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EQUIVALENCE TESTING FOR FUNCTIONAL DATA WITH AN
APPLICATION TO COMPARING PULMONARY FUNCTION

DEVICES

By Colin B. Fogarty and Dylan S. Small

Department of Statistics, The Wharton School, University of Pennsylvania

Equivalence testing for scalar data has been well addressed in the
literature; however, the same cannot be said for functional data. The
resultant complexity from maintaining the functional structure of the
data, rather than using a scalar transformation to reduce dimension-
ality, renders the existing literature on equivalence testing inadequate
for the desired inference. We propose a framework for equivalence
testing for functional data within both the frequentist and Bayesian
paradigms. This framework combines extensions of scalar method-
ologies with new methodology for functional data. Our frequentist
hypothesis test extends the Two One-Sided Testing (TOST) proce-
dure for equivalence testing to the functional regime. We conduct this
TOST procedure through the use of the nonparametric bootstrap.
Our Bayesian methodology employs a functional analysis of variance
model, and uses a flexible class of Gaussian Processes for both mod-
eling our data and as prior distributions. Through our analysis, we
introduce a model for heteroscedastic variances within a Gaussian
Process by modeling variance curves via Log-Gaussian Process pri-
ors. We stress the importance of choosing prior distributions that are
commensurate with the prior state of knowledge and evidence regard-
ing practical equivalence. We illustrate these testing methods through
data from an ongoing method comparison study between two devices
for pulmonary function testing. In so doing, we provide not only con-
crete motivation for equivalence testing for functional data, but also
a blueprint for researchers who hope to conduct similar inference.

1. Introduction. An equivalence test is a statistical hypothesis test whose inferen-
tial goal is to establish practical equivalence rather than a statistically significant differ-
ence (Berger and Hsu, 1996). These tests arise from the fact that within the frequentist
paradigm, failing to reject a null hypothesis of no difference is not logically equivalent to ac-
cepting said null. Examples of scenarios requiring equivalence tests include the assessment
of a generic drug’s performance relative to a brand name drug and method comparison
studies, in which the agreement of a new device with the “gold-standard” for measuring a
particular phenomenon must be assured before the new device can replace the old one.

Equivalence tests for scalar data typically involve the establishment of upper and lower
equivalence thresholds dependent on the metric of equivalence being used. The inferential
aim is to establish that the metric falls within the upper and lower equivalence thresholds
with a prespecified Type I error rate. See Berger and Hsu (1996) for comprehensive overview
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2 FOGARTY AND SMALL

of commonly used procedures. Oftentimes the use of scalar data is adequate, but in some
instances the question of practical equivalence cannot be reduced to a hypothesis regarding
scalar data.

The motivation for this research arose from a method comparison study between a new
device for assessing pulmonary function, Structured Light Plethysmography (SLP), and
the industry standard for such assessments, a spirometer. SLP holds many advantages over
spirometry: it is non-invasive, it can be used to diagnose patients of a wider range of age
and health levels, and it provides detailed information regarding specific regions of the lung
that may be malfunctioning. Before SLP may be used extensively for diagnostic purposes
it must be assured beyond a reasonable doubt that the measurements obtained by SLP are
practically equivalent to those produced by a spirometer.

Doctors rely on a host of information that can be produced both by SLP and by spirom-
etry. Some of these measurements are scalar, and hence their equivalence can be addressed
using available scalar methods; however, not all diagnostic tools utilized are scalar. For
example, the “Flow-Volume Loop” is a phase plot of flow of air into and out of the lungs
versus volume of air within the lungs over time for each breath. This plot allows doctors
to investigate the relationship between flow and volume at various points in time during
a given breath, which can indicate whether one has normally functioning lungs, suffers
from an obstructive airway disease (such as asthma), suffers from a restrictive lung disease
(such as certain types of pneumonia), or rather has another condition altogether. In fact,
certain pulmonary ailments are associated with certain shapes of these loops. Figure 1
shows Flow-Volume Loops for healthy patients, and for patients with varying pulmonary
ailments (N. Goudouzian and A. Karamanian, 1984).

Fig 1. Flow-Volume Loops corresponding to various levels of pulmonary health, calculated using a
spirometer (N. Goudouzian and A. Karamanian, 1984)

Alberola-Lopez and Martin-Fernandez (2003) discuss a frequentist approach for com-
paring two functions through the use of a Fourier basis expansion. Behseta and Kass
(2005) propose a Bayesian method for assessing the equality of two functions using a
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 3

non-parametric regression method known as Bayesian adaptive regression splines (BARS).
Neither of these approaches uses the idea of establishing practical equivalence; rather, both
papers test strict equality between the functions of interest, and in fact set strict equal-
ity as the null hypothesis and lack thereof as the alternative. In this paper, we propose a
framework for functional equivalence testing that is analogous to its univariate counterpart.
This involves an extension of scalar techniques to the functional realm, and a modification
of said techniques when a simple extension is not possible. In so doing, the inferential ob-
jective becomes to establish that a functional metric of equivalence lies within a tolerance
region with a prespecified Type I error rate. We then discuss methods for equivalence test-
ing within the frequentist and Bayesian paradigms, and illustrate these techniques with
data from the method comparison study between SLP and spirometry. We further intro-
duce a Bayesian model for heteroscedastic functional data inspired by the work of Barnard
et al. (2000) that separately places priors on the correlation structure and the underlying
variance functions.

2. A Framework for Equivalence Testing.

2.1. Equivalence Testing for Scalar Data. In the scalar case, equivalence testing begins
by defining a metric whose value can be used to assess equivalence between the two pop-
ulations of interest, say θ. Common choices include the difference between group means,
µ1−µ2, and the difference of logarithms of group means, log(µ1)− log(µ2) (provided one’s
data are strictly positive). One then chooses lower and upper thresholds, κl and κu, such
that we can reject or fail to reject non-equivalence depending on whether or not θ falls be-
tween κl and κu. The null hypothesis is non-equivalence and the alternative is equivalence:

H0 :θ /∈ (κl, κu)

Ha :θ ∈ (κl, κu)

A common approach for conducting this hypothesis test within the frequentist paradigm is
known as a Two One-Sided Test (TOST) (Berger and Hsu, 1996). As the name suggests,
this is a two step procedure. In no particular order, one separately tests for the alternatives
that θ < κu and θ > κl with each test being conducted with size α. If one successfully
rejects for both tests, practical equivalence may then be suggested at size α; otherwise, one
fails to suggest practical equivalence. The lack of compensation in the significance level of
the individual tests (say, to α/2) follows immediately from the theory of Intersection-Union
Tests (or IUTs), which are tests for which the null parameter space can be described as the
union of disjoint sets, and the alternative as the intersection of the complements of those
sets. One can see that an equivalence test is an IUT (Berger, 1982), as its null region is
Θ0 := {(−∞, κl] ∪ [κu,∞)} and its alternative region is Θa := (κl, κu) = Θc

0.
The TOST testing procedure can suffer from a lack of power. Brown, Hwang, and Munk

(1995) and Berger and Hsu (1996) propose procedures which are uniformly more powerful
for the scalar case; however, these methods are themselves quite complicated even when
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4 FOGARTY AND SMALL

dealing with univariate data, to such an extent that TOST continues to be the method of
choice in the vast majority of applications. We proceed within the TOST framework, which
not only has intuitive appeal but can also be naturally extended to a test of equivalence
for functional data within the frequentist paradigm.

The most common goal of equivalence testing is to prove equivalence of means but this
may not be sufficient. Anderson and Hauck (1990) and Chow and Liu (1992) both suggest
that in addition to comparing mean responses, the variance of the two responses should
also be compared, as a device or drug with smaller variability may be preferred. We will
thus include a test for equivalence of variance in our testing procedure

2.2. Equivalence Testing for Functional Data. We now extend the equivalence testing
framework to the functional regime. Let θ(·) denote a functional measurement of similarity
between the location parameters of two functions. One potential choice for θ(·) is the
difference between overall mean functions. µ1(·)−µ2(·), but the choice of θ(·) should depend
on the nature of the inference being conducted. Let κl(·) and κu(·) denote lower and
upper equivalence bands, which again vary over the same continuum as do the functional
data. These bands are chosen such that practical equivalence can be suggested or refuted
depending on whether or not θ(·) falls entirely within κl(·) and κu(·).

For testing the equivalence of variability of the functional data, let λ(·) be a measure-

ment of similarity between spreads of the populations. Choices may include
σ2
1(·)
σ2
2(·)

, the ratio

between the variance functions of the two populations, or σ21(·)− σ22(·), the difference be-
tween the two variances. We again establish upper and lower bands, ζl(·) and ζu(·), within
which we can suggest practical equivalence of variance functions.

The null and alternative hypotheses for the tests of location and spread can then be
stated as follows:

Hθ
0 :∃t ∈ T 3 θ(t) /∈ (κl(t), κu(t))

Hθ
a :∀ t ∈ T , θ(t) ∈ (κl(t), κu(t))

Hλ
0 :∃t ∈ T 3 λ(t) /∈ (ζl(t), ζu(t))

Hλ
a :∀ t ∈ T , λ(t) ∈ (ζl(t), ζu(t))

Note that the above test, in aggregate, is an IUT; the alternative space is {θ(·), λ(·) : ∀ t ∈
T , θ(t) ∈ (κl(t), κu(t)) ∩ λ(t) ∈ (ζl(t), ζu(t))}. In order to test these hypotheses within
the frequentist paradigm, we propose conducting two TOST procedures, one each for the
location and spread parameters. Since this is an IUT, each of the four total hypothesis
tests can be conducted at significance level α to arrive at an overall size of α. Details of
our frequentist testing procedure can be found in Section 4. Sections 8 and 9 also discuss
conducting this test as a Bayesian.

Falling outside of the equivalence region for variability need not be a condemnation; to
the contrary, whichever population has markedly smaller variability could be favored on
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 5

Fig 2. Volume over time obtained using SLP and spirometry for an individual.

those grounds. If one were comparing a gold standard to a new device and the new device
had markedly lower variation, that would strengthen the case for the introduction of the
new device into the market. Hence, in the case of method comparison studies a simple one
sided test of non-inferiority may be sufficient for comparing residual variability.

Note that in practice, functional data are measured along a finite grid of values. Thus,
the grid must be fine enough such that areas of potential dissimilarity along the domain
are not ignored.

3. Equivalence Testing for Volume over Time Functions. As was explained
in Section 1, we are interested in whether or not the Flow-Volume loops produced by
spirometry are practically equivalent to those produced by SLP in terms of location and
variability. Measurements for volume over time and flow over time were recorded in 2009 for
16 individuals, with the devices set up such that each breath was simultaneously recorded
by SLP and spirometry. These data were not the result of a clinical trial, and hence our
use of the data serves exposition of our methodology rather than an argument for the
equivalence of SLP and spirometry. Our analysis herein focuses on using the 453 pairs
of volume over time curves measured by both devices on these 16 patients to assess the
equivalence of SLP and spirometry. Figure 2 shows the visual correspondence between these
volume over time plots for SLP and spirometry from an individual.

The data require preprocessing before our analysis can proceed, as we must break our
recordings into individual breaths that are aligned between devices and that are comparable
in terms of their domains and scale; see the supplementary materials for details. This results
in 453 pairs of breaths, where each breath is measured at 25 equispaced time points, time
is scaled to the interval [0,1], and time t for SLP corresponds with time t for spirometry
within each pair to the best of our ability.
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6 FOGARTY AND SMALL

3.1. A Model for Volume over Time Functions. We use a functional analysis of variance
model with cross-covariance between pairs of functions for our data. Functional analysis of
variance models are appropriate when one’s data are comprised of functional responses that
are believed to differ from one another solely due to certain categorical variables (Ramsay
and Silverman, 2005). Our model states that we can express the measured volume in the
lungs of person i using both devices (denoting SLP by 1, and spirometry by 2) in the kth

breath at time t ∈ T as follows:[
vi,1,k(t)
vi,2,k(t)

]
=

[
αi,1(t)
αi,2(t)

]
+

[
εi,1,k(t)
εi,2,k(t)

]
[
αi,1(t)
αi,2(t)

]
=

[
µ1(t)
µ2(t)

]
+

[
εi,1(t)
εi,2(t)

]
In this model [µ1(·), µ2(·)] represent the overall mean volume over time trajectory for each
device. We model the pairs {[αi,1(·), αi,2]} as random effects, as we think of the individuals
as draws from a larger population. The terms {[εi,1,k(·), εi,2,k(·)]} are the mean zero error
functions for the realized volume over time trajectory of each pair of devices, assumed
to be independent between breaths while allowing for both strong autocorrelation along
the domain of a given breath and cross correlation between two breaths in a given pair.
This means that not only is there correlation between the value of the functions at times
t and t′ for each breath from a specific device, but there will also be a correlation between
the observation at time t from SLP and the observation at time t′ from the spirometer.
Denote the variance functions of these errors by [σ2ε,1(·), σ2ε,2(·)]. The terms {[εi,1(·), εi,2(·)]}
are the mean zero error functions for each patient’s pair of random effects, assumed to
be independent between patients while allowing for both strong autocorrelation along the
domain of a given breath and cross correlation between random effects in a given pair.
Denote the variance functions of these random effects by [σ2α,1(·), σ2α,2(·)].

3.2. Defining Equivalence Bands. For our analysis, we define θ(·) , µ1(·) − µ2(·),
λ(·) , σ2ε,1(·)/σ2ε,2(·). In addition, we want to assure ourselves that the variabilities of
the random effect functions are similar between the two populations; otherwise, there
may be evidence of a systematic bias. As such, we define a third metric of equivalence
as ψ(·) , σ2α,1(·)/σ2α,2(·). Research is currently being conducted to ascertain proper values
for upper and lower equivalence bands for our measures of equivalence of location and
spread. These equivalence bands must be established via consultation of field experts (in
our case, with pulmonary specialists). For the purpose of illustrating the methodology out-
lined herein, however, we set reasonable equivalence bands based on the fact that the time
points immediately before, during, and immediately after maximal volume is attained are
critical for diagnostic purposes: κl(t) , −0.05 cos(2πt)− 0.15; κu(t) , 0.05 cos(2πt) + 0.15;
ζu(t) , 0.1 cos(2πt) + 1.8; ζl(t) , 1/(0.1 cos(2πt) + 1.8).

We use the same sets of equivalence bands for the error variances and the random effect
variances, although in practice these should be chosen separately. The class of equivalence
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 7

Fig 3. A Volume curve and the corresponding curve with κl(·) and κu(·) applied

bands need not be symmetric as this assumption may be unrealistic; we have merely done
so for simplicity. Figure 3 shows the locational discrepancy between volume curves if the
true differences between devices truly were at the upper and lower thresholds of equivalence
we have specified.

4. Frequentist Equivalence Testing for Functional Data. We propose using the
nonparametric bootstrap (Efron and Tibshirani, 1993) for assessing equivalence by con-
structing pointwise confidence intervals for each metric of equivalence, and then using the
duality between confidence intervals and pointwise hypothesis tests to conduct our in-
ference. We begin with a testing procedure for iid data as we imagine many situations
encountered in practice will be of this form. We then discuss a procedure for testing within
a random effects model. Allowing for random effects is useful for repeated measures data
such as our pulmonary device data. Through our exposition, we illustrate why pointwise
coverage of our confidence intervals is actually sufficient for guaranteeing that the resultant
inference is of the desired size.

4.1. IID Data, Independence between Populations. We use the difference in mean func-

tions, θ(·) , µ1(·) − µ2(·) and the ratio of variance functions λ(·) ,
σ2
ε,1(·)
σ2
ε,2(·)

, as metrics for

equivalence. Let y1,1(·)...y1,n1(·) and y2,1(·), ..., y2,n2(·) denote the n1 and n2 observations
from groups 1 and 2 respectively, and let ȳ1(·)− ȳ2(·) denote the sample mean functions.

We use θ̂(·) , ȳ1(·) − ȳ2(·) and λ̂(·) ,
s2ε,1(·)
s2ε,2(·)

as our test statistics for the hypothesis

test, and use the nonparametric bootstrap to derive pointwise confidence intervals for the
corresponding parameters. We then use the duality between one sided confidence intervals
and one sided tests to reject or fail to reject non-equivalence.

In each bootstrap simulation, we do the following:

1. Sample n1 curves with replacement from the curves in group 1, and sample n2 curves
with replacement from the modified curves in group 2
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8 FOGARTY AND SMALL

2. Compute the pointwise mean curve from these samples and the pointwise variance
curves for each population. Denote these as {ȳ∗i (·)} and

{
s2∗i (·)

}
3. Compute θ̂∗(·) , ȳ∗1(·)− ȳ∗2(·) and λ̂∗(·) , s2∗1 (·)

s2∗2 (·)
4. Store this value.

Next, we find upper and lower one sided pointwise 100(1− α) confidence intervals. Let
qp[X(t)] denote the p-quantile for the distribution of X evaluated at time t. Then, we
define our upper and lower pointwise confidence intervals for θ(t) using a bias correcting
percentile based bootstrap as discussed in Davison and Hinkley (1997):

Cu1−α(θ(t)) = [2θ̂(t)− qα[θ̂∗(t)],∞)

C l1−α(θ(t)) = (−∞, 2θ̂(t)− q1−α[θ̂∗(t)])

At any particular poin t, Cu1−α(θ(t)) and C l1−α(θ(t)) can be interpreted as the set of all θ0
such that we fail to reject the null that θ(t) ≤ θ0 and θ(t) ≥ θ0 respectively. As such, if
our lower equivalence band at time t, κl(t), is outside of Cu1−α(θ(t)), then we can reject the
null that θ(t) ≤ κl(t) at the point t. Likewise, if κu(t) is outside of C l1−α(θ(t)), then we can
reject the null that θ(t) ≥ κl(t) at the point t.

Our upper and lower pointwise confidence interval for λ(t) take on a different form. This
is because dispersion measures are not typically variance stabilized. In such cases, con-
ventional bootstrap intervals fail to attain their advertised coverage probabilities in small
samples. We imagine that most test statistics for testing equivalence of dispersion will be
based on the sample variance. For many distributions (including the normal), transforming
by the logarithm results in an estimator whose variance is stabilized. Hence, we instead
construct upper and lower one sided confidence intervals for the variance stabilized quan-
tity log(λ(t)), and then utilize the monotonicity of the log transform to result in confidence
intervals forλ(t)

Cu1−α(λ(t)) = [(λ̂(t))2 × q1−α[1/λ̂∗(t)],∞)

C l1−α(λ(t)) = (0, (λ̂(t))2 × qα[1/λ̂∗(t)]]

These intervals can be used to test whether λ(t) is below the upper equivalence band and
above the lower equivalence band at any point t. If one is concerned about the log trans-
form providing variance stabilization, another approach to constructing these confidence
intervals would be to estimate a variance stabilizing transformation within the bootstrap
framework (see Davison and Hinkley, 1997, Tibshirani, 1988).

We now have tests for whether or not we have equivalence of location and spread at any
point t. To test for overall equivalence, we conduct tests at each domain point based on the
100(1−α) pointwise interval at all points t ∈ T and reject the null of non-equivalence only
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 9

if all of the individual test results in a rejection. To see why there is no need to correct for
simultaneous comparisons, let T0 ∪ Ta = T be a partition of the domain where T0 contains
the points for which the null hypothesis is true and Ta contains the points for which the
alternative is true for any true metric of equivalence in the set of non-equivalence. Then,
the probability of a false rejection is bounded as follows:

P(Type I Error) = P(falsely reject all of T0, correctly reject all of Ta)
≤ P(falsely reject all of T0)
≤ P(falsely reject a particular t0 ∈ T0)
= α

Hence, pointwise α tests of hypothesis guarantee size of at most α. In fact, if one had further
information regarding the correlation between test statistics, these tests could be done at
a size larger than α, since our decision to reject non-equivalence is an intersection of tests.
As an example, if our function were defined on a grid of size |T | = 20, our test statistics
were independent, and we wanted an overall size of α = 0.05, we could then run our tests
using α∗ = α1/20 = 0.87. In the absence of such knowledge, conducting the pointwise tests
at size α is actually a tight upper bound. To see this, consider an equivalence metric that
is in the equivalence region at all points along the domain except for t0, at which its value
equals that of the equivalence band. If the probabilities of correct rejection at all points
T /{t0} is sufficiently close to one, then essentially the type one error rate is the size of the
test at t0, which is α. In Section 10.1, we give an example where the overall size approaches
the upper bound α.

4.2. IID Matched Pairs. For paired functions (commonly arising in comparison stud-
ies where simultaneous measurements using two devices are possible), slight alterations are
required in the bootstrapping procedure. We again use the difference in mean functions,

θ(·) , µ1(·) − µ2(·) and the ratio of variance functions λ(·) , σ2
1(·)
σ2
2(·)

, as metrics for equiva-

lence. Let {y1,i(·), y2,i(·)} be the paired curves, and let n denote the total number of pairs.
The bootstrap procedure is as follows:

1. Sample n pairs of curves with replacement from the original sample
2. Compute the pointwise mean curve from these samples and the pointwise variance

curves for each population. Denote these as [ȳ∗1(·), ȳ∗2(·)] and [s2∗1 (·), s2∗2 (·)]
3. Compute θ̂∗(·) , ȳ∗1(·)− ȳ∗2(·) and λ̂∗(·) , s2∗1 (·)

s2∗2 (·)
4. Record this value

Now that our bootstrap samples have been acquired, the rest of the procedure is identical
to that explained in Section 4.1.

4.3. Random Effects with Matched Pairs. We now describe a nonparametric bootstrap
procedure for paired random effects and paired responses. The procedure for non-matched
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10 FOGARTY AND SMALL

data would replace sampling pairs with sampling individually from two populations, and
hence we omit its discussion herein. See Chambers and Chandra (2013) for an overview of
random effect bootstrapping procedures.

Suppose our data consist of A individuals with pairs of random effects [αi,1(·), αi,2(·)]
iid∼

F with mean [µ1(·), µ2(·)] and variance [σ2α,1(·), σ2α,2(·)]. For each individual i ∈ [A], we

observe ni pairs of curves with [yi,1,k(·), yi,2,k(·)]
iid∼ Gi with mean [αi,1(·), αi,2(·)] and vari-

ance [σ2ε,1(·), σ2ε,2(·)]. Let N =
∑A

i=1 ni denote the total number of curves. Our test for

equivalence will, as before, focus on the location metric θ(·) , µ1(·)− µ2(·) and metric of

equivalence of error variabilities, λ(·) , σ2
ε,1(·)
σ2
ε,2(·)

. As described in Section 3.2, we also include

a third metric, the ratio of random effect variances of the two populations: ψ(·) , σ2
α,1(·)
σ2
α,2(·)

.

Let ȳj(·) , 1
N

∑A
i=1

∑ni
k=1 yi,j,k(·) be the overall mean curve for coordinate j and let ȳi,j ,

1
ni

∑ni
k=1 yi,j,k(·) be the mean curve for coordinate j of individual i. Now, define SSEj(·) ,∑A

i=1

∑ni
k=1(yi,j,k(·) − ȳj(·))2, and let SSAj(·) ,

∑A
i=1 ni(ȳi,j − ȳj)2. Our estimators for

these metrics of equivalence will be based on their univariate random effect counterparts
derived via ANOVA. See Searle et al. (2009) for a description of methods for univariate
random effect analysis. Begin by defining our estimate of the random effect variance curve
by s2α,j(·) = (SSA1(·)/(A−1)−SSE1(·)/(N−1))/n∗, n∗ = (N−(

∑
n2i )/N)/(A−1). Then,

we define our test statistics as λ̂(·) = SSE1(·)
SSE2(·) . and ψ̂(·) = s2α,1(·)/s2α,2(·). Our estimators for

the random effects will be α̂i,j(·) = ȳi,j(·). Based on these, we estimate our location metric,

θ(·), by θ̂(·) = 1
A

∑A
i=1(α̂i,1(·)− α̂i,2(·))

Denote ri,j,k(·) = yi,j,k(·) − α̂i,j(·). We then consider these N pairs as a reservoir from
which to draw error functions in the bootstrap simulation, rather than maintaining a
correspondence between random effects and residuals from that random effect’s group.
This ignores the sample covariance between residuals from the same group, and slight
heteroscedasticity if the design is unbalanced. We doubt that this would have a substantial
impact on the inference being performed (which the simulation studies of Section 10 seem
to suggest), but leave a proper investigation for future work.

Before beginning the bootstrap, we adjust our estimates of the random effects such that
the ratio of the variances of the pool of random effects used in the bootstrap matches up
with our estimate of the random effect variance. We define the following adjusted random
effects:

âi,j(·) = ȳj(·)− (α̂i,j(·)− ȳj(·))
sα,j(·)

SD(α̂i,j(·))

Here, SD(α̂i,j(·)) is the standard deviation of our estimated group means evaluated point-
wise. This transformation guarantees that the variances of the random effects used in the
bootstrap are the same as our estimate of that variance. As noted in Shao and Tu (1995)
and Chambers and Chandra (2013), this step is required to assure that the confidence
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 11

intervals produced by the bootstrap procedure are consistent. We the proceed as follows:

1. Sample A pairs of random effects from {[âi,1(·), âi,2(·)]} with replacement. Call them
{[âi,1(·), âi,2(·)]∗}. The first pair drawn gets assigned n1 as the number of pairs of
curves to be drawn within that group, the second gets assigned n2, etc.

2. For each i, draw ni pairs of residuals with replacement from {[ri,1,k(·), ri,2,k(·)]}. Call
these {[ri,1,k(·), ri,2,k(·)]∗}

3. Define [yi,1,k(·), yi,2,k(·)]∗ = [âi,1(·), âi,2(·)]∗ + [ri,1,k(·), ri,2,k(·)]∗
4. Estimate ȳ∗j (·), ȳ∗i,j(·), SSE∗j (·), SSA∗j (·) based on the bootstrap sample {[yi,1,k(·), yi,2,k(·)]∗}
5. Estimate θ̂∗(·), λ̂∗(·), ψ̂∗(·) based on these quantities.

We can create pointwise 100(1− α) confidence intervals for θ(·) and λ(·) just as we did
in Section 4.1. For ψ(·), we define our confidence intervals in the same manner as we did
with λ(·)

Cu1−α(ψ(t)) = [(ψ̂(t))2 × q1−α[1/ψ̂∗(t)],∞)

C l1−α(ψ(t)) = (0, (ψ̂(t))2 × qα[1/ψ̂∗(t)]]

As before, these confidence intervals can be used to test whether ψ(t) is below the upper
equivalence band and above the lower equivalence band at any point t

5. A Frequentist Test of Equivalence for Lung Volume Functional Data. We
now conduct our equivalence test using the methods described in Section 4 for paired ran-
dom effects. We drew 10,000 bootstrap samples and used α = 0.05 to carry out these tests.
We find that Figure 4 is a powerful visual display of the results of this TOST procedure.
In each plot, we display the upper and lower equivalence bands. We also display the upper
band of the region C l0.95(·) and the lower band of the region Cu0.95(·). Recall that we can
reject the null if the upper equivalence band lies entirely outside the region C l0.95(·) and if
the lower equivalence band lies entirely outside the region Cu0.95(·). Hence, it is sufficient
to check whether or not either the upper or lower equivalence band at any point inter-
sect the region defined by the overlap of the two one sided confidence regions, which is
shaded in the plots. Intersection implies failure to reject, and lack thereof implies rejection
of non-equivalence in favor of equivalence.

Based on Figure 4, we conclude that we can suggest equivalence for our locational metric,
but fail to reject the null of non-equivalence for variability of both errors and random effects.
We believe it will always be the case that a two sided test for the variability of random
effects is appropriate, as deviations in either direction indicate substantial differences in
the distribution of the individual level mean curves; however, for certain applications (ours
included), lower error variance will be strictly preferred. If we thus restrict ourselves to only
having the ratio of error variances below the upper equivalence threshold, then we would
also reject the null of non-inferiority of error variability. Note that there does appear to be
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12 FOGARTY AND SMALL

an inflation of error variance by a factor of 1.5 at the beginning of each breath for SLP
relative to spirometry. Though the ratio between the two variances is high at this point,
the actual magnitude of the variances at the beginning of these curves is extremely small
for both devices, which results in the high value for the ratio of variances.

Fig 4. Equivalence Test for the difference of means (top left), ratio of error variances (top right),
and the ratio of random effect variance curves (bottom)

6. A Bayesian Paradigm for Equivalence Testing. As in the frequentist case,
we suggest using functional measures of location and spread to assess practical equiva-
lence; however, carrying out a TOST hypothesis test is not required within the Bayesian
paradigm. Rather than conducting a stochastic proof by contradiction, the Bayesian paradigm
allows us to directly compute posterior probabilities of our functional metrics of equiva-
lence falling entirely within specified equivalence ranges. That is, the Bayesian paradigm
allows for direct computation of P{Ha|Data} for each of the equivalence hypotheses. In
light of this, we propose that the researcher conduct the following three steps when using
the Bayesian framework for equivalence testing:
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 13

1. Define an equivalence region through expert consultation
2. Define a probability value, call it γ, such that if P{Ha|Data} ≥ γ, equivalence may

be suggested. Using the suggestions of Jeffreys (1961) and Kass and Raftery (1995),
a value of γ = 0.75 or γ = 0.95 may be appropriate.

3. Specify prior distributions for the metrics of equivalence that are commensurate with
the researcher’s prior belief of the alternative being true relative to the null.

The specifics of this implementation depend on the types of prior distributions used to
model the parameters and data. In Section 7, we discuss the use of Gaussian Processes in
modeling both our data and parameters and describe a model that allows for specification of
priors and posterior inference for our metrics of equivalence. Though Gaussian Processes are
a rich and flexible class of distributions for functional data, a valuable extension of our work
would be conducting Bayesian equivalence testing for functional data using nonparametric
models.

7. Bayesian Functional Equivalence Testing for Lung Volume Data. Kauf-
man and Sain (2010) discuss using functional ANOVA modeling within the Bayesian
paradigm. They begin by assuming that the functional data are realizations of an underly-
ing Gaussian process with a mean function depending on the factor levels and a covariance
function that describes the dependence between points along the function’s domain. They
further assume that the covariance between errors can be aptly specified as a member of
the class of Matérn covariance functions (Matérn, 1986). The specification of a correlation
function works to impose smoothness between estimated function values, and to allow for
interpolation at unobserved domain values. Gaussian process priors with Matérn covariance
functions are used for the mean functions themselves, which allows for the incorporation
of a priori beliefs about both smoothness and location.

The assumption of homoscedastic variances along the function’s domain is problematic
for us, as allowing the error and random effect variances to change with time is vital to
our investigation of equivalence. We consider a more flexible class of covariance and cross-
covariance functions: Vi,j(t, t

′) = σi(t)σj(t
′)Ri,j(t, t

′). Here, σε,i(t) is the error standard
deviation function for device j evaluated at time t, and Rε,i,j(t, t

′) is either the correlation
function for device j for observations at times t and t′ if i = j or the cross-correlation
function between the error at time t for device i and the error at time t′ for device j if
i 6= j.

To simplify notation, let Ξ denote the set containing all of our parameters. Then, we
can write our Multivariate Gaussian Process model for our responses:[

vi,1,k(·)
vi,2,k(·)

] ∣∣∣∣Ξ indep∼ MVGP

([
αi,1(·)
αi,2(·)

]
,

[
Vε,1,1(·, ·) Vε,1,2(·, ·)
Vε,1,2(·, ·) Vε,2,2(·, ·)

])
Note that in practice our response functions are measured only at a predetermined set of
grid points, t = {t1, ..., tT } ⊂ T . To distinguish this, let the notation [vi,1,k(t),vi,2,k(t)]
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14 FOGARTY AND SMALL

represent the vector whose coordinates are the response as measured at each of the T grid
points, and let the analogous notation hold for the functional parameters of our models.
Hence, [vi,1,k(t),vi,2,k(t)]′ represents a 2T × 1 vector. Using the decomposition proposed
in Barnard, McCulloch, and Meng (2000), our covariance functions evaluated at t can be
described in matrix notation as Vε,i,j(t, t) , Diag (σε,i(t)) Rε,i,j(t, t)Diag (σε,j(t)) where
Diag (σε,j(t)) denotes a T × T matrix whose diagonal elements are σε,j(t).

Our assumption of a Multivariate Gaussian Process results in [vi,1,k(t),vi,2,k(t)] fol-
lowing a Multivariate Normal distribution when we consider observations at the set of
gridpoints t with the fixed grid analogues for the mean and covariance structure.

8. Bayesian Methodology.

8.1. Correlation Structure. Our data set consists of a total of 453 breaths collected
from 16 individuals, where each breath was measured at 25 equispaced time points using
both SLP and spirometry. Our desire to model cross-covariances between devices results
in our matrices of observations being 50 dimensional. For modeling the error correlation,
this is not an issue as we have 453 observations; however, as we only have 16 individuals
a simplifying assumption must be made to proceed. In many functional data settings,
the goal of the data analysis is mean function estimation and prediction at new locations
(kriging). To facilitate this, modelers typically restrict themselves to a particular class
of correlation functions. Unfortunately, the distribution of posterior variance functions is
highly dependent on the correlation structure. Hence, misspecification of the correlation
model can result in estimates for variance parameters that are biased and wildly misleading.
As we would like to conduct inference for the ratio of variance functions of both errors and
random effects, we are left searching for an alternative. More advanced methods that make
no assumptions on the correlation function class have been suggested in the geostatistics
literature (see Nychka, Wikle, and Royle, 2002, Paciorek and Schervish, 2006, Fuentes
and Smith, 2001, Fuentes, 2002) and elsewhere (see Morris and Carroll, 2006, Chen and
Müller, 2012), but none of these works have directly focused on the accuracy of the resultant
variance estimates. Estimation of correlation functions for repeatedly observed functional
data remains an active area of research, particularly in the regime where the number of
functional observations is small relative to the grid size.

Our recommendation is that if the researcher has sufficient data to flexibly model the
correlation structure of both the random effects and the errors then this should be the
course pursued. As we do not, we instead make a modeling decision that will facilitate valid
inference for our variance functions. We assume the following structure for the correlation
of our errors and random effects:

Ri,j

(
t, t′
)

=


1 i = j, t = t′

ρ(t) i 6= j, t = t′

0 otherwise
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 15

We thus primarily focus on the marginal distributions for estimation of our mean func-
tions and variances. This has the obvious drawback of not fully exploiting the functional
nature of our data, but allows for estimation of marginal variances without the risk of
biases due to misspecification of the correlation structure. This is an interesting instance
where the simplifying assumptions made to facilitate inference would not necessarily align
with ones made if the goal was estimation of mean functions or prediction of values at
unmeasured locations. In the latter case, one would likely enforce a restriction to a spe-
cific class of correlation functions which would result in both smooth curve estimates and
a principled manner by which interpolation and prediction could be performed; however,
this would result in misleading estimates for the variance components of the model which
is unacceptable for testing equivalence of variance functions. In Section 10 we investigate
the ramifications of this modeling decision on the resultant inference.

8.2. Prior Distributions. Specification of priors for σε,1(·) and σε,2(·) must be done
carefully, as practical equivalence of error variability is tested using a function of these
parameters. We model these functions as themselves being realizations of independent
stochastic processes. Specifically, we extend the work of Barnard et al. (2000) to the func-
tional regime by modeling the standard deviation curves as emanating from Log-Gaussian
Processes:

log
(
σ2ε,1(·)

)
∼ GP

(
τε(·), s2εΓε(·, ·)

)
log
(
σ2ε,2(·)

)
∼ GP

(
τ2ε (·)− δε(·), s2εΓε(·, ·)

)
log (σε,1(·)) ⊥⊥ log (σε,2(·))

p(τε(·)) ∝ 1

δε(·) ∼
1

2
1{δε(·) = log(ζl(·))}+

1

2
1{δε(·) = log(ζu(·))}

where Γε(·, ·) = 1
2(|t − t′|/aε)2K2(d(t, t′)/aε) is a standard Matérn correlation function

(Matérn, 1986) with smoothness parameter ν = 2.

We use the ratio
σ2
ε,1(·)
σ2
ε,2(·)

as our comparative measure for the error variability of the two

devices. Our prior on the standard deviations yields the following prior for this ratio:

σ2ε,1(·)
σ2ε,2(·)

∼ 1

2

(
Log −GP

(
log(ζl(·)), 2s2εRσ(·, ·)

))
+

1

2

(
Log −GP

(
log(ζu(·)), 2s2εRσ(·, ·)

))
This is a 50/50 mixture of two Log-Gaussian processes with medians at the upper and
lower equivalence thresholds respectively. Hence, we can place prior probabilities on falling
within the equivalence region by careful choices of s2εΓε(·, ·). Borrowing from the frequentist
paradigm in which it is incumbent upon the researcher to prove his or her hypothesis
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16 FOGARTY AND SMALL

beyond a reasonable doubt, we set the values of these hyperparameters such that the a
priori probability of equivalence is quite small. We set s2ε = 5 and aε = 0.1, which results
in a prior probability of falling entirely within the equivalence region of P{σ2ε,1(t)/σ2ε,2(t) ∈
(ζl(t), ζu(t))} ≈ 5× 10−8.

For the correlations resulting from the paired nature of our data, we set ρε(t) ∼ U [−1, 1]
for all t.

For our random effects, {[αi,1(·), αi,2]}, we use a Hierarchical Gaussian Process prior:[
αi,1(·)
αi,2(·)

]
iid∼ GP

([
µ1(·)
µ2(·)

]
,

[
Vα,1,1(·, ·) Vα,1,2(·, ·)
Vα,1,2(·, ·) Vα,2,2(·, ·)

])
The priors on the variance functions of our random effects, [σ2α,1(·), σ2α,2(·)], and the

correlation structure are identical to the one used for the error variances.
The posterior distribution for the difference between the device specific curves, µ1(·) −

µ2(·), is of interest for assessing locational equivalence. Thus, proper attention must be
paid to the prior placed on {µ1(·), µ2(·)} such that the prior does not unduly force the
posterior distribution towards the prespecified equivalence region. Our priors for µ1(·) and
µ2(·) are as follows:

µ1(·) ∼ GP (µ0(·), s2µΓµ(·, ·)
µ2(·) ∼ GP (µ0(·)− δµ(·), s2µΓµ(·, ·))
µ1(·) ⊥⊥ µ2(·)

p(µ0(·)) ∝ 1

δµ(·) ∼ 1

2
1{δµ(·) = κl(·)}+

1

2
1{δµ(·) = κu(·)}

where Γµ(t, t′) is a Matérn correlation function with smoothness parameter ν = 2. This
then implies that our difference of means has the following prior:

µ1(·)− µ2(·) ∼
1

2

(
GP (κl(·), 2s2µΓµ(·, ·))

)
+

1

2

(
GP (κu(·), 2s2µΓµ(·, ·))

)
In other words, our prior on the difference in device means is a 50/50 mixture of two
Gaussian Processes, with means at the upper and lower equivalence thresholds respectively.
We choose a prior that places 1% likelihood in the equivalence region, and the remaining
99% outside of it. To achieve this, we fixed a value of aµ = 0.3, and then used the uniroot()
and pmvnorm() functions in R (R Development Core Team, 2011) to solve for the value of
s2µ such that P{µ1(t)−µ2(t) ∈ (κl(t), κu(t)}) = 0.01. This value was found to be 0.1. Note
that if one has a sense of an appropriate basis for the mean functions, one could place a
prior µ0(·) ∼ N (

∑
akφk(·), σ2µ) instead of p(µ0(·)) ∝ 1. This could allow for regularization

of the functional fits based on this basis while not restricting them to entirely follow said
basis, and would still facilitate our strategy of putting priors on equivalence commensurate
with prior knowledge.
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 17

8.3. Posterior Sampling. Before conducting inference based on our model specification,
we must devise a sampling schema for the posterior distribution of our parameters. We use
a Metropolis-within-Gibbs sampling algorithm; see the supplementary materials for details.

9. Posterior Analysis. To conduct our posterior analysis, we ran our Gibbs sampler
from three distinct starting values for 10,500 iterations per starting value (for a total of
31,500 iterations). We discarded the first 500 iterations as burn-in for each chain, and took
every 10 samples thenceforth for a total of 1000 samples per starting value, which were then
chained together resulting in 3000 roughly independent samples. See the supplementary
material for convergence diagnostics.

Figure 5 shows the posterior distribution for the three metrics of interest. We summarize
the posterior distributions of our metrics of equivalence by the posterior mean curve and
95% simultaneous posterior bands. These bands are computed using the multiplier based
method of Buja and Rolke (2003). The posterior bands are unnecessary for inference, as
the computation of P{Ha|Data} depends solely on how many posterior curves fall within
the equivalence region, but nonetheless provide a useful graphical aid. For our locational
metric, µ1(·)−µ2(·), we foGund that all 3000 of our samples from the posterior distribution
fell within the prespecified equivalence range suggesting overwhelming evidence in favor of
the hypothesis that these two curves, in terms of location, can be considered practically
equivalent. For the ratio of error variances, σ2ε,1(·)/σ2ε,2(·), we note that if it is the case that
lower variability is strictly more desirable then 2998 out of 3000 samples fall strictly below
the upper equivalence band; however, if one desires adherence to the lower equivalence band
as well then our posterior probability of equivalence is 0.0007, since our posterior bands
regularly violate the lower tolerance threshold towards the middle of the breaths (around
t = 0.5). For the ratio of random effect variances, σ2α,1(·)/σ2α,2(·), we note that although the
posterior median falls well within the equivalence range, only 18.2% of the posterior samples
fell entirely within the equivalence region. Hence, although we can suggest equivalence of
both means and error variances, we lack sufficient power to suggest equivalence of random
effect variances.

10. Comparing the Frequentist and Bayesian Methods. We have presented
methods for equivalence testing within the frequentist and Bayesian paradigms. From a
pragmatic perspective, the relative computational intensity of both methods is of inter-
est to practitioners. In this respect, our frequentist method is dominant as within each
bootstrap iteration, only simple vector operations are required. The Bayesian approach
requires sampling from multivariate distributions, matrix multiplication, matrix inversion
and determinant calculation within each step. Furthermore, thinning of one out of every
10 iterations was required. Hence, to get the same effective sample size, we needed to do 10
times as many iterations for the frequentist procedure as we did for the Bayesian one. To
attain 1000 independent samples via the Bayesian methodology, we needed to run 10500
iterations of our sampling algorithm which took 22.6 minutes on a personal laptop with
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18 FOGARTY AND SMALL

Fig 5. 95% simultaneous credible bands for µ1(·)− µ2(·) (top left), σ2
ε,1(·)/σ2

ε,2(·) (top right) and
σ2
α,1(·)/σ2

α,2(·) (bottom), along with upper and lower equivalence bands

4 GB RAM and a 2.7 GHZ processor. The bootstrap procedure took 16.1 seconds to run
1000 iterations on the same laptop. This discrepancy will only increase as the granularity
of the grid the user implements increases, as both determinant and inverse calculation are
O(p3) in their simplest implementation.

Frequentist and Bayesian inference are not coherent with one another, in that frequentist
inference has a built in preference for the null hypothesis. For the frequentist, the null is
the status quo, and the goal of the inference is to refute it via a “proof by contradiction”.
The Bayesian framework, on the other hand, allows the user to put varying degrees of
a priori preference on one hypothesis versus the other. In our Bayesian analysis we have
placed heavy preference on the null and thus require very strong evidence from the data to
put the posterior probability in the proper region, but this may not always be appropriate.
The Bayesian paradigm allows for a principled manner for incorporating the results of past
studies in the form of the priors placed on equivalence vs non-equivalence, a feature not
offered by the frequentist framework.
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EQUIVALENCE TESTING FOR FUNCTIONAL DATA 19

With these caveats in mind, we investigate the size and power of our methodologies,
using the threshold of α = 0.05 in the frequentist procedure. For our Bayesian procedure,
we use γ = 0.95 as our threshold for the posterior probability of equivalence. In our
investigation, we continue to place heavy a priori preference on non-equivalence for our
Bayesian methodology.

10.1. Type I Error. We restrict our investigation to the Type I error rates of our tests
for location and error variances. We simulate 20 matched pair random effects, and then sim-
ulate 20 matched functional responses for each subpopulation. This results in 400 breaths
total. To investigate the true size of our methods, we define a sequence of true values for
our metrics of equivalence where equivalence is violated at one point along the domain,
and the other points move farther and farther into the equivalence region. These sequences
and numerical labels are shown in Figure 6. The remaining values of parameters needed
for simulation are based on the posterior means from our data set. Additionally, we used
an estimate of the correlation structure of our error functions as the true correlation for
simulating both error functions and random effect functions. This allows us to assess the
robustness of our Bayesian procedure to the assumption of Section 8.1

For each of the nine function values in the sequence, we simulated 500 data sets and ran
both the frequentist and Bayesian methdologies on them. Figure 6 shows the result of this
study. We see that for testing the equivalence of mean functions, the Bayesian procedure
is far more conservative than our frequentist procedure, which appears to be due to the
assumption on the correlation structure made in our Bayesian procedure. As expected,
the frequentist procedure is initially conservative, but has size that approaches 0.05 as
the test becomes increasingly reliant on our data’s behavior at one domain point (the
one at which equivalence is violated). Figure 6 also demonstrates that the test is roughly
unbiased in terms of purported size. For testing the equivalence of variances, the Bayesian
and frequentist procedures initially exhibit similar Type I error rates, and also both appear
to be slighty anti-conservative; however, the Bayesian procedure is anti-conservative to a
far more egregious degree by the end of the sequence of functions, having an estimated
size of 0.072 for the 9th function in the sequence versus an estimated size of 0.056 for the
frequentist procedure at this value for the true ratio of error variances.

10.2. Power. To investigate the power of our methods, we define a sequence of true
values for our metrics of equivalence that fall entirely between the upper and lower equiva-
lence thresholds. These sequences and numerical labels are shown in Figure 7. The rest of
our simulation procedure mirrors that of our simulation for testing the Type I error rate.
Figure 7 shows the results of this study. We see that for testing equivalence of means, the
frequentist procedure appears to be substantially more powerful than its Bayesian counter-
part. For testing equivalence of variances, the frequentist and Bayesian procedures behave
quite similarly with no clear indication that one procedure is any more powerful than the
other.
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Fig 6. Sequence of true values and corresponding Type I error rates for µ1(·) − µ2(·) (top) and
σ2
ε,1(·)/σ2

ε,2(·) (bottom) along with upper and lower equivalence bands used for Type I error study

11. Discussion. We have presented a broad framework for equivalence testing when
one’s data are intrinsically functional. This framework begins with definitions of metrics
of equivalence, and correspondingly with the establishment of upper and lower equivalence
bands which are themselves functions of the continuum over which the functional data is
defined. We have stressed the importance of using metrics that are able to discern similarity
of location and of spread, as neither individually is sufficient for suggesting equivalence. We
illustrated the proper use of these frameworks using data from a method comparison study
assessing the performance of a new device for testing pulmonary function, SLP, relative to
the gold standard for pulmonary diagnoses, the spirometer.

Our model presently makes an assumption that all individuals are drawn from the same
population. For our application this makes sense, as we are solely looking at healthy individ-
uals. For other applications, the individuals for which repeated measurements are attained
may be draws from multiple populations. In our application, one could potentially have
individuals of varying degrees of pulmonary health (e.g. healthy, asthmatic, smokers). Our
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Fig 7. Sequence of true values and corresponding power of µ1(·) − µ2(·) (top) and σ2
ε,1(·)/σ2

ε,2(·)
(bottom) along with upper and lower equivalence bands used for the power study

model can easily adapt to this, as this simply requires adding an additional level to the
hierarchy. We could either say that health level specific means are drawn from a popula-
tion with an overall mean, and then individual means are drawn from these health level
specific populations, or we could model the health level means as fixed effects and result
in a functional mixed effects model.

Using the difference between mean functions to test locational disparity is a natural
choice, and the extent to which magnitude of differences are important can be controlled by
tightening or loosening the equivalence bands. For testing the disparity between variances
of both errors and random effects, we have followed the prevalent choice in the scalar
equivalence testing literature (see Chow and Liu, 1992) and have used the ratio between
variances, σ21(·)/σ22(·). On the one hand, this unitless measure has appeal in that it has
potential for standardization across applications. On the other hand, we lose a sense of the
absolute difference between the quantities. For some applications, the difference between
a variance of 0.01 and 0.02 could be inconsequential, yet the difference between 0.04 and
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0.08 could be enough to warrant using one device over another. If one were using ratios for
assessing a discrepancy, however, these quantities would be identically different. We thus
suggest that the difference between variances, σ21(·)−σ21(·), may be an additional metric for
equivalence that could be used in tandem with the ratio of variances to test for equivalence
of variability.

Note that there may be additional facets of the underlying distributions of functions to
be addressed beyond location and variability, depending on the application. For example,
one may be interested not only in the difference in the mean functions being within an
equivalence region, but also in the derivative of the difference between mean functions
being small in absolute value. We leave the development of proper methodology for these
questions as a topic for future research, but the strategy of supplying upper and lower
equivalence bands would certainly be appropriate.

We hope that this paper serves as a valuable contribution to the literature on equivalence
testing, and that its extension to the realm of functional data will be useful for a host of
applied users, including but not limited to practitioners looking to compare devices whose
measurements cannot be summarized as scalar quantities. Comparison studies are of the
utmost importance, as oftentimes the emergence of newer and better devices can have
salubrious outcomes for society in general. Our goal is that this paper properly emphasizes
the importance of equivalence testing in general, and provides traction for researchers who
aim to suggest that that two populations of functions are practically equivalent rather than
to suggest that they are different.
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SUPPLEMENTARY MATERIAL

(doi: COMPLETED BY THE TYPESETTER; .pdf). We provide a description of the
preprocessing that our data underwent, a detailed derivation of our Metropolis-within-
Gibbs Sampling algorithm, and diagnostic plots showing convergence of our Gibbs sampler
when used on our data.
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