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Research summary: Endogenous characteristics of alliance network structure have repeatedly
been shown to predict future alliance ties in the strategic management literature. Specifically,
the concepts and measures of relational, structural, and positional embeddedness (per Gulati
and Gargiulo, 1999), as well as interdependence, are foundational for many studies. We explore
these determinants of alliance formation by replicating the baseline analyses of Ahuja, Polidoro,
and Mitchell’s, 2009 SMJ article. We examine the impact of empirical choices with respect to
time period, underlying data generating model, and industry by isolating each effect in turn. We
demonstrate that while geographic similarity and product-market similarity each robustly predict
the interdependence effect, the effects of both technological similarity as well as the embeddedness
predictors are sensitive to context and/or method.

Managerial summary: Our examination of alliance formation in the chemical and semiconductor
industries during the 1990s demonstrates how new alliances may be predicted by both the
technical, geographic, and product-market fit of potential partners as well as characteristics of
each partner’s previous network participation. Comparing our results to an earlier study, we find
that geographic and product-market similarity predict alliance formation across both industries
and time frames while prior ties between partners predict alliance formation only when these
industries are less mature. Other network participation indicators generate nuanced effects, which
underscore the importance of quasi-replications of alliance formation across industries and time
periods in building evidence-based management theories. Copyright © 2016 John Wiley & Sons,
Ltd.
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structure is deeply entrenched in the strategic
management literature (e.g., Ahuja, 2000; Ahuja
et al., 2009; Ahuja, Soda, and Zaheer, 2012;
Chung, Singh, and Lee, 2000; Garcia-Pont and
Nohria, 2002; Gulati, 1999; Li and Rowley, 2002;
Rosenkopf, Metiu, and George, 2001; Rothaermel
and Boeker, 2008; Wang and Zajac, 2007). All these
studies manifest “an endogenous dynamic” (Gulati
and Gargiulo, 1999: 1453) in that the pattern of prior
alliances in the network, termed “network embed-
dedness,” predicts subsequent alliance formation.
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According to Gulati and Gargiulo (1999), this
embeddedness can be relational (a function of the
prior history of ties between the firms in a dyad),
structural (a function of a small subset of the net-
work, such as transitivity), or positional (a function
of the full network, such as joint centrality). Of
course, in these studies, alliance formation is also
predicted by characteristics that can be assessed
independently from the actual presence of the
alliance ties themselves (e.g., Chung et al., 2000;
Rothaermel and Boeker, 2008; Wang and Zajac,
2007); constructs such as interdependence1 derive
from the characteristics of each firm in the dyad.

Despite the widespread use of this approach, sev-
eral empirical concerns exist. First, network effects
may be sensitive to the industry environment firms
inhabit (Rowley, Behrens, and Krackhardt, 2000) as
well as the time period within an industry (Mad-
havan, Koka, and Prescott, 1998). Second, scholars
have called attention to the issue of endogeneity
in modeling network ties (e.g., Ahuja et al., 2012;
Stuart and Sorenson, 2007). Traditional regression
approaches to predicting alliance formation treat the
existing alliance network as exogenous, unrealisti-
cally assuming that firms do not act strategically to
achieve their current network positions (Stuart and
Sorenson, 2007). Similarly, such approaches also
ignore the real interdependencies between alliance
choices across firms such as Gimeno’s (2004)
demonstration that firms that are competitors in
the product-market domain are influenced by each
other’s alliance choices. Finally, composite network
statistics used to represent network embeddedness
mechanisms, such as joint centrality, can mask mul-
tiple underlying network generating processes, as
the measure is aggregated across multiple network
levels.

To examine the theoretical and empirical implica-
tions of these issues, we replicated the baseline anal-
yses from Ahuja, Polidoro, and Mitchell (APM),
published in SMJ in 2009. APM demonstrated
effects of positional embeddedness via combined
centrality; strategic interdependence via techni-
cal, geographic, and product-market similarity; and
relational embeddedness via previous alliance ties,
using the preferred network modeling technique
available to strategy scholars at that time. APM’s
econometric specification is largely comparable to

1Sometimes termed variously as “homophily,” “heterophily,”
“similarity,” or “complementarity” in the alliance literature
(Ahuja et al., 2012; Rothaermel and Boeker, 2008).

the seminal Gulati and Gargiulo (GG) work,2 but
their work is more amenable to replication by its
focus on a clearly bounded industry.3

Our replication proceeds in three stages. First,
we reproduce the APM estimation strategy on
publicly available data in their same industry
(chemical), only varying the time period (our
data span 1991–2000 while their proprietary
data span the prior decade). Next, holding the
industry and time period constant, we address
model specification and estimation concerns using
exponential random graph models (ERGMs), a
recent methodological advance that allows the
explicit modeling of underlying network formation
processes and dependencies in the alliance network
data. Finally, we examine the role of industry con-
text by repeating the ERGM analysis for alliance
data in the semiconductor industry over the same
time period.

Our results generate two important implica-
tions for future alliance formation research. First,
we demonstrate both robustness and sensitivity of
results across industry and time period differences.
With regard to robustness, we find that geographic
and product-market similarity each consistently
predicts alliance formation in both our contexts. In
contrast, we find that the maturity of an industry
can substantially alter the effect of both techno-
logical similarity and previous ties, suggesting the
need for future research to incorporate such con-
tingencies and boundary conditions. Second, we
demonstrate that traditional measures of positional
embeddedness, such as joint centrality, conflate
multiple network generating processes. By using
recent advances in ERGM techniques to decompose
these processes empirically, we are able to suggest

2The main difference between the specification of APM and that
of GG is that APM does not include a Structural embeddedness
measure. We examine this issue when we replicate using an
alternative method.
3While the GG study represents the most comprehensive artic-
ulation of endogenous determinants of alliance formations, two
interrelated challenges precluded an effective replication. First,
their sample was largely proprietary and used a combination of
the Cooperative Agreements and Technology Indicators (CATI)
database and several other hand-collected sources. Second, their
data set combines data from three different industrial settings
(automotive products, new materials, and industrial automation),
which do not correspond to well-defined standard industry classi-
fications for which other established and more commonly avail-
able data sets could be searched via SIC codes. In comparison,
while APM’s study also used proprietary data, it was set in the
global chemical industry, constituting a relatively unequivocal
composition of firms.

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
DOI: 10.1002/smj
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more precise network predictors to refine concepts
like positional embeddedness by grounding them in
actual tie-forming mechanisms such as preferential
attachment and transitivity.

REPLICATION STAGE I: ISOLATING
TIME DIFFERENCES

Sample, data sources, and measures

We collected data for all alliances between firms
in the global chemical industry for the years
1991−2000 using SDC Platinum, the largest
cross-industry data set of strategic alliances. As
Schilling (2009) notes, the SDC Platinum data set
prior to 1990 is quite sparse, so we chose 1991
as the first year of our alliance observations.4

We chose a 10-year period to closely match
APM’s breadth (9 years, 1983–1991). To build
the industry-based alliance network, we selected
only those alliances that had both partner firms
belonging to the focal industry (and at least
two partners in the focal industry for multiparty
alliances). We matched the firms participating
in these alliances to company background and
financial data available in Compustat—United
States, Compustat Global Fundamentals, Bureau
Van Dijk (BvD), and OSIRIS, and supplemented
this with industry-specific data from Chemical
and Engineering News (CEN) and DataQuest.
We matched these data using Committee on Uni-
form Security Identification Procedures (CUSIP)
identifiers, Global Company Key (gvkey), stock
market tickers, and company names.5 We further
winnowed the set of firms to the largest 150 firms
in each industry in each year by revenue.6,7 We

4Like APM, we collected additional presample data (in our
case, from 1986 to 1990) to build a “Prior Ties” measure for
our replication, but we did not use this period to measure the
dependent variable.
5In instances in which a subsidiary firm was involved in the
alliance and the subsidiary firm’s financial data were not reported
separately, we matched the data to the parent firm’s financials
using the same techniques. To account for industry mergers, we
used the acquiring firm or the merged entity’s financials where
separate financials were not reported for the constituent firms in
the year of the alliances.
6APM’s sample in comparison consists of the largest 97 firms in
the chemical industry.
7For firms whose financials were reported in an international
currency, we converted to USD using foreign exchange rates
available from the Federal Reserve Bank data set (accessed
through WRDS).

collected patent data for these firms from the NBER
patent data set using the approach specified in the
Bronwyn Hall Patent Name Matching project to
match company names to patent assignees (Hall,
Jaffe, and Trajtenberg, 2001). Further, like APM,
we include those alliances that involved at least
two of the aforementioned 150 firms leading to a
final replication sample of 202 strategic alliances
between 139 firms. This level of alliance intensity
is lower than that reported for the APM sample,
which had 97 firms engaging in 338 alliances
during their earlier time frame.

We replicated APM’s baseline model (see their
Model 2, p. 953). APM’s model includes the vari-
ables Combined centrality and Combined central-
ity squared to measure “positional embeddedness”
(calculated using the geometric mean of the eigen-
vector centrality scores of the two member firms
in a dyad), the variables Previous alliances and
Previous alliances squared to measure “relational
embeddedness” (calculated using the number of
alliances the two member firms in a dyad had in the
past) and the variables Technical similarity, Techni-
cal similarity squared (calculated using similarity
of patents), Geographic similarity (calculated using
similarity of international country presence), and
Product market similarity (calculated using sim-
ilarity of industries firms participate in) to mea-
sure “interdependence.” APM also include dyadic
controls for Size, Liquidity, Debt-equity, Patents
and R&D. Our independent variables for the net-
work embeddedness and technical similarity mea-
sures were created in identical fashion to APM’s
variables. For the geographic and product market
similarity, as we had less granular data than APM,
we computed a direct similarity (homophily) vari-
able based on country location and primary indus-
try participation. Among the controls, we created
identical measures to APMs the only exception was
that we used a Debt-to-Asset ratio instead of a
Debt-to-Equity ratio due to data limitations. Like
APM, we created a binary dependent variable set to
1 if the two firms in the dyad formed an alliance in a
year, and 0 otherwise. We used a five-year moving
window (years “t–5” through “t–1” for alliance for-
mation year “t”) to construct our alliance formation
network variables.

Table 1 displays the descriptive statistics and cor-
relations for the APM chemical replication sample.
Although our time period is later than APM’s, our
sample is comparable in terms of descriptive statis-
tics (see APM, Table 1, p. 951). For instance, the

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
DOI: 10.1002/smj
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1 dependent variable Alliance formed has a mean of
0.007 in our sample versus 0.01 in APM’s sample
while the standard deviation is 0.08 versus 0.10.

Results using identical model

Following APM, we model the data as longitudinal
panels, creating a record of the dependent and inde-
pendent variables for each unique dyad in the sam-
ple for each year of the replication period. We pool
the observations and use probit regression (probit in
Stata) with year dummies and robust standard errors
clustered on the dyad to estimate the coefficients.8

To facilitate comparison, we include APM’s base-
line results in the first column of Table 2.

Model 1 displays our replication results for
APM’s pooled probit method. Model 2 adds
the structural embeddedness measure (Common
alliance partners) set forth in the seminal GG
model but not included in APM.9 The last column
of Table 2 compares APM’s baseline model to
our replication results from Model 1. We found
an identical positive (marginal effect10 = 0.004
in both APM and our replication) and significant
(p-value< 0.001) effect for Geographic similarity
and a comparable positive (marginal effect= 0.005
in our replication versus 0.010 in APM) and signif-
icant (p-value< 0.001) effect for Product-market
similarity. We also obtained a comparable positive
(marginal effect= 0.036 in our replication versus
0.029 in APM) and significant (p-value= 0.004)
base effect of positional embeddedness (Combined
centrality). Although we obtained a comparable
coefficient for the second-order term Combined
centrality squared (marginal effect= -0.04 in our
replication versus -0.03 in APM), it was not statisti-
cally significant (p-value= 0.165 in our replication
versus p-value< 0.01 in APM). For Technical simi-
larity, we obtained a weaker effect size (marginal
effect= -0.003) relative to APM (marginal
effect= -0.043 in APM) and the coefficient was
not statistically significant (p-value= 0.545). For

8Following APM, we also confirmed that our results were consis-
tent with random-effects models.
9Note that the inclusion of structural embeddedness (which is not
significant) fully preserves our Model 1 results, and is included to
allows us to directly compare the probit models with subsequent
ERGMs, which include better specified measures for all the three
embeddedness mechanisms.
10Calculated as change in the probability of observing an alliance
if the variable is increased by one unit, holding all other variables
at their respective sample means.

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
DOI: 10.1002/smj
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Table 2. Replication of APM: chemical industry, probit regressions, 1991−2000a

APM replication (pooled probit)

Models variables APM original (pooled probit) 1 2

Alliance formation mechanisms
Positional embeddedness
Combined centrality 1.60 2.49 2.04

(0.32) (0.87) (1.07)
Combined centrality squared −1.45 −2.83 −2.74

(0.51) (2.04) (2.09)
Structural embeddedness
Common alliance partners 0.10

(0.10)
Strategic interdependence
Technical similarity −2.40 −0.21 −0.21

(1.13) (0.35) (0.35)
Technical similarity squared 1.04 0.11 0.10

(0.39) (0.15) (0.15)
Geographic similarity 0.25 0.28 0.28

(0.07) (0.08) (0.08)
Product-market similarity 0.58 0.33 0.33

(0.13) (0.08) (0.08)
Relational embeddedness
Previous alliances 0.44 0.74 0.70

(0.06) (0.77) (0.78)
Previous alliances squared −0.03 −1.23 −1.20

(0.02) (0.39) (0.39)
Dyad level controls
Size −0.01 0.37 0.36

(0.09) (0.14) (0.14)
Performance −2.92 0.40 0.43

(1.02) (0.63) (0.63)
Liquidity 0.21 −0.12 −0.12

(0.12) (0.19) (0.19)
Debt-equity 0.00 −0.26 −0.26

(0.09) (0.14) (0.14)
R&D 0.04 0.10 0.10

(0.09) (0.13) (0.13)
Patents 0.17 −0.04 −0.03

(0.07) (0.16) (0.16)
Constant −2.71 −2.67 −2.66

(0.88) (0.30) (0.30)
Year dummies Included Included Included
Log likelihood −1810.68 −650.16 −649.89

a Robust standard errors in parentheses.

relational embeddedness (Previous alliances and
Previous alliances squared), while the coefficients
we obtained are in the same direction as those of
APM’s, we did not obtain significance for the main
effect (p-value= 0.336) and the coefficient for the
second-order effect (Previous alliances squared) is
negative and significant (marginal effect= -0.018
in our replication versus -0.001 in APM). Figure 1
compares the overall effect from the first and
second-order terms for relational embeddedness
between our replication and APM’s original results.

Since the variable Previous alliances can take on
only positive integer values, we can conclude from
the graph that the net effect of Previous alliances on
alliance formation likelihood is positive for APM,
but negative for our replication. This is driven by the
magnitude of the negative coefficient for Previous
alliances squared (-1.23) in our replication relative
to the positive coefficient for Previous alliances
(0.74). In contrast, APM’s coefficients for Previous
alliances and Previous alliances squared were 0.44
and -0.03, respectively.

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
DOI: 10.1002/smj
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Figure 1. Effect of previous alliances (relational embed-
dedness) on alliance formation. (Note: In the above graph
X-axis measures Previous alliances, Y-axis (left) measures
Likelihood of alliance formation for APM’s study, Y-axis
(right) measures Likelihood of alliance formation for our
probit replication. All other variables are held at their mean

values for the respective samples)

In sum, while our probit replication results in the
chemical industry in a later time period are broadly
consistent with those of APM, providing confir-
matory replications for many of their findings, we
are unable to reproduce the effects for interdepen-
dence in the technological domain, and we obtain a
different effect for relational embeddedness in the
alliance network. We will examine how the evolu-
tion of the chemical industry may have driven some
of the differences we observe in our Discussion
section.

Another explanation for replication differences:
model choice

While the stage of the industry may account for
some differences, we also know that the applica-
tion of traditional dyadic regression methods such
as probit to network data suffers from several short-
comings (Stuart and Sorenson, 2007). First and
most well known, these methods assume indepen-
dence across alliance ties, which many studies,
including GG (see p. 1482), acknowledge as an
issue (Robins et al., 2007; Stuart, 1998).11

11For instance, an alliance between one firm in a focal dyad
and a competitor of the other firm in the focal dyad may create
competitive pressures that result in a tie forming in the dyad.
Dependencies may arise at distant points in the network as
well—an alliance between competitors of the two focal firms
in a dyad may precipitate an alliance forming between them.
In the presence of such interdependencies, traditional methods

Second, predictors derived from one observed
network inherently lack an adequate stochastic
component because they do not have a correspond-
ing probability distribution function defined at the
network level. For example, on observing one dis-
tribution of centrality measures across firms from
an actual alliance network composed of 150 chem-
ical firms, we are unable to assess whether such a
distribution is typical across all possible structures
of 150-firm networks that can emerge, given what
we know about the underlying firm, dyadic and net-
work level mechanisms of alliance formation, and
after accounting for the possibility of random varia-
tion in the network generating process (Holland and
Leinhardt, 1970, 1981; Pattison et al., 2000).

Third, the use of endogenous network variables to
predict alliance formation further introduces depen-
dencies over time among the observed network
variables. The models in Table 2 predict alliance
formation using measures that are derived from
snapshots of the same network—in other words,
independent variable measures such as centrality,
are derived from a cumulative set of past alliance
choices. Despite the theoretical rationale that the
current structure of a network shapes its future
evolution, the use of such measures in traditional
regression models assumes that this structure is
independent of the prior network structure.

Finally, it is difficult to isolate different theo-
retical mechanisms from composite network mea-
sures like Combined centrality. Centrality is first
calculated as a function of the full network for
each individual firm, and when the eigenvector cen-
trality score is utilized by researchers, its intent
is to proxy for theoretical mechanisms such as
power, visibility, or information control (Ahuja
et al., 2009; Gulati and Gargiulo, 1999). Yet, at best,
this approach conflates multiple underlying mech-
anisms. For example, are higher centrality scores
driven by preferential attachment, where firms with
existing alliance ties will attract even more ties
(e.g., Powell et al., 2005)? Or by transitivity (Gulati,
1995)? Likely both, and the practice of combining
the centrality scores of each firm in the dyad further
obscures these underlying mechanisms.12

of predicting alliance formation can lead to incorrect inferences.
While various methodologies such as clustering of standard errors
or correcting for autocorrelation have been used in prior literature,
such statistical methodologies are limited to the firm or to the dyad
level and cannot handle complex multilevel tie dependencies that
influence alliance formation.
12Note that APM (in Model 3) also include dummies distinguish-
ing low-centrality and socially-asymmetric dyads (where one firm

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
DOI: 10.1002/smj
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Figure 2. Comparing traditional regression and ERGMs in modeling alliance formation

REPLICATION STAGE II: ISOLATING
MODEL DIFFERENCES

To isolate how modeling issues may affect results,
we tested a theoretically comparable alliance
formation specification using exponential random
graph models (ERGMs), a recent advance in social
network methodology that overcomes several of
these limitations (see Cranmer and Desmarais,
2011; Holland and Leinhardt, 1981; Lusher, Koski-
nen, and Robins, 2012; Robins et al., 2007; Snijders
et al., 2006). Figure 2 illustrates the differences
between ERGMs and traditional regression meth-
ods. ERGMs13 are parametric models of networks
(c.f. Lusher et al., 2012) defined by identifying
relevant local network structural elements that
reflect underlying tie formation mechanisms.
While traditional regression methods impute
endogenous network mechanisms by observing
summary network measures over time, ERGMs
clearly specify these endogenous processes that
generate the observed network structures. ERGMs
also shift the level of analysis from the dyad to

had high centrality while the other had low). These results, while
significant when utilized in place of combined centrality, did not
achieve significance when combined centrality was simultane-
ously included in the model. Similarly, GG also utilized centrality
ratio as an explanatory variables, but it was not significant.
13Also known as p* models.

the network by predicting the entire adjacency
matrix of alliances as the dependent variable.14

This allows the modeling of dependencies between
pair-wise combinations in the adjacency matrix
as well as dependencies beyond dyads, while also
relaxing the stringent assumption of cross-dyadic
independence in traditional regression models.
Finally, ERGMs are stochastic in nature, treating
the observed network as one instantiation within
a distribution of possible networks generated by
the proposed mechanisms, thus accounting for the
possibility of random variation at the network level
that traditional methods cannot.

Measuring alliance formation mechanisms
in ERGMs

ERGMs allow us to separate the conflated mea-
sures used in traditional regression models through
precise local network structural specifications that
each capture mutually exclusive and collectively
exhaustive tie formation mechanisms. Our first task
was therefore to select the specific local network
structural elements that best correspond to the tra-
ditional hypothesized alliance formation mecha-
nisms, summarized in Figure 3. We discuss each of

14ERGMs generate a joint prediction for all the n*(n – 1)/2 dyads
for an n-node network.
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Figure 3. Local alliance network structural elements in ERGMs

these elements conceptually here and provide addi-
tional mathematical details corresponding to their
estimation in the Appendix S1.

The most basic network component, edges, is
analogous to an intercept term in a traditional
regression, and captures the base propensity of any
alliance tie to form as a function of the count of the
alliance ties in the network. The remaining compo-
nents unpack positional and structural embedded-
ness mechanisms and are nested hierarchically.

For positional embeddedness, APM as well as
GG suggest that a firm’s network position allows it
to benefit from information about alliance opportu-
nities in the network beyond its immediate partners
and also provides a signal of ability and prestige in
the collaboration context. APM expected this effect
to yield a diminishing advantage with increasing
embeddedness; hypothesizing an inverted U-shaped
effect and measuring it using Combined Centrality,
the geometric mean of the eigenvector centralities
of the two firms in the dyad. Since this approach
overlooks dependencies at different levels and con-
flates multiple mechanisms, we instead model this
mechanism in ERGMs by fitting the degree distribu-
tion local network structure which solely models a
degree-based preferential attachment mechanism.15

The network statistic for this structure, called gwde-
gree (geometrically weighted degree distribution),
is modeled using a probability distribution func-
tion derived from the curved exponential family.16

15This is measured by the presence of k-stars, that is a central node
connected to k others, in the network—for detailed treatment see
Hunter (2007) and Hunter and Handcock (2006).
16Equation (A1) in the Appendix provides the mathematical basis
of the gwdegree statistic.

Put simply, as a firm’s degree (number of alliance
ties) increases, this statistic decreases exponen-
tially (Hunter, 2007; Hunter and Handcock, 2006).
Thus, with a positive and significant coefficient, the
log-odds of an alliance tie increases for all dyadic
combinations, but the increase is of smaller mag-
nitude for dyads whose constituent firms already
have higher degrees. By its exclusive focus on the
degree of each firm17 and the specification of a prob-
ability distribution function that permits inference
of the degree based attachment mechanism (Hand-
cock, 2003), this approach removes the conflation
of mechanisms inherent in the composite joint cen-
trality measure.

For structural embeddedness, GG hypothesize
a transitivity mechanism where firms are more
likely to enter into an alliance when they share
common partners. Note that the measure for this
transitivity mechanism in our probit replication
(Table 2, Model 2)—a simple count of Common
alliance partners between two firms—is highly
correlated with the Combined centrality measure
for positional embeddedness (r= 0.75). We over-
come this conflation with ERGMs by using triangle
configurations18 corresponding to the theoretical
mechanism of transitivity, estimated using gwesp

17A firm’s degree is a network statistic that is likely to be a
more relevant local measure that affects alliance formation, than a
global network level centrality measure. For instance, it is easily
conceivable that firms select other firms as partners if they have
many existing alliances (high degree) or vice versa. It is less
obvious that they carry out eigenvector centrality calculations
while exercising such choices.
18Also referred to as triad closure or triangles.
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(geometrically weighted edge shared partners),
which fits the distribution of the number of triangles
also using a curved exponential distribution.

Another limitation of using the traditional count
measure is that we are unable to capture the influ-
ence of nested substructures (e.g., equivalence con-
siderations within substructures consisting of two,
four, or more firms as depicted in Figure 3). ERGMs
allow us to model these nested elements using
shared partner distribution structures19 that are esti-
mated using a measure called gwdsp (geometrically
weighted dyad shared partners)—a statistic of the
distribution of shared partner firms by unconnected
firms. Thus, the simultaneous use of gwesp and
gwdsp allows us to make stronger inferences of tran-
sitivity (Robins, Pattison, and Wang, 2009).20

Finally, ERGMs also enable the modeling of
node-level and tie-level attributes that additionally
motivate alliance formation. We modeled relational
embeddedness as a tie attribute by a count of prior
alliances for each dyad. We also modeled the inter-
dependence mechanisms by creating tie characteris-
tics that captured similarity on the firms’ geography,
product-market, and technology vector (based on
patent classes) attributes. In contrast, we included
all the control measures (Size, Performance, Debt
Ratio, Liquidity, and Solvency) from the APM base-
line model as nodal attributes. Here, ERGMs differ
slightly from our probit models as they internally
calculate the effect for these nodal attributes based
on the dyadic sum rather than ratios.

ERGM results

Estimation using ERGMs involves the use of a soft-
ware module that supports a corresponding imple-
mentation of the network structures. The measures
corresponding to the ERGM local network struc-
tural elements as well other firm and dyad level
covariates are specified using a probability func-
tion and estimated through maximum likelihood

19While triangle configurations are structural mechanisms that
correspond to indirect ties, shared partner distributions model the
idea that structural equivalence and multiple connectivity lead to
clustered regions in the network.
20The benefit of using these geometrically weighted statistics is
that they allow us to parsimoniously describe the network data by
reducing the number of parameters. For example, the degree fitting
term only uses two parameters instead of using (n – 1) parameters
where “n” is the highest degree observed in the network. Similarly
instead of fitting multiple triangles the gwesp statistic uses only
two parameters.

estimation in R (Handcock et al., 2008).21 We
assessed model fits using the Akaike’s Information
Criterion (AIC) (Akaike, 1998) and log-likelihood
statistics, and we employed graphical tests of good-
ness of fit (Goodreau, Kitts, and Morris, 2009)
to visualize the match between the predicted and
observed networks.22

Table 3 reports our ERGM results and compares
them to our probit replication results from Model
2 in Table 2.23 With ERGMs, a positive coefficient
indicates the higher likelihood of presence of a local
network element than one would expect by chance,
conditional on the rest of the network, whereas a
negative coefficient indicates a lower probability of
the presence of the structure than expected (Lusher
et al., 2012).

A comparison of our ERGM to the probit repli-
cation results demonstrates the robustness of the
geographic (marginal effect of 0.0006 versus 0.004
in probit) and product market similarity (marginal
effect of 0.001 versus 0.004 in probit) predictors,
and reveals three major differences. First, whereas
Technical similarity was insignificant in the prior
case, it is positive and significant in the ERGM
(p-value 0.023, and marginal effect of 0.0007 ver-
sus -0.008). Thus, after modeling the structure of the

21The estimation uses the MCMC-MLE procedure in the
“ERGM” package, a part of the statnet suite of package for R.
Substantively, this approach first involves generating a large num-
ber of possible networks that might be observed based on these
local network conditions, and then asking whether the network
of ties in the focal sample is a likely member of the this family.
It is important to reiterate that the generated comparison group
of networks is not deterministic but stochastic. Expressed proba-
bilistically, we are ultimately able to determine the probability of
observing the sampled network, given the input specifications of
different local network elements.
22Each plot compares the observed data to one hundred randomly
generated simulated networks obtained from the fitted models.
This provides a visual sense of the model fit in terms of some
key properties of the network such as the degree distribution. All
three structural network statistics fit a curved exponential family
model that requires the estimation of the decay parameter “𝛼”.
This is achieved through an iterative process of fitting models
for different values and choosing the one that provides the lowest
AIC value. Our models report the decay parameter for the best fit
model. Additional models and plots are available on request from
the authors.
23The models shown here are those that provide the best fit (both
in terms of the AIC and log-likelihood and visual goodness of fit),
therefore we report our results based on it below. We do not report
a model with the gwdsp term because the ERGM with this term
would not converge which is an indication that such structures
are not prevalent in the network. This finding also supports our
assertion that less localized positional measures obscure rather
than clarify mechanisms.

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
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Table 3. Comparison of probit and ERGM results for chemical industry, 1991−2000a

ERGMs

Models variables Probit replication (Table 2, Model 2) 1 2

Alliance formation mechanisms
Positional embeddedness
Preferential attachment (combined centrality or gwdegree) 2.04 −1.33 −0.83

(1.07) (0.21) (0.25)
Structural embeddedness
Transitivity (common alliance partners or gwesp) 0.10 0.37

(0.10) (0.07)
Strategic interdependence
Technical similarity −0.21 0.55 0.50

(0.35) (0.23) (0.23)
Geographic similarity 0.28 0.50 0.46

(0.08) (0.15) (0.15)
Product-market similarity 0.33 0.95 0.90

(0.08) (0.14) (0.14)
Relational embeddedness
Previous alliances 0.70 0.62 0.47

(0.78) (0.38) (0.35)
Dyad level controls
Size 0.36 −0.02 −0.02

(0.14) (0.03) (0.03)
Performance 0.43 −0.81 −0.67

(0.63) (1.83) (1.89)
Liquidity −0.12 −0.09 −0.06

(0.19) (0.24) (0.24)
Debt-equity −0.26 0.33 0.22

(0.14) (0.59) (0.57)
R&D 0.10 0.53 0.52

(0.13) (0.24) (0.22)
Patents −0.03 −0.03 −0.02

(0.16) (0.02) (0.02)
Edges NA 293.50 287.41

(70.13) (68.38)
Year Yes Yes Yes
Log-likelihood −649.89 −937.02 −928.81
AIC NA 1900.04 1885.62
BIC NA 1998.63 1991.8

a Robust standard errors in parentheses.

network more accurately and accounting for inter-
dependencies in our ERGM, we see that similar-
ity between two firms in the technology domain
increases their alliance propensity. Second, while
the Common alliance partners measure for struc-
tural embeddedness in our probit replication was
not significant, the gwesp measure in our ERGM
is positive and significant (p-value< 0.00001). It
is important to note that while the other variables
of interest did not substantively change with the
inclusion of Common alliance partners in the probit
replication, we did observe a drop in significance for
Combined centrality (Table 2—compare Models 1
and 2), as these two measures are correlated. Thus,

by using a better specified measure in our ERGM,
we find support for GG’s original hypothesis that
structural embeddedness has a positive effect on
alliance formation.24

24 This transitivity effect can be interpreted by considering how
the probability of the alliance changes when a pair of connected
firms increases its number of shared partners by one, ceteris
paribus.

log(pafter/pbefore) = 0.376× (1− e ^ (−1.3))k = 0.37× 0.72 k
In other words, it is easiest to complete a triangle when none
exists (k= 0); such a change leads to an increase of 0.37 on the
log-probability scale beyond the effects predicted by other model
terms. However, this increase diminishes for each unit increase in
k. Thus, completing a two-triangle when a triangle already exists
only results in an additional increase of 0.37× 0.72; completing

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
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Figure 4. (A) Plot of gwdegree in chemical and (B) plot of gwdegree in semiconductor. (In the above graphs, the vertical
axis measures the change in the log-odds of an alliance forming between two firms and the two axes on the horizontal

plane measure the degrees [number of ties] of those two firms.)

Third, the coefficient for the positional embed-
dedness term gwdegree (preferential attachment) is
negative and significant (p-value< 0.00001). Recall
that in ERGM, a negative coefficient for this term
means that firms with higher degrees (high num-
ber of alliance partners) have a higher likelihood of
entering into further collaborative ties compared to
firms with lower degrees, but the increase in this
likelihood diminishes as degree increases, as dis-
played in Figure 4(A).25 In the graph, the vertical
axis is a measure of the change in the log-odds of
a tie forming between two firms “i” and “j” if their
respective degrees increased from [Di, Dj] to [Di+1,
Dj+1]. The axes on the horizontal planes are the
degrees of each of the two firms in the dyad. While
our probit replication did not obtain an effect for
the squared term of Combined centrality, the con-
cave curvilinear effect depicted in the graph does
suggests evidence for the positional embeddedness

a three-triangle when a two triangle already exists only gives
0.37× 0.53 and so on. Thus, as two firms that are already in an
alliance, share more and more partners, the propensity to find
additional shared alliance partners decreases.
25The model estimates the decay parameter to be 1.1, and
the coefficient obtained is −0.83. The change statistics
for two nodes with degrees i and j is (1 – e^(-0.1.1))i+
(1–e^(-0.1.1))j= 0.67i+ 0.67j. So with a coefficient of -0.83, the
log-odds of an alliance decrease for all degree values of i and j,
but this decrease would be of smaller magnitude when i and j
have higher degree.

mechanism originally posited by APM. As the
figure illustrates, the slope is positive, indicating
higher odds of alliance formation between the two
firms as their combined degree score increases.

All the other alliance formation mechanisms
estimated in our ERGM are comparable to our
probit replication. We continue to find positive
and significant effects for Geographic Similarity
(p-value< 0.0001) and Product-market similarity
(p-value 0.000078), and are unable to find sig-
nificance for the relational embeddedness (Previ-
ous alliances) measure (p-value 0.13373, marginal
effect= 0.23).

REPLICATION STAGE III: ISOLATING
INDUSTRY DIFFERENCES

The semiconductor industry as a contrasting
context

To isolate and analyze the potential effect of indus-
try context on our results, we replicated our ERGM
analyses using semiconductor industry data from
the same time frame. The semiconductor industry,
with a distributed locus of technological devel-
opment across firms, a modular set of products,
and continuous innovation pressures, offers a
rich contrast to the more mature, process-based
chemical industry that is less susceptible to

Copyright © 2016 John Wiley & Sons, Ltd. Strat. Mgmt. J., 37: 2204–2221 (2016)
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rapid price-performance improvements based on
innovation (Rosenkopf and Schilling, 2007). We
followed an identical sampling strategy to the
chemical replication (1991−2000, largest 150
firms, within-industry alliances) from the same
data sources. Our final sample consisted of 321
strategic alliances.26

ERGM results in semiconductor

We developed an equivalent ERGM for the semi-
conductor industry alliance sample. Table 4 shows
the results of the semiconductor ERGM side by side
with the results from the chemical ERGM.

Several results are consistent; the effects for
structural embeddedness (Transitivity—gwesp
[p-value< 0.00001]), Geographic Similarity
(p-value= 0.000126) and Product-Market Similar-
ity (p-value< 0.00001) continue to persist across
the two industries.27 Yet others differ. Technical
similarity, which was significant and positive
in chemical, is not significant in semiconductor
(p-value= 0.553, marginal effect= 0.02). In con-
trast, we do find a positive effect for relational
embeddedness in semiconductor (Prior Ties,
p-value= 0.000126, marginal effect= 0.75) which
was insignificant in chemical. Perhaps the most
striking difference is that the effect for positional
embeddedness is reversed in semiconductor
(p-value< 0.00001). The corresponding measure
in our semiconductor ERGM is positive and
significant—recall that a positive coefficient for
this term suggests an “anti-preferential attachment”
mechanism which is somewhat comparable to a
negative effect for a combined centrality measure
in traditional regressions. Thus, this demonstrates a
tendency for alliance formation in low-degree firms,
a mechanism that runs counter to that proposed by
the positional embeddedness theory.28 Figure 4(B)

26The means and standard deviations for the measures in the
semiconductor industry are quite similar to those of the chemical
industry displayed in Table 1 (additional correlation tables for the
semiconductor industry available on request).
27The log-odds of two firms to ally given they operate in the same
sectors within the industry increases by 0.70, which is a decrease
in the marginal effect from 0.0013 to 0.001. For two firms from the
same country, the log-odds are higher by 0.55, which correspond
to an increase in the marginal effect from 0.0006 to 0.0007.
28In contrast, our examination of alliance formation in the semi-
conductor context using APM’s traditional probit methods failed
to yield significant effects for Geographic and Product Market
Similarity. However, they yielded significant results for positional
embeddedness (Combined centrality) and Technical similarity.

Table 4. Comparison between chemical and semicon-
ductor ERGM results, 1991−2000a

Models variables

ERGM for
chemical
(Table 3,
Model 2)

ERGM for
semiconductor

Alliance formation mechanisms
Positional embeddedness
Preferential attachment (gwdegree) −0.83 2.55

(0.25) (0.60)
Structural embeddedness
Transitivity (gwesp) 0.37 0.56

(0.07) (0.11)
Strategic interdependence
Technical similarity 0.50 0.06

(0.23) (0.25)
Geographic similarity 0.46 0.56

(0.15) (0.15)
Product-market similarity 0.90 0.73

(0.14) (0.17)
Relational embeddedness
Previous alliances 0.47 0.69

(0.35) (0.25)
Dyad level controls
Size −0.02 0.08

(0.03) (0.03)
Performance −0.67 −0.36

(1.89) (0.27)
Liquidity −0.06 0.14

(0.24) (0.20)
Debt-equity 0.22 −0.14

(0.57) (1.01)
R&D 0.52 0.11

(0.22) (0.04)
Patents −0.02 0.15

(0.02) (0.03)
Edges 287.41 369.50

(68.38) (76.72)
Year Yes Yes
Log likelihood −928.81 −841.12
AIC 1885.62 1712.24
BIC 1991.8 1813.53

a Robust standard errors in parentheses.

shows the graphical plot of this mechanism and
relative effect size. When compared to the corre-
sponding plot for the chemical industry ERGM
(Figure 4(A)), the slope of the curve is negative and
steeper in the semiconductor ERGM, indicating an
effect for positional embeddedness that is stronger
and opposite to what we observed in the chemical
industry ERGM. Among the control variables,
in addition to the strong positive effect for R&D
(p-value= 0.0084) (as was the case with chemical),
there are also positive effects for Patent Count
(p-value< 0.00001) and Size (p-value= 0.0127).
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DISCUSSION

Our efforts to replicate the baseline model of
alliance formation from APM’s Strategic Man-
agement Journal article, and subsequently, isolate
effects of changes in method and context, demon-
strate the robustness of predictors like geographic
and product-market similarity, while illustrating the
nuances of the remaining predictors arising from
different industry settings, time periods, and empir-
ical methods. Table 5 summarizes our results for
ease of comparison and integration. The rows in
Table 5 indicate the mutually exclusive theoretical
mechanisms identified in alliance formation litera-
ture, broadly categorized as endogenous structural
network drivers and dyad-specific strategic interde-
pendence factors. Each column of Table 5 repre-
sents a replication across successive shifts in the
dimensions of time, choice of method and industry
context away from the focal APM study. We first
discuss the effects of research context shifts (in time
period and industry) and then the effect of shifting
to ERGMs. In each case, we develop implications
both for empirical research and for theory.

Implications of shifts in research context

Davis and Marquis (2005) argued that theoreti-
cal mechanisms underlying firms’ behavior and
relationships between these mechanisms may be
reshaped by shifts within industries as well as tran-
sitions in the broader social and economic envi-
ronments in which they are embedded. As seen by
comparing Columns A and B (time shift) as well as
Columns C and D (industry shift), our replications
demonstrated that contextual choices of time period
and industry can affect results.

While certain effects persist across the two time
periods and two industries we compared (see Rows
5 and 6 for geographic and product-market sim-
ilarity, as well as Row 3 for structural embed-
dedness), others vary with the context in which
researchers situate their empirical investigation. In
particular, the effect of technical similarity varies
dramatically across our replications (see Row 4).
Focusing first on the time shift (Columns A and
B), while APM derived an inverted-U effect, our
probit replication in the later time period did not
obtain a significant effect. Focusing next on the
industry shift (Columns C and D), our ERGMs also
yielded different results—a positive effect of tech-
nical similarity in chemical, and a nonsignificant Ta
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effect in semiconductor. Each of these contrasts
may be consistent with prior research about indus-
try and technology life cycles, in that as technical
uncertainty reduces, firms will migrate toward more
exploitation-based alliances (Lavie and Rosenkopf,
2006). In other words, firms in less mature indus-
tries where technical uncertainty is higher (chemi-
cal in the 1980s relative to chemical in the 1990s;
or semiconductor in the 1990s relative to chem-
ical in the 1990s) are more likely to seek nov-
elty through recombining dissimilar technologies
(exploration alliances) rather than through con-
solidation within the same technological domain
(exploitation alliances).

While these contrasts may be instructive, the sub-
stantial discrepancies in the effects for Technology
similarity in our replications raise other empirical
implications about variation in the measure across
industry contexts. For example, following prior
research, APM used a continuous measure obtained
through the use of Euclidean distance between firms
using patent classes. This measure carries the strong
implicit assumption that all classes are equidistant
even though distance between classes likely varies
both between and within industry.29 Therefore,
future research should utilize measures that account
for the nature of the technology classes within a
given industry. Empirical techniques that conceptu-
alize the technology space using citation networks
and then apply clustering algorithms to identify
similar technologies may be useful to obtain better
fit between the concept and measure going forward
(Sytch, Tatarynowicz, and Gulati, 2012).

We also note differences in results across time
and industry for the positional and relational
embeddedness predictors (see Rows 1 and 2). Since
the use of ERGMs fundamentally changes our
measures, theorizing, and interpretations, in this
section we will only examine the time period shift
in chemical (probit analyses) and leave interpre-
tation of the industry shift (ERGM analyses) for
the subsequent section. Specifically, for positional
embeddedness, while APM obtained a positive,
curvilinear result for combined centrality for their
data, only the main effect obtained significance

29For example, a patent for logic circuitry (e.g., class 326: Elec-
tronic digital logic circuitry) will be much more dissimilar (and
conceptually more distant) to a patent in materials (e.g., class
505: Superconductor technology: apparatus, material, process),
than to a patent for photolithography steps (e.g., class 716:
Computer-aided design and analysis of circuits and semiconduc-
tor masks).

in the chemical industry in our later time period
data (see Row 1, Columns A and B). In addition,
relational embeddedness no longer predicts alliance
formation in our data (Row 2, Columns A and B).

A plausible explanation for these shifts is the
evolution of the chemical industry which focused,
globalized and consolidated during this time period.
Some of the biggest restructuring in the chemi-
cal industry since the 1920s occurred during the
1990s (Alperowicz, 2014). Industry concentration
increased during the 1991−2000 period with 2,866
mergers, divestitures, and asset sales—in compari-
son there were only 931 such corporate events in the
prior decade.30 These transitions may have shifted
the drivers of alliance formation. The need to tap
international markets may have spurred alliances
with new local firms,31 and consequently, the impor-
tance of trust (as evidenced through repeated ties)
in renewing existing partnerships may have dimin-
ished. Increases in ties for leading firms coupled
with consolidation would lessen the diminishing
impact of centrality originally observed by APM.
Consolidation may also have resulted in the acqui-
sitions of existing alliance partners (e.g., Yang, Lin,
and Peng, 2011), thus making relational embed-
dedness a predictor of future acquisitions rather
than alliances. Finally, in a maturing industry, firms
may have already accrued sufficient information on
the performance of partners from previous partner-
ships, thus making the mere fact of having had a
previous alliance a poor predictor of future partner-
ships (e.g., Holloway and Parmigiani, 2014).32

All of these findings reinforce the need to eluci-
date scope conditions for findings generated in any
research context. Researchers should be explicit
about comparing their models and contexts against
predecessor papers, seeking to isolate changes
to one issue and contrasting results. Through

30Source: SDC Platinum, where both acquirer and target firm are
in the chemical industry.
31This was also the period during which several Asian chemical
firms from India and China came into prominence and investment
opportunities opened up in Eastern Europe.
32Our thesis about industry shifts in this decade in the chemical
industry was further substantiated when we re-ran our probit
regressions dropping successive years from the beginning of the
sample (i.e., 1992−2000, 1993−2000… )—we lose effects for
variables such as Combined Centrality immediately. In contrast,
when we ran the regressions dropping years from the end of the
period (i.e., 1991−1999, 1991−1998… ), we retain effects till
our sample shrinks by ∼50 percent. Thus, the industry shift and
evolution of alliance drivers likely became more pronounced as
time progressed.
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incremental, staged variations, such as we have
demonstrated here, researchers can investigate and
develop mid-range theories with contingencies
rooted in underlying characteristics, such as uncer-
tainty and concentration, of particular industries at
particular times.33

Implications of model choice

The use of ERGMs, a methodological advance not
available earlier to network researchers, to address
shortcomings inherent in dyadic regression analy-
ses also enabled us to disentangle traditional net-
work embeddedness measures while allowing for
better specification of network formation mech-
anisms. While combined centrality has become
a well-established measure to connote positional
embeddedness in our literature, we have argued that
it conflates different mechanisms such as transitiv-
ity, preferential attachment, and homophily. In con-
trast, ERGMs more clearly identify and separate the
positional and structural characteristics by model-
ing preferential attachment (represented by gwde-
gree) and transitivity mechanisms (represented by
the nested local network structure components
gwesp, and gwdsp) while simultaneously modeling
other mechanisms such as interdependence.

Empirically, we observed the effect of shift-
ing from a probit model to an ERGM when our
analyses are isolated to the 1991−2000 chemical
industry and we vary the modeling technique (com-
pare Table 5, Columns B and C). For network
embeddedness predictors, the full specification of
all three measures in our ERGM generates a pos-
itive result for structural embeddedness (Row 3)
as well as a positive curvilinear result for posi-
tional embeddedness (Row 1). Thus, separating
the traditional Combined centrality construct into
its constituent parts allows for more precise test-
ing of specific mechanisms. We demonstrate that
that the structural mechanisms spurring alliance
formation are nodal (degree/visibility) and trian-
gular (transitivity/common ties) in the 1991−2000
chemical industry. Broader network constructs like
gwdsp do not predict alliance formation. This out-
come is consonant with recent work suggesting that

33While the practice of pooling multiple industries to obtain
generalizability is common, we caution against this approach. In
post-hoc analyses, we found that pooling our data across both
industries obscured context-specific findings (results available
from authors on request).

arguments premised on multistep information flows
between organizations are often unrealistic (Ghosh
and Rosenkopf, 2015).

Our most important theoretical implications
focus on positional and relational embeddedness.
Using the better-specified ERGMs allows us to
separate these mechanisms effectively, which vary
with industry context (Table 5, Rows 1 and 2,
Columns C and D). For positional embedded-
ness, alliance formation for firms in the chemical
industry exhibits preferential attachment, as the
coefficient of gwdegree is negative; in contrast,
the coefficient is positive for the semiconductor
industry, suggesting that low degree firms have
higher alliance propensities.34

How can we explain these divergent effects when
a cursory examination of the alliance networks in
both industries both present comparable centrality
distributions and visible hubs? We must simulta-
neously consider the differing effects of relational
embeddedness, which is positive in semiconductor
but not significant in chemical. Semiconductor
firms that have low degrees (existing number of
alliance partners) have a higher propensity to ally
while in chemical high-degree firms capitalize
on their positional advantage. Taken together,
semiconductor firms reproduce preexisting rela-
tionships while seeking novel partners, whereas
chemical firms seek partnerships with the most
well-established firms with less regard for prior
relationships.

These differing industry results likely stem from
variation in alliance formation drivers across indus-
tries. The semiconductor industry, characterized
by rapid technological change and distribution of
technological knowledge, manifests higher techno-
logical uncertainty and lower concentration. Here,
entrepreneurial (read low degree) firms may be able
to forge alliances based on the potential value of
their technological capabilities, such as the design
capabilities of fabless semiconductor firms that
came to the fore during our study’s time frame. Even

34In additional analyses (available on request), we also compared
ERGM results for the semiconductor industry with probit regres-
sions in the same industry (i.e., varying only the method while
holding the context and the time period constant). While effects
for Geographic similarity and Previous alliances were significant
and consistent, and that for Technical similarity was insignificant
and consistent between the two models, effects for the other con-
structs differed dramatically. This further underscores the risks of
relying solely on traditional regression methods to test alliance
formation mechanisms.
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highly embedded incumbent firms in such con-
texts may frequently need to partner with periph-
eral or unconnected firms to tap into technologies
that could become disruptive or to establish stan-
dards of products and processes they develop. In
contrast, the chemical setting, characterized by con-
solidation and global market expansion, manifests
lower technological uncertainty and higher concen-
tration, favoring well-established (read high degree)
firms.

Of course, while we have identified the benefits
of using ERGM techniques, such an approach is
not without its limitations. For instance, ERGM is
known to be unstable to missing data and model
misspecification issues (commonly referred to as
“model degeneracy” problems). ERGM statistical
packages are also not widely available across
platforms (to the best of our knowledge, “R” is the
only statistical programming toolkit that provides
reasonably documented ERGM routines), and are
undergoing frequent changes, thus requiring ERGM
users to invest in additional learning. Finally, while
ERGM provides a robust method to estimate
whether specific tie generation mechanisms under-
lie an observed network at a point in time, modeling
evolutionary processes where these mechanisms
may shift over time is less straightforward. How-
ever, in balance, as we demonstrate in this article,
the benefits of ERGM outweigh both its limitations
and those of traditional network modeling methods.

CONCLUSION

Our effort to replicate the baseline analyses of
Ahuja et al. (2009) explored the impact of shifts in
time period, modeling approach, and industry con-
text on the well-established predictors of alliance
formation in the strategy literature. As a result,
we identified two critical implications for future
research in this domain. First, and perhaps not
unexpectedly, context does matter; any choice of
industry and time period represents a particular
stage of an industry lifecycle, and the findings are
likely contingent on underlying characteristics of
the industry’s technology and organization. Future
research must acknowledge these issues and seek
comparability across studies to assess contingencies
effectively.

Second, our use of the newer ERGM technique,
not available earlier to network researchers, enabled
us to unpack traditional network measures and

demonstrate how to improve operationalizations of
the network embeddedness constructs. While the
original explication of positional, structural, and
relational embeddedness set forth the combined
centrality measure as the appropriate representation
of positional embeddedness, our analyses demon-
strated that combined centrality conflates multiple
mechanisms. The mutually exclusive and collec-
tively exhaustive predictors available in ERGMs
allowed us to use standard predictors of prior
ties, common ties, and degree distribution without
violating the assumption of independence across
data and measures in traditional dyadic regressions.
Such an approach, by retaining multiple levels of
analysis in the network regression rather than con-
solidating all measures to the dyadic level, allowed
us to identify divergent mechanisms of alliance for-
mation across contexts.

Accordingly, we argue that the ERGM approach
should become an essential part of the standard
toolkit for future research on alliance formation,
and that alliance researchers should seek to repli-
cate extant findings using this method. In so doing,
studies become more comparable not just via tri-
angulation across a variety of industries and time
periods, but also because the design of ERGMs
avoids customized and equivocal composite net-
work measures. Such comparability benefits our
field by enabling the development of mid-range the-
ory about underlying constructs such as uncertainty
and concentration, which shape alliance network
structure across a wide swath of industry and tem-
poral contexts.
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SUPPORTING INFORMATION

Additional supporting information may be found
in the online version of this article:

Appendix S1. ERGM statistics, specification and
estimation.
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