The Mexico-China Sourcing Game: Teaching Global Dual Sourcing

Gad Allon, Jan A. Van Mieghem
Kellogg School of Management, Northwestern University, Evanston, Illinois 60208
{g-allon@kellogg.northwestern.edu, vanmieghem@kellogg.northwestern.edu}

We describe a three-hour class on global dual sourcing built around a game that demonstrates the challenges in making operational decisions, and transfers recent academic insights to the classroom. Student teams manage a firm with access to a responsive but expensive supply source (Mexico) and a cheap but remote source (China). Each team must determine a sourcing strategy to satisfy random demand that is revealed throughout the game. In each period, teams place orders to both sources and manage two assets: inventory and their bank account. The goal is to maximize each team’s value (final bank balance). During the debriefings, we analyze the policies used by different teams along both financial and operational metrics, present the optimal strategy, and summarize the experiential learning points.

Key words: dual sourcing; strategic sourcing; experiential learning; inventory management; total landed cost; simulation game

History: Received: July 24, 2009; accepted: March 1, 2010.

1. Introduction
In many retail settings, and business in general, firms can source goods from multiple suppliers. We investigate a typical choice between two suppliers: One is low cost but has long lead times whereas the other provides quick response but at higher cost. This classical problem is faced by many companies and most students understand its relevance. However, effective management of dual sourcing is surprisingly challenging and conveying its complexity through traditional means such as a case study or a lecture is difficult: Solving a dual-sourcing case requires analytic tools that are not readily available to students or instructors. A lecture on dual sourcing runs the risk that students may not appreciate the added level of complexity in day-to-day, as well as strategic, dual sourcing relative to single sourcing.

We have developed a sourcing game as an experiential learning tool that addresses the above shortcomings. In this game, students play the role of sourcing managers who must make strategic allocation decisions as well as place day-to-day orders to two suppliers. During this process, they experience the operational, financial and service related consequences of their decisions.

The sourcing game is designed with four pedagogical objectives in mind:

1. to develop intuition on possible sourcing strategies and to appreciate simple, robust policies to guide sourcing decisions;
2. to highlight the role of working capital estimation in the concept of total landed cost;
3. to appreciate the added complexity of managing a supply portfolio over single sourcing;
4. to understand the futility of guessing and overreacting to demand.

The game has been used with MBA and executive education students and although some knowledge of basic inventory models is useful, it is not necessary. In the remainder, we will describe sequentially the three-hour class we have taught in three parts: Part A introduces global sourcing and related theory, Part B describes the game, and Part C summarizes the debriefing phase as well as a discussion of recent academic research. We conclude this paper by summarizing student reactions and possible extensions.

2. Class Part A: Introduction to Global Sourcing
This section describes the first part of the class that introduces global sourcing and related theory (about 30 to 45 minutes of class time).

2.1. The Motivating Case
As preparation for the class, the students are asked to read the Mexico-China minicase in Van Mieghem (2008). The case describes a $10 billion high-tech U.S. manufacturer of wireless transmission components. The company was at a crossroads regarding its global
network; the case focuses on its two assembly plants, one in China and the other in Mexico. Although the Chinese facility enjoyed lower costs, ocean transportation made its order lead times 5 to 10 times longer than those from Mexico. With highly uncertain product demand—coefficients of variations of monthly demand for some products were as high as 1.25—sole sourcing was unattractive: Mexico was too expensive and China too unresponsive.

The firm had to decide how it could best utilize these two sources. At the strategic level, this amounts to properly allocating product demand to each source. Strategic allocation refers to the expected cumulative demand allocated to each source over the planning horizon. At the tactical level, the firm had to choose a dynamic ordering policy that implements that strategic allocation at lowest cost. In practice, specifying strategic allocations and ordering policies are key tasks of any sourcing strategy—be it global or domestic—because it affects costs and supplier management.

2.2. Discussion on Practice
To connect the game to real sourcing practices, and if students have prior experience with similar settings, we start with an open discussion covering two questions:

(1) What policies have you used in practice? This discussion typically reveals some of the following practices:

(a) The allocation of products to plants is based solely upon historic allocations (e.g., new products within a family are allocated to plants in the exact same fashion as existing products in that family regardless of supply and demand characteristics).

(b) The allocation of products to plants is based upon internal politics (e.g., “pet” production facilities get higher volume, lower complexity products to keep utilization high and cost structure low).

(c) The allocation of products to plants is based upon basic understanding of costs (e.g., China’s cost base is lower—thus source full requirements offshore).

(d) Product allocations follow a simple primary-secondary allocation (e.g., if primary location cannot fulfill demand—requirements cascade to the secondary location).

(e) Product-to-plant allocation decisions are rarely revisited or adjusted (e.g., allocation decision is a “life sentence”).

(2) What data or metrics are used to make sourcing decisions? This discussion follows the practices above and highlights the typical cost, lead times, and service risk metrics. The instructor then can ask the natural question: How can we combine these various components into a single metric? This brings us to the concept of total landed cost.

2.3. The Concept of Total Landed Cost (TLC)
To address the motivating case, the natural first step is to compare the two extreme solutions: single sourcing from Mexico versus single sourcing from China. This requires accounting for the difference in cost of goods sold (COGS), shipping costs, duties, and working-capital requirements. For that purpose we review the concept of total landed cost (TLC), which represents the end-to-end cost to transform inputs at the source to outputs at destination. The TLC captures not only the traditional cost of goods sold but also accounts for supply chain costs such as transportation, customs, duties, and taxes, as well as required working capital carrying costs to achieve desired service levels and protect against supply and demand risks (see Figure 1).

We will refer to all but working capital cost components as the sourcing cost. Computing the sourcing cost is tedious yet straightforward. In contrast, working capital is driven by pipeline and safety inventory, which depend on lead times, volatility, and service levels.

2.4. Computing TLC for Single Sourcing
Working capital and inventory requirements are easily estimated for single sourcing using readily available standard inventory formulae. Before moving to dual sourcing and to the game, we remind the students of the concept of safety stock and compute the total landed cost for each of the locations separately. This computation reveals that single sourcing from China appears to be the favorite solution.

Asking the students’ reaction to this analysis generates a discussion of the merits of sourcing from Mexico and of the expected benefits of dual sourcing in a quest to combine the strengths of both sources. This also leads to a discussion on the risk of using a single source. We usually discuss two types of supply risks: stochastic lead times and supply disruptions (such as natural disasters strikes.) This naturally leads to the question of how to design an effective dual-sourcing policy, which is the transition point to the game.

1 It should be noted that working capital includes the pipeline inventory as well as the safety stock. The pipeline inventory depends on the transformation process, which takes place between the moment of ordering and the moment of receipt of the order. If part of the lead time is caused by inflexibility in production because of set-up times, then there is no per se investment in material during the lead-time period. Thus, in order to accurately assess the working capital requirements one needs to know the precise timing of material inflow to build a sequence of cash flows over time.
3. Class Part B: The Mexico-China Sourcing Game

This section covers the main part of the class by describing the different stages of the game (about 1 to 1.5 hours of class time).

3.1. Game Setup (Mostly Done in Advance of Class)

The idea behind the game is for students to act as sourcing managers of a firm making periodic ordering decisions for a new product. Demand is highly uncertain and a probabilistic forecast is provided.

Setting: A class with as few as 5 or as many as 60 students is divided into 5 to 10 groups.

Props: Each student group needs (at least) one laptop computer. Each group receives a log-in code for the website hosting the game. The instructor needs a laptop that is connected to the Internet and to a classroom screen projector.

Setup: Similar to the Mexico-China minicase, each team represents an identical company that is introducing a new product that can be sourced from China or Mexico. Each team manages two assets: cash and inventory.

The demand distribution for the product is known and shown to all groups in advance. (The specific distribution that we have used is gamma with mean 10 and standard deviation 15, reflecting a highly volatile demand.) The actual demand realization is identical for all groups and projected onto the classroom screen dynamically over time (see Figure 2).

Each team can place an order to Mexico and an order to China in each period; sources differ in cost and in lead times. Specifically, orders placed to Mexico have a sourcing cost of $8,000 per unit and arrive at the beginning of the subsequent period. Orders placed to China have a sourcing cost of $7,000 per unit but arrive only after four time periods. The product is launched in the fourth period, allowing the groups to build pipeline inventory from both sources before sales start. The product sells for $10,000 per unit. The starting version of the game assumes that any unit demanded but not available on hand is backlogged for a cost of $20 thousand per unit and each team plays in a separate yet identical market.

All teams start with zero money in the bank and can borrow to finance inventory. Any bank balance (both negative and positive) incurs a 1% interest rate per period. All team bank balances are projected on the classroom screen continuously (which allows teams to compare their position to other teams and creates a sense of competition and excitement). Any leftover inventory at the end of the game is liquidated at zero value (although the instructor can easily change the salvage value).

The objective for the teams is to maximize their firm value, which is their bank balance, at the end of the game. The termination time of the game is determined by the instructor but is not told to students in advance to prevent end-of-horizon effects.

3.2. Kickoff and Brainstorming (Between 15 and 30 Minutes of Class Time)

The goal of this stage is to allow each group to develop a sourcing strategy. Each group is given an Excel spreadsheet that allows students to simulate and test their strategies. Specifically, the spreadsheet shows how the pipeline inventory, sales, and bank balance evolve given user-entered orders and demand.

Groups are asked to think through how they would react (in terms of placing orders), given a new demand realization and a certain inventory status. To steer their thinking, each group is also asked to estimate the fraction of orders they will place to China and to Mexico and hand this in to the instructor.

2 For access to the game, please contact the authors.
3.3. Playing the Dual-Sourcing Game (Between 45 to 60 Minutes of Class Time)
The game starts with a four-period prelaunch stage during which students can fill their pipeline before sales start. Demand and sales start following the prelaunch stage. During each period, all groups are informed simultaneously of the same period demand as shown in Figure 2. (Showing all students the same demand stream creates a positive class atmosphere, manifested by students shouting “YES!” or “Oh Jeez” etc., where all students together experience the game.)

In each period, the following typical inventory actions take place:
(1) Teams observe the period demand (which is zero during prelaunch).
(2) Sales are determined automatically as the minimum of period demand and on-hand inventory (see Figure 3 for a screenshot of the team’s Web browser interface).
(3) Previous orders are received automatically.
(4) Teams place orders to the two sources.
(5) Each team’s pipeline inventory status and its bank balance are updated automatically for the next period.

The instructor terminates the game at a time of his or her choosing. (We have typically played 30 to 35 periods, for about 50–60 minutes.) It is critical not to inform students of the termination period in advance to prevent end-of-horizon effects.

4. Class Part C: Debrief and Connection to Recent Research
This section describes the last part of the class during which we debrief the game insights, discuss recent
academic research, and summarize takeaways (about 30 minutes of class time).

4.1. Debriefing the Game
After ending the game, the instructor asks different groups (including the winning team, the runner-up, and a low performer) for their sourcing strategy. Teams are encouraged to share their thoughts and experiences on the benefits of their strategy and what they would do differently next time.

During that discussion, every argument is validated against metrics compiled during the game. The instructor shows a dashboard (Figure 4) that summarizes the performance of each team along financial and operational metrics:

1. Financial metrics include the value of each team’s firm (bank values at the end of the game), costs (total number of units sourced), and revenues (the cumulative number of units sold).

2. Operational metrics include each team’s actual strategic allocation (fraction of total units sourced from each location), average on-hand inventory, and service level measured by the fill rate (total number of units sold divided by the total demand).

We are also able to show the actual orders placed over time from each source for each group.

The discussion leads to the observation that different teams may perform equally well financially and employ different strategies. The groups usually differ with respect to average on-hand inventory as well as the fraction of units sourced to China versus Mexico. The common thread for all successful groups is the ability to execute the strategy and not change it in the face of lower (or higher) than expected demand or inventories. Determining the features of a good dual-sourcing policy and the guidelines provided by academic theory are the focus of the next topic.

4.2. Recent Academic Research: TBS and Dual Index Policies
The objectives of the game include answering the following two questions: (1) What features do effective dual-sourcing policies share? and (2) how can we determine near-optimal policies and average sourcing allocation?

Effective dual-sourcing policies take into account not only the on-hand inventory and the current demand but also the entire pipeline status, as well as the entire demand forecast. Research has shown that the structure of the optimal policy is very complex. Therefore, the dual-sourcing literature has traditionally focused on determining sophisticated dynamic policies that approach optimal performance. Typically, these policies are characterized by one or two target inventory levels (base-stock levels) and keep track of one or two inventory positions (indices). For example, Veeraraghavan and Scheller-Wolf (2006) show that a dual-index policy with two target levels performs close to optimally, which represents state-of-the-art dual-sourcing research.

Unfortunately, determining the target levels of sophisticated policies such as the dual-index policy requires sophisticated computational work (optimization via simulation). In addition, under these policies, the associated strategic sourcing allocation can be determined only through simulation. For a strategic sourcing manager, it would be desirable to have a simple policy with simple guidelines that determine the strategic allocation during the planning phase without significantly compromising performance.

Recently, Allon and Van Mieghem (2010) have presented such a policy that is used in practice: the tailored base-surge (TBS) policy. Under this policy, a constant (standing) order is placed to the low-cost supplier in each period. The responsive source is used only to bring the total inventory (on-hand + pipeline)
to a single target level. The TBS policy thus echoes a fundamental tenet in strategy: it aligns the ordering patterns with the core competencies of the suppliers (Figure 5). The constant base allocation allows China to focus on cost efficiency whereas Mexico’s quick response is utilized only dynamically to guarantee high service.

Besides its simplicity, the TBS policy directly determines the strategic allocation, which equals the standing order divided by the average demand. Janssen and de Kok (1999) study a similar policy to the TBS and show using numerical study that a firm should allocate close to 90% of its demand to the cheaper supplier is high when $\Delta c = $ large, which arises with stable or high-volume products (in the maturity phase of the product life cycle) and requires stable (level) production in China. This factor also shows how the sourcing allocation should change as a product moves through its product life cycle.

Students are asked to compute the strategic allocation using the square-root formula for the parameters of the game, which is easy:

$$h = \text{about } $7,000/\text{period}$,

$$\Delta c = $1,000$,

$$\text{COV}_D = 1.5,$$

so that the near-optimal base allocation is approximately $1 - \sqrt{0.07/2} \approx 1 - 0.28 = 0.72$.

(As a homework assignment, the instructor can ask for a similar computation for each of the different SKUs in the minicase.)

In the class we also compare the performance of different classical policies for a finite horizon problem, similar to the game. Table 1 compares the profits of four strategies: single sourcing from Mexico, single sourcing from China, the tailored base-surge policy, and a dual base-stock policy. For each policy, we have optimized via simulation over the policy parameters. For single-sourcing policies we computed the optimal base-stock policy. For the tailored base-surge policy we used the formula given in class, and for the dual base-stock policy we used, again, simulation-based optimization to compute the optimal threshold levels. For each policy we present both the value a firm would have obtained using that specific policy and the specific demand sample path played in the game, as well as the expected value corresponding to the demand distribution.

We also compare these policies with the case in which the firm has perfect demand information. With perfect demand foresight, the optimal policy is simple: order the exact demand quantities four periods early from China. The comparison with perfect information highlights the dramatic cost of uncertainty.

As one may expect, the dual base-stock policy outperforms the other policies, in expectation. However, on the specific sample path played in the game, the TBS generates a higher profit. It is important to note

3 Specifically, σ^2 is the sum of the squared coefficients of variation of the interdemand times and the China supply times.

(3) the supply-demand volatility σ is small. This arises with stable or high-volume products (in the maturity phase of the product life cycle) and requires stable (level) production in China. This factor also shows how the sourcing allocation should change as a product moves through its product life cycle.

In the class we also compare the performance of different classical policies for a finite horizon problem, similar to the game. Table 1 compares the profits of four strategies: single sourcing from Mexico, single sourcing from China, the tailored base-surge policy, and a dual base-stock policy. For each policy, we have optimized via simulation over the policy parameters. For single-sourcing policies we computed the optimal base-stock policy. For the tailored base-surge policy we used the formula given in class, and for the dual base-stock policy we used, again, simulation-based optimization to compute the optimal threshold levels. For each policy we present both the value a firm would have obtained using that specific policy and the specific demand sample path played in the game, as well as the expected value corresponding to the demand distribution.

We also compare these policies with the case in which the firm has perfect demand information. With perfect demand foresight, the optimal policy is simple: order the exact demand quantities four periods early from China. The comparison with perfect information highlights the dramatic cost of uncertainty.

As one may expect, the dual base-stock policy outperforms the other policies, in expectation. However, on the specific sample path played in the game, the TBS generates a higher profit. It is important to note

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Optimal target inventory levels</th>
<th>Actual value</th>
<th>Expected value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single source Mexico</td>
<td>23</td>
<td>557</td>
<td>422</td>
</tr>
<tr>
<td>Single source China</td>
<td>48</td>
<td>423</td>
<td>569</td>
</tr>
<tr>
<td>Tailored base-surge to China = 5</td>
<td>18, standing order</td>
<td>616</td>
<td>547</td>
</tr>
<tr>
<td>Dual base-stock</td>
<td>10, 45</td>
<td>514</td>
<td>586</td>
</tr>
<tr>
<td>Perfect information + single source</td>
<td>Order exact demand</td>
<td>2,321</td>
<td>1,878</td>
</tr>
<tr>
<td>source China</td>
<td>four periods earlier from China</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
that, in expectation, single sourcing from China in this game would result in higher profits than the TBS policy. However, our analytic model of the TBS does not capture dynamic control from China, because it essentially assumes the lead times are too long to allow for closed-loop control. Therefore, a single-sourcing policy that does allow for dynamic control may do better than the TBS policy. (Also note that the significant differences between the expected value of a policy and the profit under the specific realization of demand are attributable to the high volatility of demand.)

5. Summary and Extensions

This section describes how we conclude the class and summarizes the contributions of the game and possible extensions, as well as student reactions.

5.1. Summarizing Key Takeaways of the Game

Dual sourcing is a surprisingly complex management problem with potentially high rewards. The first step in determining an effective dual-sourcing policy is to consider its entire source-to-destination cost. Although it is straightforward (yet tedious) to compute most components of this total landed cost, the impact on inventory and thus working capital is important yet difficult to assess under dual sourcing.

Effective dual sourcing uses suppliers with very different strengths. In this game, we combined a low-cost (but slow) supplier with a fast (but expensive) source. Effective dual-sourcing policies are also tailored to the strengths of each source. The tailored base-surge policy has a standing order with the low cost supplier (allowing that supplier to level the workload and reduce costs further) and orders from the fast source only to react to demand surges. Such a policy allows the firm to reduce total cost by placing the majority of orders to the low-cost supplier while guaranteeing high service levels by placing occasional, small orders from the responsive, yet expensive supplier.

Although determining optimal dual-sourcing policies is computationally complex (and requires simulation), it is valuable—and often sufficient in practice—to have some guiding formulae to support dual-sourcing decisions. The square-root formula provides a simple starting point when determining strategic sourcing allocations.

Successful dual sourcing often requires having a strategy and sticking to it. Having a suboptimal policy is typically worse than continuously changing the decision process. For example, a strategy should allow the manager to react to high demands by increasing orders; however, reducing the target inventory level (base-stock) when observing a few low-demand periods usually leads to low performance.

The game also provides a background to illustrate the benefits that companies have experienced after transitioning from sole to dual sourcing:

- Significant air freight reduction—by moving to dual sourcing some companies have seen 70% + reductions in air freight.
- Faster response to changes in demand, as opposed to missing demand. Under single sourcing from a low cost source, by the time a demand change was recognized, it was too late in the season to respond.
- Improved ability to manage new product introductions. When products were sole sourced from an offshore low-cost supplier, six to nine months of products were in the pipeline before the company recognized poor sell-through, which left them with significant obsolete inventory.

5.2. Possible Customizations and Extensions of the Game

The game can easily be extended along several dimensions, in order of suggested importance and ease of implementation:

Customization: The game software currently allows the instructor to change the names and locations of the sources. For example, the fast source can be domestic and two locations could be France and Poland. The instructor can also modify the demand realization and any other parameters.

Operational extensions: Changing the backlogging assumption in the game and allowing for lost sales is a straightforward modification to the game. So is adding a physical holding cost to the current financial opportunity cost or a fixed ordering cost. In addition, it is easy to modify the software and allow for stochastic lead times (but we found that this makes the game much harder to understand for students without offering any new insights).

Financial extensions: It is straightforward to have a higher interest rate for borrowing than saving. One can also introduce a default threat by adding a constraint on maximal borrowing.

Nonstationary parameters: For example, instead of assuming i.i.d. demand, the demand distribution could reflect the different stages of the product life cycle of introduction, growth, maturity, and decline. The same can be done with prices, costs, exchange rates, and interest rates.

Competitive market: For example, any demand unmet by one team spills over to the other teams. This adds another layer of complexity, even for a simple single-period, single-source model where one can choose different excess demand splitting rules; see Lippman and McCardle (1997).
Design-marketing-sales decisions: For example, teams can boost demand by spending money on marketing campaigns and sales incentives. This would necessarily imply that teams no longer observe a common demand. Another extension could be to include product and supply network design, similar to the Global Supply Chain Management Simulation of Enspire Learning. This simulation focuses on the design of the products and the supply network and allows the players to modify the sourcing allocation in a limited manner. In contrast, our game is simpler and focuses on managing an existing supply network in a dynamic setting.

Multiple items or multiple stages: Although we do not suggest this, one could extend to multiple products or to a multistage supply chain along the lines of the famous Beer Game. In essence, this would lead to a Beer Game with dual sourcing.

The game can also be used to conduct experiments to test research hypotheses. For example, teams may stick closer to their original plan and policy if they experience the game asynchronously or are not informed of other teams’ bank balances.

Although this shows how the game can be extended, we strongly advise to play the game in its current simple format because it allows students to map their decisions to subsequent results and thus enhances the learning from the game.

5.3. Instructor Experience So Far
So far, the authors have played the game in about 10 business school class settings: with full-time MBA students in an operations strategy elective, with faculty members at a research conference, and in several executive education courses. Next we will play it with our doctoral students. We believe the game would also work well with graduate, as well as advanced undergraduate, students in engineering.

The response has been uniformly positive. Executives appreciate the realism of the game and the complexity inherent in dual sourcing. After playing the game using only intuition, the class enhances their perceived value of the academic research and simple guideline formulae. Students often suggest that the game should be played with a cross-functional team, representing their marketing, sales, financial, and operational groups. Such experience would convey the importance of interfunctional coordination and collaborative forecasting.

From an instructor’s perspective, the game is easy to explain, has minimal requirements (it needs only a few laptops connected to the Internet), and is simple to set up. A single instructor can easily run the game with as few as five students or as many as 60 students without needing additional assistants or diminishing the effectiveness of the game. The game not only successfully achieves the pedagogical objectives, it also highlights the value of academic research for a realistic and important business problem.

Supplementary Material
Files that accompany this paper can be found and downloaded from http://ite.pubs.informs.org.

Acknowledgments
We are grateful to Cort Jacobi and Ruchir Nanda of Deloitte Consulting for ongoing collaboration and insightful discussions on dual sourcing.

References