the total or average level of effort exerted? We first introduce a result
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for the most dense community networks, i.e., complete networks where every two
individuals are connected.

Lemma 3 (i) For a community with a complete network of individuals characterized
by {α1, λ1}ni=1 and χi = 1, the total effort is given by:

T =
∑n

i=1
αi

1+nλi

1
n

∑n
i=1

1
1+nλi

. (10)

(ii) For a community with a complete network of individuals characterized by
{αi, χi}ni=1 and λi = 1, the total effort is given by:

T =
∑n

i=1 αi (1 + nχi)

1
n

∑n
i=1 (1 + nχi)

. (11)

Equations (10) and (11) imply that the average effort level within a complete net-
work, T

n
, is a weighted average of the stand-alone effort levels (αi), where individuals

who are less influenceable (λi) or more influential (χi) are given a greater weight.
The last key building block to our main result is stated in Lemmas 4 and 5, charac-

terizing the optimal community structure for the extreme case where the propensity
to exert stand-alone effort (αi) and the propensity to influence (χi) or be influenced
(λi) are perfectly correlated. Note that we will represent results related to parameter
χi in terms of χ−1

i in Lemma 5 for mathematical tractability.

Lemma 4 Consider a set of individuals characterized by {αi, λi}ni=1 and χi = 1.
(i) If αi and λi are perfectly correlated, there is a unique locally optimal network

which is also the globally optimal network.
(ii) If αi and λi are perfectly negatively correlated (or positively correlated,

respectively), then the complete (empty) network is globally optimal.

Lemma 5 Consider a set of individuals characterized by {αi, χi}ni=1 and λi = 1.
(i) If αi and χ−1

i are perfectly correlated, there is a unique locally optimal network
which is also the globally optimal network.

(ii) If αi and χ−1
i are perfectly negatively correlated (or positively correlated,

respectively), then the complete (empty) network is globally optimal.

Of course, perfect correlations are unlikely to occur within the customer or mem-
bership base of any company or organization. However, community designers may
be able to organize the community members into multiple mutually disconnected
sub-communities or sub-graphs within which such correlations hold. Part (i) of Lem-
mas 4 and 5 state that in such sub-communities, the globally optimal and locally
optimal community designs are identical. Part (ii) of the lemmas states that these sub-
communities should be fully connected within when the perfect correlation between
both α and λ and α and χ−1 is negative.

Intuition suggests, and Proposition 6 presented later confirms, that members of
such sub-communities should have high variance in stand-alone effort, influence, and
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influenceability. We formalize that insight and combine it with previous results in
Propositions 2 and 3, characterizing the optimal community structure in the absence
of perfect correlation. Unlike Lemmas 4 and 5 these two propositions pertain to
local rather than global optima. It is possible that there are multiple local optima, but
numerical analyses presented below show that the characterization also holds when
searching numerically for the globally optimal community design.

Proposition 2 (Membership to Sub-communities in the Optimal Design) Consider
n → ∞ consumers who are distributed according to density (αi, λi) ∼ � over the
support [λ, λ] × [α, α]. Under a mild regularity condition on �, it is locally optimal
to organize consumers into sub-communities where any two consumers are linked iff
they belong to the same sub-community. Each sub-community consists of consumers
located along a line segment parallel to a diagonal of the support.

Proposition 3 (Membership to Sub-communities in the Optimal Design) Consider
n → ∞ consumers who are distributed according to density (αi, χ

−1
i ) ∼ � over the

support [1/χ, 1/χ] × [α, α]. Under a mild regularity condition on �, it is locally
optimal to organize consumers into sub-communities where any two consumers are
linked iff they belong to the same sub-community. Each sub-community consists of
consumers located along a line segment parallel to a diagonal of the support.

Propositions 2 and 3 state that in the optimal design for a very large community,
the members will be sorted into a set of mutually disconnected sub-communities (i.e.,
graph components) where each sub-community is internally fully connected (i.e.,
the link density is 1 within a sub-community). Put differently, the complete or near-
complete networks described in Lemma 4 still arise, but at the level of the smaller
sub-communities. This implies that the optimal community network exhibits perfect
transitivity (if i ∼ j and j ∼ k, then i ∼ k) and clustering.

As noted earlier, the key challenge in optimal community design under confor-
mity is to balance the two opposite effects of conformity. The effort of low-α types
gets pulled up towards the norm but that of high-α types tends to get pulled down.
Proposition 2 states that this trade-off is handled optimally by combining influential
high-α types and non-influential low-α types into heterogeneous sub-communities
parallel to the main diagonal in Fig. 1. Similarly, Proposition 3 states that this trade-
off is handled best by combining non-susceptible high-α types and susceptible low-α
types into heterogeneous sub-communities parallel to the main diagonal in Fig. 2.

Figure 3 provides numerical examples to illustrate the results in Propositions 2
and 3. Specifically, for a fixed total number of links, we trace the gain in collective
effort as we gradually increase the fraction of within-subcommunity links (i.e., link
allocation). The sub-communities are the ones in the optimal network. We carry out
this exercise for two levels of the total number of links (i.e., a dense network and
a sparse network). Two observations emerge. First, consistent with the Propositions,
an increasing fraction of within-relative to across-subcommunity links is associated
with higher gains from community design. Second, choosing the right placement of
links is more consequential than choosing the number of links, which highlights the
importance of the Propositions.
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Fig. 1 A Sub-community of
Individuals Located Along a
Line on the α-λ Plane

Identifying the optimal structure of very large (n → ∞) rather than small com-
munities is the main contribution of our paper. While it may be straightforward for a
designer to identify the optimal configuration of a small community through enumer-
ation or experimentation, this is not true for very large communities with thousands
of members. 7

To identify and visually illustrate the typical globally optimal community structure
in moderately sized networks, we numerically investigate seven scenarios in which
we fix the network size to n = 200 and vary the relations between αi, λi, and χ−1

i

among the members.
In the first scenario, we fix χi (ability to influence) to 1 and let αi and λi vary

independently of each other. In the second scenario, we fix λi (susceptibility to influ-
ence) to 1 and let αi and χ−1

i vary independently of each other. In the third scenario,
we vary all three parameters independently from each other. In the fourth scenario,
we again vary all three parameters, but induce a positive correlation between χi

−1

and λi . Several theories imply such a negative correlation between influence and sus-
ceptibility to influence (e.g., Van den Bulte and Joshi 2007), but empirical evidence
typically shows little or only moderate negative correlation (e.g., Aral and Walker
2012; Iyengar et al. 2011). Consequently, we deem the correlation structures of both
scenarios 3 and 4 to be fairly realistic. In the fifth scenario, susceptibility to influence
(λi) exhibits an inverse-U relation with respect to inability to influence (χ−1

i ). This
is consistent with the theory and evidence of middle-status conformity (e.g., Hu and
604 Van den Bulte 2014; Iyengar et al. 2015; Phillips and Zuckerman 2001).

We operationalize these first five scenarios under the assumption that αi, λi and
χ−1 are smoothly (continuously) distributed. 8 In the sixth scenario, we fix χi (ability
to influence) to 1 and let αi and λi vary such that individuals are clumpy in the αi -

7Similarly, theoretical network science studying equilibrium behavior and identifying theoretical proper-
ties of graphs and processes evolving on graphs typically does so for n → ∞ (e.g., Acemoglu et al. 2011;
Vincent and Ismael 2017; Iijima and Kamada 2017).
8Specifically, when α, λ or χ−1 are assumed to vary, we draw each from a Beta(2, 2) distribution featuring
values bounded between 0 and 1. When either λ or χ−1 is assumed not to vary, we set its value to 1. In
scenario 4, we induce a positive correlation of 0.5 between λ and χ−1 using the method of Plackett (1965) .
In scenario 5, we draw α and χ−1 each from a Beta(2, 2) distribution, and then set λi = 0.6−2(χ−1

i −0.5)2.
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Fig. 2 A Sub-community of
Individuals Located Along a
Line on the α-χ−1 Plane

λi space. In the seventh scenario, we fix λi (susceptibility to influence) to 1 and let
αi and χ−1

i vary such that individuals are clumpy in the αi - χ−1
i space.

We use simulated annealing to find the globally optimal network structure in each
of these scenarios. This numerical optimization method provides excellent approxi-
mations to the global optimum in network design problems (McAndrew et al. 2015;
Kirkpatrick et al. 1983; Gastner and Newman 2006; Randall et al. 2002).9 After hav-
ing found the globally optimal network design using simulated annealing, we identify
the various sub-communities in the optimal network using the community detection
algorithm developed by Newman (2006).

We report the optimized graph using different colors to indicate different sub-
communities. For each of these seven scenarios, we describe the optimal community
design by means of three graphs (Fig. 4). The first is a graph showing the nodes
and ties, in which the nodes of each sub-community have a different color. This
allows us to check whether the optimum indeed consists of sub-communities that are
disconnected from each other but densely connected within. The second is a plot of
the nodes with α on the horizontal axis and with λi, χ−1 or λi + χ−1

i on the vertical
axis. Since the nodes are color-coded by sub-community, this plot shows to what
extent each sub-community consists of individuals located on a downward sloping
line or band in the parameter space, consistent with Figs. 1 and 2. The third graph is
a plot showing how the level of effort exerted by each node in the optimal network,
yi∗, varies with αi, λi and χ−1

i . Since the nodes are color-coded by sub-community,
this plot also shows how the average level of effort exerted in each sub-community
varies.

As the community graphs in the first column of Fig. 4 show, the globally optimal
community structure is remarkably similar across these seven scenarios and con-
sistent with the locally optimal community structure characterized by Propositions
2 and 3. In each scenario, the optimal community consists of a small number of

9The simulated annealing algorithm is implemented closely following Gastner and Newman (2006). In
each step, one or multiple network links can be added, removed, or re-wired. We use a very slow cooling
schedule; we run the algorithm for 107 steps and the final temperature is 10−7 of the initial temperature.
The objective function is 1

n

∑n
i=1(y

∗
i − αi) and the initial temperature is set fairly high at 0.01.
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Fig. 3 Per Capita Improvement
as Links Allocated to
Sub-communities

sub-communities that are highly densely interconnected within but not, or only very
weakly, connected across. 10

As the plots in the middle column of Fig. 4 show, each sub-community consists
of individuals located on a downward sloping band in the parameter space of α ver-
sus λ, χ−1 or their sum. The optimal structure in scenarios 6 and 7 is especially
noteworthy: It involves not only combining people from different clusters into the
same sub-community but also allocating members of the same cluster to different
sub-communities.

The plots in the third column in Fig. 4 show how the amount of effort exerted in the
optimized network, y∗

i , varies as a function of not only consumers’ behavioral param-
eters αi, λi , and χ−1

i but also their location in the network. These plots in the third
column exhibit three patterns consistent with the analytical results and their intu-
ition. The first pattern is that members of the same sub-community exhibit very little
variation in y∗. This, of course, is consistent with conformity in a fully connected
subgraph. The second pattern is that the amount of effort exerted in the optimized net-
work tends to increase with the combination of stand-alone tendency to exert effort
(α), the susceptibility to peer influence (λ), and the inability to exert influence (χ−1).
The third pattern is that people with exactly the same value of α + λ + χ−1 exert
different levels of effort y∗ depending on which sub-community they are allocated to.

10Such networks are colloquially referred to as caveman graphs (e.g., Watts 2004, pp. 43-44 and 103),
an extreme case in the small-world network literature. There is also a clear parallel between synchrony
among oscillators (e.g., chirping crickets) studied in that literature and the social conformity among peo-
ple we consider. However, small-world networks have not been studied as resulting from a centralized
optimization.
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Fig. 4 Optimal Community Structure for Each of Seven Scenarios with 200 Individuals. Notes. Each
row characterizes the optimal community structure for one of the seven scenarios, ordered from 1 to
7. Each row displays three plots. From left to right, the plots show (i) the optimal network where sub-
communities are visually separated by different colors (but same color does not necessarily imply same
sub-community), (ii) the location of individual community members in the parameter space, and (iii) the
individual activity levels yi plotted against the key parameters
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Fig. 4 (continued)

Overall, these numerical results for networks with n = 200 and various constel-
lations of αi , λi , and χ−1

i parameters exhibit globally optimal community structures
very similar to those identified in Propositions 2 and 3 for n → ∞. Hence, one can
view these numerical results as a corroboration of Propositions 2 and 3 for finite net-
works. Since simulated annealing is known to provide very good approximations to
global rather than merely local optima, one can also view the numerical results as
indicating that the community structures characterized in Propositions 2 and 3 are
not only locally but likely also globally optimal.

For each scenario, we computed the fraction of customers exerting greater effort
after being placed in the optimized network than when being disconnected, i.e., the
fraction for which y∗ > αi . For scenarios 1 through 7, these fractions were 66%,
69% 68%, 73%, 72%, 59%, and 57%. As we show next, it is not a coincidence
that the improvement is greater in the first five scenarios where the parameters are
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distributed smoothly and exhibit greater variation than in the last two scenarios where
the customers are clumped together and the parameters exhibit less variation.

For each of the seven scenarios, we also calculate how well the optimal network
structure performs compared to a set of predefined structures. First is the global-star
structure in which the individual with the highest αiχi/λi is connected to everyone
else, and no other ties exist. Next are two global-core networks in which the top
10% or 20% individuals in terms of αiχi/λi form a core; individuals in the core are
connected with each other; and any person not in the core is connected to a random
person in the core. The last benchmark is the fully connected or full network.

Table 1 shows that the optimal network results in higher average or total effort
exerted than any of these four benchmark structures, and does so in each of the seven
scenarios. Table 1 also shows that, in the first five scenarios, the network structure
that maximizes average effort tends to outperform the four benchmark structures also
in terms of the fraction of people who increase their effort level. As one would expect,
the largest increases in effort are achieved by people in the lowest quartile of αi (the
lowest stand-alone effort individuals) and the gains decrease as αi increases. Again
as expected, people in the highest quartile of stand-alone effort even decrease their
effort after being connected to others. That is so for the optimal network as well as
the four benchmark structures, but the downward pull is the smallest in the optimal
structure, for six of the seven scenarios.

In some situations, like schooling and professional board certification, the goal
is not to maximize effort per se but to bring as many people as possible above a
threshold in effort or passing rate in outcome. To assess how well the various net-
work structures compare on this metric, we proceed as follows. First, we define the
threshold as a quantile of the α-distribution, and let it range from zero to unity in 5%
increments. Then, we compute how many people reach that threshold in each network
structure and scenario. Finally, we average the performance across scenarios.

Figure 5 graphs the performance for the optimal network and the global-core (20%)
structure, which is the second-best performer in Table 1. A greater number of people
meet the threshold in the optimal network than in the disconnected or empty network,
at least as long as the threshold is below the 80th percentile value of α. Once the thres-
hold is 80% or higher, the optimal network does slightly worse than the empty net-
work, but only by a slim margin. This again shows how the optimal network manages
the trade-off between pulling up the effort or outcome of low-α types and pushing
down that of high-α types. Fig. 5 also shows that the optimal network in essence
meets or beats the global-core (20%) structure for any threshold value between 0
and 1. Of course, a network designed to maximize the passing rate above a spe-
cific threshold will outperform the network design that maximizes average effort, but
Fig. 5 suggests that the latter performs fairly well even on that alternative objective.

5 When is Community DesignMost Beneficial?

Having characterized the optimal community structure for any given community, we
now present results on how the total effort exerted in an optimized community varies
with some important community characteristics: (i) the members’ propensities to
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influence, be influenced, and exert stand-alone effort, (ii) the heterogeneity across the
members, and (iii) the size of the community. These results help designers understand
under what circumstances they can benefit the most from purposively configuring
the network structure.

Consider two platforms with a consumer base identical in size (n) and in the
isolated activity levels of their members (α ≡ {αi}ni=1). If the influence potential
(ρ ≡ {ρij }ni,j=1) among the consumers of the first platform is greater than that of the
second, the maximum level of activity that can be attained by the second platform
can never exceed that of the first. The following proposition formalizes this.

Proposition 4 (Strength of Conformity and Gain from Community Design) Con-
sider the consumers in two communities, A and B, characterized by A = (α, ρ) and
B = (α, ρ′). Suppose ρ′

ij /ρij = ρ′
ji/ρji ≥ 1 for all (i, j) pairs. Then, with each

community being given its optimal configuration, the total effort level in B is greater
than or equal to that in A.

This proposition means that stronger conformity provides greater opportunities
for optimal design to boost the total level of effort exerted. The community designer
can always find a structure that leverages greater conformity, and consequently can
always find a design in which the positive motivating effect of conforming to others’
effort weakly dominates the negative demotivating effect of conformity.

The following proposition quantifies the gain from placing consumers in a well-
designed community structure as opposed to keeping them in isolation.

Proposition 5 (Heterogeneity and Gain from Community Design) Consider a
consumer base {αi, {ρij }j �=i}ni=1. Regardless of the network configuration,

1

n

(
T −

n∑

i=1

αi

)
≤ n − 1

2
ρ+α+

Fig. 5 “PASS THE THRESHOLD” PERFORMANCE OF OPTIMAL NETWORK AND GLOBAL-
CORE (20%) STRUCTURE
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where ρ+ ≡ max{|ρij − ρji |, i �= j} and α+ ≡ max{|αi − αj |, i �= j} are maximum
differences across all (i, j) pairs. In words, the upper bound on the improvement
of an average consumer depends on the heterogeneity among consumers in their
propensities to influence, be influenced, and exert effort stand-alone. The greater the
heterogeneity, the higher the upper bound.

The proposition implies that the gain from designing any community is zero when
each member has the same influence χ and the same susceptibility to influence λ.
The proposition also implies that communities showing little variation in α provide
lower potential for improvement through peer influence than heterogeneous ones.
Hence, social networks formed organically where people tend to connect with others
with a similar α (tie formation exhibiting homophily in α) provide little benefit from
networking and may even perform worse than randomly connected networks (Carrell
et al. 2013). This insight emphasizes the importance of purposive design or “central
planning” for effective communities.

The proposition also has important implications for customer targeting. Many
large firms prefer to segment consumers into externally heterogeneous and internally
homogeneous groups, and then target each segment with possibly tailored offerings.
Altogether, identifying and targeting internally homogeneous segments of customers
is a good practice. In the setting we study, in contrast, maintaining or even seeking
heterogeneity among one’s customers or members is beneficial and a firm or service
provider with a homogeneous customer or membership base will see smaller gains
from being in a community, as will its average customer or member.

The importance of seeking heterogeneity within sub-communities was also illus-
trated in the numerical analyses of the two scenarios exhibiting clumping in the
α − λ − χ parameter space. The globally optimal community structure identified by
simulated annealing in scenarios 6 and 7 involved not only combining people from
different clusters into the same sub-community, but also allocating members of the
same cluster to different sub-communities.

Next, we show that the size of the customer or membership base also affects the gains
from community design, independently of the heterogeneity of the base. To this end,
we consider a community with n consumers whose characteristics (αi, λi, χi) are hete-
rogeneous and drawn from a non-degenerate distribution �. For any set of n consumers,
there is an optimal design that leads to an improvement in the community activity,∑

i (y
∗
i − αi). We denote by Q(�, n) the expectation of this improvement over the

distribution �, and by q(�, n) ≡ Q(�, n)/n the expected per capita improvement.

Proposition 6 (Community Size and Gain from Community Design) The expected
per capita improvement in effort exerted from optimal community design satisfies the
following inequality:11

q(�, n + 1) >

∑n
k=1 q(�, k)

n
, n = 1, 2, ...

11In fact, a stronger result also holds: q(�, n + 1) >

∑n
k=1 k·q(�,k)∑n

k=1 k
. The right hand side of this inequality

is a weighted average and assigns more weight to the larger communities.
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Fig. 6 Expected per Capita
Improvement q(�, n)

The proposition provides a lower bound for the expected per capita improvement
from optimally arranged communities. It states that the per capita improvement in
a population of size n + 1, i.e., q(�, n + 1), exceeds the average of the per capita
improvements of smaller communities: q(�, n), q(�, n−1), ..., and q(�, 1). There-
fore, working with more customers or members will generate greater improvements
in the average level of effort exerted after the optimization.

Figure 6 illustrates the analytical results of Propositions 5 and 6 with a numeri-
cal example. It plots the expected average benefit q(�, n) as a function of n for two
different heterogeneity distributions, where one has greater variations in αi and λi

than the other.12 Clearly, the per capita improvement from placing consumers in opti-
mized community structures increases with the number of members (Proposition 6)
and with the heterogeneity in the stand-alone effort αi and the influenceability λi of
these members (Proposition 5).

The intuition is straightforward. Larger and more heterogeneous sets of nodes
provide more opportunities for the designer to identify and select a structure where,
on balance, the positive motivating effect of conformity on low αi nodes outweighs
its negative demotivating effect on high αi nodes.

12In the Figure we assume that (αi , λi ) ∼ Beta(2, 2) × Beta(2, 2) and Beta(1, 1) × Beta(1, 1). Note that
Beta(2, 2) is a symmetric bell shaped distribution over the unit interval centered around 0.5, appropriate
for populations where there is a greater mass of individuals carrying close to median characteristics in
the importance they give to their goals and the degree of susceptibility they are subject to. In contrast,
Beta(1, 1) is the uniform distribution, suggesting a more homogeneous spread of individual types.
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6 Alternative Models

6.1 Minimizing Activity in Communities

In some contexts, activity can be harmful (e.g., smoking, gambling, addictive gam-
ing) and a community designer may want to minimize rather than to maximize it. It is
easy to show that an activity-minimizing community for (α, ρ) is, at the same time,
an activity-maximizing community for (−α, ρ). So it is straightforward to transform
a minimization problem into a maximization problem, and the results presented in
Sections 4 and 5 apply as long as the negative value of the individual activity (−α)

is used in the calculations and community design.

6.2 Social Competition

The model and analysis assume that peer influence operates through social con-
formity, specifically the desire to adhere to descriptive social norms. It is possible,
however, that social influence operates through other mechanisms. In this section,
we consider social competition or the desire to out-perform others, which may be
relevant for engaging in intense physical exercise, at least to some people (Aral and
Nicolaides 2017) as opposed to managing one’s weight and fitness through mindful
eating and moderate exercise, reducing one’s electricity consumption, reducing one’s
tobacco or drug use, making charitable donations, and studying. To account for peer
influence through social competition rather than conformity, we modify the model
setup given in equations 2 and 4 into:

ui = αiyi − 1

2
y2
i +

∑

j∼i

[
δij (yi − yj )

]
, (12)

where δij> 0 measures how much individual i cares about doing better than individ-
ual j . For instance, he may want to exercise harder than his peers or outperform other
salespeople at work. He may care greatly about exceeding the level of effort or activ-
ity of some peers but care little about others. So, relationships are heterogeneous and
δij �= δik . The implied effort chosen by individual i is:

yi = αi +
∑

j∼i

δij . (13)

When peer influence operates through social competition, effort is always higher
in-community than out-of-community effort, social information should always be
shared, and the completely connected community is the optimal structure. Social
competition thus presents less of a design challenge and limited trade-offs compared
to social conformity, and therefore is more straightforward from a community design
perspective.
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6.3 Maximizing Outcome

In some situations, there may be a necessity to separate measures for outcome (e.g.,
test score) and effort. Suppose that an outcome measure, ti , follows a mapping of
effort that is heterogeneous among individuals:

ti = σiyi .

where σi > 0. Individuals with a large σi find it easier to achieve a better outcome
with the same amount of effort. Our model accommodates situations where one wants
to maximize the collective outcome instead of efforts:

∑
i ti . Specifically, the utility

function should be modified as follows:

ui = αiti − 1

2
y2
i − 1

2

∑

j∼i

λi · χj · (ti − tj )
2, (14)

where the individual reward and social conformity are both based on outcomes,
unlike the cost of exerting effort. Because utility can be scaled up or down without
affecting behaviors, the above utility is equivalent to

ui = α′
i ti − 1

2
t2
i − 1

2

∑

j∼i

λ′
i · χj · (ti − tj )

2, (15)

where α′
i≡ σ 2

i αi and λ′
i≡ σ 2

i λi . Consequently, we have

ti = α′
i + ∑

j∼i λ′
i · tj

1 + ∑
j∼i λ′

i · χj

. (16)

From this point on, one can apply all of our results on {α′
i , λ

′
i , χi}ni=1 to maximize∑

i ti .

6.4 Uni-directional Connections

Our analysis assumed that influence flows both ways over social connections, even
though the strength of influence need not be symmetric. What happens when the
community manager has the ability to make the influence within communities flow
in only one direction, e.g., by informing i about j ’s effort or actions, but not vice
versa? The community manager will want to connect every higher-α type to every
lower-α type. Since the downward pull of lower-α types can be avoided, there is
no reason to have separate sub-communities, and the optimal community structure
will be a single large fully connected graph component. The ability to make ties
uni-directional renders the optimal community structure very easy to identify.

6.5 Rewiring Connections

Consistent with the empirical evidence reviewed in Section 2, we assumed that com-
munity members accept their assigned location in the community designed to help
them achieve a specific goal. How critical is that assumption? Specifically, how dif-
ferent would the optimal community design be when, in a first stage, the designer
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imposes a structure and people join and, in a second stage, community members
experiencing tension from non-conforming peers are able to rewire their connections
at a cost reflecting inertia and the hassle cost of identifying other potential partners?

One possible assumption is that in the second stage people seek to achieve confor-
mity by connecting to those with a first-stage effort level very similar to theirs. Since
in the current optimal design, within-community variance in y∗ is small, and espe-
cially so in the large communities on the main diagonals, there will be only limited
rewiring.

An alternative assumption is that people will seek to form connections with others
having a parameter α similar to theirs. We expect more rewiring in this second sce-
nario, but still expect that the optimal design will not be radically different from the
one we have identified. In the current design rules, high-α types with low influence
are already paired with other high-α types, and low-α types with low susceptibility
are already paired with other low-α types. So, the communities consisting of people
located towards the off-diagonal corners are already fairly homogeneous in α. The
key question is how much the heterogeneous sub-communities on the main diagonals
change once rewiring starts. That is likely to be a function of the cost of rewiring rela-
tive to the tension induced by the difference in α between two connected community
members. Hence, rewiring does not drive the total benefit from community optimiza-
tion to zero. Rather, the total gets diluted and the amount of dilution is a function of
the strength of homophily in organically formed social networks, the presence of not
only high-α and low-α but also medium-α types in mixed sub-communities (Carrell
et al. 2013), the cost of rewiring, the time lapsed until rewiring takes place, and the
community designer’ s discount factor. Most importantly, we see no reason to expect
the optimal design rules in this two-stage set-up to differ markedly from those we
have identified.

7 Conclusion

In the absence of a clear benchmark about what is appropriate or desirable, people
tend to conform to what others, even strangers, do. Conformity to descriptive social
norms has a sizable effect on the effort people exert in areas like energy conserva-
tion, health and charitable help, and is increasingly being leveraged by companies
and platforms like Opower, Crowdrise and BuddyUp. Motivated by these important
developments, and the broader emerging interest in community design, we address
the question of how to design the reference groups among community members to
maximize the total effort exerted. The key trade-off to be managed is that social con-
formity pushes up the effort of those who would otherwise exert relatively little effort
while pushing down the effort of those who would otherwise exert relatively greater
effort.

7.1 Recommendations

Our analysis results in three specific recommendations. First, the community should
be organized as a set of sub-communities, each of which is fully connected within

411



P. Yildirim et al.

itself but disconnected from other sub-communities. Second, each sub-community
should consists of members selected such that their susceptibility to influence
(propensity to influence) and their “standalone” propensity to exert effort are neg-
atively (positively) correlated. Third, there is no benefit in varying the strengths of
connections across dyads, e.g., by varying their visual salience. Our analysis also
shows that the benefits of following these design rules are greater in communities
that count more members or exhibit greater variation in their members’ social influ-
ence, susceptibility to social influence, and propensity to exert effort in isolation. The
reason is that larger size and greater variance provides the designer greater degrees
of freedom when managing the key trade-off.

7.2 Implementation

One appeal of our recommendations is that the structure is easy to implement not only
for online but also for offline communities. Organizing the overall community into
sub-communities that are fully connected within but disconnected between amounts
to creating distinct groups where every member is connected to every other member
of their own group and to no one else. Not having to vary the visual salience, inter-
action frequency, or other facets of tie strength across dyads also makes the optimal
community design easy to implement.

Assigning specific members to specific sub-communities requires information
about their stand-alone propensity to exert effort, their social influence, and their
susceptibility to influence. One practical way to obtain such information is through
self-reports at the time people join the community. Stand-alone effort is likely corre-
lated with both aptitude and grit, the latter being the passion and motivation for the
particular goal the community is designed to foster (Duckworth et al. 2007). Influ-
ence and susceptibility to influence can be measured through simple questionnaires
similar to those used to measure opinion leaders and seekers (Flynn et al. 1996),
though using easy-to-observe correlates of influence and influenceability identified
by analyzing prior member behavior may be a better procedure for managers of
established communities (Aral and Walker 2012; Iyengar et al. 2011; Iyengar et al.
2015).

A final implementation issue deals with how sustainable the network design is.
Left to their own devices, people tend to form networks that exhibit two key structural
features: clustering and homophily. The tendency of organic networks to be clustered
(“friends of friends are friends” ) does not pose a challenge, since the proposed design
involves complete clustering. Three important elements imply that our design rules
are likely to be robust to varying levels of homophily. First, in our analysis, people
prefer being connected to others, even if they have a different α, as long as ρ ≤ 1
(see Equation 2). Consequently, being connected to peers with a different α is no
reason for anyone to prefer not to be part of the designed community. Second, the
empirical evidence from the literature reviewed in Section 2 shows that (i) people
joining an organization or interest-based community in pursuit of a goal are often
willing to accept an imposed group or network structure and that (ii) such an imposed
structure often has a lasting effect on subsequent network structure and individual
behavior, even after people are allowed to rewire their network connections freely
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(e.g., Centola 2011; Festinger et al. 1950; Hasan and Bagde 2013; Sacerdote 2001;
Zhang et al. 2015a). Third, the optimal structure never forces high-α and low-α types
together without medium-α types also being present and providing cohesion even
in the presence of homophily (Carrell et al. 2013). Consequently, though a purely
homophily-based rewiring will dilute the benefits of network design, high levels of
homophily will not negate them.

7.3 Suggestions for Future Research

Community and network design is an emerging area of research (Cerdeiro et al.
2017; Valente 2012), and many questions remain open. We studied the problem of a
designer, a manager, or a policy maker who seeks to maximize total effort, in a setting
where community members conform to descriptive social norms, and the key trade-
off involves balancing the positive conformity effect on people who would exert less
effort when disconnected from others against the negative conformity effect on those
who would exert more effort when disconnected.

The design problem we studied is applicable to many areas of marketing, pre-
senting different combinations of design objective, nature of social interaction, and
key trade-off to be managed. One such area is ideation platforms, where the man-
ager brings customers or employees together to generate ideas. Connected people
may improve on each other’ s ideas, and the trade-off is to connect people with expe-
rience and expertise levels that are sufficiently different but not too different (De
Vaan et al. 2015; Toubia and Netzer 2016; Uzzi et al. 2013). Another area is learning
about new products and technologies when the objective is knowledge spread and
acquisition, customers learn through observation, and the trade-off is to have infor-
mative social learning that does not overpower private learning (Zhang et al. 2015b).
Yet another area is managing the trade-off between motivation and demotivation in
performance posting, e.g., when publicly ranking the performance of salespeople or
customer representatives (Cai 2015).

There are some limitations in our model that future research may seek to address.
We make the assumption that individuals wish to conform to social norms, ρ > 0. In
Section 6.2, we also consider the case of social competition. However, it is possible
that individuals may want to differentiate themselves (ρ < 0). Moreover, our model
implicitly assumes that the effort exerted or output achieved is observable. In several
domains such as exercise and energy conservation, it is actually possible for compa-
nies to observe individual effort as workout and energy conservation can be measured
by a third party and reported to the user’s network. In the Opower example, energy
consumption is measured by the utility provider. In the workout examples, typically
smart devices measure and report effort. In other situations, however, effort may not
be observable, or may be only partially observable, potentially creating a moral haz-
ard problem. Finally, our work considers continuous rather than discrete effort. When
effort is discrete, multiple equilibria may occur (Hartmann 2010; Cerdeiro et al. 2017;
Goyal et al. 2017).

Community design need not be restricted to choosing a structure and may, for
instance, also include a policy of incentives given to high-α types. This was not
important in our analysis where people prefer being connected to others, even if they
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have a different α, as long as ρ ≤ 1, but it may be useful when ρ > 1. Giving
incentives to high-α types may also be effective in settings where the social influence
mechanism is not one of conformity but of status or knowledge spillover, such that
people like to connect to high-α types but the latter may need additional incentives
to accept invitations to connect from low-α types (Wei et al. 2016). Such incen-
tives may include public tokens of status, special benefits like pre-release access to
new products, membership in advisory councils, and various other incentives already
implemented in many communities. As companies and other platforms increas-
ingly rely on building and managing communities, network design is bound to offer
increasing opportunities to improve business outcomes and consumer welfare.
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