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Abstract

This paper uses data from the American Mathematics Competitions to examine the

rates at which different high schools produce high-achieving math students. There are

large differences in the frequency with which students from seemingly similar schools reach

high achievement levels. The distribution of unexplained school effects includes a thick

tail of schools that produce many more high-achieving students than is typical. Several

additional analyses suggest that the differences are not primarily due to unobserved differ-

ences in student characteristics. The differences are persistent across time, suggesting that

differences in the effectiveness of educational programs are not primarily due to direct peer

effects.

Keywords: gifted education, unobserved heterogeneity, school quality, semiparametric count

data models, AMC, American Mathematics Competition, mathematics education



1 Introduction

High-achieving students make important contributions to scientific and technical fields,

and educational productivity has been heralded as a vital source of comparative advantage

for the United States.1 It is therefore troubling that the U.S. trails most OECD coun-

tries not only in average math performance, but also in the fraction of students that earn

very high math scores.2 It is yet unclear how best the U.S. might address this significant

shortcoming. It seems obvious that high-quality schools would play an important role, but

several recent papers that examine gifted programs and elite magnet schools have found

further troubling evidence that these schools/programs do not appear to benefit marginal

students.3 In this paper, we examine the questions of whether schools matter for high math

achievement and whether there are many more students in the U.S who would have reached

high math achievement levels in a different environment. We examine the rates at which

different schools produce high scorers in the American Mathematics Competition (AMC)

contests and note that there are substantial differences across seemingly similar schools.

We conduct several additional analyses to investigate whether these differences may be due

to unobserved differences in underlying student ability. The analysis suggests that there

are substantial differences in the effectiveness of schools’ educational programs and that

the high-achieving students we observe are a small subset of those who would have reached

high math achievement levels in a different environment.

The primary data source for our study is the Mathematical Association of America’s

AMC 12 contest. The contest is a 25-question multiple choice test on precalculus topics

given annually to over 100,000 U.S. students at about 3,000 high schools. The primary ad-

vantages of the AMC are that the test is explicitly designed to test depth of knowledge and

1Two notable examples of high-achieving high school students with a large economic impact are Mi-
crosoft’s Bill Gates, who coauthored a computer science paper as a Harvard freshman, and Google’s Sergey
Brin, who finished in the top 55 on the 1992 Putnam Exam. See Hoxby (2002) for a discussion of education
as a source of U.S. comparative advantage in human-capital intensive industries, Krueger and Lindahl (2001)
and Hanushek and Woessmann (2008) for surveys of the empirical literature on education and growth, and
Altonji (1995), Levine and Zimmerman (1995), Rose and Betts (2004), Joensen and Nielsen (2009), and
Altonji, Blom, and Meghir (2012) for evidence on math and the labor market.

2Hanushek, Peterson, and Woessmann (2011) note that “most of the world’s industrialized nations” have
a higher percentage of students reaching advanced levels on the 2006 PISA (Programme for International
Student Assessment) test than does the U.S. On the 2009 PISA math test, just 1.9% of U.S. students
achieved “Level 6” scores, whereas the OECD average was 3.1% and Singapore had 15.6% of its students at
this level. PISA’s reading tests indicate that the U.S. is good at producing students with very high verbal
achievement: the U.S.’s percentage of “Level 6” reading students is well above the OECD average (1.5% vs.
0.8%).

3See Abdulkadiroglu, Angrist, and Pathak (2014), Bui, Craig, and Imberman (2014), and Dobbie and
Fryer (2014).
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high-level problem-solving skills and can distinguish among students at very high achieve-

ment levels. The primary drawback, which will influence how we conduct the analysis, is

that the test is taken by a non-random self-selected sample of students. We examine differ-

ent levels of “high” achievement. Many of our analyses focus on counts of students within

a school who score at least 100 on the 2007 AMC 12. One can think of this as roughly

comparable in difficulty to scoring 800 math SAT, but measured using a more reliable test

that emphasizes greater depth of knowledge.4 We also examine students at a substantially

higher achievement level: those scoring at least 120 on the AMC 12, which puts them well

above the 99.9th percentile in the US population.5 We match AMC schools to data from

the census, National Center for Education Statistics (NCES), College Board, and ACT to

obtain demographic data and other covariates and conduct most of our analyses on the

subsample of public, coed, non-magnet, non-charter U.S. high schools that administer the

AMC 12 and could be matched to the other databases. Section 2 discusses the data in

more detail.

Section 3 begins with our most basic observation: some schools produce many more

AMC high scorers than do other schools with similar demographics. Negative binomial

regressions show that there are a number of strong demographic predictors of high achieve-

ment. For example, a one percentage point increase in the fraction of adults with graduate

degrees is associated with a seven percent increase in the number of AMC high scorers, and

a one percentage point increase in the fraction of the population that is Asian-American is

associated with a two percent increase. But the most important finding is that the demo-

graphic effects are far from sufficient to account for the observed differences in the rates at

which different schools are producing high-achieving students. The excess variance param-

eter in the negative binomial model can be thought of as an estimate of the magnitude of

the unobserved multiplicative “school effects” that would be necessary to account for the

observed dispersion. We find that the necessary variance is 0.73 at the 100-AMC level and

2.18 at the 120-AMC level; e.g., it is as if a school that is one standard deviation above

average produces students who score at least 100 on the AMC 12 at a rate that is 85%

(≈
√

0.73) greater than average.

Section 4 examines the distribution of the unobserved “school effects.” The motivation

for examining these distributions, rather than being satisfied with knowing the variance, is

4800 is the highest possible score on the math SAT and is achieved by approximately one percent of
SAT-takers.

5One noteworthy student who reached this level five years earlier is Facebook’s Mark Zuckerberg, whose
name appears on the AMC’s 2002 distinguished honor roll for having scored 121.5.
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similar to that for the literature on the heterogeneity in teacher value-added: it is useful

to know, for example, if the variance seems to be due to the existence of a subset of low-

performing schools in which students are very unlikely to become AMC high scorers, or if

it is due to a small (or big) set of schools that produce high-scorers at much (or slightly)

higher than average rate.6 Counts of high-achieving students are inherently small, so one

cannot precisely estimate a school fixed effect for any one school. But one can estimate

the distribution of school effects across schools.7 Formally, we implement a nonparametric

estimator for the distribution of the unobserved component in a model in which schools

produce high scorers at Poisson rates which differ due to observed school and local area

characteristics and an unobserved component.8 We estimate that many schools are produc-

ing high scorers at a well below average rate, e.g., 32% of schools appear to be producing

high scorers at less than one-half of the average rate. And a striking finding is that there

appears to be thick upper tail of schools that produce AMC high scorers at many times the

average rate. For example, we estimate that more than 11% of schools are producing AMC

high scorers at more than twice the rate one would expect given their demographics and

1% of schools are producing AMC high scorers at more than five times the average rate.

The “school effects” we estimate can be thought of as indexes that conflate multiple

factors that lead to heterogeneity in outcomes. They will reflect differences in causal ef-

fects across school environments. But they will also reflect other less interesting sources of

outcome heterogeneity: differences due to potentially observable demographic differences

not captured by variables in our dataset; unobservable differences in student ability due

to location decisions of parents of gifted children; and even less interestingly, differences

in the fraction of the high-achieving math students at each school who take the AMC 12

test. Section 5 presents several additional analyses aimed at assessing whether effects of the

less interesting types are likely to account for a substantial portion of the heterogeneity we

have found. To examine the effects of heterogeneity in participation rates, we compare the

magnitudes at the AMC 100 and AMC 120 levels. (We argue that selection into test-taking

is not important at the higher level.) We explore the importance of unobserved heterogene-

6See, for example, Gordon, Kane, and Staiger (2006) for plots of the estimated distribution of teacher
qualities obtained by shrinking estimated teacher fixed effects to take out purely random variation.

7Although we have AMC data at the individual level, we only observe some coarse demographic variables
and hence have chosen to estimate school effects rather than, for example, multilevel models as in Skrondal
and Rabe-Hesketh (2009).

8The method involves a series expansion similar to that of Gurmu, Rilstone, and Stern (1999) but
relying on a different characterization of the likelihoods designed to be more appropriate for potentially fat-
tailed distributions. Appendix I contains more detail on the estimation along with Monte Carlo estimates
illustrating the performance of the estimator.

3



ity in student populations in two ways: we examine counts of students achieving perfect

scores on the math sections of the SAT and ACT which should be similarly affected by

demographic differences but less sensitive to differences in the depth of knowledge devel-

oped by the school environment; and we compare school effects estimated from counts of

all high-scoring students with school effects estimated from counts of high-scoring girls. A

motivation here is that unobserved demographic differences that impact location decisions

should not differ much between high-ability male and female students, whereas differences

in school environments, such as whether a school’s high-level math programs are female-

friendly, would lead to gender-related differences.9 Taken together, these analyses provide

evidence that unobserved heterogeneity in performance across schools is much greater than

can be explained by student heterogeneity or selection into taking the test.

Section 6 presents several analyses intended to provide insight into the mechanisms that

may be making some schools more effective than others. We begin by exploring one very

simple mechanism: there could be large effects on the number of students with upper-tail

scores if some schools increase their students’ scores by a constant and the distribution of

scores has a thin-tailed distribution. We look for such a mechanism by including school-

average SAT/ACT scores as a covariate. We find little effect, suggesting that our school

effects reflect something salient for high-achieving students in particular. Although we

have discussed our school effects as indexes reflecting heterogeneity in outcomes, it is more

accurate to think of them as measures of the strength of the forces needed to produce the

observed degree of clustering of high-scoring students. Such clustering could be generated

by unobserved heterogeneity in school quality, but it could also be an artifact of strong

peer effects among high-scoring students. Using a formal model similar in spirit to that

of Ellison and Glaeser (1997), we note that, with a single observation on each school, one

cannot distinguish unobserved heterogeneity in school quality from peer effects as a source

of such clustering. However, one can estimate the relative importance of school quality vs.

peer effects with multiple observations per school if school quality is persistent and peer

effects are not felt across periods. We present such an estimate derived from comparing the

agglomeration of 2007 high scorers to the coagglomeration of 2007 and 2003 high scorers. It

suggests that differences in school environments are not primarily due to within-cohort peer

effects. Finally, we present some qualitative observations on some of the most unexpectedly

successful schools. Among our observations are that a number of these schools have a long-

serving “star” teacher.

9Ellison and Swanson (2010) document that, at the highest performance levels, female high-scorers are
drawn from a much smaller set of super-elite schools than are male high-scorers.
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Our work is related to a number of literatures. One is the literature on the effective-

ness of elite schools and gifted programs. Recent papers by Abdulkadiroglu, Angrist, and

Pathak (2014), Dobbie and Fryer (2014), and Bui, Craig, and Imberman (2014) examine the

effects of elite magnet schools and gifted programs on high ability students using regression

discontinuity designs. Their common finding that the programs have no impact on the test

scores of marginal admitted students is striking given that one might have expected the

students to benefit from superior peers even absent superior instruction and has attracted

a great deal of attention. Our contrasting suggestion that schools are important for gifted

students could potentially be reconciled in various ways: the tests we study assess more in-

depth understanding and problem-solving skills; effects of programs on marginal admitted

students could be very different from the effects on students in the opposite tail; or it could

be that the particular gifted programs studied in the previous papers are not very effective

but the programs of many other schools in our sample are.10

A second related literature on gifted students is that on low-income students with high

SAT/ACT scores missing from the student bodies of elite colleges. Several authors have

noted that there are many such students and a proximate cause is that many low income

high school students with high SAT/ACT scores do not apply to elite colleges.11 Hoxby and

Avery (2013) provide the most comprehensive analysis and document that such students

are disproportionately found in areas where they are unlikely to have the opportunity to

attend a selective high school, to study with teachers who attended selective colleges, and

to interact with many high-achieving peers. Our findings are somewhat analogous in that

we are suggesting that there are many students who could have achieved an educational

distinction in a different environment. One difference, however, is that (by focusing on

schools that offer the AMC) we are focusing on missing students from within a set of

relatively high-achieving high schools. Presumably, the set of students identified in the

papers noted above would be a substantial additional source of students who could have

been high math achievers.12

There is a much larger literature on quality differences across schools affecting average

achievement. This includes many papers examining how inputs affect achievement and

10Angrist and Rokkanen (2012) examine additional test scores of admitted students and argue that Boston
Latin School also appears to have little impact on the performance of students farther from the cutoff on
state proficiency tests.

11See Bowen, et al. (2005), Avery, et al. (2006), and Pallais and Turner (2006).
12Two other relevant literatures on high-achieving students are the literature on cross-sectional differ-

ences in high achievement (e.g., Hanushek, Peterson, and Woessman (2011), Pope and Sydnor (2010), and
Andreescu, et al. (2008)), and the literature on how proficiency-focused reforms may harm high-achieving
students (e.g., Krieg (2008), Neal and Schanzenbach (2010), and Dee and Jacob (2009).)
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papers that focus on differences in productivity related to competition, vouchers, char-

ter schools, etc.13 Many of these papers control for selection effects and estimate causal

effects relevant to school reform debates. The smaller literature examining residual vari-

ance is more closely related.14 These papers generally find that unobserved school-level

heterogeneity is much less important than are student and neighborhood characteristics

for predicting test scores, graduation rates, and labor market outcomes. Our findings that

schools appear to matter a great deal to high-achieving students may sound conflicting, but

could be reconciled in several ways: it has been noted previously that differences that are

small relative to within-school variation and/or demographic differences can still be large

in absolute terms; environmental differences that produce small differences in mean scores

could have a magnified impact when one looks at tail outcomes; or there could be more

true heterogeneity in school quality relevant to high math achievement.

Our methodology is related to the literature on measuring agglomeration, including pa-

pers such as Ellison and Glaeser (1997), Marcon and Puech (2003), Duranton and Overman

(2005), Bayer and Timmins (2007), and Ellison, Glaeser, and Kerr (2012). Whereas many

indexes are motivated as a scalar representation of the strength of agglomerative forces, we

quantify agglomerative forces by estimating a distribution of effect sizes. Our discussion of

peer effects and unobserved heterogeneity is also related to Graham (2008), which derives

general conditions under which peer effects and unobserved heterogeneity can be separately

identified by looking at residual covariances and includes an application to peer effects in

the STAR experiment.

2 The American Mathematics Competitions

The American Mathematics Competitions is the largest and most prestigious series of math

competitions for U.S. high schools students. The AMC 12 contest is a 25 question multiple

choice test administered in over 3,000 U.S. high schools. About 100,000 students partici-

pated in 2007.15 Our primary motivation for examining AMC data is that we feel that the

AMC 12 is superior to any other test administered at comparable scale in its reliability and

13See Coleman (1966), Hanushek (1986), Card and Krueger (1992), Hoxby (2000), Hoxby (2000, 2002),
Angrist, et al. (2002), Hoxby, et al. (2009), Abdulkadiroglu, et al. (2011), and Dobbie and Fryer (2013).

14See Jencks and Brown (1975), Solon, Page, and Duncan (2000), Rothstein (2005), and Altonji and
Mansfield (2010).

15The AMC 12 is the first stage of a series. In 2007, about 8,000 AMC 12 high scorers were invited to
take the AIME. About 500 AMC/AIME high scorers were then invited to take the USAMO. Finally, about
fifty high scorers from the USAMO were invited to a summer training program, from which six students
were chosen to form the U.S. team for the International Mathematical Olympiad.
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validity for identifying students at very high levels of math achievement.

Regarding reliability, the most natural comparison is to the math portion of the SAT

reasoning test. We regard the SAT as not reliable above the 97th percentile: when students

who score an 800 (a perfect score which is the 99th percentile) retake the math SAT, only

15% score 800 again and their average retake score of 752 is a 97th percentile score. Scoring

100 on the AMC 12 can be thought of as roughly comparable in difficulty to scoring 800 on

the SAT. Scoring 120 on the AMC 12 can be thought of as at least an order of magnitude

more difficult and places students above the 99.9th percentile of the SAT population. In

a striking contrast to the SAT, the AMC 12 remains well calibrated even at the higher of

these levels.16

Regarding validity, we would argue first that a casual inspection of the tests strongly

suggests that the AMC 12 is superior to the SAT as a test of important math skills. A

student is awarded an 800 score on the math SAT only if he or she can work through 54

relatively straightforward problems in 70 minutes without making a single mistake. The

AMC 12 consists of 25 problems on a wide range of precalculus topics. They generally

require greater depth of knowledge and problem solving skills than SAT questions. To

score 100 on the AMC 12, a student need only solve 14 of the 25 problems in 75 minutes.

To give a sense of what this entails, Figure 3 in the Appendix contains questions 13 through

20 from the 2007 AMC 12. Questions are arranged in increasing difficulty, so students will

probably need to solve at least two or three of these problems to score 100. Scoring 120 on

the AMC 12 is much harder. It requires answering at least 19 questions correctly. Hence,

it requires that students be able to work much more quickly and solve essentially all of the

questions shown in the Figure.

Statistical evidence of validity can also be provided by examining how high AMC scorers

do when taking other tests. To develop evidence on how well AMC scores predict success

on SAT-style tests, we obtained AMC and SAT scores for 195 quasi-randomly selected

MIT applicants. Table 1 reports the mean score and the fraction of 800’s that students

obtained when they first took the math SAT as a function of their 2007 (11th grade) AMC

12 score.17 The Table provides striking evidence that the AMC 12 is much more powerful

predictor of students’ ability to achieve a high SAT score than is the SAT itself. To develop

16The AMC 12 is offered on two different dates each year. As noted in Ellison and Swanson (2010),
students who scored 95 to 105 on the first 2007 date and retook the test averaged 103 with a standard
deviation of 11 on the retake. Students who scored 115 to 125 on the first date averaged 119 with a
standard deviation of 10 on the retake.

17The final column contains data from the College Board on how students with an 800 SAT perform when
they retake it.
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evidence on how well AMC scores predict success in a very different important environment

– solving more difficult open-ended problems – we gathered data from two states, Georgia

and Massachusetts, which have state-level competition series that start with a broadly

administered multiple choice test and culminate with tests that ask students to solve more

open-ended problems and write some formal proofs.18 Georgia’s 2007 contest started with

1,440 students from 88 schools. At the end, three students were named as winners and 27

were awarded Honorable Mention. Despite these very long odds and the proof orientation

of the final test, 15 of the 20 students at participating schools who had scored at least 120

on the 2007 AMC 12 made the top 30.19 The 2007 Massachusetts contest started with

2,000+ students from roughly 60 schools and 20 students were named as winners. Students

scoring at least 120 on the 2007 AMC 12 could not possibly have succeeded at a comparable

rate on the Massachustts contest – there were 47 such students at participating schools.

But the slightly more select sample of 22 students who had scored at least 129 on the AMC

12 were again remarkably successful given the long odds and very strong field: 12 of the 22

finished in the top 20. We conclude that the AMC 12 does remarkably well in identifying

students with high-level math skills.

The primary drawbacks of the AMC 12 as a research tool are that it is only administered

in nonrandom subset of U.S. high schools and that students self-select into participation.

The 3,000 AMC-offering schools are only about 10% of the total number of U.S. high

schools. The fraction of high-achieving U.S. high school students who can take the AMC

12 in their high school is much higher than 10% – schools’ decisions to offer the AMC 12

are highly correlated with student demographics – but still probably only about 50%.20

The lack of universal administration makes it impossible for us to provide estimates of

the number of high-achieving math students nationwide. However, we can work around

this drawback by focusing our analyses on heterogeneity in achievement within the set

nonmagnet, noncharter, coeducational public schools that administer the AMC 12.

The second drawback of the AMC is more problematic: some schools may be more

aggressive than others in encouraging their best math students to take the AMC 12. This

will be a source of apparent performance differences even when educational environments

are identical. The main thing we will do to try to get a sense for how this may be affecting

our results is to perform some analyses both on the set of students scoring 100 on the AMC

18See Figure 4 in the Appendix for two sample problems from Georgia’s 2007 contest.
19Each of the three winners scored at least 132 on the AMC 12.
20One statistic we can provide to support this is that 58% of the students who were named Presidential

Scholar candidates (an honor based on having high combined math plus reading SAT or ACT scores)
attended a high school that offered the AMC 12.
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12 and on the set of students scoring 120 on the AMC 12.

3 Data

The 2007 AMC 12 contest consisted of two separate tests administered on different dates:

schools could give the “12A” exam on February 6, 2007 and/or the “12B” exam on February

21, 2007.21 Our raw data are at the individual level data and contain the test date (A or

B), score, student ID, school ID, grade, gender, and home ZIP code. For most of our

analyses we work with school-level aggregates. We merge the AMC data with several other

databases. First, we match the schools to the schools in the NCES Common Core of Data

(CCD) and Private School Survey (PSS) by school name, city, and state.22 Second, we

obtain additional demographic variables by matching the schools to census data on the

ZIP code in which the school is located.23 Finally, we matched the schools to a database

containing counts of SAT/ACT takers, average SAT/ACT scores and counts of students

with perfect scores by school.24

Our primary variables of interest will be counts of students in each school scoring at

least 100 or 120 on the AMC 12.25 In defining these variables we use the count of students

scoring at least the cutoff on the 12A contest if the school administered the 12A and the

count scoring at least the cutoff on the 12B exam if the school offered only the 12B.26 In

21The primary motivation for having to test dates is to facilitate the participation of schools that may be
on vacation or have some other conflict with one date. About 64% of U.S. schools administer only the 12A
exam, with 28% administering only the the 12B, and 8% administering both.

22The AMC school IDs are usually a school’s CEEB code. We obtain the school name, city, and state using
the CEEB search program on the College Board’s website. Of the 3,730 schools with numerical CEEB codes
in the AMC data, 3,105 were matched to schools in the NCES data. 311 of the unmatched 625 schools do
not appear in the NCES data because they are not in the U.S. A further 160 could not be matched because
the AMC school IDs were not valid CEEB codes. The remaining 154 unmatched schools will include among
others, private schools that do not appear in the NCES survey data because private schools are not required
to fill out the PSS. Among the matched schools, a further three were dropped because they were missing
covariates used in the estimations described below.

23Such data were available for 3,021 of 3,105 AMC schools.
24We drop schools from the sample if we are unable to match to the SAT data. We also drop if the ACT

data are missing and the school is located in a state where more than 20% of students take the ACT, or if
the SAT data are missing and the school is located in a state where more than 20% of students take the
SAT. We drop all data from Arkansas, Illinois, and Wyoming, where all ACT data are missing. A total of
157 schools are dropped for one of these reasons.

25The AMC 12A and 12B are not necessarily identical in difficulty. To control for this, we adjust the
AMC 12B cutoffs such that, within the sample of 2,286 students who took both exams, the count of students
scoring above 100 on the 12A is equivalent to the count of students scoring above the adjusted cutoff on the
12B. We perform a similar adjustment for the 120 cutoff. Based on this adjustment, we use 12B cutoffs of
108 and 123 as equivalent to 100 and 120 on the 12A.

26Note that we do not count students from a school that offered both the 12A and the 12B if they did not
participate in the 12A and then scored above the cutoff on the 12B. We count in this way to be conservative
in measuring heterogeneity: schools that administer the AMC 12 on both dates are disproportionately high-
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our analyses using SAT/ACT data we use both school-average scores and the number of

students with perfect scores. In defining these variables, we use a student’s SAT score if

the student took the SAT and the ACT score if the student did not.27

Most of our analyses will be run on the set of public, coed, nonmagnet, noncharter

schools that administered the AMC 12. Eliminating magnet schools is important to make

it feasible to control for the quality of the student population using available demographic

data on the school and its ZIP code. In addition to dropping 800 schools listed by the

NCES as being private, non-coed, magnet, or charter schools, and three schools missing

NCES data on school demographics, we dropped an additional 76 schools after a manual

examination: we examined all schools that were among the 200 largest positive outliers

in preliminary regressions of the count of AMC and SAT high scorers on demographic

variables, as well as schools outside the 1st to 99th percentile range in percent of female

students, and dropped schools that offered a special program that seemed likely to attract

high-achieving math/science students from outside a neighborhood attendance area.

Note that in aggressively dropping schools with magnet-like features, we are omitting

many schools with programs explicitly designed to promote high math achievement. Hence,

while our inability to eliminate all self-selection is a factor that will lead us to overstate the

prevalence of high-achieving schools, our data construction also has a potentially strong

bias working in the opposite direction. For example, we drop Rockdale County HS in

Conyers, GA from our dataset because it houses a school-within-a-school, the Rockdale

Magnet School for Science and Technology, which enrolled about 40 students per grade in

2007. However, even if one were to think of these students as the 40 best in the entirety

of Rockdale County, the school’s performance would be impressive. The entire county’s

population is only about 85,000 and given its demographics (e.g. majority free/reduced

lunch, 60% African American, 2% Asian American), the three AMC 12 high scorers from

the school in 2007 are about 10 times as many as one would have expected to find in the

entire county. And the fact that the school has special programs makes it all the more

plausible that features of the school environment are responsible for this success.

Table 2 contains summary statistics for the merged database of 1,984 sample schools

achieving schools and we want to eliminate any advantage they may obtain from increasing participation
by offering both test dates.

27We convert ACT scores to SAT equivalents using SAT/ACT concordance data from Lavergne and
Walker (2001), which relied on 1999/2000 data, and Dorans (1999), which relied on 1994-1996 data. Each
source specifies a range of SAT scores corresponding to each ACT score. We construct an implied SAT
equivalent for each source using their tables directly, and take the average of the implied scores across
sources to generate our SAT/ACT correspondence. Results are not sensitive to the methodology. One
additional school is dropped because the school-average ACT score in the SAT/ACT database is equal to 4.
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offering the AMC. The average school has 0.8 students score at least 100 on the AMC 12

and 0.11 students score at least 120.28 The number of female high scorers is substantially

lower. Relative to the average public, non-charter, non-magnet, coed high school in the

U.S., the average school offering the AMC is larger, has more Asian-American and fewer

black and Hispanic students, is less likely to receive Title I funding, and has fewer students

qualifying for the free lunch program. Sample AMC schools are also located in wealthier,

more urban ZIP codes with more highly-educated adults. As expected given school and

region demographics, AMC schools also perform better than the average U.S. public school

on the SAT math, having higher mean scores and more students with perfect scores.

4 Differences in High Math Achievement Across Schools

In this Section, we bring out two basic facts. There are large systematic differences in

the rates at which different schools produce high math achievers related to the schools’

demographics. And there are also large differences among seemingly similar schools.

4.1 Achievement gaps

In this section we explore the magnitude of various achievement gaps among high-achieving

math students by examining the relationship between the number of high-AMC scorers in

a school and its demographics. The first column of Table 3 presents coefficient estimates

(with standard errors in parentheses) from a negative binomial regression with the number

of students in a school scoring at least 100 on the AMC 12 as the dependent variable.

The estimates indicate that several observable characteristics of a school/neighborhood are

strong predictors of the number of high math achievers that a school will produce. Parental

education is very important: a one percentage point increase in the fraction of adults with

bachelor’s and graduate degrees increases the expected number of AMC high-scorers by 2.5

and 7.0 percent, respectively. Racial and ethnic composition also matters. The estimates

suggest that a one percentage point increase in the Asian-American population increases

the expected number of AMC high scorers by 1.8 percent. We also find that there are fewer

high AMC scorers in schools that have more Hispanic students and those that have more

low-income students qualifying for the free lunch program.

One demographic variable that would be significant in most regressions of school-mean

28In the full set of 3,105 schools that we matched to the NCES data the mean number of students scoring
at least 100 on the AMC 12 is 0.93, reflecting that the dropped schools (which are mostly private, magnet,
or magnet-like) have more high scorers per school.
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standardized test scores on demographics that does not have the expected effect here is that

the number of AMC high scorers is not higher in higher income areas. Several potential

explanations for the lack of an income effect are possible; e.g., it could reflect nonlinearity

in the income-AMC relationship (AMC-participating schools are disproportionately located

in upper income areas) or it could be due to a selection effect with participating schools in

low-income areas being highly nonrepresentative.29

4.2 Magnitudes of differences among seemingly similar schools

In this Section, we document that there are also large differences among seemingly similar

schools. One way to do this is via the negative binomial regression estimates. One justifi-

cation for the negative binomial model is if the number of high scorers in school i is Poisson

with mean eXiβui, with ui being a multiplicative gamma-distributed unobserved shock to

a school’s production rate that has mean 1 and variance α.30 For example, a school would

have a ui of 0.5 if each of its students were only half as likely to score 100 on the AMC 12

as were students at the average school with comparable demographics, and a ui of 1.5 if its

students were 50% more likely to succeed than would be expected given the demographics.

In our negative binomial regression of the number of students scoring at least 100 on the

AMC 12 on school demographics, the estimated variance of the multiplicative random shock

is α̂ = 0.73. A variance of 0.73 corresponds to a standard deviation of 0.85, i.e. a school

that is one standard deviation above average is producing AMC high-scorers at 185% of

the average rate and a school that is one standard deviation below average is producing

AMC high scorers at just 15% of the average rate. For the variance to be this large there

must be a substantial number of schools producing AMC high scorers at a small fraction of

the average rate and/or a number of schools producing AMC high scorers at two or more

times the average rate.31

We conclude that demographic differences account for a substantial portion of the vari-

ation across schools in the number of students who achieve high AMC scores, but that there

are also substantial differences across seemingly similar schools.

29The income effect becomes smaller in magnitude but remains negative and significant if we drop the
Title 1 and free lunch variables.

30This model is sometimes referred to as the Negbin 2 model. See, e.g., Cameron and Trivedi (1986) and
Greene (2008) for a discussion of negative binomial functional forms.

31The estimate is highly significant and a likelihood ratio test rejects the Poisson alternative at an ex-
tremely high significance level.
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5 Distributions of “School Effects”

We noted above that the negative binomial model can be regarded as providing an estimate

of the variance of the unobserved school effects that we would need in addition to the

demographic differences to reproduce the observed heterogeneity in the counts of AMC

high scorers. Excess variance, however, can take many forms: it may be due to a set of

underachieving schools that produce very few high scorers, or to a small (or large) set of

extreme (or not so extreme) overachieving schools, etc. In this Section, we provide estimates

of the distribution of school effects that would lead to the distribution of outcomes observed

in the data. One observation is that the distribution includes a thick tail of schools that

produce many more AMC high scorers than one would expect given their demographics.

Suppose the number of AMC high scorers in school i, yi, is distributed Poisson (λi),

where λi = eXiβui, Xi is a vector of observable characteristics, and ui is an unobserved

“school effect” with a multiplicative effect on the Poisson rate. We assume that the school

effect ui has an unknown density f . Appendix A1 describes a methodology for estimating

both the coefficients β on the observable characteristics and the distribution f of the un-

observed school effects. In a nutshell, we estimate the density via a series estimator: we

model f(x) as a product of a gamma-like term, xαe−x, similar to that used in the negative

binomial model and an orthogonal polynomial expansion, note that different coefficients on

the polynomial terms produce different likelihoods of seeing 0, 1, 2, etc. high scorers, and

use maximum likelihood estimation to find a density that comes closest to matching the

observed frequencies of the outcomes conditional on the demographics.

We estimate the model on the same dataset as the negative binomial regression of the

previous Section: we use the count of students scoring at least 100 on the AMC 12 as the

dependent variable and include the same set of demographic controls. The second column

of Table 3 reports the estimated coefficients on the demographic controls. They are similar

to the negative binomial estimates in the first column, indicating that those estimates are

robust to the more flexible modeling of the unobserved heterogeneity. Indeed, a comparison

of the maximized log-likelihoods at the bottom of the Table shows that the semi-parametric

model fits the data only slightly better than the negative binomial model discussed in the

previous Section, suggesting that the true distribution of the ui is fairly similar to a gamma

distribution.32

32See Table 5 in the Online Appendix for a comparison of predicted counts under the Poisson, negative
binomial, and semi-parametric models to the actual counts in the data. The Table includes, for each model,
a χ2 test of goodness-of-fit; the tests confirm our visual assessment that the actual data reject the Poisson
model at a high level of significance, but they do not reject the negative binomial or semi-parametric models
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Our primary interest here is in the distribution of the school effects. We note first

in Table 3 that relaxing the assumption that the ui are gamma-distributed increases the

estimated variance from 0.73 to 0.96. The top panel of Figure 1 graphs the probability

density function from which the unobserved school effects ui are estimated to be drawn.

The x-axis corresponds to different possible values of the unobserved effect; e.g., a value

of u = 1 corresponds to a school that produces AMC 12 high scorers at exactly the mean

rate given its demographics, a value of u = 0.5 corresponds to a school that produces high-

scorers at half of this rate, etc. Informally, the curve is like a histogram giving the relative

frequency of the values of u in the population of schools. Substantial differences between

schools with similar demographics are evident: the distribution is not tightly concentrated

around u = 1. Instead, there are a large number of schools that produce AMC 12 high

scorers at well below the average rate; e.g., about 32% are estimated to produce high scorers

at less than half of the average rate. At the other end, there are many highly successful

schools producing high scoring students at 50 to 100% above the average rate. The dashed

lines in the figure are 95% confidence bands for the estimated density.33 They indicate that

the estimates are fairly precise throughout most of the range.

A striking feature of the distribution that is not immediately apparent from the PDF

graph is that the estimates indicate that there is a thick upper tail of extremely successful

schools. The bottom panel of Figure 1 illustrates this better by graphing in bold the CDF

of the estimated distribution for u’s ranging from 2 to 8. The estimates indicate that 11%

of schools are estimated to be producing high scorers at more than twice the average rate

and there is a substantial mass (about 1%) producing high achieving students at more than

five times the average rate for a school with their demographics. The dashed lines again

give a 95% confidence interval. They indicate that the thick tail is a statistically significant

phenomenon.

6 Challenges to the Interpretation of the School Effects

As we noted earlier, the “school effects” we have estimated conflate multiple factors. They

will reflect differences in causal effects of school environments on potential high math achiev-

ers. But they will also reflect other less interesting sources of outcome heterogeneity: de-

mographic differences not captured by variables in our dataset; differences in unobserved

at conventional levels, having p-values of 0.7 in each case.
33The confidence bands in this figure were generated using the parametric bootstrap procedure described

in the Online Appendix. We also generated confidence bands using the nonparametric bootstrap procedure
described there. They are quite similar (though slightly wider).
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student ability attributable to location decisions made by parents of gifted children; and

even less interestingly, differences in the fraction of the high-achieving math students at

each school who take the AMC 12 test. In this Section, we present several auxiliary esti-

mates aimed at providing some insights on the importance of these less interesting sources

of outcome heterogeneity. We will argue that they do not seem sufficient to account for the

variation we have found.

6.1 Selection into test-taking: evidence from extreme high achievers

A portion of the “school effects” we have reported will be due to differences in the AMC 12

participation rates for high-achieving math students from different schools. The primary

way in which we can provide some evidence of whether this could be driving our results is

to provide additional estimates derived from counts of students at even higher achievement

levels.

Students scoring at least 120 on the AMC 12 can be thought of as well above the 99.9th

percentile among college bound students. The unique ability of the AMC 12 to distinguish

among such extreme high achievers makes it possible to examine their agglomeration as

well. We think that there are many students at AMC-offering schools who would have

scored 100 if they had taken the AMC 12, but who did not take the test. We believe,

however, that the fraction of students at AMC-offering schools who would have scored

120 if they took the AMC 12, yet chose not to participate, is much smaller. Hence, we can

compare results obtained with an AMC 12 cutoff of 100 to results obtained with an AMC 12

cutoff of 100 to see if results change when selection into test-taking becomes less important.

Moreover, we believe that the issue of selection into test-taking is small in absolute terms

at the 120 level and hence results with the 120 threshold cannot be greatly affected by

selection into test taking. We believe this for a few reasons. First, scoring 120 on the AMC

12 requires both a great deal of natural ability and a lot of effort dedicated to learning high

school mathematics very well and we feel that it is unlikely that students would have made

the effort if they were not interested in participating in math competitions. We see this

as analogous to saying that there are unlikely to be many high school students who can

throw a curveball and a 90mph fastball who are not participating in competitive baseball.34

Second, we can provide some statistical evidence from looking at repeat test-takers across

34Anecdotally, we have discussed discoveries of star students with many math team coaches. Many have
stories that involve students they had not known showing up to an AMC or some other test and doing very
well. None, however, involved an initial encounter in which a student did something as impressive as scoring
120 on the AMC 12.
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years. Considering the set of students who were among the top 1% of 11th graders on

the 2006 AMC 12 and attended a school that participated in the 2007 AMC 12, we are

able to identify 80% as taking the AMC 12 in 2007.35 Third, we can look at students who

received other math honors and see if they had taken the AMC 12. In the 2007 Intel Science

Talent Search five students were named as finalists on the basis of having done outstanding

mathematical research projects. We know from the published lists of AMC winners that

all five took the 2007 AMC 12. Of the 30 winners or honorable mentions on the Georgia

math contest mentioned earlier, we know that 100% (all 30 of 30) took the 2007 AMC 12.

In the case of the Massachusetts contest mentioned earlier, 17 of the 20 winners took the

2007 AMC 12.36 These comparisons suggest that the number of non-takers in our schools

who would have scored 120 is at most 10% to 20% of the number who did score 120.

The third column of Table 3 presents estimates from a negative binomial regression

using school-level counts of students scoring at least 120 on the AMC 12 as the dependent

variable. The coefficients on parental education, income, and racial/ethnic variables are

all quite similar to those derived from counts of students scoring at least 100 on the AMC

12, though the point estimates are generally larger in magnitude. None of the differences

are statistically significant, with the exception of the coefficient on the fraction of adults

with bachelor’s degrees. The most important estimate for our current purposes is that for

the parameter α̂, the estimated variance of the unobserved school effects ui. The estimate

of 2.18 not only remains highly significant in this environment in which we think selection

into test-taking is unimportant, but is substantially larger than the estimate from the

regression run at the AMC 100 level. This bolsters the case that the earlier results were

not primarily driven by differences in participation rates. And it provides a new striking

result on extreme high math achievement: school environments appear to be even more

important in influencing whether students will reach this very high level.

6.2 Unobserved demographic differences: evidence from SAT/ACT high
scorers

Another portion of the “school effects” we have reported will be due to unobserved demo-

graphic differences. For example, a school may do well because many of its parents with

35This statistic underestimates participation because we have no way to match students who wrote their
names differently or changed schools from one year to the next. To get some sense of what might be done
with manual matching and local knowledge, we manually matched all students from Massachusetts who
scored at least 110 on the 2013 AMC 12A and were still in high school to the 2014 published AMC 12
winners lists. Here, we found 11 of the 12 2013 high scorers on the 2014 winners list.

36The other three winners also participated in the AMC series, but were younger and chose to take the
AMC 10 rather than the AMC 12.
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graduate degrees are Ph.D.s in mathematical and technical fields, or because it attracts

many parents of high-ability children (perhaps because its district has a gifted program

that is highly regarded even if it is not effective). In this Section, we present some evidence

on the magnitude of unobserved demographic differences by estimating school effects using

counts of students achieving perfect scores on the SAT and ACT math tests.37

The fourth column of Table 3 presents estimates from a negative binomial regression

with the same demographic controls as before. The most important estimate for our current

purposes is again the parameter α̂ giving the estimated variance of the unobserved school

effects ui. The estimate of 0.23 is statistically significant at the 0.1% level, indicating that

there are unobserved demographic differences and/or differences in how well the schools

in our sample prepare their students to get very high math SAT/ACT scores. But the

magnitude of the coefficient here is much smaller than the estimates of 0.73 and 2.18 we

had obtained when looking at students scoring 100 or 120 on the AMC 12. This suggests

that the differences in the counts of AMC high scorers are not primarily due to unobserved

differences in demographics or student abilities. One story that would be consistent with

both results is that there might be more heterogeneity in the extent to which schools

encourage students to develop the deeper understanding of high school mathematics needed

to perform well on the AMC: most schools see it as their responsibility to teach students

the math that appears on the SAT but there may be more heterogeneity in whether schools

feel that it is important to offer additional enrichment to gifted math students.

Figure 2 presents estimated distributions of school effects from the data on SAT/ACT

high scorers. The estimated PDF in the top part of the figure has one clear difference from

the PDF of the AMC school effects: the distribution is much closer to being symmetric

about the u = 1 mean whereas the AMC distribution was skewed to the right. One impli-

cation is that there are significantly fewer (14% vs. 32%) schools that are more than 50%

below average in production of high scores on the SAT/ACT than there are at producing

high scores on the AMC. A second striking difference is apparent in the bottom panel:

the SAT/ACT distribution has a much thinner upper tail. In the SAT data, only 2% of

schools are estimated to produce high scorers at more than twice the average rate, and just

0.02% are estimated to produce high scorers at more than five times the average rate. This

contrasts with our earlier estimates that 11% of schools that were estimated to produce

AMC 12 high scorers at more than twice the average rate and 1.0% at more than five

37Recall that we prioritize SAT scores in this calculation, counting a student who took both exams as
having a perfect score if and only if he or she had a perfect score on the math portion of the SAT reasoning
test.
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times the average rate. We interpret this contrast as suggesting that the thick upper tail

in the AMC 12 school effects distribution is not primarily due to differences in unmeasured

student characteristics.

The estimated coefficients on the demographic variables are generally quite similar in

the SAT/ACT and AMC estimations, and the former are again similar regardless of whether

the coefficients are obtained from negative binomial regression, shown in the fourth column

of Table 3, or from our semi-parametric estimation, shown in the fifth column. The fact

that observed demographics affect the AMC and SAT regressions similarly suggests that

unobserved demographic differences may also have similar effects in the two regressions.

Assuming this to be the case, the fact that the estimated α̂ in the SAT/ACT regression

is so much smaller than that in the AMC regression would imply that at most 32% of

the variance in the AMC school effects is due to unobserved demographic differences. We

regard this as a conservative bound because the SAT/ACT school effects reflect more than

demographic differences – we assume that there are idiosyncratic differences in how well

schools prepare students for the SAT/ACT – and these will be part of what is captured by

the SAT/ACT school effects.

6.3 Unobserved demographic differences: evidence from gender differ-
ences

The effects of schools on female students with high math ability are of independent interest

given the underrepresentation of women in mathematical and technical fields. Data on

the female high-scorers also provides another potential source of information into whether

heterogeneous outcomes are driven by unobserved demographic differences: differences such

as whether a district has many parents with Ph.D.s should be similarly relevant to male and

female students (provided there are not large differences in how parents of high ability girls

and boys choose where to live). A number of plausible explanations could be given for why

there might be more agglomeration of high-achieving girls. For example, the dispersion of

school effects would be larger for girls if there is variation in how encouraging/discouraging

schools are toward girls independent of a general school-quality effect. Or peer effects could

be more important for girls. Or the rigor of a school’s classes might be more important for

girls because they are less liable to complain or take supplementary online classes.

The last column of Table 3 reports coefficient estimates from a negative binomial re-

gression with a count of the number of female students scoring at least 100 on the AMC

12 as the dependent variable. Note that the estimated variance of the unobserved school
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effects, α̂ of 0.95 (s.e. 0.29) whereas it was 0.73 (s.e. 0.08) when we examined high-scoring

students of either gender. This indicates that there may be more underlying variation in

the rate at which different schools are producing high-achieving girls. The substantial noise

in the variance estimates from the girls-only sample, however, is such that we cannot say

whether the difference in variances is significant.

7 Mechanisms Behind the School Effects

In the preceding sections we argued that a substantial portion of the idiosyncratic differences

in the rates at which seemingly similar schools produce high-achieving math students are

due to some sort of environmental differences. In this section we present several additional

analyses designed to provide insight into what may be leading to these differences.

7.1 Effects on high-achieving students or generally strong math pro-
grams?

The fact that a school produces many high-achieving students need not imply that the

school’s environment particularly benefits high-achieving students: it could be that the

school just has a generally strong math program. If, for example, the math program at

school i raises the score of each student j from θj to θj + ∆i, then a school with a larger

∆i will have more students scoring above any particular threshold.

To explore whether this appears to be a large part of what is going with our AMC

results, we obtained data on the average math SAT/ACT score for students within each

school, which we think of as reflecting the general quality of the school’s math program (as

well as observed and unobserved demographics). We then repeated our negative binomial

regressions of the number of students scoring at least 100 and at least 120 on the AMC 12

on the same demographics as before plus two additional variables: the average SAT/ACT

score in the school and the SAT/ACT participation rate. We find that the added variables

only moderately reduce the estimated variance of the school effects. In the AMC ≥ 100

regression the estimated variance α̂ drops from 0.73 (s.e. 0.08) to 0.57 (s.e. 0.07). In the

AMC ≥ 120 regression the estimated variance α̂ drops from 2.18 (s.e. 0.50) to 1.60 (s.e.

0.41).

We also perform a similar exercise in our regressions examining counts of students with

perfect SAT/ACT scores.38 In the SAT/ACT scores, including this measure of the general

38The SAT/ACT participation rate is already included in the controls, so in this exercise we simply add
mean SAT/ACT score as a covariate.
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quality of the math program reduces the unobserved heterogeneity nearly to zero – the

estimated variance α̂ drops from 0.23 (s.e. 0.03) to 0.07 (s.e. 0.02).

If one thinks of the difference between the α̂ estimated from the AMC data and the

α̂ estimated from the SAT/ACT data as a conservative estimate of the variance in in the

school effects that controls for both observed and unobserved demographic differences, then

the finding of this section is that this difference is 0.50 (= 0.73− 0.23) when one does not

control for the school-average SAT score and also 0.50 (= 0.57 − 0.07) when one does.39

We conclude that a substantial portion of the “school effects” we have reported seems to

be due to factors that differentially impact high-achieving students.

7.2 Peer effects or differences in school quality?

Although we have sometimes described our estimated “school effects” as reflecting the het-

erogeneous rates at which schools produce high scorers, it is more accurate to describe them

as a quantification of the excess agglomeration of high-achieving students. Agglomeration

will occur if there is unobserved heterogeneity in school “quality.” But it will also be present

if there are peer effects among high-achieving students. In this Section, we provide a formal

nonidentification result, noting that one cannot distinguish peer effects from school quality

differences using data on a single cross section; we then show that a calculation using data

from multiple years suggests that a portion of the school effects we have found are due to

peer effects, but that a larger portion is not.

The impossibility of distinguishing peer effects from school quality differences can be

formalized using standard results on the binomial distribution. First, consider a model

with no peer effects in which schools differ in unobserved quality (which is captured by a

gamma-distributed random variable):

Model 1 Suppose the count of high scorers Yi ∼ Poisson(λi) with λi = eXiβui where

ui ∼ Γ( 1
α ,

1
α).40

Second, consider a model with no unobserved heterogeneity ui in school quality, but with

peer effects between high-achieving students. Specifically, consider a model in which high

scorers are produced in two ways: the school directly produces high-scoring students at

39This comparison is essentially unchanged when we include richer controls for school-average SAT score
and participation. The estimated variance α̂ in the AMC ≥ 100 regression drops from 0.57 (s.e. 0.07)
when only linear controls are used to 0.56 (s.e. 0.07) when cubic polynomials of mean SAT/ACT and
participation, plus an interaction between mean SAT/ACT and participation, are included; the equivalent
change in the SAT/ACT high-scorers regression is from 0.07 (s.e. 0.02) to 0.04 (s.e. 0.01).

40The density of the assumed distribution of the ui is f(u) = (1/α)
1
α e−

1
α
uu

1
α
−1/Γ(1/α).
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a Poisson rate; and high scorers produce additional high scorers via an infection-style

dynamic.

Model 2 Suppose a school directly produces high scoring students at Poisson rate λ(Xi)

during the time interval [0, 1]. Suppose that in each subinterval (t, t+dt), each high scoring

student then present produces another high-scoring student with probability g(Xi)dt. Let Yi

be the number of high scoring students at t = 1.

The two models are well-known to produce counts that follow the negative binomial

distribution.41 As a result, we cannot distinguish between the two models given a dataset

containing a single observation on each school. Conceptually, the argument is similar to El-

lison and Glaeser’s (1997) argument that unobserved comparative advantages and spillovers

can lead to equivalent geographic concentration.

Proposition 1 The distribution of Yi|Xi under Model 1 with parameters (α, β) is identical

to the distribution of Yi|Xi under Model 2 if the direct production rate is λ(Xi) = 1
α log(1 +

αeXiβ) and the peer infection rate is g(Xi) = αλ(Xi).

While the peer effects formulas may seem complicated at first, one can think of them as

saying that it is the ratio of the peer infection rate g(x) to the direct production rate λ(x)

that determines the magnitude α of the excess variance (relative to what one would expect

with only direct production). Using the approximation log(1 + y) ≈ y, one can think of the

formula for the direct production rate as λ(Xi) ≈ eXiβ, which is the same functional form

as in the unobserved heterogeneity model with the unobserved component set equal to its

mean.

A model in which there are both school quality differences and peer effects of the above

form will not produce an exact negative binomial distribution, but the excess variance will

still be related to the amount of heterogeneity and the strength of the peer effects in a

similar manner. Formally, consider a hybrid model in which school i directly produces high

scorers at Poisson rate λi = 1
αp

log(1 + αpe
Xiβui) ≈ eXiβui during the time interval [0, 1],

with ui being a gamma-distributed random variable with mean 1 and variance αu. As in

Model 2, suppose that each high scorer produces additional high scorers at Poisson rate

gi = αpλi and let Yi be the number of high scorers at t = 1. A calculation gives

Proposition 2 In the hybrid model we have E(Yi|Xi) = eXiβ and Var(Yi|Xi) = E(Yi|Xi)+

αE(Yi|Xi)
2 for α = αu + αp + αuαp.

41In Model 1, Yi ∼ NB
(

1
α
, αeXiβ

1+αeXiβ

)
. In Model 2, Yi ∼ NB

(
λ(Xi)
g(Xi)

, 1− e−g(Xi)
)

. See Boswell and Patil

(1970), Section 8.2, or Karlin (1966), p. 345 for proofs.
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Hence, although a negative binomial model will be misspecified, one way interpret an excess

variance parameter α estimated from count data is as a reflection of αu +αp +αuαp, which

consists of a sum of the strengths of the two agglomerative forces plus an interaction term.

Suppose now that we are able to observe two conditionally independent draws Yi1, Yi2

for each school. By “conditionally independent” we mean that the school characteristics Xi

and unobserved quality ui are the same at both t = 1 and t = 2, but that the subsequent

Poisson realizations are independent and that peer infections operate separately within

each time period. Define Y i = Yi1 + Yi2 to be the sum of the counts of high-scoring

students across the two draws. Suppose that with such data one estimates two excess

variance parameters: first, treat the Yit as 2N observations and estimate an excess variance

parameter α; and second, treat the Y i as N observations and estimate an excess variance

parameter α. A result relating the estimates to the relative importance of peer effects and

unobserved heterogeneity is

Proposition 3 Suppose α and α satisfy 0 < α
2 < α < α. Then there is an unique pair

of parameters for the hybrid model (αu, αp) for which Var(Yi|Xi) = E(Yi|Xi) +αE(Yi|Xi)
2

and Var(Y i|Xi) = E(Y i|X1) + αE(Y i|Xi)
2. Specifically, this holds for αu = 2α − α and

αp = 2(α−α)
1+2α−α .

The above result implies that the reduction in overdispersion that results when we

sum two observations per school will let us infer the relative importance of peer effects

and unobserved heterogeneity in generating the overdispersion. Intuitively, if the excess

variance is due to unobserved heterogeneity in school quality that does not change over

time, then the combined data from two years should show just as much overdispersion as a

single year of data. But if the overdispersion is due to within-time-period peer effects, then

the overdispersion will decline as we combine results from multiple years. It should be kept

in mind, of course, that the hybrid model uses extreme assumptions: the unobserved school

effects ui are assumed to be perfectly persistent; and peer effects are not felt across time

periods. In practice, school effects would be expected to be imperfectly correlated across

time as teachers leave, curricula change, etc.; and peer effects may be relevant even between

students who are never in school together via chains where student A infects student B

who later infects student C, etc. An application of Proposition 3 will overestimate the

importance of peer effects if the former factor is more important and underestimate it if

the latter dominates.

To investigate the relative importance of unobserved school effects and peer effects in

the AMC data we combine the dataset we have examined so far with a comparable dataset
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containing counts of the number of students in each school scoring an equivalent of 100 on

the 2003 AMC 12.42 The four-year interval between observations should make observations

roughly conditionally independent in that the sets of students in the high school in the

different test years are nearly disjoint. It should also eliminate many cross-period peer

effects although it is possible that a student who achieved a high score in 2003 influenced a

student still in high school in 2007 either directly if the students overlapped at the school

at some point in 2004-2006 or indirectly via some chain of influence. We hope that the

four-year interval is also short enough so that unobserved school qualities will be similar

across the two years. We restrict our attention to the set of public, nonmagnet, noncharter,

public schools which offered the AMC 12 in both 2003 and 2007. The subsample includes

1,606 of the 1,984 schools in our previous analyses.

We perform two negative binomial regressions on the combined dataset. First, we run

the regression with each school’s 2003 and 2007 high scorer counts being treated as two

independent observations. The estimated α in this model is 0.74, which is similar to that we

found earlier in the 2007 data. Second, we estimated a negative binomial regression with just

one observation per school using the combined count Y i ≡ Yi,2003 +Yi,2007 as the dependent

variable. The estimated α in this model is 0.65. Using the formula in the proposition above

we find that the parameters mutually consistent with the two estimates are αu = 0.56

and αp = 0.12. We conclude that some relatively permanent factor appears to be more

important than within-cohort peer effects (or transitory school quality) in producing the

observed clustering across schools. Again, however, we should emphasize that part of the

permanent factor could be due to some sort of peer effect of a different sort than is normally

considered; e.g., it could be due to a community spirit that develops within a school and is

passed down from one cohort to the next.

Estimates from a regression examining higher-achieving students scoring an equivalent

of 120 on the AMC 12 and from analyses of high-achieving females only are similar. For

the higher achievement threshold of 120 (and its equivalent of 126.5 in 2003), the estimated

α and α are 1.93 and 1.49. The parameters mutually consistent with the two estimates are

αu = 1.05 and αp = 0.43. For female students scoring 100 or higher (111.5 or higher in

2003), the estimated α and α are 0.97 and 0.84. The parameters mutually consistent with

the two estimates are αu = 0.71 and αp = 0.15. Again, in each case, the persistent factor

42As before differences in difficulty across tests make it desirable to adjust the cutoff when using different
tests. We use a cutoff of 111.5 rather than 100 on the 2003 AMC 12A because that makes the fraction of
students scoring at least equal to the cutoff as close as possible to the fraction scoring 100 on the 2007 AMC
12A.

23



affecting performance across years appears to dominate the inferred strength of transitory

peer effects.

7.3 Informal evidence on high-achieving schools

To get additional insight into what upper-tail schools might be doing to promote high math

achievement, we present some informal descriptive evidence about schools that produce an

unexpectedly large number of AMC high scorers.43 Specifically, Table 4 presents data on

20 high-achieving schools along with sample means for these schools and for 20 comparison

schools.44 The high-achieving schools averaged 6.9 students scoring at least 100 on the

AMC 12, whereas the comparison schools averaged 1.0.

One initial comment about the high-performing schools is that most are ordinarily

situated public high schools. One, Oak Ridge HS in Oak Ridge, TN, is located near a

national laboratory. A second, Cardozo HS, is located within New York City, which has

extensive school choice. But most do not seem unusual and more than half are either

the unique comprehensive high school in their school district, or one of just two or three

comprehensive schools in districts that primarily divide students geographically and offer

similar programs at each of their schools.

Comparing the summary statistics we note several differences between the high-achieving

schools and the matched comparison group. One clear difference is that the high-achieving

schools were much more likely to have “star” math teachers.45 In some cases star teachers

seem extremely important (and impressive). For example, for over 40 years Lincoln East’s

Leona Penner taught their top math students for four years in a row from 7th through 10th

grade and followed a special curriculum that focused “more on number theory, problem

solving, logic and proof than the traditional curriculum.”46 Popular press stories suggest

43We selected 20 schools for which E(ui|yi) is largest when we assume that the school effects ui are
independent draws from the distribution estimated under our semiparametric model, and yi, the count of
students scoring at least 100 on the AMC 12, is also assumed to be generated as in the model with the
estimated parameters. Note that in order to have a high posterior mean, observations from the school will
need to be highly informative, which results in these schools tending both to have a high ratio of actual to
predicted high scorers and a large number of high-scorers.

44For each school, we chose as a comparison the school in the same state which was most similar demo-
graphically in the sense of minimizing |Xi −Xj |′|β̂|.

45To define this variable we labeled a school as having a star math teacher if a math teacher’s name
appeared on the school’s Wikipedia page or if Google searches revealed that the math team coach was
active beyond the school environment, was the subject of a glowing portrayal on a nonaffiiated site, or had
won highly prestigious honors such as being on the USA Today All-USA Teaching Team.

46Her middle school math teams won the Nebraska state Mathcounts championship in 26 of her last 29
years and she won a number of other awards (Reist, 2012). Other long-serving stars include Canton’s Martin
Badoian, whose math teams won 19 state championships in one 21 year period and who still teaches at age
86 (Redd, 2004), and Vestavia Hills’ Kay Tipton, who founded their math team in 1975 and went on to win
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a combination of reasons for other stars’ success including knowledge, work ethic, and a

remarkable facility for motivating students to put in extra effort. For example, in dis-

cussing how Honey Creek’s Robert Fischer had managed to coach teams to 17 state and

one national championship in math, 21 state and 4 national championships in chess, and

35 county championships in tennis, USA Today noted that he “starts his day at 5:30 am

and draws 35-50 students for an hour of before-school math; holds Lunch Math through

lunch periods; coaches Mathcounts and tennis after school” (Schneider, 2001).47

There also appear to be differences in the curricular offerings. In looking at the most

standard high school courses, geometry and algebra II, we found that the high-achieving

schools tend to stratify their math offerings more finely: they typically offer three levels of

these classes whereas the comparison schools usually offer two. They are also more likely to

offer multivariable calculus: we found such courses at five of the high achieving schools and

just two of the comparison schools. The final column records observations of additional

special curricular offerings. The “-1” notation marks five schools which offer some type

of additional math course which includes problem solving and/or math competition in its

description. Often the descriptions indicate that the classes offer a variety of types of

enrichment.48 The most striking example is that of the top-ranked school, Vestavia Hills

HS, at which students may in addition to their regular math course enroll each year in

an extra one-half or full-credit “Honors Math Theory” class that meets every day before

school and/or during lunch. The “-2” notation marks schools that offer classes to prepare

students for research competitions, which is something we found at two high-achieving and

one comparison school.

Again, we should note that in dropping schools with magnet-like programs we are

omitting many high-achieving schools where it is easy to identify institutions designed to

promote high achievement. For example, the Rockdale Magnet School for Science and

Technology, which we mentioned earlier, has a number of unusual curricular offerings,

including a two-year sequence covering single and multivariable calculus with linear algebra

and differential equations, a history of mathematics elective, and (in some years) an extra

math team course. The courses were designed by a star teacher, Dr. Charles Garner, and

the Mu Alpha Theta national championship at least 14 times (“Math Teacher Kay Tipton”, 2013).
47Fischer teaches at Honey Creek Middle School, which feeds into Terre Haute South Vigo.
48For example, Georgetown’s Independent Study in Mathematics course description says, “This course will

extend mathematical understanding beyond the Algebra II level in a specific area or areas of mathematics,
such as theory of equations, number theory, non-Euclidian geometry, discrete mathematics, advanced survey
of mathematics, or history of mathematics. This course will provide students opportunities to pursue interest
in mathematical topics via independent research, directed learning, preparation for and participation in
challenging mathematics competitions, and/or mentoring by a mathematics professional.”
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the school also has an active math team.49 In a personal communication, Dr. Garner

attributed his students’ success on the AMC to “the hard work they do to develop these

problem-solving skills” and noted that “very, very few of our students walk into 9th grade

with a love of math!”

In summary, a quick look at the high-achieving schools suggests that multiple factors

may be involved in these schools’ success. In several cases a star teacher may be playing an

important role. And there also seem to be institutional differences including decisions by the

schools to stratify classes more finely and offer additional classes that provide enrichment

and/or contest preparation in addition to the standard high school course sequences.

8 Conclusion

In this paper we have used data on the Mathematical Association of America’s AMC 12

exam to provide a look at high-achieving math students in U.S. high schools. Our most

basic observation is that they are highly agglomerated. Much of this is associated with

strong demographic predictors of high math achievement: even though our sample consists

mostly of relatively high-performing schools in relatively affluent areas we note that both

the presence of Asian-American students and parents with advanced degrees are strong

predictors of which schools will produce high-achieving students. But beyond this we find

that there are also large differences among seemingly similar schools.

As a first step in exploring these differences we estimated the distribution of the unob-

served “school effects” that would be needed to produce the observed patterns. Method-

ologically, we note that this distribution can be estimated (and estimated fairly precisely

in our data) even though almost all schools only have a handful of high-scorers. The most

interesting aspect of the estimated distribution is that it has a thick upper tail. Many

(about 200) of the schools our sample appear to be producing AMC high scorers at more

than twice the expected rate and some (about 20) are producing them at 5 to 10 times the

expected rate.

We have presented a number of pieces of auxiliary evidence to suggest that there are real

differences in school environments. To examine selection into test-taking we take advantage

of the AMC’s ability to identify students at even higher percentiles where we think selection

is not important and note that school effects appear to be even more important. To get some

49Dr. Garner has been active outside his school both with the Georgia Department of Education and in
math competition communities, has won various awards, and written a Calculus textbook and edited several
other books.
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idea of the portion of our school effects which are due to unobserved differences in student

ability we estimated the dispersion in the rates at which the schools in our sample produce

students with high SAT/ACT scores. We found that the variance was only 30% as large.

To the extent that some portion of the SAT school effects are due to differences in school

quality, the message that we are not primarily finding unobserved demographic differences

becomes even stronger. Also, no comparable upper tail is visible in the SAT/ACT data.

Our primary focus is on documenting that there appear to be substantial differences in

the rates at which different schools produce high math achievers. In our final section we

tried to provide some additional evidence into mechanisms that may be involved. Method-

ologically, we bring out how peer effects and differences in school quality can produce

agglomeration patterns that are indistinguishable given data in a single cross-section but

potentially distinguishable given data on both within cohort agglomeration and cross-cohort

coagglomeration. Our estimates here suggest that there are some peer effects especially at

the highest level of students scoring 120 on the AMC 12 (or that a portion of the school

effects are time varying). This may be an interesting result on its own. But, the more im-

portant message is that majority of the effect is something that is a more permanent feature

of schools (although it could also be some other peer effect such as a sense of community

that reproduces itself from one cohort to the next).

Our finding that schools matter for high achievement can be seen as contrary to the

findings of several recent studies that particular gifted programs appear to have little impact

on marginal students. Our view, however, is that there need not be any conflict here. The

previous literature mostly focuses on how elite programs affect marginal students whereas

we are focused on how they affect students at the extreme opposite tail. Our evaluation

metric is also different in that we are focused on in depth understanding and advanced

problem solving skills. Something we have not emphasized much is that there is a potential

complementarity to bridging the gap between their school samples and ours – in dropping

private schools and magnet programs from our sample we have dropped the schools attended

by over 40% of the AMC high-scorers from our sample. Accordingly, getting more of a sense

of whether magnet programs are effective on their most able students would be of great

practical importance.

Our findings about the thick upper tail are intriguing because they suggest that the

US could dramatically increase the number of high-achieving math students it produces.

Of course, this would require that the effects be due to environmental differences and the

environments are something that could be reproduced. But given the importance of high-
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achieving students to the economy and the potential benefits to students we hope that our

paper will spur future research on these topics. The potential gains may also be much

larger than what one sees in the schools we have studied. Ninety percent of US high

schools do not offer the AMC. If we were able to examine the rates at which students in

those schools develop high-level math skills we might have found much larger differences

and many students who might have reached high achievement levels if they had attended

a typical school in our sample.
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AMC 12 scores Prior
80’s 90’s 100’s 110’s 120’s 130’s 140’s 800 SAT

Mean on 1st Math SAT 711 745 773 774 791 793 800 752
% with 800 on 1st SAT 0 19 35 38 65 60 100 15

Sample size 12 32 83 21 32 10 5 —

Table 1: SAT math scores for a sample of students with AMC 12 scores in various ranges

Variable Mean St.Dev.

Count AMC > 100 0.80 1.87
Count AMC > 120 0.11 0.49
Count AMC > 100 female 0.12 0.45
Count AMC > 120 female 0.01 0.11
Number of students 1,452.02 819.90
School frac. Asian 0.07 0.12
School frac. black 0.09 0.14
School frac. Hispanic 0.09 0.13
School frac. female 0.49 0.02
Title I school 0.21 0.41
School frac. free lunch 0.15 0.14
log(ZIP median income) 10.84 0.38
Adult frac. BA 0.20 0.09
Adult frac. grad 0.13 0.09
ZIP frac. urban 0.78 0.32
Count perfect SAT/ACT 1.67 3.59
Average SAT/ACT 526.73 41.79
SAT/ACT participation 221.06 153.53

Table 2: School-level summary statistics

34



Dependent Variable: Count of high scorers in school
Perfect Female

Variable AMC12 ≥ 100 AMC12 ≥ 120 SAT/ACT AMC12 ≥ 100

log(Num. of Students) 1.14 1.13 1.47 1.23 1.22 1.38
(0.10) (0.12) (0.28) (0.07) (0.17) (0.22)

Adult frac. BA 2.50 2.10 6.74 1.34 1.27 3.14
(0.73) (0.78) (1.81) (0.49) (0.49) (1.44)

Adult frac. Grad 7.04 7.32 7.75 5.33 5.29 7.01
(0.54) (0.67) (1.18) (0.35) (0.74) (0.94)

School frac. Asian 1.81 1.80 2.17 2.35 2.36 1.74
(0.28) (0.30) (0.62) (0.16) (0.34) (0.48)

School frac. Black -0.77 -0.60 -1.44 -1.18 -1.26 -1.19
(0.43) (0.44) (1.34) (0.32) (0.36) (1.00)

School frac. Hisp. -1.77 -1.77 -3.26 -0.83 -0.86 -1.55
(0.45) (0.48) (1.43) (0.31) (0.31) (0.98)

log(ZIP median income) -0.70 -0.67 -1.40 -0.18 -0.14 -0.72
(0.15) (0.16) (0.35) (0.10) (0.10) (0.28)

School free lunch frac. -2.26 -2.47 -3.72 -2.56 -2.39 -2.70
(0.59) (0.64) (1.80) (0.44) (0.53) (1.30)

Title 1 school -0.04 -0.04 -0.23 0.02 0.01 0.03
(0.11) (0.11) (0.29) (0.07) (0.07) (0.22)

ZIP frac. urban 0.20 0.20 0.60 0.46 0.49 0.14
(0.24) (0.25) (0.78) (0.18) (0.18) (0.55)

School frac. female -0.30 -0.36 1.86 2.57 2.53 2.77
(2.24) (2.26) (5.94) (1.53) (1.56) (4.69)

log(SAT/ACT 0.95 0.95
participation) (0.10) (0.15)
Constant -2.35 -2.65 -1.73 -7.66 -7.98 -7.48

(2.00) (2.10) (4.87) (1.44) (1.68) (4.01)

log-likelihood -1,899.1 -1,893.6 -493.4 -2,372.5 -2,371.5 -605.6
Pseudo R2 0.19 0.21 0.27 0.19

Estimation Method NB semi-P NB NB semi-P NB
Estimated Var(ui) 0.73 0.96 2.18 0.23 0.23 0.95
(Std. Error) (0.08) (0.17) (0.50) (0.03) (0.09) (0.29)

# of obs. 1,984 1,984 1,984 1,984 1,984 1,984
# of high scorers 1,596 1,596 211 3,307 3,307 243

Notes and sources: Results of negative binomial regression and semi-parametric model estimation. Out-
comes are counts of high achievers (students scoring more than 100 or 120 on the AMC 12 or with 800(36)
on the SAT(ACT) math) in each school. School demographics are from the NCES Common Core of Data
for 2005-6; ZIP code demographics are from the 2000 U.S. census. The school sample includes coed,
non-charter, non-magnet public schools that offered the 2007 AMC 12.

Table 3: Demographic Predictors of High Math Achievement
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Appendix

In this appendix we describe how we estimate the distribution of unobserved heterogeneity
and present some simulation results on the method.

A.1 Estimation Methodology
Suppose yi is distributed Poisson (λi), where λi = eziβui, zi is a vector of observable

characteristics, and ui is an unobserved characteristic with a multiplicative effect on the
Poisson rate. Assume that the ui are i.i.d. random variables independent of the zi with
continuous density f on (0,∞) and E(ui) = 1. We wish to estimate both the coefficients β
on the observable characteristics and the distribution f of the unobserved effects.

Our approach is similar to that of Gurmu, Rilstone, and Stone (1999) in that we use
a series expansion and exploit known properties of the orthogonal polynomials involved to
facilitate maximum likelihood estimation.50

Given any function f and any constant α we can write f(x) = xαe−xg(x). If g(x) is
well behaved in the sense that

∫∞
x=0 x

αe−x|g(x)|2dx < ∞, then g(x) can be represented as
a convergent sum

g(x) =
∞∑

j=0

gjL
(α)
j (x)

where L
(α)
j (x) is the jth generalized Laguerre polynomial, L

(α)
j (x) ≡ ∑j

i=0(−1)i
(
j+α
j−i
)
xi

i! .51

Expressing the distribution in this way makes it possible to evaluate the likelihood of each
outcome without integrating over the unobserved parameter ui.

Proposition 4 Consider the model described above. Then,

Pr{yi = k|zi} = ekziβ

(eziβ+1)
k+α+1

[∑k
`=0

Γ(`+α+1)
`! e−`ziβ (−1)`

(
k+α
k−`
)(∑∞

j=` gj

(
eziβ

eziβ+1

)j (
j+α
j−`
))]

.

50Our motivation for estimating the distribution as we do rather than directly following Gurmu et al.
(1999) or Brännäs and Rosenqvist (1994) is that previous Monte Carlo studies have suggested that they
may not work well in a situation like ours where we suspect that the distribution is fat-tailed. This is
intuitive: Gurmu, et al. is based on a flexible estimation the moment-generating function, which is not
well defined for a fat-tailed distribution such as the lognormal. Our approach will have some drawbacks
relative to that of Gurmu, et al. (1999). Most notably, their approach can be applied to any conditional
mean function whereas ours works only for conditional mean functions of the form E(y|X) = eXβ . Their
expansion is also guaranteed to produce a valid estimated density whereas our estimated densities can take
on negative values.

51The coefficients gj are given by

gj =

∫ ∞
0

L
(α)
j (x)(
j+α
j

) g(x)
xαe−x

Γ(α+ 1)
dx.

When α is not an integer the binomial coefficients are generalized binomial coefficients defined via the
gamma function. Note that the parameter α in this section is a completely different parameter from the α
we talked about in connection with the negative binomial model. We recognize that this has the potential
to cause confusion, but felt we should use α for both parameters because this is how textbook discussions
of the negative binomial model and of generalized Laguerre polynomials will refer to the parameters.
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The derivation of the formula exploits several properties of the Laguerre polynomials. De-
tails are given in the Online Appendix.

Given the formula above it is natural to estimate the model by maximum likelihood:
we simply treat β, α, and the gj as parameters to be estimated as in a series estimation.52

For the estimated f (u) to be a valid density with E(u) = 1, the estimated parameters
α, g0, g1, . . . , gN must be such that

•
∫∞

0 uαe−u
∑N

j=0 gjL
(α)
j (u) du = 1; and

•
∫∞

0 uα+1e−u
∑N

j=0 gjL
(α)
j (u) du = 1; and

• uαe−u∑N
j=0 gjL

(α)
j (u) ≥ 0 for all u ∈ (0,∞).

The first of these conditions holds if and only if g0 = 1/Γ(α+1). We impose this restriction
in all of our estimations. Given this restriction, the second condition holds if and only if
g1 = α

Γ(α+2) . One could impose this restriction, but for finite N it is not necessary for
identification. We have chosen instead not to impose it and instead simply renormalize the
estimated distribution by dividing the probability density function by the expectation after
the estimation stage. We have two motivations for this: first, with the renormalization
approach, our model nests the negative binomial, whereas it would not if we had imposed
the restriction on g1; and second, the model seemed to less often produce estimates that
ran into the third nonnegativity constraint when we took the renormalization approach.
The third constraint is not as easy to express as a parameter restriction, so we do not

impose it as a constraint. Instead, we add a penalty function of − log
(∫∞

0 max(f̂(x), 0)dx
)

to the per-observation likelihood function for parameter values that do not generate valid
densities.53 In practice has the effect of making the estimated densities at most slightly
negative.

The function f(x) can in theory be estimated consistently by allowing the number of
terms N to grow at an appropriate rate or by choosing it in other other ways like cross-
validation. In practice, the number of Laguerre coefficients that can be estimated may be
quite limited unless the dataset is very large. It is for this reason that we wrote the density

in the form f(x) = xαe−x
∑N

j=0 gjL
(α)
j (x) rather than just as e−x

∑N
j=0 gjL

(0)
j (x). When

N = 0, the α parameter gives the model the ability to fit a range of plausible densities with
just a single estimated parameter: the renormalized distribution with parameter α has
mean 1 and variance 1/(α+ 1). This allows the model produce an exponential distribution
(α = 0), unimodal distributions concentrated around one (the distribution is unimodal
with mode α

α+1 if α > 0), and distributions with more weight on extreme u’s than the

exponential (α ∈ (−1, 0)).54 The objective function is not globally concave, so we ran our

52Finite sums gN (x) ≡
∑N
j=0 gjL

(α)
j (x) will approximate the true distribution as N → ∞. Defining

‖g − gN‖ ≡
∫∞
x=0

(g(x)− gN (x))2 xαe−x

Γ(α+1)
dx we have ‖g − gN‖ ≤

∑∞
j=N+1

(
j+α
j

)
g2
j .

53The motivation for the form of the penalty is that, given a weighting function f̂(x) that is not everywhere
nonnegative, one can define a nonnegative measure by setting f̃(x) = max(f̂(x), 0)/

∫∞
0

max(f̂(x), 0)dx. The
likelihood minus the penalty function is a lower bound to the likelihood that would be obtained from the
nonnegative density f̃(x).

54The pure Poisson model with no unobserved heterogeneity is obtained as a special case as α→∞. The
negative binomial is also a special case if we adopt the normalization strategy of estimating the distribution
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estimation routines from a large number of starting values for α and the gi.
55

However, the normalization is done one can calculate the variance of the estimated
distribution using Laguerre polynomial identities and get an estimated variance that can
be compared to the α in the negative binomial model. The normalization strategy we use
is to first estimate without the restriction on g1. This gives a distribution of shocks v
that have E(v) = (1 + α) − g1Γ(α + 2). We get a distribution u with mean 1 by defining
u = v/((1 + α)− g1Γ(α+ 2)). The variance of the resulting random variable is

Var(u) = E(u2)−E(u)2 =
E(v2)

E(v)2
−1 =

Γ(α+ 3)g2 − 2(α+ 2)Γ(α+ 2)g1 + (α+ 1)(α+ 2)

((1 + α)− g1Γ(α+ 2))2
−1

If we were to impose the restriction g1 = α
Γ(α+2) , then the formula simplifies substantially

to
Var(u) = Γ(α+ 3)g2 − α2 − α+ 1.

A.2 Simulation Results
Our primary motivation for estimating the model as described above instead of directly

following previous approaches is that simulations have suggested that previous approaches
may not work well in practice when the distribution of unobserved heterogeneity is fat
tailed.56 To assess how our method might work in practice and how many terms N one
might want to include in the series expansion we also conducted simulation experiments
described in the Online Appendix using exponential, log-normal, and uniform distributions
for the unobserved heterogeneity. A very rough summary is that our approach seems to
work reasonably well in the exponential and log-normal cases. Estimating the upper tail
is easier than estimating the density at low values of u: it is inherently very difficult to
distinguish whether a school is producing 0.1 or 0.01 high-achieving students per year.
The simulations also suggest that including N = 4 terms in the series expansion may a
good choice for balancing flexibility vs. overfitting given the number of observations in
our dataset and the magnitudes of the counts. In our empirical analyses, we will generally
present estimates that use N = 4 terms in the series expansion.

without the restriction on g1 and then rescaling the estimated distribution so that it does have expectation
1 by dividng by its mean.

55For starting values, we used the coefficients from the negative binomial regressions for βstart; for αstart
and gi,start, we tried the mean estimates from the uniform, exponential, and lognormal Monte Carlo exercise,
as well as setting each gi,start = 0 and varying αstart between -1 and 2 in increments of 0.01. The latter
approach (varying αstart with each gi,start = 0) generally resulted in the largest log-likelihood.

56See Gurmu, et al. (1999) p. 141.
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A.3 Sample Test Questions

58th AMC 12 A 2007 3

9. Yan is somewhere between his home and the stadium. To get to the stadium
he can walk directly to the stadium, or else he can walk home and then ride his
bicycle to the stadium. He rides 7 times as fast as he walks, and both choices
require the same amount of time. What is the ratio of Yan’s distance from his
home to his distance from the stadium?

(A)
2

3
(B)

3

4
(C)

4

5
(D)

5

6
(E)

6

7

10. A triangle with side lengths in the ratio 3:4:5 is inscribed in a circle of radius 3.
What is the area of the triangle?

(A) 8.64 (B) 12 (C) 5π (D) 17.28 (E) 18

11. A finite sequence of three-digit integers has the property that the tens and
units digits of each term are, respectively, the hundreds and tens digits of the
next term, and the tens and units digits of the last term are, respectively, the
hundreds and tens digits of the first term. For example, such a sequence might
begin with terms 247, 475, and 756 and end with the term 824. Let S be the
sum of all the terms in the sequence. What is the largest prime number that
always divides S ?

(A) 3 (B) 7 (C) 13 (D) 37 (E) 43

12. Integers a, b, c, and d, not necessarily distinct, are chosen independently and at
random from 0 to 2007, inclusive. What is the probability that ad− bc is even?

(A)
3

8
(B)

7

16
(C)

1

2
(D)

9

16
(E)

5

8

13. A piece of cheese is located at (12, 10) in a coordinate plane. A mouse is at
(4,−2) and is running up the line y = −5x+ 18. At the point (a, b) the mouse
starts getting farther from the cheese rather than closer to it. What is a+ b ?

(A) 6 (B) 10 (C) 14 (D) 18 (E) 22

14. Let a, b, c, d, and e be distinct integers such that

(6− a)(6− b)(6− c)(6− d)(6− e) = 45.

What is a+ b+ c+ d+ e ?

(A) 5 (B) 17 (C) 25 (D) 27 (E) 30

15. The set {3, 6, 9, 10} is augmented by a fifth element n, not equal to any of the
other four. The median of the resulting set is equal to its mean. What is the
sum of all possible values of n ?

(A) 7 (B) 9 (C) 19 (D) 24 (E) 2658th AMC 12 A 2007 4

16. How many three-digit numbers are composed of three distinct digits such that
one digit is the average of the other two?

(A) 96 (B) 104 (C) 112 (D) 120 (E) 256

17. Suppose that sin a+ sin b =
√
5/3 and cos a+ cos b = 1. What is cos(a− b) ?

(A)

√
5

3
− 1 (B)

1

3
(C)

1

2
(D)

2

3
(E) 1

18. The polynomial f(x) = x4+ax3+ bx2+ cx+d has real coefficients, and f(2i) =
f(2 + i) = 0. What is a+ b+ c+ d ?

(A) 0 (B) 1 (C) 4 (D) 9 (E) 16

19. Triangles ABC and ADE have areas 2007 and 7002, respectively, with B =
(0, 0), C = (223, 0), D = (680, 380), and E = (689, 389). What is the sum of all
possible x-coordinates of A ?

(A) 282 (B) 300 (C) 600 (D) 900 (E) 1200

20. Corners are sliced off a unit cube so that the six faces each become regular
octagons. What is the total volume of the removed tetrahedra?

(A)
5
√
2− 7

3
(B)

10− 7
√
2

3
(C)

3− 2
√
2

3
(D)

8
√
2− 11

3

(E)
6− 4

√
2

3

21. The sum of the zeros, the product of the zeros, and the sum of the coefficients
of the function f(x) = ax2 + bx + c are equal. Their common value must also
be which of the following?

(A) the coefficient of x2 (B) the coefficient of x

(C) the y-intercept of the graph of y = f(x)

(D) one of the x-intercepts of the graph of y = f(x)

(E) the mean of the x-intercepts of the graph of y = f(x)

22. For each positive integer n, let S(n) denote the sum of the digits of n. For how
many values of n is n+ S(n) + S(S(n)) = 2007 ?

(A) 1 (B) 2 (C) 3 (D) 4 (E) 5

23. Square ABCD has area 36, and AB is parallel to the x-axis. Vertices A, B, and
C are on the graphs of y = loga x, y = 2 loga x, and y = 3 loga x, respectively.
What is a ?

(A)
6
√
3 (B)

√
3 (C)

3
√
6 (D)

√
6 (E) 6
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√
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Figure 3: Questions 13 through 20 from the 2007 AMC 12A
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February 7, 2007 

Exam Time – 2 Hours 

 

NO CALCULATORS 

 

1. Prove that 322 Ayx   always has integer solutions (x, y) whenever A is a  

positive integer. 

 
 

2. In non-cyclic quadrilateral ABCD, points E, F, G, H are the circumcenters of 

triangles ABC, BCD, CDA, and DAB, respectively.  The diagonals of 

quadrilateral EFGH meet at point P.  Prove that CPAP   and DPBP  . 

 

 

 

3. Let P(x) = 01

1n

1n

n

n axa...xaxa  

  be a polynomial with integer coefficients.  

Suppose there exist distinct integers a, b, c, d such that P(a) = P(b) = P(c) = P(d) = 4.  

Prove that there exists no integer m such that P(m) = 7. 

 

 

 

4.   The lengths of two sides of an equilateral triangle are doubled, 

creating an isosceles triangle, as shown in the diagram at the right. 

These two longer sides are doubled again creating a third isosceles  

triangle (all three triangles having the same base).  This process is 

continued indefinitely.  If the measure of the vertex angle of each  

triangle is represented by ,...A,A,A 321 , determine, with proof, the  

value of  )Acos1()Acos1()Acos1( 321  …. 

 

 

 
 
5.  Let S be a sequence of consecutive positive integers whose terms have a sum  
  of 2007.  Find all such sequences S, and prove that you have found them all.   
 (Do not include the trivial sequence consisting of 2007 alone.) 

  

 

THE 2006 KENNESAW STATE UNIVERSITY 

HIGH SCHOOL MATHEMATICS COMPETITION 

PART II 
 

Figure 4: Questions 3 and 4 from the 2007 Kennesaw (GA) State University HS Mathe-
matics Competition
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Online Appendix

1 Appendix Tables

Predicted # of schools
Count Actual Poisson NB Semi-P

0 1,311 975 1,311 1,309
1 357 608 355 362
2 135 267 140 139
3 64 94 67 65
4 39 29 36 35
5 18 8 22 21
6 15 2 14 13
7 17 0 9 9
8 10 0 7 6
9 4 0 5 5
10 2 0 4 4
11 3 0 3 3
12 3 0 2 2
13 1 0 2 2
14 0 0 1 1
15 0 0 1 1
16 0 0 1 1
17 0 0 1 1
18 1 0 1 1
19 1 0 1 1

20+ 3 0 4 4

log-likelihood -2,063.6 -1,899.1 -1,893.6

χ2 841.5E+08 15.5 16.5
p-value 0.000 0.745 0.688

Table 5: Actual vs. predicted distribution of counts of high-scorers across schools

2 Proofs

Proof of Proposition 1

It is a standard that under model 1 Yi ∼ NB
(

1
α ,

αeXiβ

1+αeXiβ

)
and under model 2 Yi ∼

NB
(
λ(Xi)
g(Xi)

, 1− e−g(Xi)
)

. (See Boswell and Patil (1970) or Karlin (1966, p. 345).) Hence,
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the distributions in the two models are identical if

1

α
=

λ(Xi)

g(Xi)
; and

αeXiβ

1 + αeXiβ
= 1− e−g(Xi).

The first holds for all Xi if g(Xi) = αλ(Xi). The second then holds if

1

1 + αeXiβ
= e−g(Xi),

which holds for g(Xi) = log
(
1 + αeXiβ

)
. �

Proof of Proposition 2
Applying the result of Proposition 1 to the outcome of this model conditional on ui

we see that the conditional distribution is NB
(

1
αp
,

αpeXiβui
1+αpeXiβui

)
. The mean and vari-

ance of a NB(r, p) distribution are E(Y ) = rp
1−p and Var(Y ) = rp

(1−p)2 = E(Y )
1−p .This gives

E(Yi|Xi, ui) = eXiβui and Var(Yi|Xi, ui) = E(Yi|Xi, ui) + αpE(Yi|Xi, ui)
2. The result on

the expection of Yi|Xi follows from iterated expectations:

E(Yi|Xi) = Eui (E(Yi|Xi, ui)) = Eui

(
eXiβui

)
= eXiβ.

And the formula for the variance follows from the conditional variance formula:

Var(Yi|Xi) = EuiVar(Yi|Xi, ui) + VaruiE(Yi|Xi, ui)

= Eui

(
eXiβui + αpe

2Xiβu2
i

)
+ Varui

(
eXiβui

)

= eXiβEui + αpe
2Xiβ

(
Var(ui) + (Eui)

2
)

+ e2XiβVar(ui)

= eXiβ + αpe
2Xiβ (αu + 1) + e2Xiβαu

= eXiβ + e2Xiβ (αpαu + αp + αu) . �

Proof of Proposition 3
Suppose the Yit are generated as described. Then using Proposition 2 and iterated

expectations over t we have

E(Yit|Xi) =
1

2
E(Yi1|Xi) +

1

2
E(Yi2|Xi) =

1

2
eXiβ +

1

2
eXiβ = eXiβ.

The conditional variance formula gives Var(Yit|Xi) = EtVar(Yit|Xi, t) + Vart(E(Yit|Xi)).
The first term on the RHS of this expression is just the variance in the single period model
given by Proposition 2, and the second term is zero, so we find

Var(Yit|Xi) = eXiβ + e2Xiβ (αpαu + αp + αu) .

The mean of Y i|Xi follows from an identical calculation:

E(Y i|Xi) = E (Yi1 + Yi2) = E(Yi1|Xi) + E(Yi2|Xi) = 2eXiβ.
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The variance is is a little more complicated. We have

Var(Y i|Xi) = Var (Yi1 + Yi2) = Var(Yi1|Xi) + Var(Yi2|Xi) + 2Cov(Yi1, Yi2|Xi).

To find the covariance we condition on ui and use the fact that Yi1 and Yi2 are conditionally
independent given Xi and ui:

Cov(Yi1, Yi2|Xi) = E(Yi1Yi2|Xi)− E(Yi1|Xi)E(Yi2|Xi)

= Eui (E(Yi1Yi2|Xi, ui))− e2Xiβ

= Eui (E(Yi1|Xi, ui)E(Yi2|Xi, ui))− e2Xiβ

= Eui

(
eXiβuie

Xiβui

)
− e2Xiβ

= e2Xiβ
(
Eui(u

2
i t)− 1

)
= e2Xiβαu

Plugging back into the formula for the variance we find

Var(Y i|Xi) = 2
(
eXiβ + e2Xiβ(αu + αp + αuαp)

)
+ 2e2Xiβαu

=
(

2eXiβ
)

+
(

2eXiβ
)2
(
αu +

1

2
αp +

1

2
αpαu

)

Using these formulas we will have Var(Yit|Xi) = E(Yit|Xi)+αE(Yit|Xi)
2 and Var(Y i|Xi) =

E(Y i|Xi) + αE(Y i|Xi)
2 if and only if two conditions hold:

α = αu + αp + αuαp; and

α = αu +
1

2
αp +

1

2
αuαp.

The first equation can hold for nonnegative (αu, αp) only if αu ∈ [0, α]. Given any such
αu the first equation will hold for an unique αp: αp(αu) ≡ α−αu

1+αu
. Given this value for αp

we have αp + αpαu = α− αu so the second equation becomes α = αu + 1
2(α− αu) which is

true for αu = 2α− α. The formula for αp follows by substitution. �

Proof of Proposition 4

Let the density f(x) be represented as f (x) = xαe−x
∑∞

j=0 gjL
(α)
j (x).The distribution

of yi is then described by

Pr{yi = k|z̃i} =

∫ ∞

0
e−(ez̃iβui)

(
ez̃iβui

)k

k!
uαi e

−ui



∞∑

j=0

gjL
(α)
j (ui)


 dui

=

∫ ∞

0
e−(ez̃iβ+1)ui

(
ez̃iβui

)k

k!
uαi



∞∑

j=0

gjL
(α)
j (ui)


 dui.

Let zi =
(
ez̃iβ + 1

)
ui, so dzi =

(
ez̃iβ + 1

)
dui. Then

Pr{yi = k|z̃i} =

∫ ∞

0
e−zi

zki
k!

[
ez̃iβ

ez̃iβ + 1

]k
1

(ez̃iβ + 1)
α z

α
i



∞∑

j=0

gjL
(α)
j

(
zi

ez̃iβ + 1

)
 dzi

ez̃iβ + 1

=
ekz̃iβ

(ez̃iβ + 1)
k+α+2

∫ ∞

0
e−zi

zki
k!
zα+1
i



∞∑

j=0

gjL
(α)
j

(
zi

ez̃iβ + 1

)
 dzi.
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To simplify we use two well-known identities: the monomial formula for Laguerre polyno-
mials,

uki
k!

=
k∑

l=0

(−1)l
(
k + α
k − l

)
L

(α)
l (ui) ,

and the series expansion

L
(α)
j

(
ui

1 + γ

)
=

1

(1 + γ)j

j∑

l=0

γj−l
(
j + α
j − l

)
L

(α)
l (ui) .

The former implies that

zki
k!

=
k∑

l=0

(−1)l
(
k + α
k − l

)
L

(α)
l (zi)

and the latter implies that

L
(α)
j

(
zi

ez̃iβ + 1

)
=

1

(ez̃iβ + 1)
j

j∑

l=0

e(j−l)z̃iβ
(
j + α
j − l

)
L

(α)
l (zi) .

Substituting these formulas into the formula for yi gives

Pr{yi = k|z̃i} =
ekz̃iβ

(ez̃iβ + 1)
k+α+2

∫ ∞

0
zα+1
i e−zi

(
k∑

l=0

(−1)l
(
k + α
k − l

)
L

(α)
l (zi)

)



∞∑

j=0

gj
1

(ez̃iβ + 1)
j

j∑

l=0

e(j−l)z̃iβ
(
j + α
j − l

)
L

(α)
l (zi)


 dzi.

Laguerre polynomials are orthogonal with

∫ ∞

0
zαi e
−ziL(α)

n (zi)L
(α)
m (zi) dzi =

{
0 if m 6= n
Γ(n+α+1)

n! if m = n

Using this, the the formula for yi simplifies to

Pr{yi = k|z̃i} = ekz̃iβ

(ez̃iβ+1)
k+α+1

∑k
l=0(−1)l

 k + α
k − l

Γ(l+α+1)
l!

∑∞
j=l gj

1

(ez̃iβ+1)
j e

(j−l)z̃iβ

 j + α
j − l


= ekz̃iβ

(ez̃iβ+1)
k+α+1

∑k
l=0

Γ(l+α+1)
l!

e−lz̃iβ(−1)l

 k + α
k − l

∑∞
j=l gj

(
ez̃iβ

ez̃iβ+1

)j j + α
j − l


This completes the proof. �

The conditions given in he text for the u to be a valid density, for E(u) = 1, and the
expression for the Var(u) can be derived by applying the formula

∫ ∞

0
zαi e
−ziL(α)

n (zi)L
(α)
m (zi) dzi =

{
0 if m 6= n
Γ(n+α+1)

n! if m = n
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with n = 0 and m = 1, 2, 3 using L
(α)
0 (x) = 1, L

(α)
1 (x) = −x + (1 + α), and L

(α)
2 (x) =

x2

2 − (α+ 2)x+ (α+1)(α+2)
2 .

3 Bootstrap Procedure

We obtained standard errors for our semiparametric estimates and confidence bands
for the distribution of unobserved heterogeneity using both parametric and nonparametric
bootstrapping procedures. In each iteration j of the bootstrap, we generate a simulated
dataset {ỹij , z̃ij}1,984

i=1 , then estimate the parameters α̃j , g̃j1, ..., g̃jN , β̃j using the semipara-
metric estimation procedure described in Section 4. Standard errors are calculated as the
standard deviation of each estimated parameter across 1, 000 simulations. For example, the
standard error of α̂ is calculated as

SE(α̂) =

√∑1000
j=1 (α̃j − α̂)2

1000
.

Another functional of interest is a 95% confidence band on the estimated density and
CDF of unobserved heterogeneity. For each u ∈ (0,∞) and for each simulation j of the
bootstrap, we calculate the density f̃j and CDF F̃j as those generated by the parameter
vector α̃j , g̃j1, ..., g̃jN , β̃j . Denote as f̃p(u) the pth percentile of f̃(u) across 1,000 simulations;

then the 95% confidence band for f̂ (u) is
(
f̃2.5(u), f̃97.5(u)

)
. The confidence band for F̂ is

calculated similarly. Confidence bands for u ∈ (0, 3) and u ∈ (3, 10) are shown in Section
5 for the production of AMC high-scorers and in Section 6 for the production of SAT
high-scorers.

In each simulation of the parametric bootstrap, we use the parameter estimates obtained
using our semiparametric procedure to generate simulated outcomes. First, we draw a
random sample z̃j of size 1,984 (with replacement) from the set of covariates z listed in
Table 3. We also draw a random sample ũj of size 1,984 from the CDF F̂ , which we
estimated using the procedure in Section 4 on the true dataset. For each i = 1, ..., 1, 984,

we then generate λji = ez̃jiβ̂ũji and draw ỹPji from a Poisson distribution with rate parameter

λji. Finally, we estimate α̃Pj , g̃
P
j1, ..., g̃

P
jN , β̃

P
j on the simulated dataset (ỹPj , z̃j).

The nonparametric bootstrap proceeds similarly, except that we use the empirical dis-
tribution of y rather than the estimated theoretical distribution of y. That is, for each
simulation, we draw a random sample (ỹNPj , z̃j) of size 1, 984 (with replacement) from the

set of outcomes y and covariates z, then estimate α̃NPj , g̃NPj1 , ..., g̃NPjN , β̃NPj on the simulated

dataset (ỹNPj , z̃j). As in the semiparametric estimation on our full sample, the results of
each bootstrap estimation may depend on the starting values chosen; in our results, we
present those estimates for which the likelihood is highest after trying numerous starting
values.57 We begin each bootstrap by running a trial bootstrap of 20 simulations for sev-
eral candidate starting values: those resulting in the highest likelihood in the full sample

57In practice, we used β starting values from either a Poisson or negative binomial regression, along with
one of two potential sets of starting values for our parameters α, g1, ..., gN . The first set of parameters
we tried was the best-fit parameters of the candidate distributions described in Appendix A.2, so that
the optimization would be allowed to converge to a number of differently-shaped distributions. We also
tried setting each gi = 0 and varying α between -0.9 and 2. The latter approach often yielded the highest
likelihood.
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estimation and the center of each range of starting values for which the resulting likelihood
is close to that of the best starting values. We then use the values that provide the highest
average log-likelihood in the trial bootstrap as the starting values in the full bootstrap.

If our model is specified correctly, then the parametric bootstrap is more efficient; if
the model is misspecified, then the nonparametric bootstrap will be more appropriate. See
Efron and Tibshirani (1993) for a discussion. In our application, neither procedure provides
smaller or larger standard errors or confidence bands across all parameters or outcomes,
but parametric standard errors are often slightly smaller, and parametric bands are often
slightly narrower and smoother. In the body of the paper, we present the results of the
parametric bootstrap, but our interpretation of the results is unaffected by the choice of
bootstrap procedure.

4 Simulations

The simulations implemented our estimation procedure on datasets created by drawing
each zi from a uniform distribution with support [0, 1]; drawing each ui from the desired
error distribution; forming λi = eziβui, where β = [−4.27, 1, 1, 1, 0.1, 0.1, 0.2]; and drawing
yi from a Poisson distribution with rate parameter λi. Each simulated variable included
2, 500 observations. The distributions of the simulated covariates and the values for β
were chosen so that the mean and variance of the simulated eziβ would roughly match
the mean and variance of the fitted values in a negative binomial regression of the count
of AMC 12 high-scorers on school-level covariates. The ui were chosen from one of three
distributions depending on the simulation: an exponential distribution with mean and
standard deviation 1, a lognormal distribution with mean 1 and variance 1

3 , and a uniform
distribution on [0, 2]. The motivation for these choices was to demonstrate the performance
of our procedure for a diverse set of underlying distributions: the exponential distribution is
within the class of models being estimated even if N = 0, the lognormal distribution cannot
be fit perfectly with a finite N and has a thicker upper tail, and the uniform distribution
is a more challenging distribution to reproduce with a series expansion. We estimated the
model using N = 0, 2, 4, 6, and 8 terms.58

The estimated coefficients β̂ on the observed characteristics are fairly precise and show
almost no bias. Table 6 presents some summary statistics on the estimates for simulations
withN = 8 Laguerre polynomials.59 The first column lists the true values for the coefficients
on each simulated covariate. The next three columns list the mean and standard deviation
(in parentheses) of the estimates across the 1000 simulated datasets for each simulated
distribution. There are no notable differences across heterogeneity distributions in the
consistency or precision of estimated β̂’s.

Table 7 provides some statistics on how well the model was able to estimate the distri-
bution of unobserved heterogeneity. The rows correspond to the distribution from which
the u’s were drawn. The columns correspond to the number N of Laguerre polynomials
used in the estimations. The metric used to measure performance is integrated squared
error (ISE) – if the estimated density function from simulation run i is f̂i(x), where the

58For these estimations we did not restrict g1 to be α/Γ(α + 2) and instead ensured that the estimated
distributions have mean 1 by rescaling the preliminary estimates by dividing by the mean.

59Summary statistics for estimates of β̂ using N = 0, 2, 4, 6 are similar.
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True Mean and SD of estimated coefficients
Variable Coeffs. Exponential u Lognormal u Uniform u

Constant -4.270 -4.2690 -4.2651 -4.2777
(0.1536) (0.1571) (0.1109)

z1 1.000 0.9971 0.9977 0.9984
(0.1055) (0.0593) (0.0760)

z2 1.000 1.0010 1.0010 1.0026
(0.0537) (0.0424) (0.0401)

z3 1.000 0.9995 0.9991 1.0019
(0.0371) (0.0377) (0.0269)

z4 0.100 0.0994 0.0993 0.0998
(0.0271) (0.0154) (0.0190)

z5 0.100 0.0997 0.0996 0.1011
(0.0216) (0.0127) (0.0151)

z6 0.200 0.1996 0.1994 0.2003
(0.0184) (0.0125) (0.0132)

Notes: True and estimated coefficients from semi-parametric
model estimation using simulated data, varying the distribution
of underlying heterogeneity. Results displayed for the exponential
(1) distribution, the lognormal (1, 1

3) distribution, and the uniform
[0, 2] distribution with 2,500 simulated observations. Mean esti-
mates across 1,000 simulated datasets shown; standard deviations
in parentheses.

Table 6: Estimated coefficients on observed characteristics in simulations
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true data generation process has unobserved heterogeneity from distribution f(x), the ISE
of that estimated density is

∫∞
0 (f̂i(x) − f(x))2dx. The values in Table 7 are median ISE

across 1,000 simulation runs.

Median ISE for various models
True distribution of u N = 0 N = 2 N = 4 N = 6 N = 8

Exponential 0.0010 0.0045 0.0140 0.0201 0.0243
Lognormal 0.0133 0.0115 0.0191 0.0148 0.0167
Uniform [0, 2] 0.1055 0.1449 0.0833 0.0795 0.1009

Notes: Median integrated squared error of estimated distributions
from semi-parametric model estimation using simulated data,
varying the distribution of underlying heterogeneity. Results dis-
played for the exponential (1) distribution, the lognormal (1, 1

3)
distribution, and the uniform [0, 2] distribution with 2,500 simu-
lated observations. Median ISE across 1,000 simulated datasets
shown, varying the number of Laguerre polynomials.

Table 7: Goodness of fit of estimated distributions of unobserved heterogeneity in simula-
tions: median MISE for various models and true distributions

The exponential model fits fairly well for all N . As one would expect, the N = 0 fit is
best: the true model is in the N = 0 class and estimating additional unnecessary parameters
just increases the scope for overfitting. The fit worsens gradually as N increases, but never
becomes terrible; at N = 8, the worst fit, the median ISE is 0.024. To get a feel for the
magnitudes, the MISE would be 0.02 if the density of an exponential distribution were over-
or under- estimated by 10% at every value of u. Note also that the exponential distribution
with mean 1 is the gamma distribution involved in the Poisson-gamma justification for
the negative binomial when α = 1. Hence, the estimates of this model can provide a
sense for how well our semiparametric model will estimate the distribution of underlying
heterogeneity in a case where the negative binomial is correctly specified.

The lognormal distribution does not fit as well when N = 0. This should be expected:
the lognormal is not a member of the parametric family we are estimating and indeed no
matter what α is estimated the ISE cannot possibly be below 0.0107. Larger N make it
theoretically possible to fit the distribution much better (the parameter vectors that give
distributions closest to the true lognormal have ISEs of 0.00756, 0.00210, 0.00014, and
0.00002 for N = 2, 4, 6, and 8 respectively), but again there is the offsetting effect that
there is more scope for overfitting. The tradeoff between the two effects results in fairly
similar fits across the range of N . The median ISE is smallest for the N = 2 model.

The fits to the uniform distribution are much worse. Here, there is no parameter
combination that produces a very good fit when N is small, and overfitting becomes a
concern when N is large.60 The best fit is obtained for N = 6, where the median ISE is
45% lower than the median ISE for the worst fit of N = 2.

60Theoretical lower bounds coming from the parameter vectors that make the estimated distributions as
close as possible to the true distribution are ISE’s of 0.0877, 0.0456, 0.0397, 0.0273, 0.0269 forN = 0, 2, 4, 6, 8.
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Figure 5 provides a graphical illustration of the performance of our method. In each of
the three panels we present the true distribution in bold and three estimated distributions
corresponding to the simulations (using N = 4) that were at the 25th percentile, the 50th

percentile, and the 75th percentile in the MISE measure of goodness of fit. In the exponential
and log-normal cases the estimated distributions seem to fit reasonably well for values of
around the mean (u = 1) and to fit quite well for higher values of u. The estimated
distributions are farther from the truth at low values of u. This should be expected – once
we are considering a population of schools in which all schools will in practice have zero or
one high-scoring student per year, a single year’s data will not allow one to say whether all
schools are identical or whether there is heterogeneity.

Also as expected, our method performs somewhat poorly for the uniform distribution
with its bounded support. However, we are encouraged to note that, even for this difficult
case, the estimated distribution does mostly spread out the mass over the correct [0, 2]
interval.
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