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Abstract

Additive models and projection pursuit models are very useful popular nonparametric
methods for fitting multivariate data. The flexibility of these models makes them very
useful. Yet, this very property can sometimes lead to overfitting. Inference procedures
like testing of hypothesis in these cases are not very well developed in the literature.
This might be due to the complexity involved in estimation. In the present paper we
introduce a bootstrap based technique which allows one to test the hypothesis of the
adequacy of multiple linear regression model versus the nonparametric additive model
and beyond. These tests are highly useful for practitioners since the simpler models are
more interpretable. We will also introduce a new model which incorporates both the
additive model and the multiple index model.
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1 Introduction

In this paper we consider the additive model with a response variable Y and p predictors
X1, X2, . . . , Xp; the model is given by

(1) g(Y ) =

p∑
k=1

fk(Xk) + ε, E [ε|X] = 0 a.e.

Here g, f1, . . . , fp are all unknown functions from R to R. This will also be referred to as the
Alternating Conditional Expectation (ACE) model. Projection pursuit model or multiple index
model in this case is given by

(2) Y =
M∑
k=1

fk(α>kX) + ε, E [ε|X] = 0 a.e.

Here M is a natural number which is chosen based on some goodness of fit measure and αk,
1 ≤ k ≤ M are all unit vectors in Rp with X representing (X1, . . . , Xp)

>. This will also be
referred to as the Projection Pursuit Regression (PPR) model.

The idea of the additive model can be understood better in the case p = 1. This can be
dated back to Rényi (1959) who considered the problem of defining a measure of dependence
between two random variables. The maximum correlation coefficient between random variables
X and Y is defined as the supremum of the correlation coefficient between transformed X and
transformed Y over all transformations, whenever the correlation is defined. That is,

(3) S := sup
f,g

Corr(f(X), g(Y )),



where supremum is taken over all functions f and g such that correlation is defined. It is clear
from the definition that S = 0 if and only if the variables are independent. Also note that if
there exist such transformations g0 for Y and f0 for X such that S = Corr(g0(Y ), f0(X)), then
the regression of transformed Y on transformed X would give the best linear fit. This idea of
estimating the optimal transformations gives rise to the additive model. For p > 1, an obvious
extension considers the correlation between g(Y ) and the sum of fk(Xk) for 1 ≤ k ≤ p.

The idea of multiple index model or, as it was first proposed, the projection pursuit
model, stems from the fact that the additive model cannot represent the interactions between
the response variables. Consider, for example, the model Y = X1X2 + ε. By fitting an additive
model to a simulated data from this model, we get the log function as the optimal transformation
for each of these variables. But this can only be approximate because the error involved here is
not multiplicative but additive. Noting that 4xy = (x+y)2−(x−y)2, we view the multiple index
model to be more suitable for these data. This is by no means a coincidence. Results of Diaconis
and Shahshahani (1984) show that almost any multivariate function can be approximated as
closely as needed by the sum of functions of linear combinations of the covariates.

The new model that we consider which incorporates both the additive model and the
multiple index model is given by

(4) g(Y ) =
M∑
i=1

fk(α>kX) + ε, E [ε|X] = 0 a.e.

Here M is a natural number chosen on the basis of some goodness of fit measure and αk,
1 ≤ k ≤ M are all unit vectors in Rp with X representing (X1, X2, . . . , Xp)

>. This new model
will be referred to as GACE (Generalized ACE) model. What do we need a new model for?
There are some distributions where E[Y |X] cannot be approximated by the sum of functions
of linear combinations of the covariates. In these cases, there may be a function g such that
E[g(Y )|X] may be approximated in that way. Even if the conditional expectation E[Y |X]
can be approximated, we might require a very large value of M. In such cases, applying a
transformation to Y might lead to a simpler model with better interpretation.

The rest of the paper is organized as follows. In Section 2, we describe the alternating
conditional expectation algorithm to estimate the unknown functions in additive model. In
Section 3, we describe a set up for a simulated dataset and describe a real dataset. In Section
4, we describe tests of linearity for each variable for a general model. In Section 5, we describe
the GACE model in detail and consider an estimation algorithm and a new testing procedure.

2 The Alternating Conditional Expectation Algorithm

Before describing the algorithm, we present a few definitions and results from Breiman and
Friedman (1985) which will motivate the algorithm. First consider the case p = 1.

Definition: We say transformations f0 and g0 for X and Y are optimal for correlation if they
satisfy,

S := Corr(f0(X), g0(Y )) = sup
f,g

Corr(f(X), g(Y ))

Observe that S is always non-negative. Without loss of generality, one can assume that supre-
mum is taken over all functions, whose expectations are zero and variances one. That is,
E(f(X)) = E(g(Y )) = 0 and Var(f(X))=Var(g(Y ))=1. Hence

S := E[f0(X)g0(Y )]

= sup
f,g
{E[f(X)g(Y )] : E[f(X)] = 0 = E[g(Y )] and E[f 2(X)] = 1 = E[g2(Y )]}



Definition: We say transformations α and β for X and Y are optimal for regression if they
satisfy, E[β2(Y )] = 1 and

e2 := E[α(X)− β(Y )]2 = inf
f,g
E[f(X)− g(Y )]2

Again we assume that infimum is taken over all functions whose expectation is zero. Hence,

e2 := E[α(X)− β(Y )]2

= inf
f,g
{E[f(X)− g(Y )]2 : E[f(X)] = 0 = E[g(Y )] and Var(g(Y )) = 1}.

Using Cauchy-Schwarz inequality it is easy to prove that

E[E[f0(X)|Y ]|X] = S2f0(X),(5)

E[E[g0(Y )|X]|Y ] = S2g0(Y ).(6)

The following result gives the relation between transformations that are optimal for regression
and optimal for correlation.

Theorem 1 (Breiman and Friedman (1985), Theorem 5.1). The pair (f0, g0) are optimal for
correlation if and only if α = Sf0, β = g0 are optimal for regression. Furthermore, e2 = 1−S2.

Using this result, we find that the following relations will be satisfied by transformations
optimal for regression,

β(Y ) =
E[α(X)|Y ]√

Var(E[α(X)|Y ])
(7)

α(X) = E[β(Y )|X](8)

Remark: It is easy to see that finding maximum correlation coefficient, in general, is hard.
Hence for finding optimal transformations, it is better to use Equations (7) and (8) instead of
Equations (5) and (6) because in the former we have three ‘parameters’ to estimate, one less
than the latter. Henceforth, we discuss about estimating optimal transformations optimal for
regression instead of for correlation.

For p covariates X1, X2, . . . , Xp, one can define the optimal transformation as follows:

Definition: Let g(Y ), f1(X1), f2(X2), . . . .fp(Xp) be arbitrary mean zero transformations of
corresponding variables. Also, let variance of g(Y ) be 1. Then the optimal transformations for
regression are defined by those functions which minimize the fraction of unexplained variance.
That is

(9) e2 := E[β(Y )−
p∑

i=1

αi(Xi)]
2 = min

g,f1,....fp
E[g(Y )−

p∑
i=1

fi(Xi)]
2.

It is easy to see that the following relations are satisfied by the optimal transformations.

β(Y ) =
E [

∑p
i=1 αi(Xi)|Y ]√

Var (E [
∑p

i=1 αi(Xi)|Y ])
(10)

αi(Xi) = E[β(Y )−
∑
j 6=i

αj(Xj)|Xi](11)

Equations (7), (8), (10) and (11) form the basis of the alternating conditional expectation
algorithm given in Breiman and Friedman (1985).

The basic idea of the algorithm is to alternatively condition on variables until convergence
is attained and hence the name alternating conditional expectation. It proceeds as follows:



1. Initialize. Set β(Y ) = (Y − E[Y ])/
√

Var(Y ) (usual notation) and set all αj(Xj) = 0 (or
set αj(Xj) = E[Y |Xj]).

2. Backfit. Using (11), find new functions αj(Xj), for j = 1, 2, . . . , p.

3. Compute. Use these new functions to compute new β(Y ), using (10) (standardizing by
scaling with the standard deviation avoids getting a trivial solution).

4. Alternate. Perform steps 2 and 3 until e2 converges to a minimum.

The algorithm can be used even when the predictor variables X1, X2, . . . , Xp are of mixed
types, for example, they can be continuous, categorical, periodic. In that case the conditional
expectations will be accordingly changed.

Remark: Breiman and Friedman (1985) suggest that if a particular estimate of transformation
suggests a familiar functional form for the transformation, then the data can be pretransformed
using this functional form and the ACE can be rerun. The ACE algorithm can be made semi-
parametric also by introducing certain functional forms into algorithm. For example, if we want
a variable, say X1, to have a linear transformation, we introduce the assumption that

E[β(Y )−
∑
j 6=1

αj(Xj)|X1] = a+ bX1

and in each iteration compute optimal a, b using simple linear regression. But if we introduce
parametric (functional) transformations to many variables then a certain care has to be taken
regarding the number of parameters estimated and the degrees of freedom. In case of samples
where the conditional expectations cannot be calculated, we use smoothers as estimates of the
conditional expectation in the ACE algorithm.

In case of a categorical variable, say Z, the estimate of conditional expectation E[Z|X1 =
x], is given by,

∑
xk=x zk/

∑
xk=x 1. We use the supersmoother (for real data examples and

simulated studies) in alternating conditional expectation but any smoother satisfying certain
regularity conditions can be used. The supersmoother proposed by Friedman and Stuetzle
(1982) is based on local linear k-NN (span k nearest neighbour) fits in a variable neighbourhood
of the estimation point x. ‘Local cross-validation’ is applied to estimate the optimal span as
a function of the predictor variable. We refer to Breiman and Friedman (1985) and Friedman
(1984) for more details.

Prediction in case of additive models is fairly straightforward. One simple way to get a
prediction is to estimate the function part of the right hand side of Equation (1) and then invert
ĝ. This gives us the predicted value of y. But if the function ĝ is not invertible this method
does not work well. There is a variant of ACE called predictive ACE proposed by Owen
and Friedman for making better prediction in ACE model. Since multiple linear regression
model, ACE, PPR and GACE models are all nested, comparisons between the models based
on residual sum of squares or the coefficient of determination (R2) are not very useful. We use
a cross-validation based measure Q for comparison of the models. We define

Q := 1−
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

as a measure of predictive ability of a model, where ŷi is obtained by fitting the model on the
remaining n− 1 observations.



3 Numerical Study

We now present a simulated model and a real dataset on which we will apply the testing
procedure to be discussed in the next section.

3.1 An Example of Simulated Data

We consider 6 random variables Y,X1, X2, X3, X4, X5 related by the model,

(12) Y = log(4 + |X1|+X2
2 + sin(2πX3) +X4 +X3

5 + ε),

with X1, X2, X3, X4, X5 all generated independently from U(−1, 1) and ε ∼ N(0, 1). When
ACE is applied on this simulated data, we get transformations as shown in the following figure.

Figure 1: Model is Y = log(4 + |X1|+X2
2 + sin(2πX3) +X4 +X3

5 + ε)

Linear regression on this simulated data gave an adjusted R-Square 0.4309. Applying ACE on
this data gave R-Squared of 0.989244 which is expected. Figure (3.1) shows that ACE estimates
are very close to the actual ones. Note that the model is not the same as,

Y = log(4 + |X1|+X2
2 + sin(2πX3) +X4 +X3

5 ) + ε

which explains why minimizing E[g(Y ) −
∑p

i=1 fi(Xi)]
2 is better than minimizing E[Y −

g(
∑p

i=1 fi(Xi))]
2.

3.2 A Real Data Example

The first real data that we consider is about the European rabbit Oryctolagus Cuniculus which
is a major pest in Australia. A reliable method of age determination for rabbits caught in the
wild would be of importance in ecological studies. We got a dataset with 71 data points; see
Dudzinski and Mykytowycz (1961) for more details. The scatter plot of eye lens weight on the
age of the rabbit is as shown in Figure (3.2). Clearly, age and eye lens weight are not (just)
linearly related. There is a clear functional relation between age and eye lens weight. Applying
ACE on these data gives the transformations as shown in Figure 3.2. The scatter plot between
transformed variables is almost linear. In this case multiple linear regression gave a R-squared
value of 0.7605. But the application of ACE leads to an R-squared value of 0.9875936. Clearly,
the variable age seems to have the transformation from the log family.



Figure 2: Eye Lens Weight versus Age of rabbit

4 Tests of Linearity

Considering the simplicity of linear regression it is necessary to test whether transforming the
variables is at all necessary. Statistically speaking, we would like to test whether the optimal
transformation for a variable, say X1, is linear. Since we have no distributional assumptions
in the model, we choose to develop a test by the use of bootstrapping. We briefly describe the
bootstrap methodology for testing of hypothesis.

For any proposed hypothesis, let the rejection region be specified as T > τ , for some τ
based on the level of the test α. In case of analytical difficulty, one can use the bootstrap to
estimate the distribution of T , and thus the value of τ , to perform the test. The procedure is
as follows.

1. Compute the test statistics T and also the unknowns in the model satisfying the null
hypothesis.

2. Take B subsamples each of size R with replacement and then calculate the value of T as
calculated in step 1.

3. Now we have B values from the distribution of T under the null. For large enough
B, we can find the estimate of critical value, τ̂ , based on the empirical distribution of T .
Calculation of the p-value can also be done using the empirical distribution, P (T > Tobs.).

The hypothesis that we introduced at the beginning of section can be stated as,

H0 : α1(X1) = a1 + b1X1 for some a1, b1, versus H1 : α1(X1) is not linear.

This hypothesis can also be written in the form of models as,

H0 : β(Y ) = a1 + b1X1 +

p∑
i=2

αi(Xi) + ε, versus H1 : β(Y ) =

p∑
i=1

αi(Xi) + ε.



This can also be viewed as model selection. We can use any measure of goodness-of-fit which
can discriminate between the null and the alternative. We propose to use either the ratio of
the residual sum of squares or the ratio of the prediction sum of squares. The first measure is

T1 = SSEH0/SSEH1 ,

where SSEH =
∑p

j=1(β̂(Yi)−
∑p

i=1 α̂i(Xij))
2, hat functions computed under the hypothesis H.

The prediction sum of squares based statistic is given by

T2 = PSSH0/PSSH1 ,

where PSSH is the prediction sum of squares under that hypothesis given by, PSSH =∑n
i=1(Yi − ŶiH)2. We generate subsamples from the data and then by fitting the model under

both the hypothesis for each subsample, we estimate the distribution functions of T1 and T2.
Using the level constraint, we estimate the cut-off’s C1 and C2. Note here that when we take
subsamples, they satisfy the hypothesis that the actual sample satisfies. Hence, when T1 is
calculated in this way for each subsample, we are estimating the distribution of T1 under the
true hypothesis which need not be the null hypothesis. Hence, the estimate we get from the
bootstrap in this way may not converge to the actual cut-off value C1.

To overcome this problem, we need to find a way to generate the value of the test statistics
under the null independently of the hypothesis. For this, we follow the approach suggested by
Davidson and MacKinnon (2004) and Martin (2007). This approach is as follows,

1. Fit the unrestricted full model and find the residuals, e1, . . . , en. Also fit the null model
and find the estimates of parameters of line and estimates of other functions.

2. Construct resamples, (y∗1,x1), (y
∗
2,x2), . . . , (y

∗
n,xn) under null hypothesis, where y∗i is cal-

culated from the model β̂(yi) = â1 + b̂1X1i +
∑p

j=1 α̂j(Xji) + e∗i for resampled e∗1, . . . , e
∗
n

obtained from e1, . . . , en using hat functions obtained from null model.

3. Find the value of the test statistic T1 for each of these resamples by fitting the models
under null and alternative for resampled observations.

Since these values are all obtained from the model under the null hypothesis, we get an estimate
of distribution function of T1 under H0. Now, by estimating critical values and p-values, one
can do a bootstrap test. Efron and Tibshirani (1986) have used this approach to find standard
error of estimates of the optimal transformations in ACE. The method described above is not
specific to the ACE model, This can be applied for comparing any two models. In particular,
this method can be applied to the PPR model and also the GACE model. See Section 5.1 for
a different approach.

Results for the test statistic T1 applied to simulated data with sample size 300 is given in
Table 1. Here the linearity test for the variable X4 got accepted while all others got rejected.
In simulations, this new simulation method has shown significant improvement compared to
the previous one. The power can also be calculated by taking different alternatives in the same
manner. It should be noted that this process involves obtaining y∗i which can go completely
wrong if transformation for Y is not invertible. Hence this test works properly only for invertible
transformations of Y .

When applied to the real dataset, this test gave the following results (Table 2), which are
consistent with the scatterplot.

Remark: Similarly one can test whether optimal transformation for a variable belongs to some
parametric family of functions. Also, one can extend the same methodology to test combined
linearity of optimal transformations for different variables, like,

H0 : α1(X1) = a1 + b1X1, α2(X2) = a2 + b2X2 versus H1 : Any of them is non-linear.



Table 1: Tests of linearity for Simulated Data
Variable Statistic Est. 5% Cut-Off Est. p-value

Y 2.738687 1.032586 < 0.0001
1 8.688747 1.026901 < 0.0001
2 9.720563 1.027773 < 0.0001
3 37.07122 1.022618 < 0.0001
4 0.986757 1.015667 0.597
5 2.626931 1.022109 < 0.0001

Table 2: Tests of linearity for Real Data
Variable Statistic Est. 5% Cut-Off Est. p-value

Y 1.114493 1.180262 0.129
1 4.531953 1.276061 < 0.0001

This test needs to be done sequentially for interpreting it correctly. It is yet to be seen if the
order in which these sequential tests are done matter. Using this, one can test if at all any
transformations are needed for any of the variables. This test is the same as that of testing
whether the ACE model is any better than the multiple linear regression for a data set. The
same test (test criterion) can also be used to test for variable significance in the model in case
of multiple covariates. Hence this testing procedure can be used to test for variable selection.

5 The GACE model

In full generality, one can consider fitting the model,

(13) β(Y ) = α(X1, X2, . . . , Xp) + ε, E[ε|X] = 0.

Here we want α, β which minimize unexplained variance given by,

E[g(Y )− f(X1, X2, . . . , Xp)]
2

E[g2(Y )]
.

With an additional constraint E[g2(Y )] = 1, the transformations should satisfy,

(14) E[β(Y )− α(X1, X2, . . . , Xp)]
2 = min

g,f
E[g(Y )− f(X1, X2, . . . , Xp)]

2.

It is easy to prove that α, β satisfy,

α(X1, X2, . . . , Xp) = E[β(Y )|X1, X2, . . . , Xp],(15)

β(Y ) = E[α(X1, X2, . . . , Xp)|Y ]/
√

Var(E[α(X1, X2, . . . , Xp)|Y ]).(16)

We follow the ACE algorithm and give an iterative algorithm for obtaining estimates of α, β.
The algorithm can be written as follows.

1. Set β(Y ) = Y−E[Y ]√
Var(Y )

and α(X1, X2, . . . , Xp) as multiple linear regression line obtained by

regressing Y on X1, X2, . . . , Xp.

2. Use Equation (15) to get an estimate of α(X1, X2, . . . , Xp).

3. Use Equation (16) to get an estimate of β(Y ).



4. Repeat steps 2 and 3 until minimization of

e2 = E[β(Y )− α(X1, X2, . . . , Xp)]
2

is attained.

As was discussed in Section 2, we need to replace all the conditional expectations in
the algorithm by estimates obtained from the data. These expectations are not functions of
one variable. We need to estimate E[Y |X1, . . . , Xp], which is a function from Rp to R. The
most extensively studied nonparametric estimates (kernel estimate, k-nearest neighbor, and
spline smoothing) based on local averaging do not perform well for reasonable sample sizes
because of the “curse of dimensionality”. The PPR model is known to by-pass this curse of
dimensionality resulting to good estimators even in higher dimensions. For different estimation
procedures on Projection Pursuit Regression we refer to Chen (1991). See also Huber (1985) for
a discussion on projection pursuit techniques. By the use of the PPR for estimating conditional
expectation, we can rewrite the model we started with as the GACE model introduced in
Equation (4) in Section 1. The following tables show that generalized ACE outperforms ACE
in case of interaction between variables (In the simulated models we take X1, X2 ∼ U(−1, 1)
and ε ∼ N(0, 1)).

Model 2 is considered, because right side function in PPR model cannot represent ex1x2 .

Table 3: R square values
Model R2 GACE R2 ACE R2 Regression

Y = X1X2 + ε 0.93991880 0.70530659 0.01187
Y = exp(X1X2) + ε 0.95895668 0.67364599 0.01091

log(Y ) = sin(2πX1 + 2πX2) + ε 0.9779115 0.1044552 0.01841
Real Data 3 0.9010383 0.8597254 0.7633

Table 4: Values of measure of prediction Q
Model GACE ACE Regression

Y = X1X2 + ε 0.90111441 −0.16947620 −0.01003546
Y = exp(X1X2) + ε 0.91478150 0.18471331 −0.01667949

log(Y ) = sin(2πX1 + 2πX2) + ε 0.911475179 −1.806580280 −0.008369527
Real Data 3 0.7668139 0.7244917 −1.4728816

There is a variant of the PPR which can include variables of mixed types. Hence in place of
the classical PPR estimate of conditional expectation, one can use the PPR for mixed variable
types. See Laghi and Lizzani (1999) for more details. Using this variant the GACE model can
also be used with covariates of mixed types.

5.1 Testing in the GACE model

Having built the ACE and GACE models, one can test to determine which model is correct.
At first, test for multiple linear regression versus ACE and then test for ACE versus GACE.
The first test can be done by using the testing procedure mentioned in Section 4, doing the
test sequentially for all the variables. If this test fails to reject then we need not test for ACE
versus GACE. For testing ACE versus GACE, we can follow the same testing procedure. In
this section, following Zheng (1996), we develop a new testing procedure. We want to test,

H0 : β(Y ) =

p∑
i=1

αi(Xi) + ε, versus H1 : β(Y ) = α(X1, X2, . . . , Xp) + ε.



Consider ui = β(yi) −
∑p

j=1 αj(xji), under actual model E[ui|xi] = 0. Also, observe that,

E[uiE[ui|xi]p(xi)] = E[E2[ui|xi]p(xi)] ≥ 0 and equals zero only under actual model. Hence,
if null hypothesis is true, then E[uiE[ui|xi]p(xi)] = 0 only under the null. Hence we can
use a sample analogue of this expectation using the nonparametric estimate of the conditional
expectation as a test statistic for testing ACE versus GACE. This test is shown to be consistent
in Zheng (1996). See also Fan and Li (1996). Testing for models in this order after fitting the
different models will give an idea of whether any transformations are needed for variables.
Testing for correctness of any model can be done in this way. A test for GACE versus multiple
linear regression can also be performed in this manner.
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divergences instead of the likelihood. In Monte Carlo studies, the robustness properties
have been demonstrated.

Research
Projects Done

• Single Index Models with Convex Link Function
Dr. Bodhisattva Sen (Columbia University) May – July 2014
This project was done jointly with Rohit Kumar Patra. Single index models with
an unknown link function offer a good alternative to non-parametric regression with
high dimensional covariate vector. We study two different estimation procedures for
single index models with convex link. First being the penalized least squares with
an additional constraint for convexity. Second being the convex least squares. We
studied the large sample properties of the convex function estimate and also the
index vector estimate in both these cases. Monte Carlo studies were conducted to
compare the estimation procedures. This manuscript is under preparation.

• A Minimum Distance Weighted Likelihood Method of Estimation
Dr. Ayanendranath Basu (ISRU, ISI, Kolkata) July–August 2014
In the literature, minimum disparity estimators and weighted likelihood estimators
have distinct identities. In this project we proposed a method of estimation which
is simultaneously a minimum disparity method and a weighted likelihood method,
and so may be viewed as combining the positive aspects of both. We studied the
properties of the corresponding minimum disparity weighted likelihood (MDWL)
estimators, and illustrated their properties through real data examples and simulations.
This project was presented at the International Conference on Robust Statistics
2014, in Germany. This manuscript is currently under review.

1 of 2

mailto:karun3kumar@gmail.com
file:www.isical.ac.in


• A General Set Up for Minimum Disparity Estimation
Dr. Ayanendranath Basu (ISRU, ISI, Kolkata) April–May 2014
Minimum disparity estimation is a potential alternative to maximum likelihood
estimation. But a general framework for minimum disparity estimation for continuous
families was missing. Such a general framework was formulated and results were
proved under this framework in this project. This manuscript was accepted for
publication in statistics and probability letters.

• Robust Statistical Inference using Characteristic Functions
Dr. Ayanendranath Basu (ISRU, ISI, Kolkata) June–August 2013
This project was done along with my co-student Promit Kumar Ghosal. Under the
guidance of Dr. Basu, we consider the L2 distance between characteristic functions
for parameter estimation. It was shown by Monte Carlo studies that efficiency of the
estimators using other distances is very poor. Robustness properties of L2 distance
based estimator were studied. This manuscript is under preparation.

• New Family of Divergences for Robust Statistical Inference
Dr. Ayanendranth Basu (ISRU, ISI, Kolkata) May-July 2013
Under the guidance of Dr. Basu, I constructed a new generalized parametric class
of divergences which will allow robust estimation with several desirable properties.
This manuscript is under preparation.

• Gauss Composition and Bhargava Cubes
Dr. Vijay. M. Patankar (ISI, Chennai) May–July 2012
Here I was first introduced to binary quadratic forms, Gauss composition related to
them and then the modern reformulation of Gauss composition given by Bhargava
in his thesis. Under the guidance of Dr. Patankar, I formulated an algorithm to find
Bhargava cubes given two quadratic forms.

Journal
Publications

1. Kuchibhotla, A. K. and Basu, A. “A General Set Up for Minimum Disparity
Estimation.” Statistics and Probability Letters, Vol. 96, 68-74, 2015.

Presentations • Oral presentation at the International Conference on Robust Statistics (ICORS)
2014, Halle, Germany.

• Two seminars in Theoretical Statistics and Mathematics Unit, ISI, Kolkata on
August 7 and 13, 2012 based on my project under Dr. Patankar.

• A seminar in ISI, Chennai on July 3, 2013 based on my project Estimating Optimal
Transformations for Regression.

Academic
Achievements

• Abstract was accepted for oral presentation at ICORS 2015, Kolkata, India.
• Abstract was accepted for oral presentation at ICORS 2014, Halle, Germany.
• Awarded prize money for good grades in two of three years during B.Stat (Hons.)

and M. Stat first year.
• Abstract was accepted for oral presentation at JMM 2013, San Diego.
• Awarded Kishore Vaigyanik Protsahan Yojana scholarship since April 2011. (Indian

Institute of Science)
• Inspire Scholar since April 2011. (Department of Science and Technology, India)
• Selected in IIT-Joint Entrance Exam 2010 (All India Rank - 2469), AIEEE 2010

(AIR-2604), BITSAT 2010 (Score-343)
• Stood district second in mathematics competition conducted by Ramanujan Mathema-

tics Academy in 2008.

Programming
and Scripting

I can freely work with both windows and Linux distributions. I am also acquainted with

C – Basic Programming R – Proficient

Sage – Basic Programming LATEX 2ε– Proficient.
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