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Abstract

A general non-asymptotic framework, which evaluates the performance of any procedure

at individual functions, is introduced in the context of estimating convex functions at a point.

This framework, which is significantly different from the conventional minimax theory, is

also applicable to other problems in shape constrained inference.

A benchmark is provided for the mean squared error of any estimate for each convex

function in the same way that Fisher Information depends on the unknown parameter in

a regular parametric model. A local modulus of continuity is introduced and is shown

to capture the difficulty of estimating individual convex functions. A fully data-driven

estimator is proposed and is shown to perform uniformly within a constant factor of the ideal

benchmark for every convex function. Such an estimator is thus adaptive to every unknown

function instead of to a collection of function classes as is typical in the nonparametric

function estimation literature.

Keywords: Adaptive estimation, convex function, local modulus of continuity, minimax esti-

mation, nonparametric regression, shape constrained inference, white noise model.

1 Introduction

The problem of estimating functions under assumptions of convexity or monotonicity has a long

history dating back at least to Grenander (1956). The extensive literature on this topic has

partly been motivated by specific applications but also by the fact that these shape constrained

problems have features that are shared with regular parametric models and other features that

are shared with nonparametric function estimation.

One connection with parametric models is that the least squares and maximum likelihood

estimates perform well. On the other hand, as is typical in nonparametric function estimation,

the rates of convergence in these models are slower than the usual root n rate. For example

Mammen (1991) established rates of convergence of the least squares estimate for the value of

a piecewise convex/concave function at a point. Precise analysis of the asymptotic distributions

for estimating a convex function has also been given in Groeneboom, Jongbloed and Wellner
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(2001a, b) assuming that the function has a positive continuous second derivative at the point of

interest. Attention has also focused on developing minimax theory under a variety of performance

measures. For example Birgé (1989) studied the minimax risk of the Grenander estimator

under an L1 loss. For estimating at a point, Kiefer (1982) showed that adding conditions

such as convexity to, for example, Lipschitz classes would not change the usual minimax rates

of convergence found in unconstrained nonparametric function estimation.

For monotone functions Cator (2011) considers the problem of adaptation under probabilistic

error adopting the point of view of Cai and Low (2006) but applied to shrinking neighborhoods

of fixed monotone functions. It is shown that for shrinking neighborhoods the least squares

estimate is rate optimal under probabilistic error. It should be noted that, in contrast to mean

squared error, fully rate optimal adaptation under probabilistic error is possible over a wide

range of Lipschitz classes even without shape constraints. See Cai and Low (2006).

In addition to local and global estimation there has also been considerable work on develop-

ing confidence bands. The main goal is the construction of confidence bands with guaranteed

coverage probability that also adapt to the local smoothness of the underlying function. As

shown in Low (1995) such confidence intervals often cannot be constructed, but assuming shape

constraints Hengartner and Stark (1995) and Dümbgen (1998) give a variable width confidence

band which does adapt to local smoothness while maintaining a given level of coverage proba-

bility. See also Cai, Low and Xia (2013) for the construction of adaptive confidence intervals

rather than bands. This quick survey of a few results from the extensive literature is not meant

to be exhaustive but to give a sense of the range of problems that have been considered.

In the present paper a new framework is introduced for estimating a shape constrained

function at a point. This framework is non-asymptotic and focused on the performance at

each individual function. Here we study the problem of estimating a convex function but the

approach extends to estimating monotone functions as well as other classes of shape restrictions.

A benchmark is provided for the mean squared error of any estimate which depends on the

unknown convex function in a similar way that the Fisher Information bound depends on the

unknown parameter in a regular parametric model. This approach should be contrasted to the

minimax theory for nonparametric function estimation where only the maximum risk over a

large parameter space is considered.

For ease of exposition these ideas will be explained in the context of a white noise with drift

model

dY (t) = f(t)dt+ n−1/2dW (t) − 1/2 ≤ t ≤ 1/2 (1)

where W (t) is Brownian motion. The choice of the parameter n in this white noise with drift

model is to make clear the connection to a nonparametric regression model with n equally

spaced design points. See, for example, Brown and Low (1996a). We shall also consider convex

regression in Section 5. We focus here on estimating f at 0 since estimation at other points away

from the boundary is similar. For any estimator T̂n of f(0), write the risk under squared error

loss as

R(T̂n, f) = E(T̂n − f(0))2 (2)

and denote by Fc the collection of convex functions on the interval [−1/2, 1/2].

There are three main goals of the present paper. The first is to introduce a benchmark which

measures the difficulty of estimating f(0) for each convex function f as well as to explain why
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this benchmark is natural in the present setting. The second is to provide a concise description

of the benchmark in terms of an analytic quantity, the local modulus of continuity, and the third

goal is to construct a data-driven estimator which has a risk uniformly within a constant factor of

the benchmark for all convex functions and for all n. However, before explaining this approach

in more detail, it is helpful to summarize a few key features and results from nonparametric

function estimation theory, in particular those on estimating a function at a point.

1.1 Minimax Theory in Nonparametric Function Estimation

In classical parametric inference, optimality theory is well developed especially from an asymp-

totic point of view. Parameters are most often estimated at the root n rate and the efficiency of

estimators can be evaluated by comparing the normalized asymptotic variance with the Fisher

Information bound. The justification for this bound can be made precise either in terms of the

Hájek-Le Cam convolution theorem or local asymptotic minimax theory. For example it is well

known that under suitable regularity conditions the maximum likelihood estimator is efficient in

terms of weak convergence and locally asymptotically minimax at each point in the parameter

space.

In contrast, asymptotic optimality theory developed for nonparametric function estimation

differs markedly from this classical theory. In particular rates of convergence are typically much

slower than the root n rate and the precise rate of convergence depends on the parameter space.

Another major difference, which is particularly important for the present paper, is that the rate

of convergence is often described not in a local way but rather in terms of the maximum risk

over an entire parameter space. See however Groeneboom, Jongbloed and Wellner (2001b) and

Jongbloed (2000) for examples of where a more local analysis is given.

Consider for example the problem of focus in the present paper namely that of estimating the

function f at the point f(0). The minimax theory for estimating such linear functionals reached

a mature form in the work of Ibragimov and Hasminskii (1984), Donoho and Liu (1991) and

Donoho (1994). As a concrete example it is helpful to focus on one commonly used collection of

parameter spaces the Lipschitz balls which are given by

Λ(α,M) = {f : |f(y)− f(x)| ≤M |y − x|α for x, y ∈ [− 1
2 ,

1
2 ]}, if 0 < α ≤ 1

and for α > 1

Λ(α,M) = {f : |f (bαc)(x)− f (bαc)(y)| ≤M |x− y|α
′

for x, y ∈ [− 1
2 ,

1
2 ]},

where bαc is the largest integer less than α and α′ = α − bαc. In this setting the minimax risk

summarized by

C1M
2

2α+1n−
2α

2α+1 ≤ inf
T̂n

sup
f∈Λ(α,M)

E(T̂n − f(0))2 ≤ C2M
2

2α+1n−
2α

2α+1 (3)

for two constants C2 ≥ C1 > 0 describes precisely the dependence of the minimax risk on α,

M and n. Specific linear procedures and lower bound arguments found in the above mentioned

papers narrow considerably the gap between the two constants C1 and C2.

One criticism of this theory is that the minimax benchmark is too conservative and the rate

optimal estimate relies on the knowledge of the smoothness parameter α. Since a function can
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belong to a range of these function classes, for which the minimax risk can be quite different, it

is not immediately clear how well one should expect or hope to estimate individual functions.

As a response to such concerns there has been a great effort over the last thirty years to develop

adaptive procedures that are simultaneously minimax over a collection of parameter spaces. This

point of view and history is particularly well explained in Donoho, Johnstone, Kerkyacharian

and Picard (1995) in the context of global estimation under integrated mean squared error. For

estimation at a point, Lepski (1990) considered adaptive estimation and showed that over a

collection of Lipschitz balls it is not possible to simultaneously attain the minimax rate, as the

parameter n tends to infinity, over every parameter space. It was also shown that the minimal

cost of adaptation is a logarithmic factor of the parameter n. It should however be stressed

again that the benchmark for adaptive estimators is still provided by considering the maximum

risk over large parameter spaces and is not focused at the level of individual functions.

1.2 Local Framework

The decision theoretic framework introduced in the present paper is focused on the performance

at every function. However in order to assess the difficulty of estimating a particular function

one must at least consider an additional function since otherwise the problem is degenerate. For

a given function f ∈ Fc it is natural to choose the other convex function, say g, to be the one

which is most difficult to distinguish from f in the mean squared error sense. The benchmark

Rn(f) can then be expressed as

Rn(f) = sup
g∈Fc

inf
T̂n

max{R(T̂n, f), R(T̂n, g)}. (4)

One of the major goals of this paper is to demonstrate why Rn(f) is a useful benchmark in

the present context of estimating convex functions. This shall be established by showing

1. Rn(f) varies considerably over the collection of convex functions;

2. There is a procedure that has a risk uniformly within a constant factor of Rn(f) for every

convex function f and every n;

3. Outperforming the benchmark Rn(f) at some convex function f leads to worse performance

at other functions.

It is the combination of these three factors that make Rn(f) a useful benchmark and estab-

lishing these three points in the context of estimating convex functions is the main purpose of

the present paper.

In order to make progress towards these three goals it is important to develop technical tools

for studying Rn(f). First we show that Rn(f) can be described in terms of an analytic quantity,

a local modulus of continuity ω(ε, f) defined by

ω(ε, f) = sup
g∈Fc
{|g(0)− f(0)| : ||g − f ||2 ≤ ε} (5)

where ||f ||2 is the usual L2 norm of a function f . Note that this local modulus ω(ε, f) clearly

depends on f and can be regarded as an analogue of Fisher Information in regular parametric
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models. The following bounds for Rn(f), which are a direct consequence of Theorem 1, show

that the local modulus ω captures the difficulty of estimating an individual convex function f ,

1

9
ω2(

2√
n
, f) ≤ Rn(f) ≤ 1

4
ω2(

2√
n
, f). (6)

Thus this local modulus characterizes the difficulty of estimating a particular convex function

in a similar manner that the usual global modulus of continuity describes the minimax risk as

shown in Donoho and Liu (1991), replacing a statistical problem by an approximation theory

problem.

Although these bounds help us towards the goal of showing that Rn(f) varies considerably

over the collection of convex functions the actual evaluation of these bounds for any given f still

involves a supremum over all convex functions. For this reason it is also important to develop

further technical tools for the study of ω(ε, f) which will allow this supremum to be replaced by

a quantity more specifically tied to the function f . In particular we show that the local modulus

can be further expressed in terms of an easily computable function K which depends only on the

convex function f , replacing a search over all convex functions and thus simplifiying considerably

the study of Rn(f). In particular it allows us to demonstrate that Rn(f) varies considerably as

f ranges over the class of convex functions.

There are two more steps to demonstrating that Rn(f) is a useful benchmark. First, we show

that Rn(f) can be essentially attained at each convex function f . That is, we shall construct a

data-driven estimator T̂∗ which satisfies

sup
f∈Fc

R(T̂∗, f)

Rn(f)
≤ C (7)

for some absolute constant C > 0 not depending on n. A procedure that satisfies (7) thus

performs uniformly within a constant factor of the ideal benchmark Rn(f). Such an estimator

T̂∗ is adaptive to every unknown function instead of to a collection of function classes as in the

conventional nonparametric function estimation literature. A procedure satisfying (7) will be

described in the next subsection.

Second, we show that there are consequences for outperforming the benchmark at a particular

function. Specifically, we prove that for any estimator T̂n if

R(T̂n, f) ≤ cRn(f), (8)

then there exists another convex function h such that

R(T̂n, h) ≥ d ln(
1

c
)Rn(h) (9)

for some absolute constant d > 0. This shows that if an estimator significantly outperforms the

benchmark Rn(f) at any particular convex function f there must be another convex function h

at which the estimator performs poorly. This phenomenon is similar to superefficient estimators

in classical parametric estimation problems. In this sense Rn(f) is like the Fisher Information

bound in regular parametric models although not at the level of constants.
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1.3 Estimation Procedure

For the second goal we need to establish that the bound Rn(f) is attainable. For this an estimator

T̂∗ is constructed and shown to perform well for every convex function f in the sense of (7). The

procedure is particularly easy to describe and to implement.

Denote by B(t) the symmetric box kernel B(t) = I(|t| ≤ 1
2 ). Set Bj(t) = 2j−1B(2j−1t) and

let

δj =

∫
Bj(t)dY (t), j ≥ 1 (10)

be a sequence of local average estimators for f(0). It can be shown that the estimators δj have

nonnegative and monotonically decreasing biases. The key is to choose an estimator δj which

optimally trades bias and variance. Set

ĵ = inf
j
{j : δj − δj+1 ≤ λ

2(j−1)/2

√
n
} (11)

where λ is a positive constant and define the estimator T̂∗ of f(0) by

T̂∗ = f̂(0) = δĵ . (12)

The motivation and analysis of this estimator will be given in Section 4. We should note here

that many of the basic properties of this estimator hold for a large range of λ but in this paper

we shall take λ to be equal to
√

2 and in this case it will be shown that the mean square error

of this data-driven estimator is within a factor of 6 of an ideal local average oracle risk which

itself is shown to be uniformly within a constant factor of the benchmark Rn(f) for every convex

function f and for all n ≥ 1. These results together yield the uniform bound (7).

A key feature in the technical analysis of the performance of T̂∗ is that for estimating convex

functions the bias of estimators such as δj can be learned quite precisely which is not possible

in general without shape constraints. This knowledge of the bias makes it possible to essentially

mimic the performance of an oracle estimator for every convex function.

1.4 Organization of the Paper

The rest of the paper is organized as follows. Section 2 discusses in detail the benchmark using

the hardest local alternative as well as other technical tools. Section 3 introduces a local average

oracle risk which can also be described by the local modulus of continuity. This section also

discusses superefficiency as measured by Rn(f). Section 4 investigates the properties of the

data-driven estimator (12) and shows that the estimator is within a factor of 6 of the ideal local

average oracle risk for every convex function and consequently it is uniformly within a constant

factor of the benchmark Rn(f). The local non-asymptotic framework developed in this paper is

applicable to shape constrained inference in general. Section 5 considers nonparametric convex

regression under the same framework. Section 6 discusses extensions of the results and possible

applications of the new framework to other related problems including estimation of monotone

functions and construction of confidence sets. We also explain in this section why the framework

given in this paper does not work for general nonparametric function estimation without shape

constraints. All the technical proofs are given in Section 7.
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2 Hardest Local Alternative and Oracle Benchmark

In this section we develop further the analysis of the new framework described in Section 1.2. The

benchmark Rn(f) introduced in Section 1.2 relies on the selection of a hardest local alternative

to f . The consideration of using such local alternatives in the context of high dimensional

statistical models can be viewed as a partial analogue of a semiparametric efficiency bound in

terms of the Fisher Information as in Stein (1956) or Bickel, Klassen, Ritov and Wellner (1993)

where a hardest one parameter family is considered.

2.1 Characterization of the Benchmark Rn(f)

In this section we show for a given convex function f , that effective upper and lower bounds

for Rn(f) can be given in terms of the local modulus of continuity ω(ε, f) introduced in the

introduction. These bounds are presented in equation (20) of Theorem 1. They are essentially

all that is needed when a particular convex function f is studied. However, in order to understand

how Rn(f) depends on f it is useful to provide a more direct bound on Rn(f) that does not

rely on the computation of ω, a quantity that involves searching over all convex functions. For

such an analysis it is convenient to replace the local modulus by a function that we call the K

function which is easily computable. We first introduce some notations that are useful in our

technical analysis.

For each convex function f define fs(t) by

fs(t) =

{
f(t)+f(−t)

2 − f(0) if 0 ≤ t < 1
2

limt→ 1
2

f(t)+f(−t)
2 − f(0) if t = 1

2

. (13)

So fs is a symmetrized and centered version of the convex function f . It is easy to see that fs

is convex and nondecreasing on [0, 1
2 ]. Let H be the function defined on the domain [0, 1

2 ] by

H(t) =
√
tfs(t). (14)

It can be easily checked that H(t) is a continuous convex and nondecreasing function on [0, 1/2].

When H(t) > 0 it is strictly increasing. An inverse of this function with domain [0,∞) can be

defined by

H−1(x) = sup{t : 0 ≤ t ≤ 1

2
, H(t) ≤ x}. (15)

It is easy to check that for all 0 ≤ t <∞,

H(H−1(t)) ≤ t (16)

and that if H−1(t) < 1
2 then

H(H−1(t)) = t. (17)

Finally for 0 < t <∞ define the function K by

K(t) =
t√

H−1(t)
. (18)

It is clear that the function K depends only on the convex function f . This function can be

viewed as a type of curvature that measures the rate of change of the function f near the origin.

7



It plays an essential role in our technical analysis. The following result shows that the local

modulus of continuity can be bounded in terms of the function K.

Proposition 1 For ε > 0 and f ∈ Fc,

K(
2

3
ε) ≤ ω(ε, f) ≤ K(

√
10

3
ε). (19)

It is important to see that the difficulty of estimating a convex function f at 0 can be captured

by the local modulus ω( 1√
n
, f) or the function K.

Theorem 1 The benchmark Rn(f) satisfies

1

9
ω2(

2√
n
, f) ≤ Rn(f) ≤ 1

4
ω2(

2
√

2/e√
n

, f) (20)

and also
1

9
K2(

4

3
√
n

) ≤ Rn(f) ≤ 1

4
K2(

4
√

5√
3e
√
n

). (21)

Note that in particular (20) implies (6) as ω(ε, f) is strictly increasing so ω(
2
√

2/e√
n
, f) ≤ ω( 2√

n
, f).

We should stress that the focus of these results is not on the specific constants provided, which

can be improved with more refined calculations, but on the general nature of the results. An

analysis of some specific examples will provide additional insights. Some of these are covered in

Section 2.2.

Remark 1 Donoho and Liu (1991) used a global modulus of continuity to study minimax

estimation of linear functionals. In the context of estimating a function at 0 it is defined as

ω∗(ε,F) = sup
f,g∈F

{|g(0)− f(0)| : ||g − f ||2 ≤ ε}.

Note that ω∗(ε,F) = supf∈F ω(ε, f). For a convex parameter space F Donoho and Liu (1991)

and Donoho (1994) have shown that the minimax risk R∗(n,F) = inf T̂ supf∈F E(T̂ −f(0))2 can

be bounded in terms of the global modulus of continuity,

1

8
ω2
∗(

1√
n
,F) ≤ R∗(n,F) ≤ ω2

∗(
1√
n
,F).

2.2 Examples

After the technical development given in the last section we now give a few examples which show

that the benchmark Rn(f) varies as f ranges over the class of convex functions. The results

also show that Rn(f) captures the difficulty of estimation in a much more precise way than the

minimax risks can. For a given convex function we shall first evaluate the function K which

can be easily done and which then yields immediately bounds for the local modulus ω(ε, f) and

hence also the benchmark Rn(f).

Example 1 We begin with a simple example. Let f(t) = ct where c is a constant. In this case

fs(t) = 0 and H(t) = 0, 0 < t ≤ 1
2 . So H−1(t) = 1/2 and consequently K(t) =

√
2t. Hence for

f(t) = t,

2
√

2

3
ε ≤ ω(ε, f) ≤ 2

√
5

3
ε
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and
32

81
n−1 ≤ Rn(f) ≤ 40

3e
n−1.

In particular, the rate of convergence of Rn(f) is parametric in this case.

Example 2 We now consider a symmetric function f(t) = |t|r with r ≥ 1. In this case fs(t) =

f(t) = |t|r and H(t) = t(2r+1)/2, 0 < t ≤ 1
2 . So H−1(t) = t2/(2r+1) and consequently K(t) =

t2r/(2r+1). Hence for f(t) = |t|r with r ≥ 1,

(
2

3
)

2r
2r+1 ε

2r
2r+1 ≤ ω(ε, f) ≤ (

10

3
)

r
2r+1 ε

2r
2r+1 ,

and
1

9
(
4

3
)

4r
2r+1n−

2r
2r+1 ≤ Rn(f) ≤ 1

4
(
80

3e
)

2r
2r+1n−

2r
2r+1 .

In particular, for f(t) = |t|, the difficulty of estimating f(0) as measured by the mean squared

error is of order n−2/3 and for f(t) = t2, the difficulty of estimating f(0) is of order n−4/5. In

fact for the case of f(t) = |t| it is easy to check that for small ε, ω(ε, f) = ( 2
3 )

2r
2r+1 ε

2r
2r+1 and it is

also possible to give an exact expression for Rn(f).

In the two examples above, the function K are computed analytically and the bounds for ω

and Rn are exact. However, this is not always possible in general. In the following two examples

the function K is not given in an analytic form and the bounds for ω and Rn are first-order

accurate.

Example 3 Consider the exponential function f(t) = et. In this case fs(t) = cosh(t) − 1 and

H(t) =
√
t(cosh(t)− 1), 0 < t ≤ 1

2 . Taylor expansion yields K(t) = 2−1/5t4/5(1 + o(1)) for small

t > 0. Hence for f(t) = et,

2
3
5 3−

4
5 ε

4
5 (1 + o(1)) ≤ ω(ε, f) ≤ 2

1
5 (

5

3
)

2
5 ε

4
5 (1 + o(1))

and

2
14
5 3−

18
5 n−

4
5 (1 + o(1)) ≤ Rn(f) ≤ (

10

3e
)

4
5n−

4
5 (1 + o(1)).

Thus for f(t) = et, the difficulty of estimating f(0) is of order n−4/5.

Example 4 Consider the function f(t) = −ctI(− 1
2 ≤ t ≤ 0) + trI(0 < t ≤ 1

2 ) where r > 1 and

c ≥ 0 are constants. Note that f is a nonsymmetric function and f ′ has a singularity at 0 when

c > 0. It is easy to see that fs(t) = 1
2 (−ct+ (−t)r)I(− 1

2 ≤ t ≤ 0) + 1
2 (ct+ tr)I(0 < t ≤ 1

2 ) and

H(t) = c
2 t

3/2 + 1
2 t

(2r+1)/2, 0 < t ≤ 1
2 . Hence for small t > 0,

K(t) =

{
( c2 )

1
3 t

2
3 (1 + o(1)) if c > 0

2−
1

2r+1 t
2r

2r+1 if c = 0
.

Consequently for f(t) = −ctI( 1
2 ≤ t ≤ 0) + trI(0 < t ≤ 1

2 ),

(
2c

9
)

1
3 ε

2
3 (1 + o(1)) ≤ ω(ε, f) ≤ (

5c

3
)

1
3 ε

2
3 (1 + o(1)), if c > 0

and

(
2

9
)

r
2r+1 ε

2r
2r+1 ≤ ω(ε, f) ≤ (

5

3
)

r
2r+1 ε

2r
2r+1 , if c = 0.
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Therefore Rn(f) can be bounded as

(8c)
2
3 3−

10
3 n−

2
3 (1 + o(1)) ≤ Rn(f) ≤ (

5c

3e
)

2
3n−

2
3 (1 + o(1)), if c > 0

and

2
8r

2r+1 3−
8r+2
2r+1n−

2r
2r+1 ≤ Rn(f) ≤ 2

2r−2
2r+1 (

5

3e
)

2r
2r+1n−

2r
2r+1 , if c = 0.

It follows that the difficulty of estimating f(0) is of order n−2/3 when c > 0 and of order n−
2r

2r+1

when c = 0. The difference between the two cases is due to the singularity of f ′ at 0 when

c > 0.

These examples show that the difficulty of estimation as measured by Rn(f) varies signifi-

cantly from function to function under the convexity constraint depending on the local smooth-

ness property of the convex function near the point of estimation. They also show that Rn(f)

can be easily bounded from below and above by computing the function K for any given f ∈ Fc.

3 An Oracle Risk and Superefficiency

Kernel estimators are one of the most widely used techniques in nonparametric function estima-

tion. For such estimators the most important issue is that of bandwidth selection and the major

difficulty is that the optimal bandwidth clearly depends on the unknown function f . In this

paper we consider a particular kernel estimator namely a local average estimator for estimating

the value f(0) and in the present section we focus on understanding the smallest risk of such a

procedure as the function varies over the class of convex functions.

This oracle risk is perhaps of interest in its own right as an alternative benchmark for partic-

ular procedures. However for us its importance lies as a way to connect the performance of the

particular estimator introduced in Section 1.3 to the benchmarks of Section 2. This oracle risk is

also instrumental in understanding the concept of superefficiency in the context of estimating a

convex function. Although it is possible to beat the benchmarks for a particular convex function,

such superefficient estimators must pay a penalty at other convex functions.

Consider the class of procedures L̂a with

L̂a =
1

2a

∫ a

−a
dY (t) (22)

which correspond to the local averages over the subintervals [−a, a] for 0 < a ≤ 1
2 . Then it is

easy to see that the mean squared error of L̂a is given by

Fn(a) = (
1

a

∫ a

0

fs(t)dt)
2 +

1

2an
, (23)

where again fs, given in (13), is the symmetrized and centered version of the convex function f .

Then the risk of the ideal local average is defined by

rn(f) = inf
0<a≤ 1

2

Fn(a). (24)

It is clear that rn(f) represents an ideal target for the class of local average estimators. For

a given convex function f , rn(f) is easy to calculate exactly or first-order accurately. Let us

consider again the examples discussed in Section 2.2.

10



Example 5 For f(t) = ct, it is easy to see that rn(f) = n−1. For f(t) = |t|r with r ≥ 1,

straightforward calculus yields that

rn(f) = (2r + 1)(r + 1)−
2

2r+1 (4r)−
2r

2r+1n−
2r

2r+1 .

For f(t) = et, by expanding the function fs(t) it is not difficult to show that

rn(f) = 2−
14
5 3−

2
5 5n−

4
5 (1 + o(1)).

Similarly it can be shown that for f(t) = −ctI( 1
2 ≤ t ≤ 0) + trI(0 < t ≤ 1

2 ) where r > 1 and

c ≥ 0 are constants,

rn(f) =

{
2−8/33c

2
3n−

2
3 (1 + o(1)) if c > 0

1
4 (2r + 1)(r + 1)−

2
2r+1 r−

2r
2r+1n−

2r
2r+1 if c = 0

.

The quantity rn(f) plays an important role in our analysis. It links the performance of the

data-driven estimator T̂∗ at a given convex function f with the benchmark Rn(f). Similar to the

local modulus of continuity ω(ε, f), the oracle risk rn(f) can also be upper and lower bounded

in terms of the function K.

Proposition 2 For any convex function f ∈ Fc,

9

16
K2(

2

3
√
n

) ≤ rn(f) ≤ 11

8
K2(

2

3
√
n

). (25)

It is sometimes useful to rewrite the bounds in this lemma by using the inequality C2/3K(t) ≤
K(Ct) ≤ CK(t) given in Lemma 4 in Section 7 which then gives 1

4K
2( 1√

n
) ≤ rn(f) ≤ 11

8 K
2( 1√

n
)

as a bound on rn(f). The bounds

1

12
ω2(

1√
n
, f) ≤ rn(f) ≤ 99

32
ω2(

1√
n
, f) (26)

on the oracle risk rn(f) in terms of the local modulus and the bounds

32

891
rn(f) ≤ Rn(f) ≤ 6

e
rn(f) (27)

on the benchmark Rn(f) in terms of the oracle risk then follow from Theorem 1 and Proposition

1.

The oracle risk rn(f) is also useful for understanding the third point made in section 1.2,

namely that outperforming the benchmark Rn(f) at some convex function must result in worse

performance at other functions. It is convenient to do this in two steps. First the following

result shows that there are consequences for outperforming the oracle risk rn(f) at a particular

function.

Theorem 2 Let T̂n be an estimate of f(0). Suppose that R(T̂n, f) ≤ crn(f) where 0 < c < 1.

Then there is another convex function h such that

R(T̂n, h)

rn(h)
≥ 8

9
(1− 1

0.88(ln(1/c))1/3
)2 ln

1

c
. (28)

11



This shows that if an estimator significantly outperforms the oracle risk rn(f) at any particular

convex function f , then there must be another convex function h at which the estimator performs

poorly. Then Theorem 2 and (27) together yield directly the following corollary which expresses

the consequence of superefficiency in terms of the benchmark Rn(f).

Corollary 1 There is a constant d > 0 such that, if T̂n is an estimate of f(0) with R(T̂n, f) ≤
cRn(f) for some convex function f where 0 < c < 1, then there is another convex function h

with
R(T̂n, h)

Rn(h)
≥ d ln

1

c
. (29)

4 Analysis of the Estimation Procedure

We now turn to an analysis of the estimator T̂∗ given in (12). The estimate T̂∗ is a local average

estimate with a data-driven bandwidth selector. We shall show that the estimator T̂∗ performs

well for every convex function f in the sense that its mean squared error is uniformly within a

constant factor of Rn(f) for all f ∈ Fc and all n. As a direct consequence a standard adaptive

minimaxity result then follows.

The procedure T̂∗ is strongly related to the oracle procedure of the last section. First a

bandwidth is chosen from a dyadic sub-collection of these procedures and then a local average

is performed using that bandwidth. The key is to find a data driven bandwidth that optimally

trades bias and variance in the sense that a larger bandwidth will inflate the squared bias much

more than it reduces the variance and a smaller bandwidth will increase the variance more than

it reduces the squared bias. A critical step is to accurately learn the bias of the local average

estimate for individual convex functions. The ability to learn the bias of an estimator is a key

special feature in problems with shape constraints. This feature makes it possible to adapt to

individual functions.

Denote the standard deviation of δj defined in (10) by σj . Then it is easy to see that

σj =
2(j−1)/2

√
n

. (30)

Within the dyadic class of local average estimators {δj}, one would like to use the ideal “esti-

mator” δj∗ where

j∗ = arg min
j

E(δj − f(0))2 = arg min
j

{
Bias2(δj) + σ2

j

}
. (31)

This dyadic class is rich in the sense that the mean squared error performance of δj∗ is within a

factor of 2 of the oracle risk rn(f) as given in the follow lemma.

Lemma 1 The bias of the oracle estimator δj∗ satisfies

|Eδj∗ − f(0)| ≤ 2√
3
σj∗ (32)

and the risk of δj∗ is within a factor of 2 of rn(f), i.e.,

E(δj∗ − f(0))2

rn(f)
≤ 2. (33)

12



Our goal is to select a data-driven estimator δj which mimics the oracle estimator δj∗ and

hence also that of the best local average estimator.

Recall that Bj(t) and δj are respectively the scaled box kernel and local average estimator

of f(0) as defined in Section 1.3. Write f̄j =
∫
f(t)Bj(t)dt for the average of the function f over

the interval [−2−j , 2−j ]. Then Eδj = f̄j . To learn the bias of δj , we introduce

Tj = δj − δj+1. (34)

Note that the Tj ’s are independent normal variables with V ar(Tj) = σ2
j = 2j−1

n . The following

lemma summarizes important properties of δj and Tj .

Lemma 2 For any convex function f ,

0 ≤ Bias(δj+1) ≤ 1

2
Bias(δj) (35)

0 ≤ ETj+1 ≤ 1

2
ETj (36)

1

2
Bias(δj) ≤ ETj ≤ Bias(δj) (37)

and the constant factor 1
2 on the right hand sides of (35)-(36) is sharp in both cases.

Lemma 2 shows that the bias of the estimator δj is always nonnegative and as j increases the

bias decreases at least by a factor of 2 each time while the standard deviation of δj increases by

a factor of
√

2. Furthermore, (37) shows that Tj can be used to accurately learn the bias of δj .

Our goal is to choose δj which nearly optimally trades bias and variance for individual

functions. This can be achieved by comparing the value of Tj with the standard deviation of δj .

For the collection of those Tj which are within a small constant factor of its standard deviation

it is most natural to choose the smallest as the corresponding estimator δj will have the smallest

standard deviation within this collection. More specifically for some constant λ > 0 , set

ĵ = inf
k
{k : Tk ≤ λσk} (38)

and then

T̂∗ = f̂(0) = δĵ . (39)

One of the main results of the present paper is that the mean squared error performance of

the data-driven estimator T̂∗ comes within a small constant factor of that of the ideal estimator

δj∗ and so consequently also within a constant factor of the benchmark Rn(f) for all f ∈ Fc and

all n.

Theorem 3 Let the estimator T̂∗ be given as in (12) with λ =
√

2. Then

E(T̂∗ − f(0))2 ≤ 6 inf
j
E(δj − f(0))2 (40)

for all convex function f ∈ Fc. Consequently,

E(T̂∗ − f(0))2 ≤ 12rn(f) ≤ CRn(f) (41)

for all convex function f ∈ Fc, where C > 0 is an absolute constant.
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Remark 2 It is possible to improve the constants 6 and 12 in this Theorem with more refined

calculations. Furthermore λ can be chosen to be any sufficiently large constant and the resulting

estimate has the same properties but with different constants.

The adaptation of the estimator T̂∗ defined in (12) to each convex function as measured

by Rn(f) differs from the usual minimax adaptive estimation statements usually made in the

nonparametric function estimation literature. The more typical adaptive minimaxity results do

however follow quite easily. Consider, for example, Fc(α,M) = Fc ∩ Λ(α,M). It can be shown

that the estimator T̂∗ adaptively attains within a constant factor of the minimax risk over each

parameter space Fc(α,M) for 1 ≤ α ≤ 2.

Theorem 4 Under the white noise model (1), the data-driven estimator T̂∗ defined in (12)

satisfies for some absolute constants C, c > 0

sup
f∈Fc(α,M)

E(T̂∗ − f(0))2 ≤ CM
2

2α+1n−
2α

2α+1 ≤ cR∗(n, Fc(α,M)) (42)

for all 1 ≤ α ≤ 2, all M ≥ 1 and all n > 1, where

R∗(n, Fc(α,M)) = inf
T̂n

sup
f∈Fc(α,M)

E(T̂n − f(0))2

is the minimax risk over Fc(α,M).

Adaptation over the range of 1 ≤ α ≤ 2 is reminiscent of a similar adaptive rate result

found in Dümbgen and Rufibach (2009) in the context of estimating a log-concave density. The

restriction to the range 1 ≤ α ≤ 2 in Theorem 4 is actually necessary. Extensions to α > 2 are

ruled out by Theorem 2. More specifically, the following result holds.

Proposition 3 If an estimator T̂n attains the optimal rate of convergence over Fc(α,M) for

some α > 2 and M > 0, i.e.,

sup
f∈Fc(α,M)

E(T̂n − f(0))2 ≤ CM
2

2α+1n−
2α

2α+1 (43)

for some constant C > 0, then there exists a constant c > 0 such that

sup
f∈Fc(2,M)

E(T̂n − f(0))2 ≥ cM 2
5

(
log n

n

) 4
5

. (44)

Hence, there is no estimator T̂n such that for some constant C > 0 not depending on n and M

sup
f∈Fc(α,M)

E(T̂n − f(0))2 ≤ CM
2

2α+1n−
2α

2α+1 (45)

for all α ≥ 1, M ≥ 1 and n > 1.

5 Convex Regression

We have so far focused on the white noise model. The framework introduced in Section 2 can also

be applied to nonparametric regression where the regression function is assumed to be convex. In
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this setting the estimation procedure only requires slight modifications. Consider the regression

model

yi = f(xi) + σzi, i = −n,−(n− 1), ...,−1, 0, 1, ..., n (46)

where xi = i
2n and zi

iid∼ N(0, 1) and where for notational convenience we index the observations

from −n to n. The noise level σ can be accurately estimated easily and we shall assume it is

known in this section. Under the assumption that f is convex, we wish to estimate f(0).

Let J be the largest integer less than or equal to log2 n. For 1 ≤ j ≤ J define the local

average estimators

δ̄j = 2−j
2j−1∑
k=1

(y−k + yk). (47)

As in the white noise model, we shall build a sequence of independent tests to empirically

choose an optimal bandwidth using

Tj = δ̄j − δ̄j−1, (48)

and then select the corresponding δ̄j as an estimator of f(0). Note that the Tj ’s are independent

normal variables with Var(Tj) = Var(δ̄j) = σ22−j . Set

ĵ = max
j
{j : Tj ≤

√
2σ2−j/2} (49)

and define the estimator of f(0) by

T̂∗ = f̂(0) = δ̄ĵ . (50)

The properties of the data-driven estimator T̂∗ can be analyzed in the same way as before.

The major difference in the analysis for the regression case is in the details of the properties of

the Tj and δ̄j as summarized in the following lemma.

Lemma 3 For any convex function f ,

2ETj−1 ≤ ETj (51)

Bias(δ̄j−1) ≤ 2j−2 + 1

2j−1 + 1
Bias(δ̄j) (52)

2j−2

2j−1 + 1
Bias(δ̄j) ≤ ETj ≤ Bias(δ̄j). (53)

The remaining analysis easily yields the near-optimality of the corresponding estimator T̂∗

for all convex functions.

Theorem 5 For some constants C3 > C2 > C1 > 0,

E(T̂∗ − f(0))2 ≤ C1 inf
j
E(δj − f(0))2 ≤ C2rn(f) ≤ C3Rn(f) (54)

for all f ∈ Fc.
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6 Discussion

The framework introduced in the present paper for estimating convex functions extends to other

settings of shape constrained inference such as estimating monotone functions. A key to any

such analysis is the construction of good estimates of bias which then allows for the selection of

an estimator which optimally trades bias and variance for every given function with the shape

constraint.

The theory can also be extended to the construction and evaluation of the performance of

pointwise confidence intervals. For example, under the convexity constraint, a benchmark for

the expected length of a confidence interval, similar to Rn(f) for mean squared error, can be

developed for each convex function f . Then a data-driven confidence interval can be constructed

and shown to be adaptive to every convex function f in the sense that it has the shortest

expected length (up to an absolute constant factor) for f among all confidence intervals which

have prespecified level of coverage over the collection of convex functions. Such adaptivity is

much stronger than the conventional adaptive minimaxity over a collection of smoothness classes

as considered, for example, in Cai and Low (2004). We shall report the details of these results

elsewhere.

Although this paper constructed a particular estimate which nearly attains the bound Rn(f)

for all convex functions, a major goal of the present work is to frame the discussion and create

targets for the evaluation of other estimators such as least square or maximum likelihood esti-

mators, a goal that lies outside the scope of the present work. We should however mention that

the use of the simple box kernel in Section 4 for the construction of the estimation procedure

can easily be extended to other kernels although the analysis is sometimes more involved. For

example, similar results hold for the quadratic kernel

Q(t) =
3

4
(1− t2)I(|t| ≤ 1).

We should emphasize that the framework we developed in this paper does not work without

shape constraints, although in principle Rn(f) can still be evaluated in those settings. Under the

usual smoothness conditions without shape constraints, the benchmark Rn(f) is almost the same

for all functions f and thus of the same order as the minimax risk. This makes the framework

uninteresting and not useful in that setting. The reason is that the usual smoothness class is too

“rich” which makes all the functions nearly equally difficult to estimate against their respective

hardest local alternative. Consider, for example, the Lipschitz ball Λ(α,M). It is not difficult

to check that for any f ∈ Λ(α,M1) with 0 < M1 < M ,

Rn(f) � n−2α/(2α+1)

which is of the same order as the minimax risk over Λ(α,M) given in (3).

Finally we should note that if the estimator developed in this paper is applied at each point

the resulting estimate of the entire function need not be convex.

7 Proofs

In this section we shall first prove the propositions and lemmas given in the earlier sections

before proving the main theorems. The proof of Theorem 5 is omitted as it is entirely analogous
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to the proof of Theorem 3 by using Lemma 3. The proofs of some of the main results rely on a

few additional technical results. We first collect these technical results in Section 7.1 and prove

them in the supplement, Cai and Low (2013).

We shall use λ to denote the constant used in the test given in (11) that selects ĵ, but we

always take λ to be
√

2 throughout this section.

7.1 Preparatory Technical Results

We state in this section the additional technical results that are used in the proofs of the main

results. The proofs of these lemmas are given in the supplement, Cai and Low (2013).

The following lemma gives further characterizations of the functions H and K introduced in

Section 2.1.

Lemma 4 The function H−1 defined in (15) is concave and nondecreasing. It is strictly in-

creasing for all x where H−1(x) < 1
2 . Moreover for C ≥ 1 it satisfies

H−1(Ct) ≤ C 2
3H−1(t). (55)

The function K defined in (18) is also increasing and satisfies for C ≥ 1

C
2
3K(t) ≤ K(Ct) ≤ CK(t). (56)

We shall use the next two lemmas to study the properties of the local modulus of continuity

ω(ε, f) and the local average oracle risk rn(f).

Lemma 5 Let f be a nonnegative convex function on [− 1
2 ,

1
2 ]. For d > 0 let t∗ be the supremum

over all y with fs(y) ≤ d where fs defined in (13) is the symmetrized and centered version of f .

Then there is a convex function g with g(0)− f(0) = d and for which∫ 1
2

− 1
2

(g(x)− f(x))2dx ≤ 9

4
d2t∗. (57)

It follows that for each 0 ≤ u ≤ 1
2 there is a convex function g with g(0)−f(0) = fs(u) such that∫ 1

2

− 1
2

(g(x)− f(x))2dx ≤ 9

4
H2(u) (58)

where the function H is defined in (14). Moreover for any convex h with h(0)− f(0) = d > 0∫ 1
2

− 1
2

(h(x)− f(x))2dx ≥ 2

3
d2t∗. (59)

Remark: The constants 9
4 and 2

3 in (57) and (59) are sharp.

Lemma 6 Let f and g be convex functions with f(0)− g(0) = a > 0. Let t be the supremum of

all y for which fs(y) ≤ a. Then∫ 1/2

−1/2

(f(x)− g(x))2dx ≥ 0.3ta2. (60)
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Lemma 7 below provides the bounds for the bias of δj and the mean of Tj for j ≤ j∗. The

lemma is useful for the proof of Theorem 3.

Lemma 7 Set σj∗ = 2(j∗−1)/2
√
n

. Let j∗ be defined as in (31), then

ETj∗ ≤ min(Eδj∗ − f(0), σj∗). (61)

For k ≥ 1,

Eδj∗−k − f(0) ≥ 2k−
3
2σj∗ (62)

and

ETj∗−k ≥ 2k−1 1√
6
σj∗ . (63)

We shall use Lemma 8 in the proof of Theorem 2 on the consequence of superefficiency.

Lemma 8 For b > 0 let tb be the supremum over all t where fs(t) ≤ br
1
2
n (f). Then

tb ≤
2

4− b2
1

nrn(f)
(64)

and for b ≥ 2√
3

,

tb ≤
b3
√

3

8nrn(f)
. (65)

The final two lemmas are purely on some numerical results. They are not of direct interest

but are useful in the proof of Theorem 3.

Lemma 9 Let λ =
√

2 and let h(x) be the function given by

h(x) = P (Z ≤ λ− x

2
) +

0.649

1 + x2
+

1

4

x2

1 + x2

+
1

1 + x2

∞∑
m=1

(2m
√

3 + 2−m/22x)

(
P (Z ≤ λ)

m−1∏
l=0

P (Z > λ− 2−3l/2 min(x, 1))

)1/2

.

Then

sup
0≤x≤ 2√

3

h(x) ≤ 4.7.

Lemma 10 Let gm(x, y) = (x2 +2−m)P (Z ≤ λ−2m/2(x−y)). Then for m ≥ 2 and y ≥ 2m−3/2

sup
x≥2y

gm(x, y) = (4y2 + 2−m)P (Z ≤ λ− 2m/2y) (66)

sup
x≥2y,y≥2m−3/2

gm(x, y) = (22m−1 + 2−m)P (Z ≥ 23(m−1)/2 − λ). (67)

Moreover

sup
x≥2y,y≥

√
2

g2(x, y) ≤ 0.649 (68)

sup
x≥max( 1√

2
,2y),y≥0

g1(x, y)

1 + y2
≤ 1.2. (69)
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7.2 Proof of Propositions and Lemmas

With the additional technical results given in Section 7.1, we are now ready to prove the results

given in the previous sections. We shall first prove the propositions and lemmas as some of these

are needed in the proofs of the main theorems.

7.2.1 Proof of Proposition 1

We shall first prove ω(ε, f) ≥ K( 2
3ε) by considering two cases, H−1( 2

3ε) = 1
2 and H−1( 2

3ε) <
1
2 .

When H−1( 2
3ε) = 1

2 it follows that K( 2
3ε) = 2

√
2

3 ε. Since for any convex function f , the function

g = f + ε is also convex with g(0) − f(0) = ε and
∫ 1/2

−1/2
(g(x) − f(x))2dx = ε2. It immediately

follows that ω(ε, f) ≥ ε and since ε > 2
√

2
3 ε the inequality ω(ε, f) ≥ K( 2

3ε) clearly holds in this

case.

In the other case H−1( 2
3ε) < 1/2, then we have from (17) that H(H−1( 2

3ε)) = 2
3ε and hence

from the definition of K in (18) that fs(H
−1( 2

3ε)) = K( 2
3ε). It then follows from equation (58)

of Lemma 5 that there is a convex function g with g(0)− f(0) = K( 2
3ε) such that∫ 1/2

−1/2

(g(x)− f(x))2dx ≤ 9

4
K2(

2

3
ε)H−1(

2

3
ε) = ε2.

Once again it follows that ω(ε, f) ≥ K( 2
3ε).

We now turn to the proof of ω(ε, f) ≤ K(
√

10
3 ε). Let g be any convex function such that

|g(0) − f(0)| = K(
√

10
3 ε) and let t1 = H−1(

√
10
3 ε). Then by equation (59) of Lemma 5 and

equation (60) of Lemma 6 it follows that∫ 1/2

−1/2

(g(x)− f(x))2dx ≥ 3

10
K2(

√
10

3
ε)H−1(

√
10

3
ε) = ε2.

7.2.2 Proof of Proposition 2

Note that for any convex function f , fs(x) = f(x)+f(−x)
2 − f(0) is convex with fs(0) = 0. It

follows that for any 0 < t1 ≤ 1
2 , 0 ≤ fs(x) ≤ x fs(t1)

t1
for 0 ≤ x ≤ t1 and hence

(
1

t1

∫ t1

0

fs(x)dx)2 ≤ (
1

t1

∫ t1

0

x
fs(t1)

t1
dx)2 =

f2
s (t1)

4
.

Hence from (23) and (24) it follows that for any 0 < t1 ≤ 1
2 we have rn(f) ≤ f2

s (t1)
4 + 1

2t1n
. Now

setting t1 = H−1( 2
3
√
n

) and noting that
√
t1fs(t1) = H(t1) ≤ 2

3
√
n

yields

rn(f) ≤ 11

18nH−1( 2
3
√
n

)
=

11

8
K2(

2

3
√
n

)

and thus the right hand side of the inequality in equation (25) holds.

In order to show that the left hand side of equation (25) holds it is convenient to consider

separately the cases H−1( 2
3
√
n

) ≥ 1
4 and the case H−1( 2

3
√
n

) < 1
4 . In the case of H−1( 2

3
√
n

) ≥ 1
4

note that 1
4nH−1( 2

3
√
n

)
≤ 1

n and since rn(f) ≥ 1
n the left hand side of equation (25) clearly holds

in this case.
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Hence we may now assume that H−1( 2
3
√
n

) < 1
4 . In this case it is helpful to note that

( 1
a

∫ a
0
fs(t)dt)

2 is a nondecreasing function of a and that 1
2an is strictly decreasing in a. It then

follows from (23) and (24) that for any 0 < x1 ≤ 1
2 ,

rn(f) ≥ min{ 1

2nx1
, (

1

x1

∫ x1

0

fs(t)dt)
2}. (70)

Now let x1 = 2H−1( 2
3
√
n

) and note that by assumption x1 ≤ 1
2 . Note also that

1

2nx1
=

1

4nH−1( 2
3
√
n

)
=

9

16
K2(

2

3
√
n

) (71)

Note that fs(
x1

2 ) = fs(H
−1( 2

3
√
n

)) = K( 2
3
√
n

). Note for x1

2 ≤ t ≤ x1 it follows from the

convexity of fs that fs(t) ≥ fs(x1

2 ) 2t
x1

= K( 2
3
√
n

) 2t
x1

. It follows that

(
1

x1

∫ x1

0

fs(t)dt)
2 ≥ (

1

x1

∫ x1

x1
2

2t

x1
fs(

x1

2
)dt)2 =

9

16
K2(

2

3
√
n

) (72)

Now taken together (70), (71) and (72) yield rn(f) ≥ 9
16K

2( 2
3
√
n

) showing that the left hand

side of the inequality in (25) also holds in this case.

We shall now prove Lemma 2 before we prove Lemma 1 as the proof of this later lemma

depends on the results in Lemma 2.

7.2.3 Proof of Lemma 2

As in the previous lemma for any convex function f we set fs(t) = f(t)+f(−t)
2 − f(0). Now

note that fs(tx) is convex in x for all 0 ≤ t ≤ 1. Hence g(x) =
∫ 1

0
fs(tx)dt is also convex with

g(0) = 0. For x > 0 set z = xt and it follows that g(x) = 1
x

∫ x
0
fs(z)dz = 1

2x

∫ x
−x(f(z)− f(0))dz.

Equations (35), (36) and (37) follow immediately from the convexity of g. For example (35) is

equivalent to g(x) ≤ 1
2g(2x) for x = 2−(j+1).

7.2.4 Proof of Lemma 1

First note that from equation (35) of Lemma 2, (Eδj+1 − f(0))2 ≤ 1
4 (Eδj − f(0))2 and hence

E(δj+1 − f(0))2 − E(δj − f(0))2 ≤ −3

4
(Eδj − f(0))2 +

2j−1

n
< 0

whenever (Eδj − f(0))2 > 4
3

2j−1

n . Equation (32) then immediately follows.

We now turn to a proof of (33).

Recall that Fn(a) defined by equation (23) gives the risk of a local average estimator. It

can be written as Fn(a) = g2(a) + 1
2an where g(x) = 1

2x

∫ x
−x fs(t)dt. In the proof of lemma 2

we showed that g is convex and hence g2 is convex as well. Moreover Fn is convex since it is a

sum of two convex functions. Now since Fn is convex on (0, 1
2 ] and since limx→0+ Fn(x) = ∞

it follows that there is a point a∗ with 0 < a∗ ≤ 1
2 such that Fn(a∗) = rn(f) and for this a∗

E(L̂a∗ − f(0))2 = rn(f). It also follows that for 0 < x ≤ a∗ the function Fn is nonincreasing

and for a∗ ≤ x ≤ 1
2 the function Fn is nondecreasing. Hence either 2−j∗ ≤ a∗ ≤ 2−(j∗−1) or
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2−(j∗+1) ≤ a∗ ≤ 2−j∗ . If 2−j∗ ≤ a∗ ≤ 2−(j∗−1) then (EL̂a∗ − f(0))2 ≥ (Eδj∗ − f(0))2 whereas

V ar(δj∗) ≤ 2V ar(L̂a∗). It immediately follows that

E(δj∗ − f(0))2

rn(f)
≤ 2

and in this case (33) follows.

On the other hand if 2−(j∗+1) ≤ a∗ ≤ 2−j∗ it follows that

(EL̂a∗ − f(0))2 ≥ (Eδj∗+1 − f(0))2

whereas V ar(δj∗+1) ≤ 2V ar(L̂a∗). It immediately follows that
E(δj∗+1−f(0))2

rn(f) ≤ 2 and hence also

that
E(δj∗ − f(0))2

rn(f)
≤ 2

and in this case (33) also follows.

7.3 Proof of Proposition 3

This proposition is a consequence of a constrained risk inequality introduced in Brown and Low

(1996b) applied to two carefully chosen functions. Adopting the notation of Brown and Low

(1996b), the chi-square distance between two white noise with drift models as given in (1), one

with drift f and the other with drift g is given by In(f, g)− 1 where

In(f, g) = exp(n

∫ 1/2

−1/2

(g(t)− f(t))2dt). (73)

Without loss of generality take M = 2 and take f(t) = t2

2 as one of the two functions. Clearly

f ∈ Fc(α, 2) for all α ≥ 2. We shall suppose that for this function equation (43) holds. In

addition consider the one parameter family of functions

ha(t) =


t2 − a2

4 if |t| ≤ a
2

at− a2

2 if a
2 ≤ |t| ≤ a

t2

2 if a < |t| ≤ 1
2

.

Note that ha ∈ Fc(2, 2) and that the L2 distance between ha and f is given by∫ 1/2

−1/2

(ha(t)− f(t))2dt = 2

∫ a/2

0

(
a2

4
− t2

2
)2dt+ 2

∫ a

a/2

(
t2

2
− at+

a2

2
)2dt =

23

480
a5.

Now take a = an = (d lnn
n )1/5 for some constant d > 0. Then In(f, ha) = n

23
480d. If equation (43)

holds for α = α0 > 2, i.e.,

Ef (T̂n − f(0))2 ≤ Cn−
2α0

2α0+1 ,

then it follows from equation (2.3) in Brown and Low (1996b) that

Ehan (T̂n − han)2 ≥ (max{a2
n −
√
Cn−

α0
2α0+1n

23
960d, 0})2 ≥ 1

2
(d

lnn

n
)4/5

as long as d is sufficiently small and n is large. Equation (44) then clearly follows. Equation

(45) is an immediate consequence of (44).
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7.3.1 Proof of Lemma 3

As before for any convex function f , let fs(x) = 1
2 (f(x) + f(−x))− f(0). Then fs(x) is convex,

increasing in |x| and fs(0) = 0. Convexity of fs yields that for 0 < x ≤ y

fs(x)

x
≤ fs(y)

y
. (74)

Note that Eδj = 2−(j−1)
∑2j−1

k=1 fs(
k
n ) and

ETj = 2−(j−1)


2j−1∑

k=2j−2+1

fs(
k

n
)−

2j−2∑
k=1

fs(
k

n
)

 .

So ETj ≥ 2ETj−1 is equivalent to

2j−1∑
k=2j−2+1

fs(
k

n
)−

2j−2∑
k=1

fs(
k

n
) ≥ 4

2j−2∑
k=2j−3+1

fs(
k

n
)− 4

2j−3∑
k=1

fs(
k

n
)

which is the same as

2j−1∑
k=2j−2+1

fs(
k

n
) + 3

2j−3∑
k=1

fs(
k

n
) ≥ 5

2j−2∑
k=2j−3+1

fs(
k

n
). (75)

Now note that for x ≥ 0 and u ≥ 0,

fs(x) + fs(x+ 3u) ≥ fs(x+ u) + fs(x+ 2u) and fs(x) + fs(x+ 2u) ≥ 2fs(x+ u)

and consequently fs(x + 3u) + fs(x + 2u) + 3fs(x) ≥ 5fs(x + u). Then (75) follows by taking

u = 2j−3

n and x = k
n and then summing over k = 1, ..., 2j−3.

Denote the bias of δ̄j by b̄j = Eδ̄j − f(0). Then

b̄j = 2−(j−1)
2j−1∑
k=1

fs(
k

n
) = 2−(j−1)


2j−1∑

k=2j−2+1

fs(
k

n
) +

2j−2∑
k=1

fs(
k

n
)

 .

It follows from (74) that for k > 2j−2, fs(
k
n ) ≥ k

2j−2 fs(
2j−2

n ), and for k ≤ 2j−2, fs(
k
n ) ≤

k
2j−2 fs(

2j−2

n ). Hence

2j−1∑
k=2j−2+1

fs(
k

n
) ≥

2j−1∑
k=2j−2+1

k

2j−2
· fs(

2j−2

n
) ≥

∑2j−1

k=2j−2+1
k

2j−2∑2j−2

k=1
k

2j−2

2j−2∑
k=1

fs(
k

n
)

=
3 · 2j−2 + 1

2j−2 + 1

2j−2∑
k=1

fs(
k

n
).

Hence,

b̄j ≥ 2−(j−1) · (3 · 2j−2 + 1

2j−2 + 1
+ 1)

2j−2∑
k=1

fs(
k

n
) =

2j−1 + 1

2j−2 + 1
b̄j−1.
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7.4 Proof of Theorem 1

Consider the white noise model

dX(t) = hθ(t)dt+
1√
n
dW (t)

where θ = ±1. The goal is to estimate Thθ = hθ(0).

Let γn = 1
2

√
n(
∫ 1/2

−1/2
(h1(t)− h−1(t))2dt)1/2 and let

W =
n

2γn
(

∫ 1/2

−1/2

(h1(t)− h−1(t))dX(t)− 1

2

∫ 1/2

−1/2

(h2
1(t)− h2

−1(t))dt).

Then W is a sufficient statistic with W ∼ N(γnθ, 1) where θ = ±1.

Now every estimate θ̂ of θ gives an estimate of Tfθ via

T̂ =
Th1 + Th−1

2
+ θ̂

Th1 − Th−1

2
.

Now take the case where γn = 1. Then W ∼ N(θ, 1)where θ = ±1. Then inf θ̂ supθ=±1E(θ̂ −
θ)2 = ρN (1) where ρN (1) is the minimax risk for the bounded normal mean problem with the

absolute value bounded by 1 since in this case the least favorable prior is a two point prior

supported on the end points as shown in Casella and Strawderman (1981) where it is also shown

that ρN (1) = 0.450. Then

inf
T̂

sup
θ=±1

E(T̂ − Thθ)2 ≥ ρN (1)(
Th1 − Th−1

2
)2.

Now take h−1 = f and take a supremum of |Th1 − Tf | subject to n
∫

(h1(t)− f(t))2 ≤ 4. This

yields

Rn(f) ≥ ρN (1)

4
ω2(

2√
n
, f) ≥ 1

9
ω2(

2√
n
, f) ≥ 1

9
K2(

4

3
√
n

)

establishing the inequalities on the left hand side of equations (20) and (21).

We now turn to an upper bound to Rn(f). Now for the pair h1 and h−1 do not assume that

γn = 1. Also note that every estimate of θ gives an estimate of γnθ and vice versa. In particular

inf θ̂ supθ=±1E(θ̂ − θ)2 = γ−2
n ρ(γn) and

inf
T̂

sup
θ=±1

E(T̂ − Thθ)2 = (
Th1 − Th−1

2
)2γ−2

n ρ(γn)

where ρ(τ) is given by ρ(τ) = inf θ̂ supθ=±τ E(θ̂(X)−θ)2 and X ∼ N(θ, 1). By once again setting

f = h−1 and taking a supremum over all h1 with n
∫ 1/2

−1/2
(h1(x)− f(x))2 = 4γ2

n and then taking

another supremum over all γn it follows that

Rn(f) = sup
γn

1

4
ω2(

2γn√
n

)ρ(γn).

The bound ρ(τ) ≤ τ2e−
τ2

2 given in Donoho (1994) then immediately yields

Rn(f) ≤ sup
γn

1

4
ω2(

2γn√
n

)e−
γ2n
2 .
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Now for any fixed d > 0 this last inequality can be written as

Rn(f) ≤ max

{
sup
γn≤d

1

4
ω2(

2γn√
n
, f)e−

γ2n
2 , sup

γn≥d

1

4
ω2(

2γn√
n
, f)e−

γ2n
2

}
(76)

breaking the supremum into a maximum of two supremum. For the first supremum note that

sup
γn≤d

ω2(
2γn√
n
, f)e−

γ2n
2 ≤ ω2(

2d√
n
, f). (77)

For the second supremum note that since ω is concave it follows that

sup
γn≥d

1

4
ω2(

2γn√
n
, f)e−

γ2n
2 = sup

C≥1
ω2(

2Cd√
n
, f)e−

C2d2

2 ≤ sup
C≥1

C2ω2(
2d√
n
, f)e−

C2d2

2 .

The fact that xe−x is maximized at x = 1 then implies that

sup
C≥1

ω2(
Cd√
n
, f)e−

C2d2

2 ≤ 2

ed2
ω2(

2d√
n
, f). (78)

We set d2 = 2
e to match the right hand sides of (77) and (78). It then follows from (76)-(78) and

(19) that

Rn(f) ≤ 1

4
ω2(

√
8√
en
, f) ≤ 1

4
K2(

4
√

5√
3e
√
n

)

establishing the inequalities on the right hand side of (20) and (21).

7.5 Proof of Theorem 2

For d ≥ 1 let td be the supremum of all t where fs(t) ≤ dr
1
2
n (f). Note that from Lemma 8

it follows that td ≤ 3
√

3d
8nrn(f) . By equation (57) of Lemma 5 there is a convex function g with

g(0) = f(0) + dr
1/2
n (f) satisfying∫ 1/2

−1/2

(g(t)− f(t))2dt ≤ 9

4
tdd

2rn(f)

and by the construction given in the proof of that lemma the function g is linear on [−td, td].
Now choose d such that 9

4ntdd
2rn(f) = ln 1

c from which it immediately follows that ln 1
c ≤

9
4

3
√

3
8 d3. In this case we have d ≥ 0.88(ln(1/c))1/3. As in the proof of proposition 3 we apply the

constrained risk inequality of Brown and Low (1996b). As noted in the proof of Proposition 3

the chi-square distance between two white noise with drift models as given in (1), one with drift

f and the other with drift g is given by In(f, g)− 1 where In(f, g) is defined in (73). Hence for

the f and g just given In(f, g) ≤ 1
c . The constrained risk inequality given in Brown and Low

(1996b) shows that for any estimator T̂ for which R(T̂n, f) ≤ crn(f) it follows that

R(T̂n, h) ≥ (dr
1
2
n (f)− c 1

2 r
1
2
n (f)

1

c
1
2

)2 = (d− 1)2rn(f).

Since the function g is linear on the interval [−td, td] it follows that rn(h) ≤ 1
2tdn

. Hence

R(T̂n, h))

rn(h)
≥ (d− 1)2rn(f)2tdn =

8

9

(d− 1)2

d2

9

4
d2ntdrn(f) =

8

9

(d− 1)2

d2
ln

1

c
,

and consequently
R(T̂n, h)

rn(h)
≥ 8

9
(1− 1

0.88(ln(1/c))1/3
)2 ln

1

c
.
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7.6 Proof of Theorem 3

Recall Tj = δj − δj+1, ĵ = infj{j : Tj ≤ λσj}, j∗ = arg minj E(δj − f(0))2 and λ =
√

2. Note

that the Ti’s are independent and that for any given j ≥ 1, Tj is independent of δ1, . . . , δj . We

shall denote the bias of δj by bj = Eδj − f(0). Note that the variances of δj and Tj are equal to

σ2
j = 2j−1

n . Let Fj = 1(Tj ≤ λσj) and note that Fj is independent of δj . The estimator T̂∗ can

be written as T̂∗ =
∑∞
j=1 δjI(ĵ = j) and hence

E(T̂∗ − f(0))2 =

∞∑
j=1

E
(

(δj − f(0))2I(ĵ = j)
)
.

Note that 1(ĵ = j) ≤ Fj and hence

E(T̂∗ − f(0))2 ≤
j∗−3∑
j=1

E
(
(δj − f(0))2Fj

)
+

j∗∑
j=j∗−2

E
(
(δj − f(0))2Fj

)
+

∞∑
j=j∗+1

E
(

(δj − f(0))2I(ĵ = j)
)

= R1 +R2 +R3.

These three terms will be bounded separately. We begin with R1. Now

R1 =

j∗−3∑
j=1

(b2j + σ2
j )P (Fj = 1) =

j∗−1∑
m=3

(b2j∗−m + σ2
j∗−m)P (Fj∗−m = 1).

Set γm = bj∗−m/σj∗ . Then ETj∗−m = (γm − γm−1)σj∗ = (γm − γm−1)2m/2σj∗−m. Hence

P (Fj∗−m = 1) = P (Tj∗−m ≤ λσj∗−m) = P (Z ≤ λ− 2m/2(γm − γm−1)). (79)

Note that for m ≥ 1 equation (63) of Lemma 7 yields γm − γm−1 ≥ 2m−1
√

6
. It then follows that

for m ≥ 1, P (Fj∗−m = 1) ≤ P (Z ≤ λ− 23m/2−1
√

6
) and consequently

R1 = σ2
j∗

(
j∗−1∑
m=3

(γ2
m + 2−m)P (Z ≤ λ− 2m/2(γm − γm−1))

)

≤ σ2
j∗

(
j∗−1∑
m=3

(22m−3 + 2−m)P (Z ≤ λ− 23m/2−1

√
6

)
.

Direct numerical calculations yield
∑∞
m=3(22m−3 + 2−m)P (Z ≤ λ− 23m/2−1

√
6

) ≤ 0.04 and hence

R1 ≤ 0.04σ2
j∗ . (80)

We now turn to a bound of R3. The Cauchy-Swartz Inequality yields

R3 =

∞∑
j=j∗+1

E
(

((δj − f(0))2I(ĵ = j)
)

=

∞∑
j=j∗+1

E
(

(δj − Eδj + bj)
2I(ĵ = j)

)
.

≤
√

3

∞∑
j=j∗+1

σ2
j (P (ĵ = j))1/2 + 2

∞∑
j=j∗+1

σjbj(P (ĵ = j))1/2 +

∞∑
j=j∗+1

b2jP (ĵ = j)

≡ R31 +R32 +R33.
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Equation (61) of Lemma 7 gives ETj∗ ≤ min(1, γ0)σj∗ where γ0 = bj∗/σj∗ . Hence it follows from

equation (36) of Lemma 2 that for m ≥ 0, ETj∗+m ≤ 2−m min(1, γ0)σj∗ and consequently

P (Fj∗+m = 0) = P (Tj∗+m > λσj∗+m) ≤ P (Z > λ− 2−m/22−m min(1, γ0))

= P (Z > λ− 2−3m/2 min(1, γ0)).

On the other hand, since ETj∗+m ≥ 0, P (Fj∗+m = 1) = P (Tj∗+m ≤ λσj∗+m) ≤ P (Z ≤ λ). So for

m ≥ 1 it follows that

P (ĵ = j∗+m) ≤ P (Fj∗+m = 1)

m−1∏
l=0

P (Fj∗+l = 0) ≤ P (Z ≤ λ)

m−1∏
l=0

P (Z > λ− 2−3l/2 min(γ0, 1)).

Note also that for m ≥ 0, equation (35) of Lemma 2 yields bj∗+m ≤ 2−mbj∗ = γ02−mσj∗ We

then have

R31 =
√

3

∞∑
j=j∗+1

σ2
j (P (ĵ = j))1/2

≤
√

3σ2
j∗

∞∑
m=1

2m

(
P (Z ≤ λ)

m−1∏
l=0

P (Z > λ− 2−3l/2 min(γ0, 1))

)1/2

and

R32 = 2

∞∑
j=j∗+1

2(j−1)/2

√
n

bj(P (ĵ = j))1/2

≤ 2σj∗

∞∑
m=1

2−m/2γ0

(
P (Z ≤ λ)

m−1∏
l=0

P (Z > λ− 2−3l/2 min(γ0, 1))

)1/2

.

Finally note that

R33 =

∞∑
j=j∗+1

(Eδj − f(0))2P (ĵ = j) ≤ B2
j∗+1 ≤

1

4
γ2

0σ
2
j∗

and hence it follows that

R3

σ2
j∗

≤ (
1

4
γ2

0 +

∞∑
m=1

(2m
√

3 + 2−m/22γ0)

(
P (Z ≤ λ)

m−1∏
l=0

P (Z > λ− 2−3l/2 min(γ0, 1))

)1/2

.

We now bound R2. Recall (79) and note that

R2 =

j∗∑
j=j∗−2

(b2j + σ2
j )P (Fj = 1) ≤ σ2

j∗(2
−2 + γ2

2)P (Z ≤ λ− 2(γ2 − γ1))

+ σ2
j∗(2

−1 + γ2
1)P (Z ≤ λ− 21/2(γ1 − γ0)) + σ2

j∗(1 + γ2
0)P (Z ≤ λ− γ0

2
)

where from (62) of lemma 7, γ1 ≥ 1√
2

and from (35) of lemma 2, γ0 ≤ γ1
2 . Since γ1 ≥ 1√

2
,

Lemma 10 now yields (2−2 + γ2
2)P (Z ≤ λ− 2(γ2 − γ1)) ≤ 0.649 Then we have

R2 ≤ σ2
j∗

{
0.649 + (2−1 + γ2

1)P (Z ≤ λ− 21/2(γ1 − γ0)) + (1 + γ2
0)P (Z ≤ λ− γ0

2
)
}
.

26



Hence

R2 +R3

σ2
j∗

(1 + γ2
0)
≤ P (Z ≤ λ− γ0

2
) +

0.649

1 + γ2
0

+
(2−1 + γ2

1)P (Z ≤ λ− 21/2(γ1 − γ0))

1 + γ2
0

+
1

1 + γ2
0

(
1

4
γ2

0 +

∞∑
m=1

(2m
√

3 + 2−m/22γ0)

(
P (Z ≤ λ)

m−1∏
l=0

P (Z > λ− 2−3l/2 min(γ0, 1))

)1/2

.

The right hand side is a function of two variables γ0 and γ1. The numerical results given in

Lemmas 9 and 10 and equation (80) now yield that

R1 +R2 +R3

σ2
∗(1 + γ2

0)
≤ 0.04 + 4.7 + 1.2 ≤ 6.

7.7 Proof of Theorem 4

Although this theorem may be proved directly it is interesting to see how it easily follows from

Theorem 3. For the class Fc(α,M) let L̂a be the local linear estimate defined in (22) where

a = M−2/2α+1n−1/2α+1. It is then easy to check that

E(L̂a − f(0))2 ≤ (
1

2
+

1

(α+ 1)2
)M

2
2α+1n−

2α
2α+1 ≤ 3

4
M

2
2α+1n−

2α
2α+1

and hence in particular that rn(f) ≤ 3
4M

2
2α+1n−

2α
2α+1 for all f ∈ Fc(α,M). The inequality in

(42) with, for example, C = 9 then immediately follows from (41).

To complete the proof we need also to demonstrate that R∗(n, Fc(α,M)) ≥ dM
2

2α+1n−
2α

2α+1

for some d > 0. For this, fix α and M where 1 ≤ α ≤ 2 and let f and g be two convex

functions defined on the whole real line which are also both in Λ(α, 1), such that g(0)− f(0) >

0 with
∫∞
−∞(g(t) − f(t))2dt ≤ 4. Such convex functions f and g can be easily constructed.

Now let fn and gn be the two functions with domain [−1/2, 1/2] which are given by fn(t) =

M
1

2α+1n−
α

2α+1 f(M
2

2α+1n
1

2α+1 t) and gn(t) = M
1

2α+1n−
α

2α+1 g(M
2

2α+1n
1

2α+1 t) for −1/2 ≤ t ≤ 1/2.

Note that both fn and gn belong to Fc(α,M). It is also easy to check that
∫ 1/2

−1/2
(fn(t) −

gn(t))2dt ≤ 4
n .

We now follow the same argument as given for the proof of Theorem 1 where we take h1 = gn

and h−1 = fn. Following that argument it is easy to check that γn ≤ 1 and hence

R∗(n, Fc(α,M)) ≥ ρN (1)(
Th1 − Th−1

2
)2 = (

g(0)− f(0)

2
)2ρN (1)M

2
2α+1n−

2α
2α+1 .
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