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Abstract

The two primary approaches to estimate marginal willingness-to-pay (MWTP) are hedonic

(Rosen, 1974) and discrete choice models (McFadden, 1974). This paper provides a tractable

framework to investigate the relationship between MWTP in these models. By deriving the he-

donic price gradient implicitly from the share function in the discrete choice model, I present

an analytical mapping between the hedonic gradient (hence, the hedonic MWTP) and choice

probabilities in the discrete choice model. Intuitively, the hedonic MWTP depends on weighted

averages of marginal utilities where higher weights are assigned to individuals whose choice

probabilities indicate more uncertain choices (marginal individuals). As this choice becomes

more certain, the weights start to decrease. Since the hedonic method relies on tangencies be-

tween indifference curves and the hedonic price function to identify MWTP, inframarginal in-

dividuals (whose bid functions are not tangent to the hedonic price function) have low weights

(they have choice probabilities that are close to 0 or 1 and low choice variances). This novel

analytical mapping between the hedonic gradient and the share function can be used to identify

conditions when MWTP in the two models are similar. (JEL: C01, R21, J23)
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1 Introduction

The two primary approaches to estimate marginal willingness-to-pay (MWTP) are the hedonic

(Rosen, 1974) and discrete choice models (McFadden, 1974). While both approaches are used

widely in many fields,1 there is little formal analysis of the relationship between both models.

Moreover, some papers that use both approaches to estimate MWTP find different results but

it is hard to investigate why the estimates differ without a framework that directly relates both

models. For example, Banzhaf (2002) finds that the MWTP for the same change in air quality

varies between $8 (hedonic) to $18-$25 (discrete choice) using the same data.

This paper provides a tractable framework to investigate the relationship between MWTP in the

hedonic and discrete choice models. To fix ideas, I will focus on the housing context where both

approaches are used widely. To establish this relationship, I begin with a discrete choice model

of heterogeneous individuals choosing houses to maximize their utility. I use a standard utility

function with random coefficients and an idiosyncratic Logit error term. Houses are differentiated

by a vector of characteristics, including price. An equilibrium is characterized by a vector of

prices and an allocation of individuals to houses such that each individual has no incentive to

deviate. Notably, in the discrete choice framework, an equilibrium can be summarized by choice

probabilities using a share function that indicates the share of individuals in a market who choose

a house as a function of house characteristics and house prices.

The hedonic approach presents a dual way to characterize equilibria in markets with differenti-

ated choices using the hedonic price function.2 Rosen (1974) showed that an individual choosing

amongst differentiated houses maximizes his utility when his indifference curve is tangent to the

hedonic price function. This is the famous insight in Rosen (1974) that an individual’s MWTP

for a characteristic is equal to the gradient of the hedonic price function with respect to that char-

acteristic. Section 2 describes both approaches and highlights the hedonic price function and the
1See Bayer et al. (2007); Cellini et al. (2008); Chay and Greenstone (2004); Pakes (2003); Berry et al. (1995);

Bitzan and Wilson (2007); Wong (2013), to name a few examples in the fields of labor economics, local public
finance, environmental economics, industrial organization as well as urban and transportation economics.

2The hedonic price function maps characteristics of houses to equilibrium prices of houses.
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share function as key equilibrium objects of interest in the hedonic and discrete choice models,

respectively.

Section 3 investigates the relationship between the hedonic price function and the share function

and delivers three results. The first result is an analytical mapping that relates the gradient of

the hedonic price function to the share function in a discrete choice model. Given a discrete

choice model (as described in Section 2.1), the key insight is to derive the gradient of the hedonic

price function implicitly from the share function of this discrete choice model using the Implicit

Function Theorem. This relates the hedonic gradient (hence, MWTP in the hedonic model) with

choice probabilities and the share function in the discrete choice model.

The second result is that MWTP in the hedonic model can be expressed as a ratio of weighted

averages of individual marginal utilities. The weights are a function of choice probabilities in

the discrete choice model with higher weights corresponding to individuals with more uncertain

choices. This result relies on the assumption that the hedonic price function is only a function of

own-house characteristics. This is a common assumption in the empirical literature. For example,

in the housing literature, the hedonic price function is often estimated by regressing the price of

a house on the characteristics of that house (but not on the characteristics of other houses in the

market).

To interpret the economic intuition behind these probability weights, the key observation is that

the hedonic method relies on tangencies between the indifference curves and the hedonic price

function to identify MWTP using the hedonic gradient. However, with heterogeneous individuals,

only the marginal individuals’ indifference curves are tangent to the hedonic price function. The

indifference curves of inframarginal individuals are not necessarily tangent to the hedonic price

function.

To give an example that shows how to use probability weights to distinguish marginal and in-

framarginal individuals, consider an individual whose probability of choosing a house is one. I

find that the hedonic estimate of MWTP assigns no weight to this individual. This is because he
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chooses a house with certainty (he is inframarginal and his indifference curve is not tangent to

the hedonic price function). More generally, I find that the hedonic MWTP depends on a ratio of

weighted averages of marginal utilities where higher weights are assigned to individuals whose

choice probabilities indicate a higher degree of uncertainty regarding their choice (marginal indi-

viduals). As this choice becomes more certain (as the probability approaches 0 or 1), the weights

start to decrease.

The second result implies that we can use other moments from choice data (choice variance and

choice probability) to determine which individuals are marginal versus inframarginal. Since the

hedonic model assumes a continuum of houses, in principle, each individual is marginal because

he can always find a house where his indifference curve is tangent to the hedonic price function.

Therefore, the theory does not provide guidance on how to determine who is more likely to be a

marginal individual. The analytical relationship between the share function and the hedonic gradi-

ent provides a theoretical justification for using choice data to identify marginal individuals. This

complements the hedonic approach which typically only utilizes data on prices but not quantities.

Aside from this, the second result also provides a tractable way to identify conditions under which

MWTP from both models are identical. It shows clearly that MWTP in the hedonic model depends

on a ratio of (weighted) averages of marginal utilities whilst MWTP in the discrete choice model is

an average of ratios of marginal utilities. Generally, the ratio of averages will not equal the average

of ratios except in special cases (for example, when the ratios are constant).

This intuition delivers the third finding that the average MWTP for a characteristic is identical in

the two models if the MWTP for that characteristic is constant across individuals. The traditional

Logit model with no random coefficients satisfies this condition. This appears to be a special case

when ratios of marginal utilities (MWTP’s) are constant. With heterogeneous preferences for char-

acteristics (for example, with random coefficients utility), some individuals could be marginal and

others could be inframarginal. Only the slopes of the indifference curves of marginal individuals

are equal to the hedonic gradient. Therefore, the average MWTP in the hedonic model (which

gives higher weights to marginal individuals) diverges from the average MWTP in the discrete
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choice model (which estimates an average MWTP, averaged across marginal and inframarginal

individuals). In contrast, when MWTP for a characteristic is constant, the marginal individual and

the average individual have the same MWTP, so, average MWTP estimated in the two models are

the same.

While there are many empirical papers that use the hedonic and discrete choice methods to esti-

mate MWTP, there is a relatively small literature that directly compares estimates from both mod-

els. Cropper et al. (1993) and Mason and Quigley (1990) use simulated data to compare MWTP

estimates in hedonic and discrete choice models. Several papers allude to similarities and differ-

ences between both models (Ellickson, 1981; Epple, 1987; Ekeland et al., 2004; Bayer et al., 2007;

Bajari and Benkard, 2004). The innovation in this paper is to provide a tractable framework that

delivers an analytical relationship between the gradient of the hedonic price function and the share

function in the discrete choice model.

The remainder of the paper is organized as follows: I briefly describe the discrete choice and hedo-

nic models in Section 2. I derive the three results above in Section 3 and discuss their implications.

Finally, I conclude in Section 4.

2 Discrete choice and hedonic models

The goal is to provide an analytical mapping that relates MWTP in the hedonic model with MWTP

in the discrete choice model. The theoretical exercise starts with a discrete choice model as the

underlying data generating process and describes an equilibrium in this model. I use a standard

discrete choice model with functional form and distributional assumptions that are commonly used

in the empirical literature. Then, I describe how the same equilibrium can be characterized in the

hedonic model. This discussion highlights two equilibrium objects of interest: the share function

(in the discrete choice framework) and the hedonic price function (in the hedonic framework).

The next section derives an analytical mapping between the share function and the hedonic price

function.
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Throughout this paper, I take the supply side as given and focus mainly on describing consumer

preferences and the demand side. The results in this paper are derived holding the functional forms

and distributional assumptions described in Section 2.1 fixed. I discuss how my approach can be

generalized to other settings later.

2.1 Discrete choice model and the share function

There are t = 1, ...,T markets and each market has Jt differentiated houses. Individual i’s indirect

utility from choosing house j in market t is,

ui jt =V (x jt , p jt ;βi,yi)+ εi jt (1)

where yi is the income of individual i, p jt is the price of house j in market t, x jt is a K-dimensional

(row) vector of characteristics of house j. The numeraire good, yi− p jt , has a normalized price

of 1. Each individual i has heterogeneous taste parameters for house characteristics (βi drawn

from a cumulative distribution function, Fβ ) and a random taste parameter for house j (εi jt drawn

from Fε ). The model is closed with an outside good, j = 0. The utility from the outside good is

normalized to 0. Each market is independent from other markets. To simplify notation, I will drop

the market subscript from here.

The empirical literature makes two common assumptions for equation (1). First, V (x jt , p jt ;βi,yi) is

a random coefficients utility function. Second, ε is drawn from a Type I extreme value distribution.

For example, a common functional form is

ui j = βip(yi− p j)+ x jβi + εi j (2)

where βip is the marginal utility of income.3 In this discrete choice model, the MWTP of individual

i for characteristic k is
3This model assumes quasi-linear utility. One can also model piecewise income effects (Petrin, 2002) or Cobb-

Douglas utility functions (Berry et al., 1995). Some models also assume an unobserved quality term for house j, ξ j.
The key intuition will follow through with these modifications to the utility function.
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MWT PD
ik =

βik

βip
(3)

and the average MWTP for characteristic k is MWT PD
k =
´

βik
βip

dFβ . An individual chooses house

j that offers the highest utility. Let A j be the set of individuals who choose j:

A j =
{(

βi,βip,εi0,εi1, ...,εiJ|ui j ≥ uik,k = 0, ...,J
)}

(4)

The share of individuals in a market who choose house j (π j) is obtained from aggregating across

individuals in A j,

π j (x,p) =

ˆ
A j

dFβ dFε (5)

=

ˆ
exp(Vi j)

∑
j′=J
j′=0 exp

(
Vi j′
)dFβ ≡

ˆ
πi jdFβ

where the second row shows that the probability that i chooses j (πi j) is exp(Vi j)

∑
j′=J
j′=0 exp(Vi j′)

because the

ε ′s are drawn from a Type I extreme value distribution.

An equilibrium is characterized by a vector of prices for each house and an allocation of individuals

to houses so that no one has an incentive to deviate. The share function, π (.), can be used to

concisely summarize an equilibrium in the discrete choice model: each element (π∗j ) in the J-

dimensional vector (π∗) summarizes the share of individuals in a market who choose house j, as a

function of house characteristics and prices, evaluated at (x,p) in equilibrium.

2.2 Hedonic model and the hedonic price function

The hedonic model offers a dual way to describe an equilibrium in a housing market. Each market

has a continuum of houses. A house is differentiated along a bundle of characteristics, x. Individual

i takes the market price for houses, P(x), as given and chooses one unit of a house to maximize
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utility, ui, subject to the budget constraint, P(x)+numeraire≤ yi. The numeraire is normalized to

have a price of 1.

An equilibrium in the hedonic model is characterized by individuals who are maximizing utilities

given their budget constraints. Graphically, individual i’s taste for xk can be illustrated using bid

functions (indifference curves in P− xk space) with steeper bid functions representing stronger

taste (higher MWTP) for xk. Each individual chooses a house that corresponds to the bid function

that maximizes his utility. Under the first order conditions, optimality is achieved when the ratio of

the marginal utility for each characteristic, xk, and the marginal utility for the numeraire is equal to

the ratio of the marginal cost for xk and the marginal cost for the numeraire (normalized to 1). That

is, the MWTP for xk (marginal rate of substitution relative to the numeraire) equals the marginal

rate of transformation for xk. In the hedonic model, individual i′s MWTP for characteristic k is

MWT PH
ik =

∂ui/∂xk

∂ui/∂P
=

∂P
∂xk

(6)

Prices adjust so that each house is sold to the highest bidder and the marginal individual is just

indifferent between a marginal gain in utility from choosing an additional unit of xk and incurring

a marginal cost for it (relative to the numeraire). Equilibrium interactions in the market trace out a

price-characteristic (P−xk) locus that implicitly defines a market clearing, hedonic price function,

P(x). The hedonic price function is the upper envelop of bid functions. Importantly, equation (6)

delivers the famous insight from Rosen (1974) that the gradient of the hedonic price function (with

respect to xk) is equal to individual i′s MWTP for xk (the bid function for individual i is tangent to

the hedonic price function).

3 Results

This section builds on the discrete choice and hedonic models described in Section 2 to provide

a tractable framework to compare MWTP from both approaches. The analysis delivers the three

results below. The first result is an analytical mapping between the hedonic price gradient and the
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share function.

Result 1: In the discrete choice model described in Section 2.1, if an equilibrium exists that can

be represented by a hedonic price function as described in Section 2.2, then, the gradient of the

hedonic price function can be written as a function of choice probabilities using the share function

in the discrete choice model.

This result is an application of the Implicit Function Theorem (Theorem 15.7 in Simon and Blume

(1994)). Let π1, ...,πJ : RJ(K+1)→ R1 be C1 functions. Consider a system of J equations

π1(p1, ..., pJ,x11, ...,x1K, ...,x jk, ...,xJ1, ...,xJK) = π
∗
1

...

...

πJ(p1, ..., pJ,x11, ...,x1K, ...,x jk, ...,xJ1, ...,xJK) = π
∗
J (7)

as possibly defining p1, ..., pJ as implicit functions of x11, ...,xJK. The left hand side of each equa-

tion j is the share function for house j and the right hand side is the share of individuals in the

market choosing that house in equilibrium. Suppose that (p*, x*) is a solution of (7). If the deter-

minant of the JxJ matrix 
∂π1
∂ p1

· · · ∂π1
∂ pJ

... . . . ...

∂πJ
∂ p1

· · · ∂πJ
∂ pJ


evaluated at (p*, x*) is nonzero (ie. the matrix is invertible), then there exist C1 functions in

RJ(K+1)

P1(x11, ...,xJK) = p1

PJ(x11, ...,xJK) = pJ

(8)

defined on a ball B about x∗ such that
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π1(P1(x), ...,PJ(x),x11, ...,x1K, ...x jk, ...,xJ1, ...,xJK) = π
∗
1

...

πJ(P1(x), ...,PJ(x),x11, ...,x1K, ...x jk, ...,xJ1, ...,xJK) = π
∗
J (9)

for all x = (x11, ...,xJK) in B and the gradient of this implicit function is
∂P1/∂x jk

...

∂PJ/∂x jk

=−


∂π1
∂ p1

· · · ∂π1
∂ pJ

... . . . ...

∂πJ
∂ p1

· · · ∂πJ
∂ pJ


−1

∂π1/∂x jk

...

∂πJ/∂x jk

 (10)

Since ε is Type I extreme value and independent from Fβ , we know from (5) that π j =
´ exp(Vi j)

∑
j′=J
j′=0 exp(Vi j′)

dFβ .

The partial derivatives on the right hand side are:

∂π j
∂x jk

=


´ ∂Vi j

∂x jk
πi j(1−πi j)dFβ

´ ∂Vi j
∂x j′k

πi jπi j′dFβ j 6= j′
and ∂π j

∂Pj
=


´ ∂Vi j

∂Pj
πi j(1−πi j)dFβ

´ ∂Vi j
∂Pj′

πi jπi j′dFβ j 6= j′

Furthermore, if Vi j has random coefficients utility (2), then, ∂Vi j
∂x jk

=
∂Vi j
∂x j′k

= βik and ∂Vi j
∂Pj

=
∂Vi j
∂Pj′

= βip.

This result delivers an analytical relationship between the gradient of the hedonic price function

and the share function in the discrete choice model. The steps from (7) to (9) use the share function,

π(x, p), to implicitly define price as a function of x, P(x). Then, (10) relates the gradient of the

(implicitly defined) hedonic price function to changes in the share function. Locally around the

equilibrium point, (p*, x*), a small change in x jk will induce individuals’ choices to change which

in turn, leads to changes in market shares. Therefore, the hedonic (implicit) price of an additional

unit of x jk (∂P1/∂x jk, ...,∂PJ/∂x jk) should depend both on the impact of a small change in x jk on

market shares (∂π1/∂x jk) as well as the impact on market shares when prices change (∂π1/∂Pj).

The analytical relationship in (10) is useful because it represents a mapping between the gradient

of the hedonic price function (hence, MWTP in the hedonic model) and the share function in
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the discrete choice model. This mapping can be used to identify conditions under which MWTP

estimates in both approaches would be similar, which we turn to next.

Result 2: If the hedonic price function is a function of own-house characteristics only, then, MWTP

in the hedonic model can be written as a ratio of weighted averages of marginal utilities where the

weights depend on choice probabilities in the discrete choice model.

While the analytical relationship in (10) is useful, it is still hard to interpret because it is compli-

cated by the inverse of the JxJ matrix in (10). The second result shows that this relationship can be

simplified if the hedonic price function, P(x), is only a function of own-house characteristics, so

that ∂Pj
∂x j′k

= 0 for j 6= j′.4 This assumption reduces the dimensionality of the hedonic price function

from RJ(K+1) to R(K+1). It is a common assumption made in the empirical literature. For example,

in the housing literature, the hedonic price function is typically estimated by regressing the price of

a house on the characteristics of that house only (but rarely on the characteristics of other houses).

To derive the second result, differentiate each row j of (7) with respect to x jk,

∂π1

∂P1

∂P1

∂x1k
= − ∂π1

∂x1k

...

∂πJ

∂PJ

∂PJ

∂xJk
= − ∂πJ

∂xJk
(11)

where the additional terms on the left hand side of (11) are 0 because ∂Pj
∂x j′k

= 0. Therefore, we can

re-write (11) as

4Actually, what is needed is that the derivative evaluated at x∗ is 0, ∂Pj
∂x j′k
|xj=x∗j = 0. For example, if k represents the

square footage of a house, this assumption states that around the equilibrium point, the price of house j depends on its
square footage but the square footage of other houses will not affect the price of house j.
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
∂P1/∂x1k

...

∂PJ/∂x jk

 = −


∂π1/∂x1k
∂π1/∂P1

...
∂πJ/∂xJk
∂πJ/∂PJ

 (12)

where ∂π j
∂x jk

=
´

βikπi j(1−πi j)dFβ and ∂π j
∂Pj

=
´

βipπi j(1−πi j)dFβ .

Equation (12) says that the gradient of the hedonic price function can be written as a ratio of

weighted averages of marginal utilities (∂Pj/∂x jk =
´

wi jβikdFβ´
wi jβipdFβ

), where the weights, wi j, are a function

of choice probabilities in the discrete choice model (wi j = πi j(1−πi j)). These weights represent

the variance of individual i′s choices. Equation (12) gives 0 weight to individuals whose choice

probabilities are 1 or 0. This is because these are individuals who will choose (not choose) a house

with certainty (the variance of their choice is 0). Conversely, equation (12) gives the maximum

weight to individuals whose choice probability is 0.5.5 These are individuals who have the highest

choice variance and are on the margin of choosing or not choosing a house.

The key insight is that the hedonic method relies on the tangency between the bid functions and

the hedonic price function (see first order conditions in (6)) but only the marginal individual’s bid

function is tangent to the hedonic price function. Therefore, the hedonic method gives a higher

weight to marginal individuals whose choice probabilities indicate a higher degree of uncertainty

regarding their choices. As this choice becomes more certain (πi j approaching 0 or 1), the weights

decrease.

The weights imply a divergence between MWTP in the two approaches because the hedonic ap-

proach assumes a continuum of houses whereas the discrete choice model does not. With discrete

houses and heterogeneous individuals, some individuals may be inframarginal. For example, given

5The max at 0.5 is a consequence of the Type I extreme value assumption. This distributional assumption implies
that the choice probabilities are drawn from a logistic distribution. This is because choices are driven by differences
in random utilities and the difference between two random variables of Type I extreme value distribution is a random
variable drawn from the logistic distribution. Logistic distributions have a cumulative distribution function that is
sigmoid shape with the steepest slope at 0.5.
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a (discrete) set of houses in the market, the utility-maximizing choice for an individual could be

where
∂ui/∂xk
∂ui/∂P

> ∂P
∂xk

, so that this individual would prefer to pay ∂P
∂xk

for an additional unit of charac-

teristic k (for example, square footage) but there is no such house available. The discreteness could

arise simply due to frictions such as fixed costs of production or other frictions that give rise to

thin housing markets (Arnott, 1989; Gavazza, 2011). Importantly, the bid function that maximizes

utility for an inframarginal individual is not tangent to the hedonic price function. Therefore, the

gradient of the hedonic price function cannot identify the MWTP for inframarginal individuals.

In theory, with a continuum of houses, the hedonic model assumes everyone is marginal in that

the first order conditions of every individual i satisfies the tangency condition in (6). So, the

theory does not provide guidance on how to identify marginal versus inframarginal individuals.

Moreover, most hedonic applications only utilize data on prices but not data on quantities and

choices. Result 2 uses the analytical relationship in (12) to provide a theoretical justification for

using higher moments of choice probabilities (choice variance) to determine which individuals are

marginal versus inframarginal.

Result 3: The average MWTP for characteristic k from the discrete choice model is equal to

the average MWTP for characteristic k from the hedonic model if the ratios of marginal utilities

( βik
βip

) are constant across all individuals. The traditional Logit model with no random coefficients

satisfies this condition.

The goal is to identify conditions under which the average MWTP for characteristic k estimated

using the hedonic approach is equal to the average MWTP in the discrete choice model where we

average across MWT PD
ik and MWT PH

ik , as defined in (3) and (6), respectively

MWT PD
k =

ˆ
βik

βip
dFβ (13)

MWT PH
K =

1
J ∑

j

∂Pj/∂x jk =
1
J ∑

j

´
wi jβikdFβ´
wi jβipdFβ

(14)
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since the average MWTP estimated in the hedonic model is the average of the slope of the hedonic

price function and ∂Pj/∂x jk =
´

wi jβikdFβ´
wi jβipdFβ

from equation (12).

Generally, the two estimates of average MWTP will be different because the discrete choice

method estimates the average of ratios (
´

βik
βip

dFβ ) and the hedonic estimate depends on the ra-

tio of (weighted) averages. For MWT PD
k = MWT PH

k , we need the ratios ( βik
βip

) to be constant across

all i′s so that the average of ratios equals the ratio of averages. If βik = cβip for all i and for

some constant c, then, MWT PD
k =

´
βik
βip

dFβ = c and ∂Pj/∂x jk =
´

wi jβikdFβ´
wi jβipdFβ

=
´

cwi jβipdFβ´
wi jβipdFβ

= c. So,

MWT PH
k = c also.

The traditional Logit model with no random coefficients satisfies this condition. Without random

coefficients, equation (2) reduces to ui j = β̄p(yi − p j) + x jβ̄ + εi j = Vj + εi j. So, MWT PD
k =

´
βik
βip

dFβ = β̄k
β̄p

. Also, the share function simplifies from π j =
´ exp(Vi j)

∑
j′=J
j′=0 exp(Vi j′)

dFβ to exp(V j)

∑
j′=J
j′=0 exp(V j′)

.

Therefore, applying (12) to the simplified share function, ∂π j
∂x jk

= β̄kπ j(1−π j) and ∂π j
∂P j

= β̄pπ j(1−

π j). And, ∂Pj
∂x jk

=−
∂π j/∂x jk
∂π j/∂Pj

=
β̄kπ j(1−π j)

β̄pπ j(1−π j)
= β̄k

β̄p
for all j. Therefore, MWT PD

k = MWT PH
k = β̄k

β̄p
.

Intuitively, without random coefficients, there is no heterogeneity in the taste for house characteris-

tics and only heterogeneity in the taste for houses (εi j). So, MWT Pik is constant across individuals

( βik
βip

= β̄k
β̄p

). Individuals have bid functions with identical slopes with respect to k (this is akin to

having a representative consumer). Accordingly, the hedonic price function has a constant gradi-

ent with respect to k equal to the constant, β̄k
β̄p

. In other words, the representative consumer is also

the average consumer and the marginal consumer so there is no wedge between MWT PD
k which

estimates the MWTP for the average consumer and MWT PH
k gives higher weights to marginal

consumers.

4 Conclusion

Marginal willingness-to-pay (MWTP) is important for welfare analysis. The two primary ap-

proaches to estimate MWTP are hedonic (Rosen, 1974) and discrete choice models (McFadden,
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1974). For many years, researchers have alluded to the apparent duality between both theories.

The innovation in this paper is to provide a tractable framework that delivers an analytical map-

ping between MWTP in the hedonic model and MWTP in the discrete choice model. My analysis

delivers three results.

First, we can use the share function in the discrete choice model to define the gradient of the

hedonic price function implicitly. Second, if we further assume that the hedonic price function

is only a function of own-attributes (a common assumption in the empirical literature), then, the

gradient of the hedonic price function depends on a ratio of weighted averages of marginal utilities

with higher weights for individuals with more uncertainty in choices (marginal individuals). Third,

the average MWTP in both models are identical if MWTP is constant across individuals. The

traditional Logit model without random coefficients satisfies this condition.

My analysis relies on distributional and functional form assumptions commonly used in the empir-

ical literature and holds these assumptions fixed throughout the paper. However, the main insights

can be readily generalized to other settings. For example, I used a discrete choice Logit model with

Type I extreme value Logit errors and random coefficients utility. But, the key insight in Result 1

(that we can define the hedonic gradient implicitly using share functions) can be applied to probit

models or discrete choice models with no Logit error terms (Berry and Pakes, 2007). The benefit

of the Logit model is that the partial derivatives of the share function are easy to derive. But, the

same insight can be applied by simulating empirical derivatives of share functions in other discrete

choice models, as long as these models have well-defined choice probabilities and share functions.

In future work, it would also be interesting to explore the supply side and investigate how changes

in the supply of characteristics change the relationship between MWTP for the average versus

marginal individual. For example, as supply becomes constrained (for example, when fewer houses

with large square footage are built), the marginal individual’s MWTP for square footage is likely

to increase but the MWTP for the average individual may not change (Bayer et al., 2007).
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