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Abstract

Consider a sequence of n independent random variables with a common continuous distribution F , and
consider the task of choosing an increasing subsequence where the observations are revealed sequentially
and where an observation must be accepted or rejected when it is first revealed. There is a unique selection
policy π∗

n that is optimal in the sense that it maximizes the expected value of Ln(π∗
n ), the number of

selected observations. We investigate the distribution of Ln(π∗
n ); in particular, we obtain a central limit

theorem for Ln(π∗
n ) and a detailed understanding of its mean and variance for large n. Our results and

methods are complementary to the work of Bruss and Delbaen (2004) where an analogous central limit
theorem is found for monotone increasing selections from a finite sequence with cardinality N where N is
a Poisson random variable that is independent of the sequence.
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1. Introduction

In the problem of online selection of a monotone increasing subsequence, a decision maker
observes a sequence of independent non-negative random variables {X1, X2, . . . , Xn} with
common continuous distribution F , and the task is to select a subsequence {Xτ1 , Xτ2 , . . . , Xτ j }

such that

Xτ1 ≤ Xτ2 ≤ · · · ≤ Xτ j

where the indices 1 ≤ τ1 < τ2 < · · · < τ j ≤ n are stopping times with respect to the σ -fields
Fi = σ {X1, X2, . . . , X i }, 1 ≤ i ≤ n. In other words, at time i when the random variable X i
is first observed, the decision maker has to choose to accept X i as a member of the monotone
increasing sequence that is under construction, or to reject X i from any further consideration.

We call such a sequence of stopping times a feasible policy, and we denote the set of all such
policies by Π (n). For any π ∈ Π (n), we then let Ln(π) be the random variable that counts the
number of selections made by policy π for the realization {X1, X2, . . . , Xn}; that is,

Ln(π) = max{ j : Xτ1 ≤ Xτ2 ≤ · · · ≤ Xτ j where 1 ≤ τ1 < τ2 < · · · < τ j ≤ n}.

Samuels and Steele [25] found that for each n ≥ 1 there is a unique policy π∗
n ∈ Π (n) such that

E[Ln(π∗
n )] = sup

π∈Π (n)

E[Ln(π)], (1)

and for such optimal policies one has

E[Ln(π∗
n )] ∼ (2n)1/2 as n → ∞. (2)

Bruss and Robertson [10] and Gnedin [12] showed that one actually has the crisp upper bound

E[Ln(π∗
n )] ≤ (2n)1/2 for all n ≥ 1, (3)

and, as corollaries of related work, Rhee and Talagrand [23], Gnedin [12] and Arlotto and
Steele [3] all found that there is an asymptotic error rate for the lower bound

(2n)1/2
− O(n1/4) ≤ E[Ln(π∗

n )] as n → ∞. (4)

Here, our main goal is to show that Ln(π∗
n ) satisfies a central limit theorem.

Theorem 1 (Central Limit Theorem for Optimal Online Monotone Selections). For any contin-
uous distribution F one has for n → ∞ that

(2n)1/2
− O(log n) ≤ E[Ln(π∗

n )] ≤ (2n)1/2, (5)

1
3

E[Ln(π∗
n )] − O(1) ≤ Var[Ln(π∗

n )] ≤
1
3

E[Ln(π∗
n )] + O(log n), (6)

and one has the convergence in distribution

31/2
{Ln(π∗

n ) − (2n)1/2
}

(2n)1/4 H⇒ N (0, 1). (7)

Two connections help to put this result in context. First, it is useful to recall the analogous
problem of offline (or full information) subsequence selection, for which there is a remarkably
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rich literature. Second, there are closely related results of Bruss and Delbaen [8,9] that deal with
sequential selection where the number of values to be seen is random with a Poisson distribution.

First connection: the Tracy–Widom law

If one knows all of the values {X1, X2, . . . , Xn} at the time the selections begin, then decision
maker can select a maximal increasing subsequence with length

Ln = max{ j : X i1 ≤ X i2 ≤ · · · ≤ X i j where 1 ≤ i1 < i2 < · · · < i j ≤ n}. (8)

This full information or offline length Ln has been studied extensively.
The question of determining the distribution of Ln was first raised by Ulam [27], but the anal-

ysis of Ln was taken up in earnest by Hammersley [14], Kingman [17], Logan and Shepp [19],
and Veršik and Kerov [28] who established in steps that

E[Ln] ∼ 2n1/2 as n → ∞.

Much later H. Kesten conjectured (cf. Aldous and Diaconis [1, p. 416]) that there should be
positive constants α and β such that

E[Ln] = 2n1/2
− αn1/6

+ o(n1/6) and {Var[Ln]}
1/2

= βn1/6
+ o(n1/6). (9)

After subtle progress by Pilpel [22], Bollobás and Brightwell [5], Kim [16], Bollobás and Jan-
son [6], and Odlyzko and Rains [21] this conjecture was settled affirmatively by Baik, Deift and
Johansson [4] who proved moreover that n−1/6(Ln − 2n1/2) converges in distribution to the fa-
mous Tracy–Widom law which had emerged just a bit earlier from the theory of random matrices.
The recent monograph of Romik [24] gives a highly readable account of this development.

One distinction between the online and the offline problems is that, while the means are of
the same order in each case, the variances are not of the same order. The standard deviation for
offline selection is of order n1/6, but by (6) the standard deviation for the online selection is of
order n1/4. Intuitively this difference reflects greater uncertainty in the online selection problem
than in the offline problem, but it is harder to imagine why moving to the online formulation
would drive one all of the way from the Tracy–Widom law to the Gaussian law.

Second connection: the Bruss–Delbaen central limit theorem

Consider the problem of sequential selection of a monotone increasing subsequence from
{X1, X2, . . . , X Nν } where Nν is a Poisson random variable with mean ν that is independent of the
sequence {X1, X2, . . .}. Just as in (1) there is a unique sequential policy that maximizes the ex-
pected number of selections that are made. If we denote this optimal policy by π∗

Nν
then as before

L Nν (π
∗

Nν
) is the number of selections from {X1, X2, . . . , X Nν } that are made by the policy π∗

Nν
.

Bruss and Delbaen [8] proved that, as ν → ∞, one has the mean estimate

E[L Nν (π
∗

Nν
)] = (2ν)1/2

+ O(log ν), (10)

and the variance estimate

Var[L Nν (π
∗

Nν
)] =

1
3
(2ν)1/2

+ O(log ν).

Moreover, Bruss and Delbaen [9] proved that, as ν → ∞, one has the convergence in distribution

31/2
{L Nν (π

∗

Nν
) − (2ν)1/2

}

(2ν)1/4 H⇒ N (0, 1).
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One needs to ask if it is possible to “de-Poissonize” these results to get Theorem 1, either in
whole or in part. We show in Section 3 that the lower half of (5) can be obtained from (10) by
an easy de-Poissonization argument; in fact, this is the only proof we know of this bound. In
Section 3 we also explain as best we can, why no further parts of Theorem 1 can be obtained by
de-Poissonization.

One can further ask if it might be possible to adapt the methods of Bruss and Delbaen [8,9]
to prove Theorem 1. The major benefit of a Poisson horizon is that it gives access to the tools of
continuous time Markov processes such as the infinitesimal generator and Dynkin’s martingales.
Moreover, in this instance the associated value function V (t, x) can be written as a function of
one variable by the space–time transformation V (t, x) = V̄ (t (1 − x)).

Here we lack these benefits. We work in discrete time with a known finite horizon, and our
value function vk(s) permanently depends on the state s and the time to the horizon k. This
puts one a long way from the world of Bruss and Delbaen [8,9]. Still, in Section 7 we give a
brief proof of the well-known upper bound (3) that echoes an argument of Bruss and Delbaen
[9, pp. 291–292]. This seems to be the only instance of an overlap of technique.

Organization of the analysis

The proof of our central limit theorem has two phases. In the first phase, we investigate the
analytic properties of the value functions given by framing the selection problem as a Markov
decision problem. Section 2 addresses the monotonicity and the submodularity of the value
functions. We also obtain that the map n → E[Ln(π∗

n )] is concave, and this is used in Section 3
to prove the lower half of (5); this is our only de-Poissonization argument.

Sections 4 and 5 develop smoothness and curvature properties of the value functions. In par-
ticular, we find that in the uniform model the value functions are concave as a function of the state
variable, but, for the exponential model, they are convex. This broken symmetry is surprisingly
useful even though the distribution of Ln(π∗

n ) does not depend on the model distribution F .
The second phase of the proof deals with a natural martingale that one obtains from the value

functions. This martingale is defined in Section 6, and it is used in Sections 7–9 to estimate the
conditional variances of Ln(π∗

n ). These estimates and a martingale central limit theorem are then
used in Section 10 to complete the proof of Theorem 1. Finally, in Section 11 we comment briefly
on two open problems and the general nature of the methods developed here.

2. Structure of the value functions

We now let vk(s) denote the expected value of the number of monotone increasing selections
under the optimal policy when (i) there are k observations that remain to be seen and (ii) the
value of the most recently selected observation is equal to s. The functions {vk : 1 ≤ k < ∞}

are called the value functions, and they can be determined recursively. Specifically, we have the
terminal condition

v0(s) = 0 for all s ≥ 0,

and if we set F(s) = P(X i ≤ s) then for all k ≥ 1 and s ≥ 0 we have the recursion

vk(s) = F(s)vk−1(s) +


∞

s
max{vk−1(s), 1 + vk−1(x)} d F(x). (11)

To see why this equation holds, note that with probability F(s) one is presented at time i =

n − k + 1 with a value X i that is less than the previously selected value s. In this situation, we
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do not have the opportunity to select X i . This leaves us with k − 1 observations to be seen and
with the value of the last selected observation, s, unchanged. This possibility contributes the term
F(s)vk−1(s) to our equation.

Now, if the newly presented value satisfies s ≤ X i then we have the option to select or reject
X i = x . If we select X i = x , then the sum of our present reward and expected future reward
is 1 + vk−1(x). On the other hand, if we choose not to select X i = x , then we have no present
reward and the expected future reward is vk−1(s) since the value of the running maximum is not
changed. Since X i has distribution F , the expected optimal contribution is given by the second
term of Eq. (11).

The identity (11) is called the Bellman recursion for the sequential selection problem. In prin-
ciple, it tells us everything there is to know about the value functions; in particular, it determines

E[Ln(π∗
n )] = vn(0) for all n ≥ 1.

Qualitative information can also be extracted from the recursion (11). For example, it is imme-
diate from (11) that the value functions are always continuous. More refined properties of the
value functions may depend on F , and here it is often useful to consider a special subclass of
distributions.

Definition 2 (Admissible Distribution). A distribution F is said to be admissible if there is an
open interval I ⊆ [0, ∞) such that

(i) F is differentiable on I ,
(ii) F ′(x) = f (x) > 0 for all x ∈ I , and

(iii)


I f (x) dx = 1.

The next lemma illustrates how admissibility can be used. The result is largely intuitive, but
the formal proof via (11) suggests that some care is needed.

Lemma 3 (Monotonicity of Value Functions). For any distribution F the value functions are non-
increasing. Moreover, if F is admissible, then the value functions are strictly decreasing on I .

Proof. The first assertion is trivial, so we focus on the second. To organize our induction we
denote by Hk the assertion

vk(s + ϵ) < vk(s) for all s ∈ I and all ϵ > 0.

When k = 1, we have v1(s) = 1 − F(s), and admissibility of F implies v1 is strictly decreasing
on I . This establishes the base case H1.

For k > 1 we assume that Hk−1 holds, and we note by the Bellman recursion (11) and the
characterizing properties of admissible distributions that

vk(s + ϵ) − vk(s) = F(s + ϵ)vk−1(s + ϵ)

+


∞

s+ϵ

max{vk−1(s + ϵ), 1 + vk−1(x)} f (x) dx

− F(s)vk−1(s) −


∞

s
max{vk−1(s), 1 + vk−1(x)} f (x) dx

≤ F(s + ϵ)vk−1(s + ϵ) +


∞

s+ϵ

max{vk−1(s), 1 + vk−1(x)} f (x) dx

− F(s + ϵ)vk−1(s) −


∞

s+ϵ

max{vk−1(s), 1 + vk−1(x)} f (x) dx

= F(s + ϵ) {vk−1(s + ϵ) − vk−1(s)} ,
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where we first used vk−1(s + ϵ) < vk−1(s) and then used the trivial estimate

{F(s + ϵ) − F(s)}vk−1(s) ≤

 s+ϵ

s
max{vk−1(s), 1 + vk−1(x)} f (x) dx .

For s ∈ I one has strict positivity of F(s + ϵ), so by the induction hypothesis Hk−1 we have
vk(s + ϵ) − vk(s) ≤ F(s + ϵ) {vk−1(s + ϵ) − vk−1(s)} < 0. �

Optimal threshold functions

The monotonicity of vk−1 tells us that the integrand in (11) equals the right maximand
{1 + vk−1(x)} on a certain initial segment of [s, ∞), and it equals the left maximand vk−1(s) on
the rest of the segment. This observation leads to a useful reformulation of the Bellman recursion;
specifically, if we set

hk(s) = sup{x ∈ [s, ∞) : F(x) < 1 and vk−1(s) ≤ 1 + vk−1(x)}, (12)

then the Bellman recursion (11) can be written as

vk(s) = {1 − F(hk(s)) + F(s)}vk−1(s) +

 hk (s)

s
{1 + vk−1(x)} d F(x). (13)

The functions {hk : 1 ≤ k < ∞} defined by (12) are called the optimal threshold functions.
If vk−1(s) ≤ 1, the characterization (12) has an informative policy interpretation. Namely, if

vk−1(s) ≤ 1, then the optimal strategy for the decision maker is the greedy strategy where one
accepts any arriving observation that is as large as s. On the other hand, if vk−1(s) > 1, the op-
timal decision maker needs to act more conservatively; when k observations remain to be seen,
one only accepts the newly arriving observation if it falls in the interval [s, hk(s)].

When F is admissible, we have the strict monotonicity of vk−1, and this allows a second
characterization of the threshold function:

hk(s) uniquely satisfies vk−1(s) = 1 + vk−1(hk(s)) if vk−1(s) > 1. (14)

The value hk(s) of the threshold function thus marks the point of indifference between the opti-
mal acceptance region and the optimal rejection region. The characterization (14) also motivates
a definition.

Definition 4 (Critical Value). If F is admissible, then the unique solution of the equation
vk(s) = 1 is called the critical value, and it is denoted by s∗

k .

The analytical character of hk changes at s∗

k , and one has to be attentive to the differing
behavior of hk above and below s∗

k . We will not need this distinction until Section 4, but it is
critical there.

We complete this section by recording two simple (but useful) bounds on the time-difference
of the value function. These bounds follow from the characterization (12) for the optimal
threshold hk and the monotonicity of the value function vk−1.

Lemma 5. For s ≥ 0 and 1 ≤ k < ∞, we have the inequalities

0 ≤ vk(s) − vk−1(s) ≤ F(hk(s)) − F(s) ≤ 1. (15)

From a modeler’s perspective, this inequality is intuitive since F(hk(s)) − F(s) can be
interpreted as the probability that one selects the next observation when k observations remain
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to be seen. A formal confirmation of (15) illustrates the handiness of the second form (13) of the
Bellman equation.

Proof of Lemma 5. First, note that after subtracting vk−1(s) from both sides of Eq. (13), we
have

vk(s) − vk−1(s) =

 hk (s)

s
{1 + vk−1(x) − vk−1(s)} d F(x).

The map x → vk−1(x) is monotone decreasing, so the factor {1+vk−1(x)−vk−1(s)} is bounded
above by one. This gives us our upper bound in (15). The representation (12) for hk tells us the
integrand is non-negative on [s, hk(s)], and this gives the lower bound in (15). �

Value function submodularity

If one increases the number k of observations yet to be seen, then the decision maker faces a
richer set of future possibilities. This in turn suggests that the decision maker may want to act
more conservatively, keeping more powder dry for future action. Specifically, one might guess
that hk+1(s) ≤ hk(s) for all s ∈ [0, ∞) and all 1 ≤ k < ∞. We confirm this guess as a corollary
of the next proposition which gives us a pivotally useful property of the value functions.

Proposition 6 (Submodularity of the Value Functions). The sequence of value functions {vk :

1 ≤ k < ∞} determined by the Bellman recursion (11) is submodular in the sense that for all
1 ≤ k < ∞ one has

vk−1(s) − vk−1(t) ≤ vk(s) − vk(t) for all 0 ≤ s ≤ t < ∞. (16)

Proof. We first derive a recursion for the difference vk(s) − vk(t). For 0 ≤ s ≤ t < ∞, we have
from (11) that

vk(s) − vk(t) = F(s){vk−1(s) − vk−1(t)}

+

 t

s
max{vk−1(s) − vk−1(t), 1 + vk−1(x) − vk−1(t)} d F(x)

+


∞

t
[max{vk−1(s), 1 + vk−1(x)}

− max{vk−1(t), 1 + vk−1(x)}] d F(x). (17)

Next, we let

ak−1(x)
def
= min{vk−1(s) − vk−1(t), vk−1(s) − vk−1(x) − 1},

bk−1(x)
def
= min{1 + vk−1(x) − vk−1(t), 0},

and we note that the difference

max{vk−1(s), 1 + vk−1(x)} − max{vk−1(t), 1 + vk−1(x)}

which appears in the last integrand of (17) can be written as

max{vk−1(s), 1 + vk−1(x)} − max{vk−1(t), 1 + vk−1(x)} = max{ak−1(x), bk−1(x)}.

Here s ≤ t , so when bk−1(x) < 0 the monotonicity of the value functions in Lemma 3 implies
that 0 ≤ vk−1(s) − vk−1(x) − 1. It then follows that 0 ≤ ak−1(x) and max{ak−1(x), bk−1(x)} =
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max{ak−1(x), 0}. In general, we then have the equivalence

max{vk−1(s), 1 + vk−1(x)} − max{vk−1(t), 1 + vk−1(x)} = max{ak−1(x), 0},

and we can substitute this representation and the explicit expression for ak−1(x) in (17) to obtain
the simplified difference recursion

vk(s) − vk(t) = F(s){vk−1(s) − vk−1(t)}

+

 t

s
max{vk−1(s) − vk−1(t), 1 + vk−1(x) − vk−1(t)} d F(x)

+


∞

t
max{min{vk−1(s) − vk−1(t), vk−1(s) − vk−1(x) − 1}, 0} d F(x). (18)

We now let Hk be the assertion that

vk−1(s) − vk−1(t) ≤ vk(s) − vk(t) for all 0 ≤ s ≤ t < ∞,

and we prove by induction that Hk holds for all k ≥ 1. We first note that for k = 1 we have
v0(s) = 0 for all s ∈ [0, ∞). By the difference recursion (18) we obtain

v1(s) − v1(t) = F(t) − F(s) ≥ 0 = v0(s) − v0(t),

so the base case H1 holds.
Next, we suppose that Hk−1 holds, and we apply Hk−1 to all of the terms on the right-hand

side of (18). We then obtain that

vk(s) − vk(t) ≤ F(s){vk(s) − vk(t)} +

 t

s
max{vk(s) − vk(t), 1 + vk(x) − vk(t)} d F(x)

+


∞

t
max{min{vk(s) − vk(t), vk(s) − vk(x) − 1}, 0} d F(x).

We can now apply the difference recursion (18) a second time after we replace k by k + 1.
This tells us that the right-hand side above is equal to the difference vk+1(s) − vk+1(t), thus
completing the proof of Hk and of the proposition. �

The submodularity guaranteed by Proposition 6 is more powerful than one might expect. In
particular, it delivers three basic corollaries.

Corollary 7 (Monotonicity of Optimal Thresholds). For the threshold functions characterized
by (12) we have

hk+1(s) ≤ hk(s) for 0 ≤ s < ∞. (19)

Proof. Here we only have to note that

hk+1(s) = sup{x ∈ [s, ∞) : F(x) < 1 and vk(s) − vk(x) ≤ 1}

≤ sup{x ∈ [s, ∞) : F(x) < 1 and vk−1(s) − vk−1(x) ≤ 1}

= hk(s),

where the one inequality comes directly from the submodularity (16) and the two equalities come
from (12). �
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Corollary 8 (Concavity in k of the Value Functions.). The value functions are concave as
functions of k; that is, for each s ∈ [0, ∞) and all k ≥ 1, one has

vk+1(s) − 2vk(s) + vk−1(s) ≤ 0.

Proof. By the monotonicity (19) of the optimal threshold functions, the recursion (13) gives us
the difference identity

vk+1(s) − vk(s) = vk(s) − vk−1(s)

+

 hk+1(s)

s
{vk−1(s) − vk−1(x) − vk(s) + vk(x)} d F(x)

+

 hk (s)

hk+1(s)
{vk−1(s) − 1 − vk−1(x)} d F(x),

and it suffices to check that the two integrands on the right-hand side are non-positive. Non-
positivity of the first integrand follows from the submodularity (16), and non-positivity of the
second integrand follows from the characterization of hk(s) in (12). �

Corollary 9 (Concavity in n of the Expected Length). For any continuous F, the map n →

E[Ln(π∗
n )] is concave in n.

This is just a special case of Corollary 8 (where one just takes s = 0 and k = n), but, as we
will see in Section 3, this concavity carries noteworthy force.

Remark 10 (Further Context: an Offline Open Problem). It is not known if the corresponding
concavity holds for the offline monotone subsequence problem. That is, we do not know if the
map n → E[Ln] is concave where Ln is defined by (8). In this case we do know

E[Ln] = 2n1/2
− αn1/6

+ o(n1/6),

so concavity does seem like a highly plausible conjecture.

3. Intermezzo: possibilities for de-Poissonization

If N is an integer valued random variable, then one can consider the problem of sequential
selection of a monotone increasing subsequence from the random length sequence S =

{X1, X2, . . . , X N }. Here, as usual, the elements of the sequence are independent with a common
continuous distribution F , and they are also independent of N . We also assume that the decision
maker knows F and the distribution of N , but the decision maker does not know the value of N
until the sequence S has been exhausted. We let L N (π) denote the number of selections that are
made when one follows a policy π for sequential selection from S .

Proposition 11 (Information Lower Bound). If E[N ] = n for some n ∈ N, then

E[L N (π)] ≤ E[Ln(π∗
n )]. (20)

Proof. The policy π is determined before the realization of N is known, and, for any given
j , the policy π is suboptimal when it is used for sequential selection from the sequence
{X1, X2, . . . , X j }. Thus, if we condition on N = j , we then have

E[L N (π) | N = j] ≤ E[L j (π
∗

j )]. (21)
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Now, if we take φ : [0, ∞) → [0, ∞) to be the piecewise linear extension of the map

j → E[L j (π
∗

j )],

then by Corollary 9 we have that φ is also concave. Finally, by the suboptimality (21), the
definition of φ, and Jensen’s inequality we obtain

E[L N (π)] ≤

∞
j=0

E[L j (π
∗

j )]P(N = j) = E[φ(N )] ≤ φ(E[N ]) = E[Ln(π∗
n )]. �

The next corollary establishes one of the five assertions of Theorem 1. It is an immediate
consequence of Proposition 11 and the lower half of the mean bound (10) from Bruss and
Delbaen [8].

Corollary 12. For any continuous F we have as n → ∞ that

(2n)1/2
− O(log n) ≤ E[Ln(π∗

n )]. (22)

This is a notable improvement over the bound (4) that had been established by several earlier
investigations; it improves a O(n1/4) error bound all the way down to O(log n). For the central
limit theorem (7), one could still get along with a lower bound as weak as (2n)1/2

− o(n1/4).

De-Poissonization and decision problems

We get the bound (22) by a de-Poissonization argument in the sense that a “fixed n” fact is
extracted from a “Poisson N” fact. Such arguments are common in computer science, combi-
natorics and analysis; one finds many examples in Jacquet and Szpankowski [15], Flajolet and
Sedgewick [11, Subsection VIII.5.3], and Korevaar [18, Chapter 6]. Still, Proposition 11 is our
only instance of a de-Poissonization argument, and the proof of the proposition suggests in part
why one may be hard-pressed to find more.

Decision problems are unlike the classical examples mentioned above. The Poisson N
problem and the fixed n problem have different optimal policies, and this mismatch forestalls the
kind of direct analytical connection one has in the classical examples. Conditioning on N = j
does engage the problem, but the suboptimality of the mismatched policy leads only to one-sided
relations such as (20) and (21).

4. Smoothness of the value and threshold functions

We need to show that the value functions associated with an admissible distribution F are
continuously differentiable on I . As a preliminary step, we consider the differentiability of the
threshold functions in a region determined by the critical values s∗

k that were defined in Section 2.

Lemma 13 (Differentiability of the Threshold Functions). Take F to be admissible and take k >

1. If vk−1 is differentiable on I and s ∈ I ∩[0, s∗

k−1), then hk is differentiable at s, and one has

h′

k(s) =
v′

k−1(s)

v′

k−1(hk(s))
≥ 0. (23)
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Proof. Set Q(x, y) = −1 + vk−1(x) − vk−1(y). If Q y denotes the partial derivative of the
function Q with respect to y, we know by our hypotheses that Q y exists, and Lemma 3 im-
plies that the partial derivative Q y is strictly positive. Now, if (x0, y0) satisfies Q(x0, y0) = 0,
then by the implicit function theorem there is a neighborhood N0 of x0 where one can solve
Q(x, y) = 0 uniquely for y, and the solution y is a differentiable function of x for all x ∈ N0.
Moreover, if x < s∗

k−1 then (14) tells us Q(x, y) = 0 if and only if y = hk(x), so hk is differ-
entiable as claimed. Given the differentiability of hk at s, the formula (23) follows directly from
vk−1(x) = 1 + vk−1(hk(x)) by differentiation and the chain rule. The non-negativity of h′

k(s)
then follows because the value function vk−1 is strictly decreasing. �

Proposition 14 (Continuous Differentiability of the Value Functions). If F is admissible, then
for each 1 ≤ k < ∞ the value function s → vk(s) is continuously differentiable on I , and
we have

v′

k(s) = − f (s) + {1 − F(hk(s)) + F(s)} v′

k−1(s) for s ∈ I. (24)

Proof. We argue by induction on k, and we first note for k = 1 that v1(s) = 1 − F(s), so
v′

1(s) = − f (s) and (24) holds since v0(s) ≡ 0. Next, we assume by induction that vk−1 is con-
tinuously differentiable on I . If s < s∗

k−1 then the induction assumption and Lemma 13 imply
that hk is differentiable at s. We then differentiate (13) to find

v′

k(s) = − f (s) + {1 − F(hk(s)) + F(s)} v′

k−1(s)

+ f (hk(s)){1 − vk−1(s) + vk−1(hk(s))}h
′

k(s)

= − f (s) + {1 − F(hk(s)) + F(s)} v′

k−1(s),

where the last step used the characterization (14) of hk . Alternatively, if s > s∗

k−1 we have
F(hk(s)) = 1 and (13) says simply that

vk(s) = F(s)vk−1(s) +


∞

s
{1 + vk−1(x)} f (x) dx .

Differentiation of this integral then gives us (24). Thus, one has that (24) holds on all of Ik =

I \ {s∗

k−1}. Moreover, taking left and right limits in (24) gives us

lim
s↗s∗

k−1

v′

k(s) = − f (s∗

k−1) + F(s∗

k−1)v
′

k−1(s
∗

k−1) = lim
s↘s∗

k−1

v′

k(s).

It is almost obvious that these relations imply the continuous differentiability vk , but to make
it crystal clear let γ be the common value of the limits above and define a continuous function
v̄ : I → R by setting

v̄(s) =

v′

k(s) if s < s∗

k−1
γ if s = s∗

k−1
v′

k(s) if s > s∗

k−1.

Next, we obtain by piecewise integration that

vk(s) = vk(0) +

 s

0
v̄(u) du for all s ∈ I,

implying, as expected, that vk is continuously differentiable on I . �
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5. Spending symmetry: curvature of the value functions

For any continuous F the distribution of Ln(π∗
n ) is the same; this is an invariance property—

or a symmetry. When one chooses a particular F , say the uniform distribution, there is a sense in
which one spends symmetry.

All earlier analyses of Ln(π∗
n ) passed directly to the uniform distribution without any apparent

thought about what might be lost or gained by the transition. Still, it does make a difference how
one spends this symmetry. The distribution of Ln(π∗

n ) is insensitive to F , but the value functions
are not.

Specifically, for the uniform distribution the value functions are concave, but for the expo-
nential distribution the value functions are convex. This change of curvature gives one access
to different estimates. Over the next several sections we see how specialization of the driving
distribution has a big influence on the estimation of variances and conditional variances.

Concavity of the value functions in the uniform model

We first break symmetry in the conventional way and take F to be the uniform distribution
on [0, 1]. Specialization of the Bellman recursion (11) defines the sequence of value functions
{vu

k : 1 ≤ k < ∞}, and specialization of the characterization (12) defines the sequence of thresh-
old functions {hu

k : 1 ≤ k < ∞}. Here, we have by (12) that hu
k (s) ≤ 1 for all s ∈ [0, 1] and

1 ≤ k < ∞.

Lemma 15 (Concavity of the Uniform Value Functions). For each 1 ≤ k < ∞ the value function
vu

k : [0, 1] → R+ is concave.

Proof. Proposition 14 tells us vu
k is continuously differentiable on (0, 1), and we prove concavity

by showing that s → (vu
k )′(s) non-increasing on (0, 1). We let Hk be the assertion

(vu
k )′(s + ϵ) ≤ (vu

k )′(s) for all s ∈ (0, 1) and 0 < ϵ < 1 − s,

and we argue by induction. For k = 1 we have vu
1 (s) = 1 − s, so (vu

1 )′(s) = −1 and H1 holds
trivially.

Now, if we specialize the derivative recursion (24) to the uniform model we have

(vu
k )′(s) = −1 + {1 − hu

k (s) + s}(vu
k−1)

′(s), for s ∈ (0, 1),

so if we assume that Hk−1 holds then we have

(vu
k )′(s + ϵ) − (vu

k )′(s) = {1 − hu
k (s) + s}{(vu

k−1)
′(s + ϵ) − (vu

k−1)
′(s)}

+ {hu
k (s) − hu

k (s + ϵ) + ϵ}(vu
k−1)

′(s + ϵ). (25)

Since 0 ≤ s ≤ hu
k (s) ≤ 1, we see from Hk−1 that the first summand on the right-hand side

of (25) is non-positive. Monotonicity of vu
k also tells us (vu

k−1)
′(s + ϵ) ≤ 0, so to complete the

induction step we just need to check that

g(s, ϵ)
def
= hu

k (s + ϵ) − hu
k (s) ≤ ϵ. (26)

From the definition of the critical value s∗

k−1 we have

g(s, ϵ) =

hu
k (s + ϵ) − hu

k (s) if s < s + ϵ < s∗

k−1
1 − hu

k (s) if s < s∗

k−1 ≤ s + ϵ

0 if s∗

k−1 ≤ s < s + ϵ,

so we only need to check (26) in the first two cases.
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For s < s + ϵ < s∗

k−1, we know by Lemma 13 that hu
k (s) is differentiable at s, so by the

induction assumption Hk−1 and the negativity of (vu
k−1)

′(s) we have

0 ≤ (hu
k )′(s) ≤ 1 for all s ∈ (0, s∗

k−1).

Thus, hu
k is Lipschitz-1 continuous on (0, s∗

k−1), and we have

g(s, ϵ) = hu
k (s + ϵ) − hu

k (s) ≤ ϵ for all s < s + ϵ < s∗

k−1.

For the second case where s < s∗

k−1 ≤ s + ϵ, we first note that hu
k (s∗

k−1) = 1 and that hu
k is

continuous, so we have

g(s, ϵ) = lim
u↗s∗

k−1

{hu
k (u) − hu

k (s)} ≤ lim
u↗s∗

k−1

{u − s} = s∗

k−1 − s < ϵ,

where the inequality follows from the Lipschitz-1 property of hu
k . This completes the second

check and the proof of the induction step. �

Convexity of the value functions in the exponential model

We now break the symmetry in a second way. We take F(x) = 1 − e−x for x ≥ 0, and we let
ve

k and he
k denote the corresponding value and threshold functions. We will shortly find that ve

k is
convex on [0, ∞) for all k ≥ 1, but we need a preliminary lemma.

Lemma 16. For 1 ≤ k < ∞ and s ∈ (0, ∞) one has

− {1 − e−he
k+1(s)+s

}
−1

≤ (ve
k)

′(s). (27)

Proof. By Proposition 14 we know that ve
k is continuously differentiable and by (24) we have

(ve
k)

′(s) = (1 − e−s
+ e−he

k (s))(ve
k−1)

′(s) − e−s . (28)

We now let Hk be the assertion that

−{1 − e−he
k+1(s)+s

}
−1

≤ (ve
k)

′(s), for all s ∈ (0, ∞),

and we argue by induction. For k = 1 we have ve
1(s) = e−s < 1, so by (12) we have he

2(s) = ∞.
In turn this gives us

−{1 − e−he
2(s)+s

}
−1

= −1 ≤ −e−s
= (ve

1)
′(s),

which verifies H1.
Next, if we assume that Hk−1 holds and we substitute the lower bound from Hk−1 into (28),

then rearrangement gives us

−{1 − e−he
k (s)+s

}
−1

[1 − e−s
{1 − e−he

k (s)+s
}] − e−s

≤ (ve
k)

′(s).

From (19) we have he
k+1(s) ≤ he

k(s), so we now have

−{1 − e−he
k+1(s)+s

}
−1

≤ −{1 − e−he
k (s)+s

}
−1

≤ (ve
k)

′(s),

and this is just what one needs to complete the induction step. �

We now have the main result of this section.
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Lemma 17 (Convexity of the Exponential Value Functions). For each 1 ≤ k < ∞, the value
function ve

k : [0, ∞) → R+ is convex on [0, ∞).

Proof. By Proposition 14 we know that ve
k is continuously differentiable, and we again argue by

induction. This time we take Hk to be the assertion

(ve
k)

′(s) ≤ (ve
k)

′(s + ϵ) for all s ∈ (0, ∞) and ϵ > 0.

For k = 1, we have ve
1(s) = e−s and (ve

1)
′(s) = −e−s so the base case H1 of the induction is

valid.
Now, by (28) applied twice we have

(ve
k)

′(s) − (ve
k)

′(s + ϵ) = [1 − e−s−ϵ
+ e−he

k (s+ϵ)
]{(ve

k−1)
′(s) − (ve

k−1)
′(s + ϵ)}

+ {e−he
k (s)[1 − e−he

k (s+ϵ)+he
k (s)] − e−s

[1 − e−ϵ
]}(ve

k−1)
′(s)

− e−s
[1 − e−ϵ

]. (29)

The induction hypothesis Hk−1, tells us that s → ve
k−1(s) is convex, so by (23) we have

(he
k)

′(s) ≥ 1 for s ∈ (0, ∞), and this gives us the bound

−he
k(s + ϵ) + he

k(s) ≤ −ϵ.

We always have s ≤ he
k(s) and (ve

k−1)
′(s) ≤ 0, so (29) implies the simpler bound

(ve
k)

′(s) − (ve
k)

′(s + ϵ) ≤ [1 − e−s−ϵ
+ e−he

k (s+ϵ)
]{(ve

k−1)
′(s) − (ve

k−1)
′(s + ϵ)}

− e−s
[1 − e−ϵ

][1 − e−he
k (s)+s

](ve
k−1)

′(s) − e−s
[1 − e−ϵ

].

We only need to check that this bound is non-positive. By the induction hypothesis Hk−1 and
s + ϵ ≤ he

k(s + ϵ), we see the first term is non-positive. The bound (27) tells us

−[1 − e−he
k (s)+s

](ve
k−1)

′(s) ≤ 1,

so, when we replace −[1 − e−he
k (s)+s

](ve
k−1)

′(s) with its upper bound, we also see that the
second and the third terms sum to zero. This completes the proof of the induction step and
of the lemma. �

6. Martingale relations and Ln(π∗
n )

One can represent Ln(π∗
n ) as a sum of functionals of a time non-homogeneous Markov chain.

To see how this goes, we first set M0 = 0 and then we define Mi recursively by

Mi =


Mi−1 if X i ∉ [Mi−1, hn−i+1(Mi−1)]

X i if X i ∈ [Mi−1, hn−i+1(Mi−1)],
(30)

so, less formally, Mi is the maximum value of the elements of the subsequence that have been
selected up to and including time i .

Since we accept X i if and only if X i ∈ [Mi−1, hn−i+1(Mi−1)] and since Ln(π∗
n ) counts the

number of the observations X1, X2, . . . , Xn that we accept, we have

Ln(π∗
n ) =

n
i=1

1(X i ∈ [Mi−1, hn−i+1(Mi−1)]). (31)
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It is also useful to set L0(π
∗
n ) = 0 and to introduce the shorthand,

L i (π
∗
n )

def
=

i
j=1

1(X j ∈ [M j−1, hn− j+1(M j−1)]), for 1 ≤ i ≤ n.

We now come to a martingale that is central to the rest of our analysis.

Proposition 18 (Optimality Martingale). The process {Yi : i = 0, 1, . . . , n} defined by setting

Yi = L i (π
∗
n ) + vn−i (Mi ) for 0 ≤ i ≤ n, (32)

is a martingale with respect to the filtration Fi = σ {X1, X2, . . . , X i }, 1 ≤ i ≤ n.

Proof. Obviously Yi is Fi -measurable and bounded. Moreover, by the definition of vn−i (s) we
have vn−i (Mi ) = E[Ln(π∗

n ) − L i (π
∗
n ) | Fi ], so

Yi = L i (π
∗
n ) + E[Ln(π∗

n ) − L i (π
∗
n ) | Fi ] = E[Ln(π∗

n ) | Fi ]. �

Since the martingale {Yi : 1 ≤ i ≤ n} is capped by Ln(π∗
n ), we also have the explicit identity

E[Ln(π∗
n ) | Fi ] = L i (π

∗
n ) + vn−i (Mi ), (33)

which is often useful.

Conditional variances

In (32), the term vn−i (Mi ) = E[Ln(π∗
n )− L i (π

∗
n ) | Fi ] tells us the expected number of selec-

tions that the policy π∗
n will make from {X i+1, X i+2, . . . , Xn} given the current value Mi of the

running maximum. There is a useful notion of conditional variance that is perfectly analogous.
Specifically, we set

wn−i (Mi )
def
= Var[Ln(π∗

n ) − L i (π
∗
n ) | Fi ]

= E[{Ln(π∗
n ) − L i (π

∗
n ) − vn−i (Mi )}

2
| Fi ]. (34)

Here, of course, if i = 0 we always have M0 = 0 and

wn(M0) = Var[Ln(π∗
n )].

The martingale {Yi , Fi }
n
i=0 defined by (32) leads in a natural way to an informative represen-

tation for the conditional variance (34), and one starts with the difference sequence

d j = Y j − Y j−1, where 1 ≤ j ≤ n. (35)

By (32) and telescoping of the sum we have

n
j=i+1

d j = Ln(π∗
n ) − L i (π

∗
n ) − vn−i (Mi ), for 0 ≤ i ≤ n, (36)

so by orthogonality of the martingale differences we get

wn−i (Mi ) = Var[Ln(π∗
n ) − L i (π

∗
n ) | Fi ] =

n
j=i+1

E[d2
j | Fi ]. (37)
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This representation for the conditional variance wn−i can be usefully reframed by taking a
more structured view of the martingale differences (35). Specifically, we write

d j = A j + B j , (38)

where the variable

B j
def
= vn− j (M j−1) − vn− j+1(M j−1) (39)

represents the change in the martingale Y j when we do not select X j , and where

A j
def
= (1 + vn− j (X j ) − vn− j (M j−1))1(X j ∈ [M j−1, hn− j+1(M j−1)]) (40)

is the additional contribution to the change in the martingale Y j when we do select X j . Since B j
is F j−1-measurable, we have

E[d2
j | F j−1] = E[A2

j | F j−1] + 2B j E[A j | F j−1] + B2
j ,

and we also have 0 = E[d j | F j−1] = B j + E[A j | F j−1], so

E[d2
j | F j−1] = E[A2

j | F j−1] − B2
j . (41)

Now, for j = i + 1 to n, we take the conditional expectation in (41) with respect to Fi . When
we sum these terms and recall (37) we get our final representation for conditional variances

wn−i (Mi ) = Var[Ln(π∗
n ) − L i (π

∗
n ) | Fi ] =

n
j=i+1

{E[A2
j | Fi ] − E[B2

j | Fi ]}. (42)

The decomposition (42) was our main goal here, but before concluding the section we should
make one further inference from (38). By the representation (12) for hk we have 0 ≤ A j ≤ 1,
and by our bound (15) on the value function differences we have −1 ≤ B j ≤ 0. Hence one has
a uniform bound on the martingale differences

|d j | = |A j + B j | ≤ 1 for 1 ≤ j ≤ n. (43)

7. Inferences from the uniform model

We now consider the decompositions of Section 6 when F is the uniform distribution on [0, 1],
and we use superscripts to make this specialization explicit. In particular, we let Xu

1 , Xu
2 , . . . , Xu

n
be the underlying sequence of n independent uniformly distributed random variables, and we
write Mu

i for the value of the last observation selected up to and including time i ≥ 1 (and, as
usual, we set Mu

0 = 0). Lemma 15 tells us that the value function vu
k is concave, and this is

crucial to the proof of the lower bound for the conditional variance of Lu
n(π∗

n ).

Proposition 19 (Conditional Variance Lower Bound). For 0 ≤ i ≤ n one has

1
3

vu
n−i (Mu

i ) − 2 ≤ wu
n−i (Mu

i ).
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Proof. Specialization of the representation (42) gives us

wu
n−i (Mu

i ) =

n
j=i+1

E[(Au
j )

2
| Fi ] −

n
j=i+1

E[(Bu
j )

2
| Fi ], (44)

where the definitions (39) and (40) now become

Bu
j = vu

n− j (Mu
j−1) − vu

n− j+1(Mu
j−1)

and

Au
j = (1 + vu

n− j (X j ) − vu
n− j (Mu

j−1))1(Xu
j ∈ [Mu

j−1, hu
n− j+1(Mu

j−1)]). (45)

First, we work toward a lower bound for the leading sum in (44). If we square both sides of
(45) and take conditional expectations, then we have

E[(Au
j )

2
| F j−1] =

 hu
n− j+1(Mu

j−1)

Mu
j−1

{1 + vu
n− j (x) − vu

n− j (Mu
j−1)}

2 dx . (46)

By Lemma 15 the map x → vu
n− j (x) is concave in x , so the line through the points (Mu

j−1, 1)

and (hu
n− j+1(Mu

j−1), 0) provides a lower bound on the integrand in (46). Integration of this linear
lower bound then gives

1
3


hu

n− j+1(Mu
j−1) − Mu

j−1


≤

 hu
n− j+1(Mu

j−1)

Mu
j−1

{1 + vu
n− j (x) − vu

n− j (Mu
j−1)}

2 dx . (47)

From the definition of Lu
i (π∗

n ) we have the identity

n
j=i+1

E[hu
n− j+1(Mu

j−1) − Mu
j−1 | Fi ] = E[Lu

n(π∗
n ) − Lu

i (π∗
n ) | Fi ] = vu

n−i (Mu
i ),

so (46) and (47) give us

1
3
vu

n−i (Mu
i ) ≤

n
j=i+1

E[(Au
j )

2
| Fi ]. (48)

Now, to work toward an upper bound on E[(Bu
j )

2
| Fi ], we first note by the crude Lemma 5

that

(Bu
j )

2
=


vu

n− j (Mu
j−1) − vu

n− j+1(Mu
j−1)

2
≤


hu

n− j+1(Mu
j−1) − Mu

j−1

2
. (49)

The definition (30) of the running maximum Mu
j , the uniform distribution of Xu

j , and calculus
give us the identity

E[Mu
j − Mu

j−1 | F j−1] =

 hu
n− j+1(Mu

j−1)

Mu
j−1

(x − Mu
j−1) dx

=
1
2


hu

n− j+1(Mu
j−1) − Mu

j−1

2
, (50)

so (49) gives us the succinct bound

(Bu
j )

2
≤ 2 E[Mu

j − Mu
j−1 | F j−1].
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Now we take the conditional expectation with respect to Fi and sum over i < j ≤ n. Telescoping
then gives us

n
j=i+1

E[(Bu
j )

2
| Fi ] ≤ 2 E[Mu

n − Mu
i | Fi ] ≤ 2, (51)

where, in the last step, we used 0 ≤ Mu
i ≤ Mu

n ≤ 1. The representation (44) and the bounds (48)
and (51) complete the proof of the lemma. �

A Cauchy–Schwarz argument

If we take the total expectation in (50), then we have

E[


hu

n− j+1(Mu
j−1) − Mu

j−1

2
] = 2{E[Mu

j ] − E[Mu
j−1]}, (52)

and, since E[(hu
n− j+1(Mu

j−1) − Mu
j−1)] is the unconditional probability that we accept the j’th

element of the sequence, one might hope to estimate E[Ln(π∗
n )] with help from (52) and a

Cauchy–Schwarz argument.
In fact, by two applications of the Cauchy–Schwarz inequality, we get

E[Lu
n(π∗

n )] =

n
j=1

E[hu
n− j+1(Mu

j−1) − Mu
j−1]

≤ n1/2


n

j=1

(E[hu
n− j+1(Mu

j−1) − Mu
j−1])

2

1/2

≤ n1/2


n

j=1

E


hu
n− j+1(Mu

j−1) − Mu
j−1

2
1/2

,

and, when we replace all of the summands using (52), we get a telescoping sum

E[Lu
n(π∗

n )] ≤ n1/2


2

n
j=1

{E[Mu
j ] − E[Mu

j−1]}

1/2

= (2n)1/2
{E[Mu

n ]}
1/2.

We have E[Mu
n ] < 1 since the support of Mu

n equals [0, 1], and, since the distribution of Lu
n(π∗

n )

does not depend on F , we find for all continuous F that

E[Ln(π∗
n )] < (2n)1/2. (53)

This recaptures the mean upper bound (3) of Bruss and Robertson [10] and Gnedin [12] which
was discussed in the introduction.

Here we should note that Bruss and Delbaen [8] also used a Cauchy–Schwarz argument to
show that for Poisson Nν with mean ν, one has the analogous inequality

E[L Nν (π
∗

Nν
)] ≤ (2ν)1/2. (54)

We know by Proposition 11 that for ν = n we have E[L Nn (π
∗

Nn
)] ≤ E[Ln(π∗

n )] but, even so,
the bound (54) does not help directly with (53)—or vice versa. In addition to the usual issue that
“policies do not de-Poissonize”, there is the real a priori possibility that E[L Nn (π

∗

Nn
)] might be

much smaller than E[Ln(π∗
n )].
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8. Inferences from the exponential model

Now we consider the exponential distribution F(x) = 1 − e−x , for x ≥ 0, and, as before, we
use superscripts to make this specialization explicit. Thus X e

1, X e
2, . . . , X e

n denotes a sequence
of n independent, mean one, exponential random variables, and Me

i denotes the value of the last
observation selected up to and including time i ≥ 1 (and, again, we set Me

0 = 0). This time
Lemma 17 provides the critical fact; it tells us that the value function ve

k is convex, and this is at
the heart of the argument.

Proposition 20 (Conditional Variance Upper Bound). For each 0 ≤ i ≤ n one has

we
n−i (Me

i ) ≤
1
3

ve
n−i (Me

i ) +
2
3
{1 + log(n − i)}. (55)

The proof roughly parallels that of Proposition 19, but in this case some integrals are more
troublesome to estimate. To keep the argument direct, we extract one calculation as a lemma.

Lemma 21. For 0 ≤ s < t < ∞ one has t

s


t − x

t − s

2

e−x dx ≤
1
3
(e−s

− e−t ) +
2
3
{e−s

− e−t (t − s + 1)}.

Proof. If we set

g(y)
def
= y−2

{−6y + e−y(2y3
+ 3y2

− 6 + 6ey)} for y ≥ 0,

then by integration and simplification one has for 0 ≤ s < t < ∞ that

e−s

3
g(t − s) =

 t

s


t − x

t − s

2

e−x dx −
1
3
(e−s

− e−t ) −
2
3
{e−s

− e−t (t − s + 1)},

and the lemma follows if we verify that g(y) ≤ 0 for all y ≥ 0. By the integral representation

g(y) = y−2
 y

0
(−6) dx +

 y

0
e−x (6 + 6x + 3x2

− 2x3) dx


,

we see that it suffices to show that

6 + 6x + 3x2
− 2x3

≤ 6ex for all x ∈ [0, ∞),

and the last inequality is obvious from the power series of ex . �

Proof of Proposition 20. Specialization of (42) to the exponential model and simplification
give us

we
n−i (Me

i ) = Var[Le
n(π∗

n ) − Le
i (π

∗
n ) | Fi ] ≤

n
j=i+1

E[(Ae
j )

2
| Fi ], (56)

where Ae
j is given by

Ae
j = (1 + ve

n− j (X e
j ) − ve

n− j (Me
j−1))1(X e

j ∈ [Me
j−1, he

n− j+1(Me
j−1)]).
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Since Me
j−1 is F j−1-measurable, we have

E[(Ae
j )

2
| F j−1] =

 he
n− j+1(Me

j−1)

Me
j−1

{1 + ve
n− j (x) − ve

n− j (Me
j−1)}

2e−x dx, (57)

and by Lemma 17 the map x → 1 + ve
n− j (x) − ve

n− j (Me
j−1) is convex in x and non-negative for

all x ∈ [Me
j−1, he

n− j+1(Me
j−1)].

If he
n− j+1(Me

j−1) < ∞, the line through the left-end point (Me
j−1, 1) and the right-end point

(he
n− j+1(Me

j−1), 0) provides us with an easy upper bound for the integrand (57). Specifically, for
x ∈ [Me

j−1, he
n− j+1(Me

j−1)], we have that

{1 + ve
n− j (x) − ve

n− j (Me
j−1)}

2e−x
≤


he

n− j+1(Me
j−1) − x

he
n− j+1(Me

j−1) − Me
j−1

2

e−x . (58)

On the other hand, if he
n− j+1(Me

j−1) = ∞, the right-side of (58) is replaced by e−x , and (58)
again holds since 0 ≤ {1 + ve

n− j (x) − ve
n− j (Me

j−1)} ≤ 1.
We now integrate (58) and use the bound of Lemma 21; the representation (57) then gives us

E[(Ae
j )

2
| F j−1] ≤

1
3
(e−Me

j−1 − e−he
n− j+1(Me

j−1))

+
2
3
{e−Me

j−1 − e−he
n− j+1(Me

j−1)(1 + he
n− j+1(Me

j−1) − Me
j−1)}. (59)

Now we just need to interpret the two addends on the right-hand side of (59). The first addend
is just the probability that observation X e

j is selected when the value of the running maximum is
Me

j−1, that is,

E[1(X e
j ∈ [Me

j−1, he
n− j+1(Me

j−1)]) | F j−1] = e−Me
j−1 − e−he

n− j+1(Me
j−1). (60)

Similarly, the second addend of (59) is the one-period expected increment of the current running
maximum Me

j−1, or, to be explicit,

E[Me
j − Me

j−1 | F j−1] =

 he
n− j+1(Me

j−1)

Me
j−1

(x − Me
j−1)e

−x dx

= e−Me
j−1 − e−he

n− j+1(Me
j−1)(1 + he

n− j+1(Me
j−1) − Me

j−1). (61)

Given the two interpretations (60) and (61), our bound (59) now becomes

E[(Ae
j )

2
| F j−1] ≤

1
3

E[1(X e
j ∈ [Me

j−1, he
n− j+1(Me

j−1)]) | F j−1]

+
2
3

E[Me
j − Me

j−1 | F j−1].

Next, we recall the variance upper bound (56), take conditional expectations with respect to Fi ,
and sum over i + 1 ≤ j ≤ n, to obtain
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we
n−i (Me

i ) ≤
1
3

E[Le
n(π∗

n ) − Le
i (π

∗
n ) | Fi ] +

2
3

E[Me
n − Me

i | Fi ]

=
1
3

ve
n−i (Me

i ) +
2
3

E[Me
n − Me

i | Fi ], (62)

where in the last step we used the martingale identity (33).
To complete the proof, we only need to estimate the conditional expectation E[Me

n −Me
i | Fi ].

We first set M∗

[i+1,n]
= max{X e

i+1, X e
i+2, . . . , X e

n}, and then we note that

Me
n − Me

i ≤ max{M∗

[i+1,n]
, Me

i } − Me
i ≤ M∗

[i+1,n]
.

When we take the conditional expectations and use the independence of Fi and {X e
i+1, X e

i+2,

. . . , X e
n}, we get

E[Me
n − Me

i | Fi ] ≤ E[M∗

[i+1,n]
| Fi ] = E[M∗

[1,n−i]]. (63)

The logarithmic bound for the last term is well-known, but, for completeness, we just note
P(M∗

[1,n−i] ≤ t) = (1 − e−t )n−i , so

E[M∗

[1,n−i]] =


∞

0
1 − (1 − e−t )n−i dt =

n−i
j=1

j−1
≤ 1 + log(n − i).

This last estimate then combines with the upper bounds (62) and (63) to complete the proof
of (55). �

9. Combined inferences: variance bounds in general

The variance bounds obtained under the uniform and exponential models are almost immedi-
ately applicable to general continuous F . One only needs to make an appropriate translation.

Proposition 22. For any continuous F and for all 0 ≤ i ≤ n one has the conditional variance
bounds

1
3

vn−i (Mi ) − 2 ≤ wn−i (Mi ) ≤
1
3

vn−i (Mi ) +
2
3
{1 + log(n − i)}. (64)

In particular, for i = 0 one has M0 = 0 and

1
3

E[Ln(π∗
n )] − 2 ≤ Var[Ln(π∗

n )] ≤
1
3

E[Ln(π∗
n )] +

2
3
{1 + log n}. (65)

Proof. If X1, X2, . . . , Xn is a sequence of independent random variables with the continuous
distribution F , then the familiar transformations

Xu
i

def
= F(X i ) and X e

i
def
= − log{1 − F(X i )}

define sequences that have the uniform and exponential distribution, respectively. These transfor-
mations give us a dictionary that we can use to translate results between our models; specifically
we have:

vk(s) = vu
k (F(s)) and vk(s) = ve

k(− log{1 − F(s)}),

Mu
i = F(Mi ) and Me

i = − log{1 − F(Mi )},

wn−i (Mi ) = wu
n−i (Mu

i ) and wn−i (Mi ) = we
n−i (Me

i ).
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Proposition 19 tells us that

1
3

vu
n−i (Mu

i ) − 2 ≤ wu
n−i (Mu

i ),

so the first column of the dictionary gives us the first inequality of (64). Similarly, Proposition 20
tells us

we
n−i (Me

i ) ≤
1
3

ve
n−i (Me

i ) +
2
3
{1 + log(n − i)},

and the second column of the dictionary gives us the second inequality of (64). �

10. The central limit theorem

Our proof of the central limit theorem for Ln(π∗
n ) depends on the most basic version of the

martingale central limit theorem. Brown [7], McLeish [20], and Hall and Heyde [13] all give
variations containing this one.

Proposition 23 (Martingale Central Limit Theorem). For each n ≥ 1, we consider a martingale
difference sequence {Zn, j : 1 ≤ j ≤ n} with respect to the sequence of increasing σ -fields {Fn, j :

0 ≤ j ≤ n}. If

max
1≤ j≤n

∥Zn, j∥∞ → 0 as n → ∞ (66)

and

n
j=1

E[Z2
n, j |F j−1]

p
−→ 1 as n → ∞, (67)

then we have the convergence in distribution

n
j=1

Zn, j H⇒ N (0, 1) as n → ∞.

For each n ≥ 1, we consider a driving sequence Xn,1, Xn,2, . . . , Xn,n of independent random
variables with the continuous distribution F . We then set

Zn, j
def
=

31/2dn, j

(2n)1/4 , for 1 ≤ j ≤ n,

where the dn, j ’s are the differences defined by (35), although we now make explicit the de-
pendence of the differences on n. This is a martingale difference sequence with respect to the
increasing sequence of σ -fields Fn, j = σ {Xn,1, Xn,2, . . . , Xn, j }, and when we take i = 0 in
(36) we get the basic representation

n
j=1

Zn, j =
31/2

{Ln(π∗
n ) − E[Ln(π∗

n )]}

(2n)1/4 .

We know from (43) that we always have |dn, j | ≤ 1 so, by our normalization, the negligibility
condition (66) is trivially valid. The heart of the matter is the proof of the weak law (67); more
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explicitly, we need to show that

n
j=1

3 E[d2
n, j | Fn, j−1]

(2n)1/2

p
−→ 1 as n → ∞. (68)

The variance bounds (65) and the asymptotic relation (2) for the mean imply

Var[Ln(π∗
n )] ∼

1
3

E[Ln(π∗
n )] ∼

(2n)1/2

3
as n → ∞,

and telescoping and orthogonality of the differences {dn, j : 1 ≤ j ≤ n} give us

Var[Ln(π∗
n )] = E


n

j=1

E[d2
n, j ]


= E


n

j=1

E[d2
n, j | Fn, j−1]


,

so the weak law (68) will follow from Chebyshev’s inequality if one proves that

Var


n

j=1

E[d2
n, j | Fn, j−1]


= o(n) as n → ∞. (69)

The proof of Theorem 1 is completed once one confirms the relation (69), and the next lemma
gives us more than we need.

Lemma 24 (Conditional Variance Bound). If F is continuous, then for n ≥ 1, one has

Var


n

j=1

E[d2
n, j | Fn, j−1]


≤ {18 + (log n)2

}(2n)1/2.

Proof. We fix n ≥ 1 and simplify the notation by dropping the subscript n on the martingale
difference sequence and the filtration. We then let

V
def
=

n
j=1

E[d2
j | F j−1]

and consider the martingale {Vi : 0 ≤ i ≤ n} defined by setting

Vi
def
= E[V | Fi ] for 0 ≤ i ≤ n.

One has the initial and terminal values

V0 =

n
j=1

E[d2
j ] = Var[Ln(π∗

n )] and Vn = V,

and if we introduce the new martingale differences ∆i = Vi − Vi−1, 1 ≤ i ≤ n, then telescoping
and orthogonality give us

Vn − V0 =

n
i=1

∆i and Var[Vn] = Var


n

j=1

E[d2
j | F j−1]


=

n
i=1

E[∆2
i ]. (70)
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For 1 ≤ j ≤ i + 1 all of the summands E[d2
j | F j−1] are Fi -measurable, so we have

∆i =

i
j=1

E[d2
j | F j−1] + E


n

j=i+1

E[d2
j | F j−1] | Fi



−

i
j=1

E[d2
j | F j−1] − E


n

j=i+1

E[d2
j | F j−1] | Fi−1


.

The first and the third sum cancel, and we obtain

∆i =

n
j=i+1

E[d2
j | Fi ] − E


n

j=i+1

E[d2
j | Fi ] | Fi−1


= wn−i (Mi ) − E[wn−i (Mi ) | Fi−1], (71)

where in the last line we twice used the formula (37) for the conditional variance.
Next, we set

Gi
def
= {ω : X i (ω) ∈ [Mi−1(ω), hn−i+1(Mi−1(ω))]},

so, in words, Gi is the set of all ω for which the observation X i (ω) is selected at time i under the
optimal policy π∗

n . By the recursive definition (30) of the running maximum Mi , we then have
the decomposition

wn−i (Mi ) = wn−i (Mi−1) + {wn−i (X i ) − wn−i (Mi−1)}1(Gi ). (72)

In fact, one can replace wn−i with any function here, and it will be useful to also note that

vn−i (Mi ) = vn−i (Mi−1) + {vn−i (X i ) − vn−i (Mi−1)}1(Gi ). (73)

The first summand on the right-hand side of (72) is Fi−1-measurable, so, if we rewrite (71)
using (72) we obtain

∆i = {wn−i (X i ) − wn−i (Mi−1)}1(Gi ) − E[{wn−i (X i ) − wn−i (Mi−1)}1(Gi ) | Fi−1].

When we square this identity and take the conditional expectation we find

E[∆2
i | Fi−1] ≤ E[{wn−i (X i ) − wn−i (Mi−1)}

21(Gi ) | Fi−1], (74)

and all that remains is to estimate the difference {wn−i (X i ) − wn−i (Mi−1)}1(Gi ).
Now consider the upper bound in (64) and replace wn−i (Mi ) and vn−i (Mi ) with their decom-

positions (72) and (73). When we move the term wn−i (Mi−1) to the right side, we have

{wn−i (X i ) − wn−i (Mi−1)}1(Gi ) ≤
1
3
{vn−i (X i ) − vn−i (Mi−1)}1(Gi )

+
1
3
vn−i (Mi−1) − wn−i (Mi−1) +

2
3
(1 + log n). (75)

By the lower bound in (64) the second summand is bounded by two, and, to estimate the first
summand, we note that the characterization (12) for the optimal threshold function and the mono-
tonicity of the value function give us

1
3
| vn−i (X i ) − vn−i (Mi−1) |1(Gi ) ≤

1
3
1(Gi ). (76)
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The left-hand side of (75) is zero off of the set Gi , so using (76) we see that (75) gives us

{wn−i (X i ) − wn−i (Mi−1)}1(Gi ) ≤


3 +

2
3

log n


1(Gi ). (77)

A parallel argument gives us the complementary inequality,

−


3 +

2
3

log n


1(Gi ) ≤ {wn−i (X i ) − wn−i (Mi−1)}1(Gi ). (78)

Specifically, one now begins with the lower bound in (64) and replaces wn−i (Mi ) and vn−i (Mi )

with their decompositions.
Taken together (77) and (78) imply

|wn−i (X i ) − wn−i (Mi−1)|1(Gi ) ≤


3 +

2
3

log n


1(Gi ),

so we can square both sides and take conditional expectations with respect to Fi−1. By (74) and
the definition of Gi , we then have

E[∆2
i | Fi−1] ≤


18 +

8
9
(log n)2


E[1(X i ∈ [Mi−1, hn−i+1(Mi−1)]) | Fi−1],

so if we drop the factor 8/9, take total expectations, and sum we get

n
i=1

E[∆2
i ] ≤ {18 + (log n)2

}

n
i=1

E[1(X i ∈ [Mi−1, hn−i+1(Mi−1)])]. (79)

By (70) the sum on the left is the variance of Vn =
n

j=1 E[d2
j | F j−1], and by (31) the sum

of the expected values on the right is equal to E[Ln(π∗
n )]. Finally, we know that E[Ln(π∗

n )] <

(2n)1/2 from (3) and the argument of Section 7, so (79) completes the proof of the lemma. �

11. Concluding observations

The idea of “spending symmetry” that was mentioned in Section 5 originates with an instruc-
tive essay of Tao [26, Section 1.4]. This notion can be cast in stunning generality, but here it turns
out to be resolutely concrete and very useful.

The variance lower bound of (65) had been known to us for some years, but dogged analysis
of the uniform model left us without an upper bound of comparable quality. A general Markov
decision problem (MDP) bound in Arlotto, Gans and Steele [2] would give Var[Ln(π∗

n )] ≤

E[Ln(π∗
n )], but here the MDP bound is too weak by a factor of three. It cannot serve even as

good motivation for a central limit theorem.
With such a long tradition of immediate reduction to the uniform model, it was surprising

to see how fruitful it could be to simultaneously use the exponential model—even though the
distribution of Ln(π∗

n ) is the same under either model. Still, with different value functions come
different qualitative features, and the convexity of the value functions under the exponential
model leads in a natural way to the needed upper bound of the variance. This opened up the way
to the rest of the analysis.

We mentioned one open problem earlier (see Remark 10), and there is a related problem that
deserves some thought. In the offline selection problem, the distribution of the length of the
longest increasing subsequence of a sequence of n independent uniformly distributed random
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variables is the same as the distribution of the length of the longest increasing subsequence of a
random permutation of the integers {1, 2, . . . , n}. This equivalence is lost in the online selection
problem, and it is unclear how much of Theorem 1 can be recaptured.

For example, if we write Lperm
n (π∗

n ) for the analog of Ln(π∗
n ) where now one chooses a ran-

dom permutation of {1, 2, . . . , n}, then, by an argument of Burgess Davis given in Samuels and
Steele [25], one does have E[Lperm

n (π∗
n )] ∼ (2n)1/2 as n → ∞. Unfortunately, mean bounds

like those of Theorem 1 cannot be achieved in this way, and variance bounds that would be good
enough to support a central limit theorem are even more remote. Nevertheless, some analog of
Theorem 1 is quite likely to be true.
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