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BEARDWOOD-HALTON-HAMMERSLEY THEOREM FOR
STATIONARY ERGODIC SEQUENCES: A COUNTEREXAMPLE

BY ALESSANDRO ARLOTTO AND J. MICHAEL STEELE
Duke University and University of Pennsylvania

We construct a stationary ergodic process X1, X2, ... such that each Xt
has the uniform distribution on the unit square and the length Ly, of the short-
est path through the points X, X, ..., X, is not asymptotic to a constant
times the square root of n. In other words, we show that the Beardwood,
Halton, and Hammersley [Proc. Cambridge Philos. Soc. 55 (1959) 299-327]
theorem does not extend from the case of independent uniformly distributed
random variables to the case of stationary ergodic sequences with uniform
marginal distributions.

1. Introduction. Given a sequence Xj,X2,...,Xp,... Of points in the unit
square [0, 112, we let L(x1,X2,...,Xn) denote the length of the shortest path
through the n points x;, x5, ..., X,, that is, we let

@1
1) L(x1,X2, ..., Xp) = min  IXg() = Xoee 1)l
t=1

where the minimum is over all permutations o :{1,2,...,n} — {1,2,...,n} and
where |x — yl denotes the usual Euclidean distance between elements x and y
of [0, 1]. The classical theorem of Beardwood, Halton and Hammersley (1959)
tells us in the leading case that if X, X», ... is a sequence of independent random
variables with the uniform distribution on [0, 1]2, then there is a constant B>0
such that

) lim n”"?L(X1,Xa,...,Xa)= B  with probability one.

n—
The Beardwood, Halton and Hammersley (BHH) constant 3 has been studied
extensively, and, although its exact value is still unknown, sophisticated numer-
ical computations [Applegate et al. (2006)] suggest that B =~ 0.714.... The best

available analytical bounds are much rougher; we only know with certainty that
0.62499 < B < 0.91996. [See, e.g., Finch (2003), pages 497-498.]
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The BHH theorem is a strong law for independent identically distributed ran-
dom variables, and, for reasons detailed below, it is natural to ask if there is an
analogous ergodic theorem where one relaxes the hypotheses to those of the clas-
sic ergodic theorem for partial sums. Our main goal is to answer this question;
specifically, we construct a stationary ergodic process with uniform marginals on
[0, 1]? for which the length of the shortest path through n points is not asymptotic
to a constant times n'/2,

THEOREM 1 (No ergodic BHH). There are constants ¢c; < ¢ and a stationary
and ergodic process X1, X3, ... such that X is uniformly distributed on [0, 112
and such that with probability one

L(X1,X3,...,Xy) L(X1,X2,...,Xy)

() liminf /2 sce1<@s hﬂsol-}p 02

This theorem is obtained as a corollary of the next theorem where the condition
of ergodicity is dropped. In this case, one can construct processes for which there
is a more explicit control of the expected minimal path length.

THEOREM 2 (Asymptotics of expected path lengths). There is a stationary
process X7, X, ... such that X7 is uniformly distributed on [0, 1]2 and such that

E[L(X],X3,...,X))]

. ~1/2
@ lim inf NTE s277°p<P
E[L(X:,X5,..., X"
< limsup [LC 2 n)];
n—© n

where 3 is the BHH constant.

Our construction proves more broadly that there are no ergodic analogs for
many of the other subadditive Euclidean functionals such as the Steiner Tree Prob-
lem [cf. Hwang, Richards and Winter (1992), Yukich (1998)]. We will return to
these and other general considerations in Section 10 where we also describe some
open problems, but first we explain more fully the motivation for Theorems 1
and 2.

BHH theorems for dependent sequences: Motivation and evolution. The trav-
eling salesman problem (or, TSP) has a remarkably extensive literature; the mono-
graphs of Lawler et al. (1985), Gutin and Punnen (2002) and Applegate et al.
(2006) note that it is among the of the most studied of all problems in combina-
torial optimization. Moreover, the TSP has had a role in many practical and com-
putational developments. For example, the TSP provided important motivation for
the theory of NP-completeness, the design of polynomial time approximations, the



NO BHH THEOREM FOR STATIONARY ERGODIC SEQUENCES 2143

methods of constraint generation in the theory of linear programming, and —most
relevant here —the design of probabilistic algorithms.

Probabilistic algorithms are of two fundamentally different kinds. One class of
algorithms uses internal randomization; for example, one may make a preliminary
randomization of a list before running QUICKSORT. The other class of algorithms
takes the view that the problem input follows a probabilistic model. Algorithms
of this second kind are especially common in application areas such as vehicle
routing and the layout of very large-scale integrated circuits, or VLSI.

The partitioning algorithm proposed by Karp (1977) is an algorithm of the sec-
ond kind that was directly motivated by the BHH theorem. The partitioning algo-
rithm was further analyzed in Steele (1981) and Karp and Steele (1985), and now it
is well understood that for any € > 0 the partitioning algorithm produces a path in
time O (nlogn) that has length that is asymptotically almost surely within a factor
of 1 + € of the length of the optimal path.

Arora (1998) subsequently discovered a polynomial time algorithm that will
determine a (1 + €)-optimal path for any set of n points in Euclidean space, and,
while the Arora algorithm is of great theoretical interest, the degree of the poly-
nomial time bound depends on 1/€ in a way that limits its practicality. On the
other hand, Karp’s partitioning algorithm is immanently practical, and it has been
widely used, especially in vehicle routing problems [see, e.g., Bertsimas, Jaillet
and Odoni (1990), Bertsimas and van Ryzin (1993), Pavone et al. (2007)].

Still, at the core of Karp’s partitioning algorithm is the assumption that the prob-
lem instance X;,X>,..., X, can be viewed as a sequence of independent and
identically distributed points in R?. While this assumption is feasible in some cir-
cumstances, there are certainly many more real-world problems where one would
want to accommodate dependent sequences. In addition to the direct benefits, any
time one establishes an analog of the BHH theorem for dependent sequences, one
simultaneously robustifies a substantial body of algorithmic work.

Some extensions of the BHH theorem are easily done. For example, one can
quickly confirm that the analog of the BHH theorem is valid for an infinite se-
quence Yi, Y2, ... of exchangeable random variables with compact support. To
see why this is so, one can appeal to the full theorem of Beardwood, Halton and
Hammersley (1959) which asserts that for a sequence X1, X, ... of independent,
identically distributed random variables with values in a compact subset of R¢ one

has the almost sure limit n
(5 nl_i,f%‘o n~ @D (X, Xy, ..., Xy) = ¢ N £ (x)@-D/d gy

where f is the density of the absolutely continuous part of the distribution of X
and 0 < ¢4 < ®@ is a constant that depends only on the dimension d = 2. Now,
given an infinite sequences Y, Y2, ... of exchangeable random variables with val-
ues with compact support in RY, the de Finetti representation theorem and the
limit (5) tell us that there is a random variable 0 = C(w) < %@ such that

nl_i{go n~(d- 1)/dL(Yl,Yz, ey Yn)=C almost surely.
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This particular extension of the BHH theorem is just a simple corollary of the orig-
inal BHH theorem. Later, in Proposition 8 of Section 3, we give another extension
of the BHH theorem to what we call locally uniform processes. This extension
requires some delicate preparation.

There are also more wide-ranging possibilities. If one views the BHH theorem
as a reflection of the evenness of the asymptotic placement of the observations,
then there is a much different way to seek to generalize the BHH theorem. One
can even obtain analogs of the BHH theorem for certain nonrandom sequences.
These results are rather crude, but in some contexts, such as VLSI planning, these
analogs may be more relevant than the traditional BHH theorem.

Here, one considers the sequence of points x1,X2,...,X, in [0, 1]2 for which
one has strong control of the rectangle discrepancy that is defined b

f
1 B

@
®
&

Dp= D(x1,X2,...,Xp) = SUp i
QeQ '

1o(xt) - MQ)
1

i=

where Q is the set of all axis-aligned rectangles Q < [0, 1]2, 1g(x) is the indi-
cator function that equals one if x € Q, and A(Q) is the Lebesgue measure of Q.
Inequalities of Steele (1980), more recently refined by Steinerberger (2010), then
suffice to show that if one has

B 8

6) nDy=o0n asn— o foralld&€(0,1),

then one also has the pointwise limit
logL(x1,x2,...,Xp) 1

7 li = —.
M no logn 2

The leading example of such a sequence is x, = (n¢; mod 1,n¢, mod 1) where
¢ and ¢, are algebraic irrationals that are linearly independent over the rational
numbers. A deep theorem of Schmidt (1964) tells us that the discrepancy of this
sequence satisfies the remarkable estimate nD, = O ((log n)3*Y) for all y >0,
and this is more than one needs for the discrepancy criterion (6).

In contrast, for an independent uniformly distributed sequence on [0, 1]2, one
only has nD, = Op(n'/?2), and this is vastly weaker than the discrepancy condi-
tion (6). Moreover, even when one does have (6), the conclusion (7) falls a long
distance from what the BHH theorem gives us.

The point of this review is that there are good reasons to want a theorem of BHH
type for dependent sequences. Some spotty progress has been made; nevertheless,
we are still far away from being able to give a simple, easily checked, criterion
for a dependent compactly supported sequence to satisfy a limit that parallels the
BHH theorem.

In the theory of the law of large numbers, there are two natural bookends. On
one side, one has the Kolmogorov law of large numbers for independent identically
distributed random variables with a finite mean, and on the other side one has the
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Birkhoff ergodic theorem. The BHH theorem initiates a strong law theory for the
traveling salesman functional, and, in the fullness of time, there will surely be
analogs of that theorem for various classes of dependent random variables. The
perfect bookend for the theory would be a theorem that asserts that stationarity,
uniformity and ergodicity suffice. Theorems 1 and 2 show that the limit theory of
the TSP cannot be bookended so nicely.

Observations on the proofs and methods. The main idea of the proof of Theo-
rem 2 is that one can construct a stationary process such that, along a subsequence
of T; < T3 < - - of successive (and ever larger) times, the ensemble of observations
up to time T; will alternately either look very much like an independent uniformly
distributed sample or else look like a sample that has far too many “twin cities,”
that is, pairs of points that are excessively close together on a scale that depends
on T; . To make this idea precise, we use a sequence of parameterized transforma-
tion of stationary processes where each transformation adds a new epoch with too
many twin cities—at an appropriate scale. Finally, we show that one can build a
single stationary process with infinitely many such epochs.

This limit process provides the desired example of a stationary, uniform process
for which the minimal length paths have expectations that behave much differently
from those of Beardwood, Halton and Hammersley. The ergodic process required
by Theorem 1 is then obtained by an extreme point argument that uses Choquet’s
representation of a stationary measure with uniform marginals as a mixture of
stationary ergodic measures with uniform marginals.

Finally, there are a two housekeeping observations. First, the classical BHH
theorem (5) requires the distribution of the observations to have support in a com-
pact set, so the difference between the length of the shortest path and the length
of shortest tour through X;, X,,..., X, is bounded by a constant that does not
depend on n. Consequently, in a limit theorem such as Theorem 1 the distinction
between tours and paths is immaterial. For specificity, all of the analyses done here
are for the shortest path functional.

Also, in Section 2, we further note that it is immaterial here whether one takes
the square [0, 1]? with its natural metric, or if one takes the metric on [0, 1]? to
be the metric of the flat torus T that is obtained from the unit square with the
natural identification of the opposing boundary edges. Theorems 1 and 2 are stated
above for the traditional Euclidean metric, but as we later make explicit, most of
our analysis will be done with respect to the torus metric.

2. Two transformations of a stationary sequence: The He N and Te N
transformations. Our construction depends on the iteration of procedures that
transform a given stationary process into another stationary process with additional
properties. For integers a < b, we denote by [a :b] the set{a,a + 1,...,b}, and,
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given a doubly infinite sequence of random variables X = (..., X_1,Xo,X1,...),
we define the [a : b] segment of X to be the subsequence

(8) X[a:b]=(xasxa+l,“-sxb)'
Now, given an integer p , we say that the process X is periodic in distribution with

period p if we have

X[a:a+ k]g X[b:b+ K] forallk = 0 and all b such thatb= a mod p.

This is certainly a weaker condition than stationarity, but, by an old randomization
trick, one can transform a process that is periodic in distribution to a closely re-
lated process that is stationary. We will eventually apply this construction infinitely
many times, so to fix ideas and notation, we first recall how it works in the simplest
setting.

LEMMA 3 (Passage from periodicity in distribution to stationarity). Ifthe R9-
valued doubly infinite sequence X = (..., RX_,Ro, R, .. ) is periodic in distribu-
tion with period p , and, if I is chosen independently and uniformly from [0 : p — 1],
then the doubly infinite sequence X = (... ,ﬁ_ 1, X0, ﬁl , ...) defined by setting

ﬁt = ﬁt+1 forallteZ
is a stationary process.
PROOF. Fix0s= j < @ and take Borel subsets Ag, Ay, ..., A; of Rd, By the
definition of X and by conditioning on I , one then has

P e Ao Riv1€Ay,... Ry eay)

B!
= 5 P(ﬁHiEAl,ﬁwHiEAZ,---,ﬁHjHEAj)
i=0
©)
1 8!
= 5 P(ﬂt+l+iEAI,ﬁt+2+iGAZ,---,ﬁt+l+j+iEAj)
i=0

= P(ﬂt+l GAO,ﬂt+2GAl,---,ﬂt+l+j EAJ),

where the periodicity in distribution of X is used to obtain (9). Specifically, by
periodicity in distribution, the last summand of (9) is equal to the first summand of
the preceding sum. This tells us that P(ﬁt €Ay, X1 EA,... ,ﬂHj € A;) does
not depend on t, and, since j is arbitrary, we see that X is stationary.

In the analysis of shortest paths in [0, 1]?, there are three useful distances
that one can consider. One has (a) the traditional Euclidean distance, (b) the
torus distance where one identifies opposite boundary edges and (c) the “Free-
on-Boundary” distance where the cost of travel along any boundary edge is taken
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to be zero. For the moment, we let the length of the shortest path through the points
X1, X2, ..., Xp under the Euclidean, torus and “Free-on-Boundary” distances be de-
noted by Lg (*), L1 (*) and Lg(*), respectively, and we note that one can show that

LB(XI,XL---,Xn)S LT(XI,XZ,---,Xn)
(10)
< Lg(x1,X2,...,X) < Lp(X1,X2,...,X,) + 4.

The first two inequalities are obvious, and the third is easy if one draws the right
picture. Specifically, given a path of minimal length under the “Free-on-Boundary”
distance, it may or may not connect with the boundary, but if it does connect with
the boundary then one can always choose a path of minimal “Free-on-Boundary”
length that never traverses any part of the boundary more than once. Consequently,
if instead of riding for free one were to pay the full Euclidean cost of this travel,
then the added cost of this boundary travel would be generously bounded by the
total length of the boundary, and consequently one has the last inequality of (10).
This argument of Redmond and Yukich (1994, 1996) has natural analogs in higher
dimensions and for other functionals; see Yukich [(1998), pages 12—17] for further
discussion and details. Incidently, one should also note that the torus model was
considered earlier in the analyses of the minimum spanning tree problem by Avram
and Bertsimas (1992) and Jaillet (1993).

An immediate implication of the bounds (10) is that if the asymptotic rela-
tion (2) holds for any one of the three choices for the distance on [0, 1]2, then
it holds for all three. Here, we will find it convenient to work with the torus dis-
tance, since this choice gives us a convenient additive group structure. In particular,
for X = (E,ED €T and 0 < € < 1, we can define the e-translation X(g) of X, by
setting

(11) X(g) = E(g + €) mod 1,13.

That is, we get X (&) by shifting X by € in just the first coordinate and the shift is
taken modulo 1.

We now consider a doubly infinite stationary process X = (...,X_1,Xp,
X1, ...) where each coordinate X; takes its value in the flat torus T . Given N €N,
we then define blocks By, k € Z, of length 2N by setting

Bk = XN, XkN+1,--+s Xk 1)N-1, XkN (€),
(12) i
Xin+1(8), .. s Xx+ )N-1(8)

where the translations X;(€) for t € [kN : (k+ 1)N — 1], are defined as in (11).
We write the doubly infinite concatenation of these blocks as

(...,B-2,B-1,B0,B1,B2,...),

and we note that this gives us a doubly infinite sequence of T -valued random
variables that we may also write as

X = (...,ﬂ_z,ﬁ_l,ﬂo,ﬁl,ﬂz,...).
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The process X = (ﬁt :t €Z) is called the hat process, the passage from X to X
is called a H¢ N transformation, and we write

(13) X = He n(X).

It is useful to note that the hat process X = (ﬂt :t € Z) is periodic in distribution
with period 2N, so one can use Lemma 3 to construct a closely related stationary
sequence X = (ﬂt :t € Z). Specifically, we set

ﬁt=ﬂt+1 foralltEZ,

where the random index I has the uniform distribution on [0 :2N — 1] and I is
independent of the sequence X . The complete passage from X to X is called a
Te N transformation, and it is denoted by

ﬁ = Ts,N(X)-

We will make repeated use of the two-step nature of this construction, and we
stress that the hat process X is more than an intermediate product. The properties
of the hat process X are the real guide to our constructions, and the stationary
process X is best viewed as a polished version of X

Properties of the T,  transformation. The process X that one obtains from
X by a Tg N transformation retains much of the structure of X . We begin with a
simple example.

LEMMA 4 (Preservation of uniform marginals). IfX = (X; :t € Z) is a dou-
bly infinite T -valued process such that X; has the uniform distribution on T for
eacht € Z and if

¥=TnX)=(R,:t€eZ) whereO<e< landN €N,
then ﬁt has the uniform distribution on T for eacht €Z.

PROOF. Here, it is immediate from the blocking and shifting steps of the He N
transformation that ﬁt has the uniform distribution on T for each t € Z. Also, by
construction, the distribution of ﬂt is then a mixture of uniform distributions, and
therefore ﬁt also has the uniform distributionon T. £

Given a doubly infinite sequence X = (...,X_-1,Xp,X1,...), the translation
of X is the process X (8) defined by setting

# ]

X©®= X(d:teZ,
where, as before, we have X; = (§,E3 € T and X;(8) = (& + 6,ED with the
addition in the first coordinate that is taken modulo one. We also say that X is

translation invariant if for each 8> 0 we have X 2 X (8). Next, we check that
translation invariance of a process X is preserved under any Te N transformation.
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LEMMA 5 (Preservation of translation invariance). If X is a doubly infinite,
translation invariant, T -valued process, then for each 0 < € < 1 and N € N, the
process X defined by

ﬁ = TE,N(X)

is also translation invariant.

PROOF. The crux of the matter is that a translation by & and an application of
the He N transformation are pointwise commutative. In symbols one has

B, B O i
(14) Henx X(8) = Hen(X) (9),

where on the left we translate X by 0 and then apply H¢ n, and on the right we
apply He N and then translate by &. A formal proof of this identity only requires
one to unwrap the definition of H¢ \ and to use commutativity of addition.

Now, by our hypothesis, X is equal in distribution to X (8), and, since equality
in distribution is preserved by a He N transformation, we also have

f B £
(15) Hen(X) 2 HS,N%((E» = Hen(X) (9),

where in the second equality we used (14). When we shift the indices of two pro-
cesses that are equal in distribution by an independent shift I, the resulting pro-
cesses are again equal in distribution. Thus, when make the shift on each side
of (15) that is required by the definition of the T, N transformation, we have

8 £
R=TenX)2 Ten(X) (8) = X¥),

just as we needed. [

The process X that one obtains from a doubly infinite stationary sequence X
by a T n transformation is typically singular with respect to X . Nevertheless, on
a short segment the two processes are close in distribution. The next lemma makes
this precise.

LEMMA 6 (Closeness in distribution). Let X be a translation invariant doubly
infinite stationary sequence with values in the flat torus T . Foreach0 < € < 1 and
N € N, the process X defined by ¥ = T, n (X) satisfies

B BB 32
(16) EDﬁ[O:m]EA —PX[O:m]eA %,
for all Borel sets A € T™* ! and forallm= 0, 1,2, ....

PROOF. Recalling the two-step construction that takes one from X to X , We
first note that we can write ﬁ[O :m] in terms of the hat process X given by the
construction (13); specifically, we have

X[0:m]= ®[I:1I+ m],
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where the random variable I is independent of X and uniformly distributed on
{0,1,...,2N - 1}. Now we condition on the value i of I. For any i such that
[i:i+ m] € [0:N - 1], the definition of the hat process gives us the distributional
identity

a7 X[i:i+m]=X[i:i+m]2X[0:m],
where in the last step we used the stationarity of X . Similarly, for i such that
[i:i+ m] < [N :2N - 1], we have

X[i:i+m]=X[i-N:i-N+m]e€)= X[i-N:i- N+ m]
(18)
2 X[0:m],

where, in the next-to-last step, we use the translation invariance of X and in the
last step we again used the stationarity of X .
We now consider the “good set” of indices

G={ii0sisi+m<NorN=sisi+ m< 2N},

where the equalities (1 Eg and (18) hold, and we also consider the complementary
“bad set” of indices G“= [0 : 2N — 1]\ G. If we condition on I and use (17)
and (18), then we see that for our Borel set A € T ™+ ! one has

8 B B B B g B
PX[0:m]eA = 1 Pﬁ[l i+mleA + — ! PX[i:i+ m]eA
2Ni 2N1€Gm

- i a
_ AN -2 R meas L P%[l i+ m]eA .
2N 2NieG{g

which one can then write more nicely as

P%E[o:m] enl_ P%([O:m] e’ -EPEX[O:m] eA’

0
+— P%[l i+ m]eA .
2N . _

The last sum has only IGY = 2m terms, so we have the bounds
3 B § ]
_ 2 PR[0:mleA - PX[0:m]eA s -
N N
that complete the proof of the lemma.

3. Locally uniform processes and BHH in mean. Our inductive construc-
tion requires an extension of the Beardwood, Halton and Hammersley theorem to
a certain class of dependent processes that we call locally uniform processes. The
definition of these processes requires some notation.
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First, given any Borel set AC T and any set of indices J] € Z, we let

# B 8
N A, Y[J] = 1(; €A),
tel
so N(A,Y[J]) is the number of elements of Y[J] = (Y; :t €J) that fall in the
Borel set A. We also say that a subset Q € T is a subsquare of side length a if it
can be written as [x,x + o] x [y, y + a] where one makes the usual identifications
of the points in the flat torus. Finally, given any 0 < o < 1, we let Q(a) denote the
set of all subsquares of T that have side length less than or equal to a.
We further let

3 #
Us(A):lss<

denote an infinite sequence of independent random variables with the uniform dis-
tribution on the Borel set A € T ; in particular, S = {Us(A) : 1 < s < n} is a uni-
form random sample from A with cardinality IS| = n. Finally, if S and SPare two
random finite subsets of the Borel set A € T , we write

S dpp gt
to indicate that S and S%are equal in distribution as point processes.
DEFINITION 7 (Locally uniform processes). If 0 < a< 1 and M € N, we
say that a T -valued process Y = (Y; :t € Z) with uniform marginal distributions

is an (o, M) locally uniform process provided that it satisfies the two following
conditions:

(19) VARIANCE CONDITION. There is a constant C < © that depends only on
the distribution of Y such that for each pair of integers a < b and each Borel
set A€ Q € Q(a) we have

g B
Var N A,Y[a:b] =Clb-a+ 1l.

(20) LOCAL UNIFORMITY CONDITION. For each pair of integers a < b and each
Borel set A € Q € Q(a), there is a random set

B 3
Sc Y:Y;eAandt€e[a:b]
for which one has the cardinality bounds
8 B 3 B
N A,Y[a:b] —M=<ISI=sN A,Y[a:b],

and the distributional identity

g g
S® U, A) 1< 1Sl .
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Here, one should note that if a = 1 and M = 0, then a locally uniform process
is just a sequence of independent random variables with the uniform distribution
on the flat torus T . More generally, the parameter a quantifies the scale at which
an (a, M) locally uniform process looks almost like a sample of independent uni-
formly distributed random points, and the parameter M bounds the size of an ex-
ception set that can be discarded to achieve exact uniformity.

One should also note that in a locally uniform process Y = (Y; :t € Z) each Y;
has the uniform distribution on T, but Y is not required to be a stationary process.
This will be important to us later. The first observation is that despite the possible
lack of stationarity, one can still show that locally uniform processes satisfy a
relaxed version of the BHH theorem.

PROPOSITION 8 (BHH in mean for locally uniform processes). If the T -
valued process Y = (Y; :t € Z) is (a,M) locally uniform for some 0 < a < 1
and some M € N, then one has

& B
EL(Y;,Y,...,Y,) ~pBn’? asn—o o,
where 3 is the BHH constant in (2).

PROOF. For any integer k such that k™! < o we consider the natural decom-
position of the flat torus into k? subsquares Q;,i = 1,2, ...,k?,of side length k= .
We then introduce the sets

8 @
S(Qi,n)= Y :Y€Q;iandt €[l :n]

and we let L(S(Qj,n)) be the length of the shortest path through the points in
S(Qji,n). If we then stitch these k> optimal paths together by considering the sub-
squares Qj, 1 s i< k2, in plowman’s order—down one row then back the next,
then our stitching cost is less than 3k, but all we need from these considerations is
that there is a universal constant C; > 0 such that one has the pointwise bound,
B g i
(21) L(Y1,Y2,...,Yh) = Cik+ L S(Qj,n) .
i=1
More notably, one can also show that there is a universal constant Co > 0 for which
one has
i i
(22) -Cok + L S(Qi,n) =sL(Y1,Y2,...,Yy).
i=1
This bound is due to Redmond and Yukich (1994), and it may be proved by notic-
ing that the sum of the values L(S(Qj,n)) can be bounded by the length of the
optimum path through Y1, Y2, ..., Y, and the sum of lengths of the boundaries of
the individual squares Q;, 1 =i < k2. For the details concerning (22), including
analogous bounds for [0, 119, d = 2, one can consult Yukich (1998), Chapter 3.
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We now recall that
£ ® 3] ]
S(Qi,n)= Y%:%€Q;,t€[l:n] and N Q;,Y[1:n] = 1(%€Qi),
t=1

and we estimate the value of E[L(S(Qj,n))] asn — o,
By the (a, M) local uniformity of Y and (20), there is a set S, € S(Q;,n) such
that

§ B B i
23) N Q;,Y[1:n] - M= IS,l<N Q;,Y[1:n]
and

sn":""EUS(Qi)us s < |s,,|ﬂ.

From the cardinality bounds (23) and a crude path length comparison, we then
have

(24) E,(s,,) - LES(Qi,n) 23 2Mk~!.

Now, given the pointwise bounds (21), (22) and (24), the lemma will follow once
we show that

(25) EEL(S,,)E]- Bk~2nY?  asn—o oo,

If we now let EXj ) denote the expected length of the minimal path through an
independent uniform sample of size j in the unit square, then by scaling and by
conditioning on the cardinality of S, we have

En
EBL(SH)E= k1 )PE1$,,I - jﬂ.

j=0
The BHH relation (2) also tells us that we have [j ) = Bj /2 + o(j /?), so
] #) g ) )
EL(S,) =Bk' "ZPanI =j +on'?

j=0
(26) B

= Bk'lEanlllzﬂ+ oﬁgn”2 .

Now one just needs to estimate E[IS,|"/?]. Linearity of expectation and the fact
that each Y; is uniformly distributed on T then combine to give us

B2t

g B -2 g B -1,1/2
27) EN Q;,Y[1:n] =k2n and EN Qj,Y[l:n] "% =k 'n¥2

where the second bound comes from Jensen’s inequality. For any 0 < 6 < 1, the
variance condition (19) and Chebyshev’s inequality also give us

0 B B BB
PN Qi,Y[l:n] 26EN Q;,Y[1:n] = 1-0(l/n),
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so we have the lower bound

B 0 88 B
(28) 02 a2 1-0(1/n) < EN Qi, Y[l :n]@”2 )

By the inequalities (27) and (28), we see from the arbitrariness of 6 and the bound
(23) that we have

EEiSnI”2 ~ k™ 1nl/2 asn — ©

Finally, from (26) we see this gives us that E[L(S,;)] ~ Bk ?n"2 asn — o, so
by the observation preceding (25) the proof of the lemma is complete. £

4. Preservation of local uniformity. A key feature of local uniformity is that
it is preserved by a He N transformation. Before proving this fact, it is useful to
introduce some notation and to make a geometric observation. First, for any Borel
set AC T we consider two kinds of translations of A by an € > 0; these are given
by

: £ i f #
A= (x-¢g,y):(x,y)€EA and A*= (x+¢&,y):(x,y)€EA,

so the set ®A is equal to the set A translated to the left in T, and A°® is equal to the
set A shifted to the rightin T .

Next, we fix a Borel set A € T for which we have EANA = . We then consider
a sequence of independent random variables Yi, Ya, ..., Yy with the uniform dis-
tribution on *A U A and a sequence of independent random variables Ylm, Yzﬂ, cens YE
with the uniform distribution on A. In this situation, we then have an elementary
distributional identity of point processes,

i

] B B gpp B )
29) Y.:Y,€®A,t€e[l:n] "U Y :, €A,t€[]l:n] e Ytﬂ:te[l:n] ,

where one should note that in the first term of (29) we have used both a left shift
on A and a right shift on the set of points that fall into the shifted set *A. The
identity (29) provides an essential step in the proof of the next proposition.

PROPOSITION 9 (Local uniformity and He N transformations). If X is an
(a,M) locally uniform process with 0 < o < 1 and M € N and if one has
0< €< aand N < @ , then the process

R = Hyn(X)
is (&, M) locally uniform with
0< B< min{e,a— €} and M =M+ 4N.
PROOF. The definition of He N tells us that for each a < b we can write )@[a :
b] in the form

(30) X[a:b]= (L,Bg,Bm1,...,Br,R),
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where the lengths of the segments L and R are between 0 and 2N — 1 and where
each segment By, k € [B: r], is a “complete block™ of X that has the form

Br= XuNsXkN+1s--+5 Xkt )N-1, Xkn (€),
31) 8
XkN+1(8)5 ..o, Xk+ )N-1(8) -

Here, in the case that X[a : b] does not contain a complete block, we simply write
ﬁ[a :b] = (L,R) for any choices of L and R that satisfy the length constraints. In
this case, we (crudely) note that Ib— a + 1l < 4N.

If the set of complete blocks in the decomposition (30) is not empty, then we
can take

i ]
32) R0 P (Bg,Bas 1, ..., Br),

to be the maximal subsegment of )a[a : b] that contains only complete blocks. In
this case, we have

aP= min{2kN : 2kN = a} and b= max{2kN — 1:2kN - 1< b},

but we will not make use of these explicit formulas beyond noting that we have the
bounds 0< Ib— a + 11— [b%- al+ 11 < 4N.

For each k € [H: r], we let BE be the first half of the complete block By de-
scribed in (31); that is, we set

BE= (XkN > XkN 415+ 00 X(k+ 1)N=1)-

We then concatenate these half blocks to obtain a segment of the original X pro-
cess; specifically we obtain a segment of X that can be written as
xom . mf_Hoop
a:b" = BEE’BEIk-I""’Br .
Here, one should note that the length of the segment X [am: bﬁﬁ is exactly half
of the lenth of the sement )a[aﬂ: bq. We will use the correspondence between
[a:b],[a": bq ,and [a™; bﬂa throughout the remainder of this proof.
To confirm the local uniformity of X , we need to check the two conditions (19)
and (20). To check (19), we first fix a Borel set A € Q € Q(8), and we note that
our assumptions 0 < & < min{e, a — €} and 0 < € < a give us the relations

(33) tANA=D and *AUACQY foraQ%Q(u),

which are illustrated in Figure 1 on page 2156.

Next, we consider an integer pair a < b, and we assume for the moment that
ﬁ[a : b] contains at least one comé)lete block. By our decomposition (30) of )@[a :
b] we have 0= |Ib- a + 1l - Ib¥- al+ 1l < 4N, so there is a random variable
W(A, X[a :b]) such that 0 = W(A,X[a : b]) < 4N and

i B 0 8, 40 0O f
N A,X[a,b] =N A, X 208w A, ¥[a :b]

(34) B i3 3 B
- NEgeAUA,X LR R A, R[a:b],
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QI

‘Q Q

@ W

FIG. 1. Local uniformity and H  transformations. The figure illustrates the relations (33). The
size constraint on @8 guarantees the existence of a subsquare Q Bof side length a that contains both a
given Q € Q (&) and its left translate “Q . Similarly, the size constraint on € guarantees that Q and
€Q are disjoint, so the Borel sets A € Q and A € ®Q are also disjoint.

where in the second equality we just used the definition of X and the definition of
the set of indices [am: bﬁa
When we compute variances in (34), we get

00 0o 0. 0

Var N A, ®[a :b] s 2Var NEE°AUA,X B, il 2(4N)?
(35) ,

< 2ca>— ally 1E+ 30N2< Clb— a+ 11+ 32N2,

where in the second inequality we used the variance condition (19) for X and the
bounds 21bE- a4 11= b 2% 11< Ib-a+ 11. By (35), we see that X satisfies
the variance condition (19), and one can take €=C+32N2%asa generous choice
for the required constant. Finally, we note that in case )a[a : b] does not contain
a complete block, then we have Ib— a + 1l < 4N. In this case, it is trivial that
one has the variance condition (19) for )@[a : b] when one takes € for the required
constant.

To check the local uniformity condition (20) for X ,we fixa< b and A as
before so we continue to have the relations (33). In the case when )@[a : b] does
not contain a complete block, then Ib — a + 1l < 4N and we can simply take S
required by (20) to be the empty set. In this case, the conditions required by (20)
all hold trivially. Thus, without loss of generality, we assume that X[a : b] contains
at least one complete block.

By our hypothesis, we have condition (20) for the process X , and in this case
we can apply (20) to the Borel set A U A € Q € Q(a) and the interval [am: baa.
We are then guaranteed the existence of a set

B . B il
(36) Sc X,;:X,€®AUAandte am:b
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for which we have both the cardinality bounds

. A £ g
Eg°AUA,X am:bﬁfﬂ— M=< ISl < NE%AUA,X am:b

(37) N
and the distributional identity S F4 {Us(PAU A) : 1 = s < |ISI}. Now it only re-
mains to check that if we take

8= {SNEA¥ U{SNA}C A

then the set § will suffice to confirm that we have the local uniformity condition
(20) for .
First, we note from the inclusion (36) that we have

2] i 3 0 0 B 41
§c X, :X,€®Aandte am:bu X :X,€Aandte am:b

(38) B 3 M 0 B
— ﬂt:ﬁteAandte aﬂ:bg ﬂt:ﬁteAandte[a:b] ,

where for the middle equality we used the fact that )@[aﬂ: bq contains only com-
plete blocks and the fact that X [am: baa contains only the unshifted halves of the
same blocks. The last inclusion follows simply because a < al< bi< b,

Now, we already know from (29) that the point process 8 has the same distri-
bution as an independent sample of 18 points with the uniform distribution on A,
so to complete the proof of the lemma, we just need to check the double bound

(39) NEA,)@[a,b]@— M-4N < 18l < NBA,)@[a,b]m.

The upper bound follows from the last inclusion of (38). For the lower bound, we
start with the decomposition (34). The uniform bound W(A, )a[a :b]) = 4N and
the left inequality of (37) then give us

# £
N A,X[a,b] —-M-4N<ISI= 18|,
and this lower bound completes the check of (39). [

Proposition 9 takes us much closer to the proof of Theorems 1 and 2. In partic-
ular, it is now easy to show that T N also preserves local uniformity. We establish
this as a corollary to a slightly more general lemma.

LEMMA 10 (Independent random shift of index). LetY be an (a, M) locally
uniform process with 0 < oo < 1 and M € N. If the random variable I has the
uniform distribution on {0, 1,...,K — 1} and if I is independent of Y, then the
process YB= (Ytﬂ: t € Z) defined by setting

Y=Y,  forallteZ

is an (a, M + K) locally uniform process.



2158 A. ARLOTTO AND J. M. STEELE
PROOF. If b < a + K, then the result is trivial since one can simply take
S = @. On the other hand,ifa + K < bthen 0 < I < K, and we have
asa+l<a+K=sbsb+I<b+ K.
Thus, for any A € Q € Q(a) we have
# # # # # &
N A,Y[a+K:b] =N A,Y%a:b] s N A,Y[a:b+K],
and we can write
# # 3 # # 3
(40) N A, Yta:b] =N A,Y[a+K:b] + W A,YHa:b],

where W(A, Ya :b]) is a random variable such that 0 < W(A,Y%a :b]) < K.
Taking the variance in (40) then gives
00 il iz
Var N A,Y%a:b] s2VarN A,Y[a+ K :b] +2Var W A, Y%a :b]
# i
<2Clb-a-K+ 1l+2K?< 2C+2K? Ib-a+ 1l,

where in the second inequality we used the variance condition (19) for the process
Y together with the almost sure bound on W(A, Y] a b]). The last inequality
confirms the variance condition (19) for the process Y

To check the local uniformity condition (20) for YE we take integers a < b, and
we fix a Borel set A € Q € Q(a). By the (a, M) local uniformity of Y, we know
that thereisaset SSC{Y;: i €A andt €[a + K :b]} such that

& § i B
41) N A,Y[a+K:b] —~M<ISIsN A,Y[a+K :b]
dS®uU,(A):1ss<ISI).

We now ]USt need to check we have the local uniformity condition (20) for Y Oif
we take SP= S. With this choice, the bounds 0= 1 < K give us the inclusion

B
sfc Yt:YteAandte[a+K:b]
B B B g g 3
€ Yi:Yr€Aandte[a+1:b+1I] = Y :Y,€Aandte€[a:b] .

The set SPinherits the distributional requirement of (20) from S, so we only need
to check its cardinality requirements. From (40) and (41), we get the upper bound

%Ei ISl < NEA,Y[a +K :b]ﬂs NﬂA,YEta ib]ﬂ,

as well as the lower bound

B B B B
N A, Yfa:b] —K-MsN A,Y[a+ K :b] —MslSI:%EE;

so the cardinality requirements of the local uniformity condition (20) also hold.
&

A T N transformation is just a He n transformation followed by an index shift
by an independent random variable I that has the uniform distribution on the set
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of indices [0 : 2N — 1]. Proposition 9 and Lemma 10 tell us that each of these
actions preserves local uniformity. These observations give us the final lemma of
the section, where, for simplicity, we take a generous value for the size M of the
exception set.

LEMMA 11 (Local uniformity and T, x transformations). If X is an (a, M)
locally uniform process for some 0 < o< 1 and M € N, then for each0< €< a
and N < o the process

X = Te N (X),
is an (&, ﬂl) locally uniform process where

0< B < min{e,a— €} and M= M+ 6N.

5. Iterated T¢ n transformations and a limit process. We now consider the
construction of a process X * = (X;" :t € Z) that we obtain as a limit of iterated
Te N transformations. First, we fix a sequence of integers 1 < Ny < Ny < --- and
a sequence of real numbers that we write as 1 > €; > €,> ---> 0. Next, we let

X© = (X :t €Z) be the doubly infinite sequence of independent random vari-
ables with the uniform distribution on T , and we consider the infinite sequence of
stationary processes X (1), X X @) that one obtains by successive applica-

tions of appropriate Te N transformations:

N 8 B
XO=T, n XO,  XO=T, 5 XD,

(42) B .0
X® =Ty n, XO, ...

We now let T be the set of doubly infinite sequences x = (...,X-1,X0,X],...)
where x; € T foreacht €Z, and we view T® as a topological space with respect
to the product topology. By B(T * ) we denote the o-field of Borel sets of T , and
we let B(T [-mm]) denote the smallest sub-o-field of B(T ® ) such that each con-
tinuous function f : T® B> R of the form x B> f (Xxom, ..., X=1,X0,X15 ..., Xm)
is B(T [-m™m]) measurable. In less formal language, B(T [-™m]) js the subset of
elements of B(T ® ) that do not depend on x; for Itl > m.

Next, we take M to be the set of Borel probability measures on T* , and we
note that M is a complete metric space if one defines the distance Q(p, p% be-
tween the Borel measures p and uﬂby setting

I
43) QE}L, p.éy= T Z'msup(A) - ﬂA)Ez A eBrl-mm)

m=1

To show that the sequence X (), X @ X ®) .. converges in distribution to a pro-
cess X *, it suffices to show that if we define the measures 1, w2,...on B(T*)

by setting
g . i g B
(44) pj(A)=P XV eA foreachA€eB T%
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then the sequence pi, p2,... 1s a Cauchy sequence under the metric . Fortu-
nately, the Cauchy criterion can be verified under a mild condition on the defining
sequence of integers Ni,No, ...

LEMMA 12 (A condition for convergence). If the processes X (I, X2,
X ® ... are defined by the iterated T N transformations (42) and if

then the sequence of processes X (1, X2 X3 converges in distribution to
a stationary, translation invariant process X * = (..., X”* 1»XgsX{,...) such that
X1 has the uniform distributed on T .

PROOF. By the closeness inequality (16) and the definition (44) of p;, we
have forallm= 1,2,... that

2m
= .
Nj+l

The definition (43) of the metric @ and a simple summation then give us

g2 .
Supj (A) - ij(A)E:A eB Tl-mml

O(Mj,Hj+1) = Ni+1 ’
so, by the comg)leteness of the metric space (M , @), the sequence of processes
XM X®@ XG), .. converges in distribution to a process X *. By Lemmas 3, 4
and 5, we know that each of the processes X U is stationary and translation invari-
ant. Moreover, each of these processes has uniform marginal distributions. The
process X * inherits all of these properties through convergence in distribution.

3

6. Path lengths for the limit process. The next lemma expresses a kind
of Lipschitz property for the shortest path functional. Specifically, it bounds the
absolute difference in the expected value of L(Z) and L(ﬂ), where Z and 2
are arbitrary n-dimensional random vectors with values in T" and where for
(z1,22,...,20) € T", we write L(z1, 23, ..., zy) for the length of the shortest path
through the points z;,23, ..., z,.

The lemma is stated and proved for general Z and 2, but our typical choice will
beZ = X[0:n—- 1] and Z = X[0:n — 1]. We also recall that if B(T™) denotes
the set of all Borel subsets of T", then the total variation distance between Z and
B is given by

drv(Z,8) = sup(Z eA)- P& eA)E:A = BET“

We also recall that the function (z1,22, ...,z2) B> n~V2L(z1,22, ...,2,) is uni-
formly bounded; in fact, by early work of Few (1955), it is bounded by 3.
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LEMMA 13. For all random vectors Z and 2 with values in T® , we have

%EL(Z)E— EEHL(ﬂ) 3n2dry(Z, B).

PROOF. By the maximal coupling theorem [Lindvall (2002), Theorem 5.2]

there exists a probability space and a random pair (Zﬂ, ﬂ% such that ZP< Z , fod
and

Pﬂzﬂg ﬂ= drv(Z,B).
Now, if we set L, = max{L(z1,22,...,2y) 2 €T and t €[1 :n]}, then we have
L) LB BT %0 £ R
<Pz B :
< 3n"2dy(Z, B),

where in the last line we used the classic bound L < 3n"? from Few (1955). H

The immediate benefit of Lemma 13 is that it gives us a way to estimate the cost
of a minimal path through the points X, X7, ..., X/ _;.

LEMMA 14 (Shortest path differences in the limit). Forall0< j < % and all
n= 1,wehave

0a . B A [TE] g
(45) %LXU)[O:n—l] —ELX*[O:n—1]3n3’2 L
=1 Nj+k

PROOF. Using the shorthand X! *® = XG+®[0:n - 1] for all k €{0, 1,
2, ...}, one has by the triangle inequality that

(46) %EL%(S)— EEL%(,;S o &EL%(S“‘)— EELE%(,EJ‘”“‘I)
k=1

Lemma 13 then tells us that
i Be . s . _ 0
(47) 2 L%(énk) -E LE%(IEJ“" v TH, 3n”2dTvE%(§J +0) X G+k=DF

and Lemma 6 implies that
&

(48) dTvE%(,fj’Lk),Xéj’Lk_ g T
Nj+x

so using (47) and (48) in the sum (46) completes the proof of the lemma. [
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7. Parameter choices. To pass from the general iterative construction (42) to
the process required by Theorem 2, we need to make parameter choices that go
beyond those required by Lemma 12 on a sufficient condition for convergence.

First, we fix a sequence 1,12, ... of values in (0, 1) that decrease monotoni-
cally to zero as ] — @ ; these values just serve to provide us with a measure of
smallness of scale. We then inductively define the values N;j and €; through which
we finally define X * by the sequence (42) of transformations Tg; N; ,j = 1,2, ....
To begin the construction, we can take any €; € (0,1) and any integer N; = 2.
Subsequent values with j = 2 are determined by two rules:

(49) RULE 1. We choose an integer N; such that Nj > j 2Nj_1 and such that
88 . & f
%LXU"I)[O:n— 1] —[3n”25’r1in”2 foralln 2 j"le :
(50) RULE 2. We choose an g; € (0, €j - 1) such that
. 1/2
gj "N "= m;.

The first rule leans on the fact that each of the processes X M 1< J < ®,is
locally uniform so, from Proposition 8, we have that

A8 ..
n2EL X0-D[0:n-1] —B asn—

This guarantees the existence of the integer Nj required by (49), and once Nj is
determined, it is trivial to choose €; to satisfy the second rule.

8. Estimation of expected path lengths: Proof of Theorem 2. The jth
stage of the construction (42) takes a doubly infinite sequence X U~1 to an-
other doubly infinite sequence X U) by a T, x; transformation that we define in
two steps. Specifically, if I is a random variable with the uniform distribution on
{0,1,...,2N; — 1} that is independent of X (-1 then we have

. g . B
)EU_I)=Hsj,Nj X G-
We now claim that we have the bounds
2] = ) 8] 8 ‘-1)ﬂ )
L XU [0:2.|Nj—1]sL)@(J 0:2G + DN; - 1

and X9 =RU"D  foralltez.

t+1

(51) N .
sL X0 D0:G+ 1N -1 +2( + DN;j.

To check the first inequality, we recall that 0 < I < 2N;j — 1 so the set
W ﬂﬁ(.' - 1) . 0 : EH
= X; 0=st=s2( +1)N; -1

isasupersetof{ﬁgj_l) IstsI+2jN;-1}= {Xt(j) :0st<2jN; - 1}.

To check the second inequality of (51) takes more work. We first note that the
segment XG- D0:2G + 1)N; — 1] contains only complete blocks, so one also
has

W 5D .gc s < L R PR : 48
= x0°Y: G+DNj-1U X3 D@e):0stsG+DNj -1,
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and, to prove the second inequality of (51), we construct a suboptimal path through
the points of W.
To build this path, we just take an optimal path P through the set of points

X397V :0<t= (j+ 1)Nj - 1} and then for each t €[0 : (J + 1)NJ ~ 1] we
adjoin to P the loop that goes from X(J Y to its shifted twin Xt (eJ ) and back

to Xt(l D The suboptimal path has (j + 1)N; loops and each of these has length
2¢; , so the suboptimal path through W has a cost that is bounded by the last sum
in (51).

Now, when we take expectations in (51), the rules (49) and (50) give us

il
2jN;)"V2EL X9[0:2jN; - 1]

2] ] 2| @
< (B'*"f]j) 1+j'”2 2-1/2+28j j1/2+j-1/2 Nj1/2

B8 &

This bound together with (45) for n = 2j N; then gives us

+4T]j.

(2‘N. _1/2 EE * - 4 * o
iNj) Y2EL X'[0:2jNj - 1]
B

—128 10
2
=1 Nj+x

B
sB+m) 1+ + 4n; + 6j N;

<@+ )EE“_ j —1/2@2—1/2
where, in the second inequality, we estimate the sum using the strict inequality
j ?Nj < Nj+x which holds for all k= 1 and j = 2 by the first part of our first
parameter formation rule (49). This last displayed bound is more than one needs
to complete the proof of the first inequality (4) of Theorem 2.

The second inequality (4) of Theorem 2 is easier. If we take n = [ ~!N; Hin the
estimate (49) given by our first parameter rule, then we have

0_,. B, 88 . .8 08_, 8 MO
B-m= joIN; VEELXO-Vo:joINg -1 .

+ 4n; + 6/],

Now, if we use the bound (45) forn = {§ ~ le fland if we estimate the infinite sum
exactly as we did before, then we have

LT
[3—711-—6/jsﬂj‘1NJEE_”2 D51,

ELX* 7Ny -1,
and this bound more than one needs to complete the proof of second inequality (4)
of Theorem 2.

9. Theorem 2 implies Theorem 1. We now show that Theorem 1 follows
from Theorem 2 and Choquet’s representation theorem. To set this up, we first
consider the set U c M of Borel probability measures on T® that are shift invari-
ant and that have uniform marginals. Here, the shift transformation fl : T — T
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is defined by setting B (x); = x¢4+1 where x= (...,x-1,X0,X1,...)ET% ,and a
Borel measure v on T® is said to be shift invariant if v( ~1(A)) = v(A) for
each Borel set A € T . Finally, to say that a measure v on T> has uniform
marginals just means that for each Borel set A € T and for each fixed t € Z we
have v(A;) = A(A) when we set A; = {x : x; € A} and where A(A) denotes the
Lebesgue measure of the set AC T .

Under the product topology the space T® is compact, and under the topology
of weak convergence, the space M of probability measures on T* is metrizable,
locally convex and compact. The set UC M of shift invariant measures with uni-
form marginals is trivially convex, and U is a closed subset of M . Hence, under
the topology of weak convergence, the set U is also compact.

We now consider the process X * given by Theorem 2, and we define a measure
pwon T* by setting

8] #
(52) L(A)=P X*€A for each Borelset AC T% .

Stationarity of X * tells us that  is invariant under the shift transformation £ , and
since p inherits the uniform marginal property from X *, we have p € U.

Next, we denote the symmetric difference between the sets A and A E]by AEBA Eﬂ,
and we recall that a probability measure v on T* is ergodic if for any Borel
A € T®,one has

# 8
v ABEO !(A) =0 ifandonlyif v(A)=0orv(A)= 1.

Moreover, if we let U, denote the set of extreme points of the convex set U, then
it is a very pleasing fact that U is exactly equal to the set of ergodic measures in U
[cf. Simon (2011), Example 8.17, pages 129-131].

Choquet’s representation theorem [cf. Simon (2011), Theorem 10.7] now tells
us that there is a probability measure D, with support on U, C U such that

(53) w(A) = . v(A)Dy(dv)  foreachBorelAC T%.

In other words, any shift invariant probability measure on T® with uniform
marginal distributions is an average of ergodic, shift invariant probability mea-
sures on T* that have uniform marginal distributions. This representation will
lead us quickly to Theorem 1.

Foran x= (...,X-1,X0,X1,...) € T* we write the [1 : n]-segment of x with
the shorthand E%n = (x1,X2,...,Xn),and, for constants ¢; < ¢, we consider the set

Bler,co]= x€T™ :liminfn” Y21 ,(x,) = ¢ and ¢; < limsupn™ Y2L(x,) .
— 0 n—s
If w(B[cy,c2]) = 0 forall ¢; < ¢y, then n™ /2L(x,) converges with p-probability
one. Since this ratio is bounded, the dominated convergence theorem implies the
convergence of the expectations n™ !/ 2E”[L(xn)] = n~ V2E[L(X*[1 : n])], where
in the last equality we just used the definition (52) of p. By Theorem 2, we know
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that we do not have the convergence of these expectations, so there must be some
pair ¢; < ¢ for which we have 0 < w(B[cy,cz]). Finally, by the representation
(53) we have

#
0< pgﬁg[cl, 02]ﬂ= ! vﬁﬂ[cl,cz]ﬂDu(dv),
so there is some ergodic measure v € U, for which we have 0 < v(B[cy, ¢c;]).

The sets B[c1,c2] and B ~1(B[ci, c2]) are identical, so B[c1,cz] is an invariant
set for v, or any other measure. Since 0 < v(E[c;,c2]), the ergodicity of v € U,
gives us v(B[cy, cz]) = 1. Finally, if we take X to be the stationary process deter-
mined by the shift transformation £ and the ergodic measure v, then we have

(54) P(X €A)=v(A) foreachBorelset AC T".

By construction, the process X is stationary and ergodic, and X also inherits from
v the property of uniform marginal distributions. Finally, by (54) and the definition
of B[c1, c2], we see that X has all of the features required by Theorem 1.

REMARK 15. Here, instead of using Choquet’s theorem, one could consider
using the ergodic decomposition theorems of Krylov and Bogolioubov [cf. Dynkin
(1978) or Kallenberg (2002), Theorem 10.26, page 196], but since the usual state-
ments of these theorems to not immediately accommodate the restriction to mea-
sures with uniform marginal distributions, it is simpler to work directly with Cho-
quet’s theorem where no modifications are required.

For a full treatment of Choquet’s theorem, one can consult Phelps (2001) or
Simon (2011), but for the existence theorem in the metrizable case one can appeal
more easily to the short proof of Bonsall (1963) which uses little more than the
Hahn-Banach theorem and the Riesz representation theorem.

10. Extensions, refinements and problems. There are easily proved analogs
of Theorems 1 and 2 for many of the functionals of combinatorial optimization
for which one has the analog of the Beardwood—Halton—Hammersley theorem.
In particular, one can show that the analogs of Theorems 1 and 2 hold for the
minimal spanning tree (MST) problem studied in Steele (1988) and for the minimal
matching problem studied in Rhee (1993). In these cases, the construction of the
processes in Theorems 1 and 2 needs almost no alteration. The main issue is that
one needs to establish a proper analog of Proposition 8, but this is often easy.
Once an analog of Proposition 8 is in hand, one only needs to make few cosmetic
changes to the arguments of Section 8.

Still, there are interesting functionals for which it is not as clear how one can
adapt the proofs of Theorems 1 and 2. One engaging example is the sum of the edge
lengths of the Voronoi tessellation. In this case, the analog of the BHH theorem was
developed by Miles (1970) for Poisson sample sizes, and later by McGivney and
Yukich (1999) for fixed sample sizes (and with complete convergence). A second,
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much different example, is the length of the path that one obtains by running the
Karp-Held algorithm for the TSP. The expressly algorithmic nature of this func-
tional introduces several new twists, but, nevertheless, Goemans and Bertsimas
(1991) obtained the analog of the BHH theorem.

These two functionals are “less local” than the TSP, MST, or minimal matching
functionals; in particular, they are not as amenable to suboptimal patching bounds
such as those we used in Section 8. Nevertheless, these functionals are sufficiently
local to allow for analogs of the BHH theorem, so it seems probable that the natural
analogs of Theorems 1 and 2 would hold as well.

There are two further points worth noting. First, at the cost of using more com-
plicated versions of the transformations He N and T¢ N, one can replace the infi-
mum bound 2~ /2B of Theorem 2 with a smaller constant. Since the method of
Section 9 shows that any infimum bound less that B suffices to prove Theorem 1,
we did not pursue the issue of a minimal infimum bound.

Finally, it is feasible that the process (X" :t € Z) that was constructed for the
proof of Theorem 2 is itself ergodic—or even mixing. If this could be established,
then one would not need the Choquet’s integral representation argument of Sec-
tion 9. Unfortunately, it does not seem easy to prove that the process (X, :t € Z)
is ergodic, even though this may be somewhat intuitive.
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