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Abstract

In many scenarios, a fixed capacity is shared flexibly between multiple products. To manage

such multi-product systems, firms need to make two sets of decisions. The first one requires

setting an inventory target for each product and the second decision requires dynamically al-

locating the scarce capacity among the products. It is not known how to make these decisions

optimally. In this paper, we propose easily implementable policies that have both theoretical

and practical appeal. We first suggest simple and intuitive allocation rules that determine how

such scarce capacity is shared. Given such a rule, we calculate the optimal inventory target for

each product. We demonstrate analytically that our policies are optimal under two asymptotic

regimes represented by high service levels (i.e. high shortage costs) and heavy traffic (i.e. tight

capacity). We also demonstrate that our policies outperform current known policies over a wide

range of problem parameters. In particular, the cost savings from our policies become more

significant as the capacity gets more restrictive.

Keywords: Flexible Capacity, Multiple Products, Allocation Rules, Asymptotic Optimality.

1 Introduction

In many industries such as auto-manufacturing, semiconductors, consumer electronics and phar-

maceuticals, a firm’s ability to carefully manage its flexible capacity is often a significant factor for

its long-term success. The focus of this paper is to provide simple decision rules for managing flex-

ibility efficiently - more specifically, rules for allocating limited capacity dynamically across several

products.
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To achieve our goal, we study a firm that produces multiple products in every period, using

a shared resource with limited capacity. We represent the firm’s decisions using a periodically

reviewed stochastic inventory model. Production occurs at the beginning of each period. A random

demand (for each product) occurs during the period. For all products, the unsatisfied demand at

the end of any period is backordered. Linear holding and shortage costs are assessed for all products

at the end of every period.

We explore the objective of minimizing the long-run average cost per period. This optimization

problem comprises of two sets of related decisions. The first one involves setting the target level for

each product, and the second requires an allocation rule that determines how the scarce capacity

is shared among the products. It is well known that performing these two tasks optimally is

difficult (more details on this difficulty in the next section). Therefore, in this work, we propose

implementable policies that have both theoretical and practical appeal.

Given the mathematical difficulty of analyzing our problem, we take an approach similar in

spirit to papers that study limiting regimes of such stochastic control problems. We first suggest

an intuitive class of allocation rules called weighted balancing rules. These rules are parametrized

by a weight for each product, and they determine how the scarce capacity in any period is shared

amongst multiple products. For every rule in this class, the optimal target level for each product

is obtained directly from an application of the newsvendor formula – we refer to the combination

of weighted balancing rules with these target levels as weighted balancing policies.

To provide theoretical validity to this class of policies, we study two different asymptotic regimes

represented by (i.) service levels approaching one (i.e., when shortages are prohibitively expensive),

and (ii.) utilization approaching one (i.e., when there is little slack between capacity and expected

aggregate demand). For each of these two regimes, we identify a vector of weights within our policy

class which is asymptotically optimal. To investigate how our class of policies performs, in general,

we study a set of problems that span a wide range of costs, demand variabilities and capacity

utilizations, which are not in the asymptotic regime.

1.1 Our Approach

We focus on a class of policies called stationary base-stock policies, which we define below. There is

a target or base-stock level corresponding to each product. This target is stationary across periods.

2



At the beginning of a period, let us assume that the inventory level of each product will be at

most equal to that product’s base-stock level. (It is easy to see that our definition of a stationary

base-stock policy is such that this assumption is satisfied in every period if it is satisfied in the first

period). The difference between the inventory level and the base-stock level is called the “opening

shortfall”. If the aggregate shortfall of all products is smaller than the capacity limit, we produce

enough of each product to raise its inventory to its base-stock level. The resulting shortfall (“ending

shortfall”) is thus zero for every product. If the aggregate shortfall exceeds the capacity, then the

entire production capacity is used in such a way that the inventory level of each product does not

exceed its base-stock level.

An allocation rule describes how the capacity is allocated to the different products in any

period in which the capacity is insufficient (scarce) for all products to reach their base-stock levels.

Thus, even within the class of stationary base stock policies, the optimal policy involves two

interdependent sets of decisions, namely, base-stock levels (production policy) and an allocation

rule. The lack of knowledge of the structure of the optimal allocation rule is thus the main stumbling

block. To resolve this difficulty, we first fix the allocation policy, and find the optimal base-stock

level under the fixed allocation policy.

The class of policies we advocate is the following. For any given vector of base-stock levels, we

raise all inventory levels to the base-stock levels in periods in which the aggregate shortfall does

not exceed the capacity. In periods in which the capacity is insufficient, all the capacity is used.

Only in such periods, the allocation rule becomes relevant. An important aspect of the class of

allocation rules proposed by us is that, in any period, the only information these decisions require

is the opening shortfall of each product. In other words, for a given vector of opening shortfalls,

the allocation decisions remain the same for any choice of base-stock levels. For any such allocation

rule, the stationary distribution of the vector of ending shortfalls in a period is independent of

the base stock levels. This finding has an important implication – the optimal base-stock level for

each product can be computed using the newsvendor formula applied to the convolution of that

product’s demand and its ending shortfall.

Our approach is the following: We restrict attention to simple choices of allocation rules within

the aforementioned class, and we choose the base-stock vector corresponding to any particular

allocation rule optimally. We use a family of allocation rules which we refer to as weighted balancing
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rules. These rules work as follows. Each product is assigned a strictly positive weight which is

constant through time. Next, at the beginning of each period, we rank order the products based

on their weighted shortfalls (i.e. the shortfall divided by the weight). We then take the highest

ranked product (i.e., the one with the largest weighted shortfall), and use the capacity to bring

its weighted shortfall to be equal to the weighted shortfall of the second highest product. Next,

we allocate capacity to both these products simultaneously until their weighted shortfalls coincide

with the third highest product. We continue this procedure with subsequent products until the

entire capacity is exhausted. As mentioned earlier, for any vector of weights, the base-stock level

for each product is chosen optimally. This completes the description of a weighted balancing policy,

given the vector of weights.

We now discuss the issue of choosing the weight vector. One special choice is that all weights

are equal to 1 - we call the resulting allocation rule as the symmetric rule. At the other extreme are

choices of the following type: There is some permutation {(1), (2), . . . , (N)} of the N products such

that the weight for (1) << the weight for (2) << . . . << the weight for (N) (here, we use << to

mean “much smaller than”). Intuitively, such a choice mimics the priority rule, i.e. the rule which

devotes all the available capacity to (1) until its shortfall is zero and then devotes all the remaining

capacity to (2) until its shortfall is zero and so on. Later, we will prove that this priority rule, can

be approximated by a suitable weighted balancing policy, for every beginning shortfall. We will

show under certain assumptions that the symmetric rule is asymptotically optimal in high service

level regimes while the priority rule is asymptotically optimal in heavy traffic. But, in general, the

heuristic we propose searches over the space (more precisely, a grid) of weight vectors and picks the

best vector. We will refer to the policy of using this weight vector along with the corresponding

optimal base-stock levels as the search policy. Thus, for every problem instance, the search policy

is at least as good as the two asymptotically optimal rules mentioned above; therefore, this policy

also has the desired optimality property in both the asymptotic regimes.

We conclude this section by summarizing the benefits of the class of weighted balancing policies:

(i) In the single product case, our policy (when there is only one product, there is only one policy

in this class) is optimal. (ii) When all products are symmetric (i.e. they have identical costs and

the distribution of the demand vector is exchangeable), we show (in §4) formally that our policy

with symmetric weights is optimal. (iii) In high service level regimes, our policy with symmetric
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weights is asymptotically optimal. (iv) Finally, in heavy traffic (i.e. when utilization approaches

one), the policy with weights chosen to mimic a priority policy is asymptotically optimal.

2 Related Literature

The single product capacitated inventory problem is a special case of our problem. The optimal

policy for the single product problem is a modified base stock policy (Federgruen and Zipkin (1986)).

However, not much is known about the problem with multiple products and limited capacity due

to two sets of difficulties – computational and theoretical. From a computational perspective, the

dynamic programming approach to solve this problem becomes intractable due to the curse of

dimensionality. Providing simple and cost-effective heuristics which scale well to problems with

many products is valuable - we will see that the policies we propose have these desirable attributes.

The theoretical difficulty is as follows. In the finite horizon dynamic program for the single

product problem, the cost-to-go function is convex, and that guarantees the optimality of base-

stock policies. The cost-to-go function can be shown to be convex even for the multi-product

problem; however, this only guarantees the existence of a minimizer (interpreted as the vector of

optimal after-order inventory levels) but it does not guarantee the optimality of base-stock policies.

Moreover, even temptingly simple and intuitive statements do not follow from convexity. For

instance, one would imagine that the optimal policy possesses the following property which base-

stock policies satisfy: If the inventory levels of all products at the beginning of a period are

smaller than their optimal after-order inventory levels, then the inventory level of every product

after ordering will be no larger than the optimal after-order inventory level. The careful reader

will note that this property does not follow from convexity. In fact, a description of the optimal

policy has so far been provided only for the two product case (that too, only for the finite/infinite

horizon discounted cost problems, not the average cost problem) by Shaoxiang (2004) who expands

on the early work by Evans (1967). For this case, Shaoxiang shows that the optimal policy is a

base-stock policy. For the two product case, our weighted balancing rules can be viewed as linear

approximations of the monotone switching curve in Shaoxiang (2004).

DeCroix and Arreola-Risa (1998) study the periodic review multi-product problem under both

the finite horizon and the infinite horizon discounted cost criteria. They prove the optimality (for
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the finite horizon) of base-stock policies for the special case where all products are identical both

in costs and demand distributions, and when the inventory level of each product in the first period

is below its target level. For the general case, they provide a heuristic, but there are no theoretical

results on the performance of those policies.

Aviv and Federgruen (2001) study a heuristic for a multi-product inventory system in which

“blanks” are produced, and then allocated into multiple finished products. While their heuristic

policy is optimal for the single product problem, it can be verified that it is not optimal even for

the multi-product problem with symmetric products – this is because the base-stock levels used are

obtained by solving a relaxed problem. As with DeCroix and Arreola-Risa’s heuristic, there are no

theoretical results on the performance of this policy.

While our focus is on periodically reviewed systems, there are counterparts in make-to-stock

queues. Ha (1997) studies the two-product case and derives several structural properties of the

optimal policy – results are similar to Shaoxiang’s discrete time results. The other papers in the

area (Zheng and Zipkin, 1990; Zipkin, 1995; Veatch and Wein, 1996; Rubio and Wein, 1996; Pena-

Perez and Zipkin, 1997) study multi-product systems in the framework of multi-class make-to-stock

queues – that is, the entire attention is on the class of base-stock policies and on finding good policies

within this class. This body of work uses a combination of heavy traffic analysis and computational

tests to motivate and evaluate various choices of base-stock levels and allocation rules. Most works

in this literature stream assume Poisson demand processes. Among these papers, Pena-Perez and

Zipkin (1997) and Veatch and Wein (1996) are closely related to our paper.

Veatch and Wein (1996) propose and evaluate index rules, which suggest any production should

be devoted to the product with the lowest index at that time. Our weighted balancing rules are

analogous to “linear” index rules. Pena-Perez and Zipkin (1997) argue that a specific priority rule is

asymptotically optimal under certain assumptions for systems in “heavy traffic”, i.e. systems where

the aggregate demand rate is close to the production capacity rate. Their asymptotic analysis is

based on the results of Wein (1992) and uses diffusion approximations. In this paper, we show a

parallel result in periodic inventory models with two main strengths: (a) our notion of asymptotic

optimality is strong (i.e. the difference between the cost of the priority policy and the optimal cost

is bounded, while the optimal cost itself approaches infinity in heavy traffic) whereas their notion
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is weak (i.e. the ratio between the cost of the priority policy and the optimal cost approaches one)

and (b) our proof is from first principles and does not rely on diffusion approximations.

3 Model Description

We index the products by n, 1 ≤ n ≤ N . The holding and backorder cost associated with product

n in $/unit/period are hn and bn, respectively. Periods are indexed by t ≥ 1. In period t, the

net-inventory, xnt (inventory on hand minus backorders) for each product n is observed and the

production quantity, qnt , for each product is decided. The total production quantity qt =
∑N

n=1 q
n
t

is constrained from above by a capacity limit κ. Next, the demand, Dn
t for each product n is

observed. Finally, the cost Ct incurred for this period is computed based on the inventory levels

and backorder levels at the end of the period as follows:

Ct =
N∑
n=1

(
hn · (xnt + qnt −Dn

t )+ + bn · (Dn
t − xnt − qnt )+

)
.

The optimization problem that we are interested in solving is that of minimizing the long

run average cost when the set of admissible (or feasible) policies is the set of all non-anticipatory

policies. A formal definition of this problem follows. A non-anticipatory policy π is described

by a set of vector-valued functions {πt : t = 1, 2, . . . , } where qnt = πnt (xt); here, xt is the state

vector (x1
t , . . . , x

N
t ) in period t and πt is a function from RN → RN,+. Let Π denote the set of all

non-anticipatory policies π such that the capacity constraint
∑N

n=1 π
n
t (x) ≤ κ for all x ∈ RN and

for all t ∈ {1, 2, . . .} is satisfied. If Cπt denotes the cost incurred by the system in period t when the

system follows the policy π, our performance measure is

Cπ = lim sup
T→∞

E[
T∑
t=1

Cπt ]/T .

The optimal long run average cost is defined as C∗ = infπ∈ΠC
π .

Throughout the paper, we assume that the sequence of random vectors {Dt} is independent and

identically distributed across time periods, where Dt = (D1
t , . . . , D

N
t ). Note that we allow for the

demands of the products to be correlated. We use Dn to denote a random variable with the same

distribution as the single period demand for product n and Dagg to denote a random variable with
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the same distribution as the aggregate single period demand. Let µn = E[Dn]. We also assume

that capacity exceeds aggregate expected demand, i.e., µagg :=
∑N

n=1 µ
n < κ , which is a necessary

condition for the existence of a policy with a finite long-run average cost. Finally, the aggregate

demand in a period can exceed capacity with positive probability, i.e., P (Dagg > κ) > 0. When

the above condition does not hold, we can decompose our problem into a set of N newsvendor

problems. We also assume that the expected demand for every product is strictly positive, that is,

E[Dn] > 0 for every n. (If this condition is not met for some product n, then that product has

zero demand with probability 1 and can therefore be disregarded.)

Let ΠBS denote the subset of stationary base-stock policies described at the beginning of Section

1.1. We now introduce some notation specific to ΠBS .

Let Sn denote the target or base-stock level for product n, and S denote the vector of base-stock

levels. In our analysis of stationary base-stock policies, we assume that xn1 ≤ Sn for all n. Let

Wn
t = Sn−xnt ; we refer to Wn

t as the opening shortfall for n in period t. Let V n
t denote the ending

shortfall, i.e. shortfall after ordering. So, V n
t = Wn

t − qnt . By definition of a base-stock policy, the

following condition holds:

if
N∑
n=1

Wn
t ≤ κ , then qnt = Wn

t for all n .

That is, all inventory levels are raised to their respective targets, if that is feasible. Otherwise,

the entire capacity is used for production without the inventory level of any product exceeding its

target, i.e.,

if
N∑
n=1

Wn
t > κ , then

N∑
n=1

qnt = κ and qnt ≤Wn
t for all n .

Notice that the exact manner in which the capacity is allocated among products in such periods

has not been completely specified yet. We will specify these allocation rules shortly.

Let ΠBS−B denote the set of stationary base-stock policies in which the weighted balancing allo-

cation rule is followed. We will refer to these as weighted balancing policies. A verbal description of

these allocation rules was given in Section 1.1. Clearly, ΠBS−B is a subset of ΠBS . A mathematical

description of a policy in this class follows.
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Weighted Balancing Allocation: Rank the products according to the ‘weighted’ shortfalls

{W j
t /α

j}, where αj is the weight corresponding to product j. Let α = (α1, . . . , αN ). The symmetric

rule chooses α = 1, where 1 = (1, 1, . . . , 1). Let ñ denote the product with the nth largest value

of the weighted shortfall, W j
t /α

j , breaking ties arbitrarily. Allocate production to product 1̃ until

its weighted shortfall equals that of 2̃, or until the capacity is exhausted. Using the remaining

capacity, allocate production to products 1̃ and 2̃ (proportionally based on their weights so that

their weighted shortfalls are always equal) until their weighted shortfalls equal that of 3̃, or until the

capacity is exhausted. This process is continued until the entire capacity available in the period is

exhausted. It is easy to see from this process that any product’s shortfall at the end of this process

is an increasing function of the shortfall vector at the beginning of the process; that is, for every n

and t, V n
t is an increasing function of Wt. While the description above applies when inventory and

production quantities are real-valued, a simple uniform randomization scheme (for breaking ties)

can be used to define the policy when these quantities are integer-valued. Note that any policy

π ∈ ΠBS−B is completely specified by a pair (S,α) where S is a vector of base-stock levels S and

α is a vector of weights.

Priority Allocation: Let {(1), (2), . . . , (N)} denote any permutation of {1, 2, . . . , N}. Then, a

priority rule defined by this permutation works as follows: In every period, allocate production to

(1) until its shortfall is zero or the entire capacity is consumed; then, proceed to (2) and do the

same until all product shortfalls are zero or the capacity is consumed. Note that the priority policy

is lexicographic, and does not strictly belong to the class of weighted balancing rules. Nevertheless,

it can be arbitrarily approximated by weighted balancing policies. We show this formally in Section

4.

4 Weighted Balancing Policies: Preliminaries

We start by explaining the connection between weighted balancing policies and the known structural

properties of the optimal policy for the special case of two products. Shaoxiang (2004) shows for

the infinite horizon, discounted cost version of this problem that an optimal policy satisfies the

following: There exists a base-stock vector (S1, S2) such that once the inventory vector reaches a

point which is componentwise smaller than (S1, S2), then the inventory vector in every subsequent
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period is also smaller than (S1, S2). Thus, the effective state space (i.e. possible inventory vectors)

is (−∞, S1] × (−∞, S2]; so, it is sufficient (for our purposes since we consider the average cost

version of the problem) to study the optimal policy within this “rectangle”. Within this region,

the optimal policy is completely described by a monotone switching curve or function x2(x1).

Our weighted balancing policies work exactly like the optimal policy except that they replace

x2(x1) with the function (α2
α1

) · x1. In other words, computing the optimal policy involves finding

or searching for the function x2(x1), i.e. the optimal “switching curve” within the space of all

increasing functions, whereas, the best weighted balancing policy is found by searching for the best

ratio α2/α1.

Consider any policy in ΠBS−B defined by a base-stock vector S and a weight vector α. Let

V agg
t =

∑N
n=1(Sn−xnt −qnt )+ denote the aggregate ending shortfall in period t. LetDagg

t =
∑N

n=1D
n
t

similarly denote the aggregate demand the system faces in period t. We now make a few observations

about the vector of individual shortfalls of the products and the aggregate shortfall under any policy

in ΠBS−B. All proofs are relegated to the appendix.

Lemma 1. Consider any policy in ΠBS−B defined by a base-stock vector S and a weight vector α.

Assume xn1 = Sn for all n. Then, (i) the distribution of the vector of ending shortfalls (its aggregate)

is independent of S for all t, (ii) the sequence of distributions of this vector (its aggregate) converges

to a limiting distribution as t→∞, (iii) these limiting distributions are also independent of S, and

(iv) the evolution of the aggregate shortfall process {V agg
t }, is described by the recursive equation

V agg
t+1 = (V agg

t +Dagg
t − κ)+.

For any policy π ∈ ΠBS−B defined by the pair (S,α), we use Vα
t to denote the vector of

shortfalls in period t. (Note that it is not necessary to include the argument S in the notation

for the shortfall vector since its distribution does not depend on S.) Let Vα
∞ denote the limiting

distribution of Vα
t ; thus, V α,n

∞ is the steady-state shortfall of product n. Let Φα,n denote the

distribution of the convolution of V α,n
∞ and Dn. (Note: The steady state shortfall distributions can

be computed by simulation. An interesting question for future research would be the identification

of a more efficient and exact method for computing these distributions. Roundy and Muckstadt
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(2000) present such a method for single-product, capacitated inventory systems.) Let

Sα∗ = (Sα∗,1, . . . , Sα∗,N ), where Sα∗,n = (Φα,n)−1

(
bn

bn + hn

)
.

We will now show that the base-stock vector Sα∗ is the optimal choice of S within the subset of

those policies in ΠBS−B that use the weight vector α.

Lemma 2. Consider the class of weighted balancing policies, ΠBS−B. Within the subclass of

policies which use the weight vector α, the policy with the base-stock vector Sα∗ is optimal.

Next, we discuss the special case in which all products are “symmetric”, i.e. the products are

identical in terms of cost parameters and the distribution of the demand vector is exchangeable.

We are able to make stronger statements about the optimal policy for this special case. We first

formally state our assumption.

Assumption 1. The following conditions hold. (a) hn = h and bn = b for all n. (b) The distri-

bution of the vector (D1, . . . , DN ) is exchangeable, that is, the joint distribution of (D1, . . . , DN )

is identical to the joint distribution of (Dθ(1), . . . , Dθ(N)) for any permutation (θ(1), . . . , θ(N)) of

(1, . . . , N).

Lemma 3. Consider the policy in ΠBS−B defined by a base-stock vector S and the weight vector

1. Assume that xn1 = Sn. Under Assumption 1 (b), the following statements hold.

(i) The distribution of V1
t is exchangeable for all t.

(ii) The distribution of V1
∞, the limiting random vector mentioned in Lemma 1, is exchangeable.

Next, we show that the policy in ΠBS−B that uses the symmetric allocation rule and the

corresponding optimal base-stock vector (as defined in Lemma 2) is optimal over all policies, not

just base-stock policies, when all products are identical. This result is the average cost version of

Theorem 3 of DeCroix and Arreola-Risa (1998)1, which pertains to the finite horizon and infinite

horizon discounted cost problems.

Theorem 4. Consider the policy in ΠBS−B with the weight vector 1 and the base-stock vector S1∗.

Under Assumption 1, this policy minimizes the long run average cost per period lim supT→∞E[
∑T

t=1C
π
t ]/T

over Π, the class of all non-anticipatory policies.
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In the next result, we show that shortfalls under the priority policy can be approximated by

policies in ΠBS−B.

Lemma 5. Let ((1), (2), . . . , (N)) denote any permutation of {1, 2, . . . , N}. Consider any given

shortfall vector W (before ordering) in any period. Let αm be defined by α
(1)
m = 1 and α

(j)
m =

m · α(j−1)
m for j ∈ {2, . . . , N}. Let VP and Vαm denote the shortfall vectors after ordering under

the priority rule (with priorities (1) > (2) > . . . > (N)) and the weighted balancing rule (with

weight vector αm), respectively. Then, for every ε > 0, there exists a sufficiently large M such that

|Vαm −VP | < ε for all m > M , where |(u1, u2, . . . , un)| = max{u1, u2, . . . , un}.

5 High Service Level Asymptotics

We show under some technical assumptions that if the joint distribution of demands for all the

products is exchangeable and the holding costs for all products are identical, then the best base-

stock policy under the symmetric allocation rule is asymptotically optimal along a sequence of

problems in which the backorder costs are scaled by a factor β that approaches ∞. In more

practical terms, when the cost parameters are such that service levels for all products are high (in

any reasonable policy), the best base-stock policy under the symmetric allocation rule is close to

being optimal. We note that we do not restrict the backorder cost parameters for the products to

be identical in this analysis. We proceed to state our assumptions formally, and then present our

analysis.

Assumption 2. The following conditions hold.

(a) All products have identical holding costs, that is, hn = h for all n ∈ {1, . . . , N}.

(b) The distribution of the vector (D1, . . . , DN ) is exchangeable.

(c) Consider the steady state shortfall vector, V1
∞ = (V 1,1

∞ , V 1,2
∞ , . . . , V 1,N

∞ ), under the symmetric

balancing policy. (Recall that this vector is also exchangeable under (b).) Let W 1,1
∞ denote the

convolution V 1,1
∞ +D1. The limit

lim
x→∞

E[W 1,1
∞ − x | W 1,1

∞ > x]

x
= 0 .
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The first two statements in the assumption above are self-explanatory. Statement (c) needs

some discussion which we provide at the end of this section after we develop our asymptotic result

under Assumption 2.

When the demand vector has an exchangeable distribution, let us employ C∗(h, b) to denote

the optimal long run average cost of a system in which all the products have the same holding cost

parameter h and the same backorder cost parameter b. When the backorder costs are not identical

(which might generally be the case), we use C∗(h,b) to denote the same except that b represents

the vector of backorder costs over all the products. We denote the long-run average cost of the

policy in ΠBS−B with parameters (S1∗,1) as C1∗(h,b). Finally, we denote the lowest backorder

cost parameter in b by min(b) and the average of all the individual itemwise backorder costs by

avg(b).

In what follows, we note that C∗(h, b) can be evaluated using Lemma 3. In our analysis, we

use the cost C∗(h, b) as a basis for cost comparisons across various policies because we know how

it can be computed. Recall that the distribution of V1
∞ is exchangeable when the distribution of

(D1, . . . , DN ) is exchangeable. Then, we know that

C∗(h, b) = N · L(h, b, V 1,1
∞ +D1) , (1)

where L(h, b,X) is the optimal cost of a single product newsvendor problem with holding and

penalty cost parameters h and b respectively, and facing a demand distribution of X, i.e.,

L(h, b,X) = min
y

h · E[(y −X)+] + b · E[(X − y)+] .

Before proceeding to the details of the analysis leading to the asymptotic optimality result of

Theorem 7, we outline the main steps. In Lemma 6, we show that C∗(h, avg(b)) and C∗(h,min(b))

are upper and lower bounds, respectively, on C1∗(h,b) - the long run average cost of the optimal

symmetric policy. Notice that both the bounds are optimal costs of systems in which the products

are symmetric in costs. (Recall that throughout this section we assume that the vector of product

demands has an exchangeable distribution.) Thus, we can express these bounds as the optimal costs

of certain newsvendor problems involving the convolution of demands and shortfalls as explained in

the previous paragraph. Our goal is to show that the ratio C1∗(h,β·b)
C∗(h,β·b) approaches 1 as β approaches
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∞. Thus, it is sufficient to show that the ratio of the optimal costs of the two newsvendor problems

alluded to above converges to 1 since one of these optimal costs is an upper bound on the numerator

of the ratio of interest and the other is a lower bound on its denominator. We establish this

convergence in the proof of Theorem 7 by making use of a result in Huh et al. (2009) (presented

in our appendix as Lemma 13) for the standard newsvendor problem under a mild distributional

assumption on demand. Since the newsvendor problems of our interest involve the convolution of

a product’s demand and its shortfall, we have to demonstrate that this convolution also satisfies

their assumption - statement (c) of Assumption 2 guarantees it.

Lemma 6. Under Assumptions 2 (a)-(b), the following inequalities hold:

C∗(h,min(b)) ≤ C∗(h,b) ≤ C1∗(h,b) ≤ C∗(h, avg(b)) . (2)

We are now ready to derive an upper bound on the ratio C1∗(h,b)
C∗(h,b) and show that this ratio

approaches 1 as b is scaled by a factor β which approaches ∞.

Theorem 7. Under Assumptions 2 (a)-(b), the cost of using the symmetric allocation rule (and

its corresponding optimal base-stock vector) relative to the optimal cost can be bounded as follows:(
C1∗(h,b)

C∗(h,b)

)
≤
(
C∗(h, avg(b))

C∗(h,min(b))

)
.

Moreover, if Assumption 2 (c) also holds, this ratio converges to 1 as the backorder cost parameters

grow, in the following sense:

lim
β→∞

(
C1∗(h, βb)

C∗(h, βb)

)
= 1.

Discussion on Assumption 2 (c)

In this section, we argue that Assumption 2 (c) is closely related to the assumption that the

aggregate demand in a period has a light-tailed distribution. A non-negative random variable X

is said to have a light-tailed distribution if there exist non-negative constants A1 and A2 such that

P (X ≥ x) ≤ A1e
−A2x for all x ≥ 0. The family of light-tailed distributions contains the popular

family of IFR (increasing failure rate) distributions.

We also use the concept of associated random variables (Esary et al., 1967) defined as follows.

Let T denote a vector of random variables (T1, T2, . . . , Tn), for some n ∈ N. These random variables
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are said to be associated if Cov(f(T), g(T)) ≥ 0 for all non-decreasing functions f and g, such that

E[f(T)], E[g(T)] and E[f(T)g(T)] exist, where Cov denotes covariance. Esary et al. show that

independent random variables are associated and that the set consisting of a single random variable

is associated.

Assumption 3. The distribution of the aggregate single-period demand, Dagg, is light-tailed. More-

over, the single period demands of the N products (that is, D1, D2, . . ., DN ) are associated random

variables.

When N = 1, Assumption 3 reduces to the assumption that the single-period demand dis-

tribution is light tailed, which implies Assumption 2 (c), as follows: The steady state shortfall

distribution is the same as the steady state waiting time distribution in a GI/G/1 queue. A fa-

mous result in Queuing Theory called the Cramér − Lundberg approximation can then be used

to show that the distribution of W 1,1
∞ (recall that N = 1) has an asymptotically exponential tail,

which immediately implies Assumption 2 (c). For details, see Glasserman (1997) and Huh et al.

(2016).

We now discuss the connection between Assumption 3 and Assumption 2 (c) when N > 1. We

first state a useful result.

Lemma 8. Assumption 3 implies that the random variable W 1,1
∞ is light-tailed.

If W 1,1
∞ is light-tailed, then, it is “typically true” (see Section 4(a) of Chapter VI in Asmussen

and Glynn, 2007) that lim supx→∞E[W 1,1
∞ − x | W 1,1

∞ > x] < ∞, which implies Assumption 2

(c). In fact, it appears from the literature that, except in pathological cases, a light-tailed random

variable X will have a bounded mean excess function (that is, lim supx→∞E[X−x | X > x] <∞).

The following assumption is one such “non-pathological” condition on W 1,1
∞ .

Assumption 4. The random variable W 1,1
∞ has a strictly positive density in (0,∞) and the limit

of the reciprocal of the failure rate of W 1,1
∞ exists; that is, limx→∞

P (W1,1
∞ ≥x)

d
dx(P (W1,1

∞ ≤x))
exists.

Lemma 9. Assumption 2 (c) is satisfied if Assumptions 3 and 4 are satisfied.
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6 Heavy Traffic Asymptotics

In this section, we assume without loss of generality that the products are numbered in such a

way that h1 ≥ h2 ≥ . . . ≥ hN . We show that when bN = min{bj}, the priority rule which assigns

priorities based on the order (1, 2, . . . , N) is asymptotically optimal in heavy traffic, i.e. as the

capacity κ approaches the expected aggregate demand µagg. Our proof is from first principles and

does not use difficult approximations, unlike the Pena-Perez and Zipkin (1997) result for continuous

time, mentioned earlier. Moreover, our asymptotic optimality result holds in the strong sense

whereas Pena-Perez and Zipkin use it in the weak sense. We say that a policy π is asymptotically

optimal in the weak sense along a sequence of systems indexed by n if the optimal cost approaches

∞ as n approaches ∞ and the ratio between the cost of π and the optimal cost approaches one.

Furthermore, if the absolute difference between the cost of π and the optimal cost is bounded, we

say that π is strongly asymptotically optimal.

To proceed with our asymptotic analysis, we first introduce some notation. Let C∗(h,b, κ) be

the optimal long run average cost of our inventory system when the holding cost vector is h, the

backorder cost vector is b and the capacity is κ ∈ (µ,∞). Let C∗(h, b, κ) be the same as C∗(h,b, κ)

when h = (h, h, . . . , h) and b = (b, b, . . . , b). Let CP (h,b, κ) denote the long run average cost of the

priority policy, P, which assigns priority based on the order (1, 2, . . . , N) and uses the corresponding

optimal base-stock levels. Following an argument identical to the proof of Lemma 2, it is easy to

see that this optimal base-stock vector, say SP∗, is given by

SP∗,n =
(
ΦP,n

)−1
(

bn

bn + hn

)
∀ n,

where ΦP,n denotes the distribution of the convolution of the steady-state shortfall V P,n
∞ and Dn.

We present a preliminary lemma on the asymptotic behavior of the optimal cost C∗(h,b, κ) using

a well known result due to Kingman (1962) that a suitably scaled distribution of the waiting time

in a single server queue converges to an exponential distribution in heavy traffic.

Lemma 10. As the capacity κ approaches the expected aggregate demand µ, the optimal cost

approaches ∞, i.e. limκ↓µC
∗(h,b, κ) =∞ .
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Next, we present our assumption on the cost parameters formally before stating and proving

our asymptotic result in Theorem 11.

Assumption 5. The cost parameters satisfy the following conditions: h1 ≥ h2 ≥ . . . ≥ hN and

bN = min{bj : 1 ≤ j ≤ N}.

Theorem 11. Under Assumption 5, the following statement holds: There exists a finite constant

M <∞ such that CP (h,b, κ)−C∗(h,b, κ) ≤M for all κ > µagg . Therefore, limκ↓µagg
CP (h,b,κ)
C∗(h,b,κ) =

1.

7 Policy Performance and Results

Theorem 7 establishes that, as the backorder costs grow (or required service levels increase), the

optimal cost under the symmetric allocation rule asymptotically approaches the optimal cost when

the holding costs and demand distributions of all products are identical. While this result is of

theoretical interest, it is also important to benchmark our policy.

Lower Bound for Benchmarking: Since the optimal cost is virtually impossible to calculate

for a large set of problem instances due to the curse of dimensionality associated with dynamic

programming, we require an easily computed lower bound on the optimal cost. Although we

already have such a lower bound in Lemma 6 for the case of exchangeable demand distributions,

we require a more generally applicable lower bound because other distributions are also included

in our numerical investigation. We state such a lower bound in Lemma 12.

Let Gn(x) = hn ·E[(x−Dn)+]+bn ·E[(Dn−x)+] be the expected single period newsvendor cost

function for product n. We now develop a lower bound on the optimal long run average cost by using

the free balancing relaxation (see, for example, Eppen and Schrage (1981) or Aviv and Federgruen

(2001)). Let F1(y) be defined as follows: F1(y) = miny
∑N

n=1G
n(yn) s.t.

∑N
n=1 y

n = y. We can

now construct a lower bound on the optimal long run average cost using the function F1(·). Let

V agg
∞ denote the limiting random variable of the stochastic process representing aggregate ending

shortfalls, i.e. {V agg
t }. We employ V agg

∞ to derive a lower bound on the optimal cost.

Lemma 12. Let LB1 = minS E[F1(S − V agg
∞ )]. Then, LB1 is a lower bound on the optimal long

run average cost over Π, the class of all non-anticipatory policies.
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7.1 Existing Heuristics

We now briefly describe the heuristics of DeCroix and Arreola-Risa (1998) and Aviv and Federgruen

(2001), and compare their heuristics with our weighted balancing approach.

The heuristic of DeCroix and Arreola-Risa (1998) is a stationary base-stock policy. Let (S1, . . . , SN )

denote the vector of base-stock levels for the N products. Let xn be the net-inventory of product

n at the beginning of the period. The symmetric resource allocation policy (SRAP) used in every

period with insufficient capacity (for the inventory levels of all products to reach their base-stock

levels) is to “balance” the ratios {xn/Sn}. That is, allocate capacity to the product with the

lowest ratio until that ratio equals the next highest ratio; from then, allocate capacity to these

two products until their ratios equal the next highest ratio and so on, until the capacity is ex-

hausted. Thus, our weighted balancing approach can be considered as a generalization of SRAP.

Finally, the base-stock vector is chosen as follows. For every n ∈ {1, . . . , N}, let zn denote the

newsvendor level for product n. That is, zn = arg miny G
n(y). For products n ∈ {2, . . . , N}, let

γn = zn/z1. Let f(S1) denote the long run average cost of using the policy with the base-stock

vector (S1, γ2S1, γ3S1, . . . , γNS1) and the allocation rule described above. The prescribed value of

S1 is that which minimizes f(·) and the prescribed value of Sn for any n 6= 1 is S1 ·γn. Note that the

evaluation of f(S1) for a given value of S1 requires the computation of the steady state distribution

of the shortfall vector. The computational effort for our weighted balancing approach is just the

effort required to obtain this distribution. However, the heuristic above requires evaluating f(S1)

over an entire search set for S1, whereas we compute the steady state distribution of the shortfall

vector only once.

The heuristic of Aviv and Federgruen (2001) is also a stationary base-stock policy. Let xn

be the net inventory of product n at the beginning of the period. In a period with insufficient

capacity, the vector of inventory levels after ordering, (y1, . . . , yN ), is chosen to solve the follow-

ing myopic optimization problem: miny
∑N

n=1G
n(yn) s.t yn ≥ xn ∀ n and

∑N
n=1(yn − xn) =

κ. The base-stock vector (S1, . . . , SN ) is chosen as the solution to the optimization problem

min
∑N

n=1G
n(Sn) s.t.

∑N
n=1 S

n = s. The base stock levels add upto an “aggregate” basestock level

solution to the following problem s = arg minS E[F1(S−V∞)]. Recall that F1(y) = miny
∑N

n=1G
n(yn)

s.t.
∑N

n=1 y
n = y. The AF heuristic requires the computation of the steady state distribution of
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the aggregate shortfall, in order to obtain the function F1; thus, the AF method is comparable

to our weighted balancing policies in terms of computational effort. However, the AF heuristic is

not guaranteed to be optimal even in the symmetric case, whereas our policy is optimal in the

symmetric case.

7.2 Policy under Weighted Balancing

Recall that we have established the optimality of the symmetric policy (a weighted balancing policy

with weights of 1) and of the priority policy (a weighted balancing policy with extremely different

weights) in the asymptotic regimes of high service levels and heavy traffic, respectively. Motivated

by the fact that these two policies are very different in terms of their weight vectors, we propose

searching over the space of weight vectors. While an exhaustive search for the weights would involve

searching over the N − 1 dimensional space of positive reals, we design a one dimensional search

using a weight vector which is prescribed by m similar to Lemma 5, to find the best weighted

balancing policy (i.e. the policy with the lowest cost). In our tables, we will refer to this policy as

the “Search” policy or simply as our policy.

We conducted several computational experiments and compared the performance of our policy

and the lower bound, with those of the heuristics of DeCroix and Arreola-Risa (1998) (“DA” in the

tables) and Aviv and Federgruen (2001) (“AF” in the tables) and also, against the priority policy

(represented as “Pri”).

7.3 Computational Design

In the computational study, we first analyzed the three-product case, i.e. N = 3, systematically.

We calibrated the performance of our policy, by starting with the symmetric case, and making cost

and demand parameters gradually. In the addendum file titled ”Computations: Simple Policies for

Managing Flexible Capacity”, available from the authors, we demonstrate how the performance

of policy improves, as the demand distributions, holding costs and penalty costs each become

asymmetric among the products. Our approach outperforms extant policies as the demand and

product costs become more asymmetric. (For brevity, we say “asymmetric demands” to refer

to the case when the demand distributions for all the products are not identical, and therefore,

the distribution of the demand vector is not exchangeable). We then show that our approach to
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allocating capacity outperforms other extant approaches, and improvingly so, as capacity becomes

scarce (See §7.4). We test our policy against the optimal policy (§7.5). Our approach is also

applicable and performs well for correlated demands. We present only independent demands for

the sake of brevity. Finally, we examine our policies on the same set of test instances considered in

the previous literature, on a wider product portfolio (N > 3) in §7.6. In our tests, we use Erlang

(k, λ) with appropriate k and λ, in order to match the first two moments (mean and variance) of

any continuous demand distribution.

7.4 The Effect of Capacity

We now explore the effect of capacity κ on asymmetric backorder costs, holding costs, and demands.

In Tables 1 and 2, we sequentially decrease the capacity such that the utilization increases from

73.3% (κ = 60) to 97.78% (for κ = 45) and demonstrate that our policy is very efficient in allocating

scarce capacity among the products.

k = 12, λ = (1.5, 1, 0.5)
b = (15, 6, 3),h = (1.1, 1, 0.9) Costs % gap

Capacity LB Pri DA AF Search LB Pri DA AF

60 78.7 88.7 86.3 83.8 83.6 -5.9% 6.1% 3.3% 0.3%
58 78.9 91.0 89.5 85.8 85.2 -7.4% 6.8% 5.0% 0.6%
56 79.4 94.1 94.4 88.6 87.7 -9.5% 7.4% 7.7% 1.1%
54 80.3 98.5 99.9 92.9 91.2 -12.0% 8.0% 9.6% 1.9%
52 82.1 104.7 108.4 98.8 96.4 -14.8% 8.6% 12.4% 2.4%
50 86.1 114.3 121.5 109.0 104.8 -17.8% 9.1% 15.9% 3.9%
48 95.2 130.1 144.9 125.4 118.9 -19.9% 9.4% 21.9% 5.5%
46 120.2 161.6 197.3 156.1 147.9 -18.7% 9.3% 33.4% 5.5%
45 150.0 194.0 262.5 185.7 179.3 -16.3% 8.2% 46.4% 3.5%

Table 1: Policy cost behavior for asymmetric demand and costs as the total capacity decreases.

In Table 1, product 1 has the lowest variability and product 3 has the highest variability. We

reverse the ordering in Table 2. We note that as the capacity gets tighter, the relative difference

between our policy and the lower bound increases. This is due to the weakened nature of the lower

bound under high utilization. When capacity is unlimited, the multi-product problem decomposes

into N individual newsvendor problems, and the lower bound coincides with the optimal cost. As

the capacity gets tighter, the issue of allocating capacity is paramount and the lower bound benefits

from the fact that it allows for costless redistribution of inventories in each period. In any case,

the relative performance of our policy is strong when the capacity is limited.
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k = 12, λ = (0.5, 1, 1.5)
b = (20, 10, 5), h = (1.2, 1, 0.8) Costs % gap

Capacity LB Pri DA AF Search LB Pri DA AF

60 86.6 99.3 96.3 93.9 93.3 -7.2% 6.4% 3.2% 0.7%
58 86.9 102.4 100.1 96.7 95.6 -9.1% 7.1% 4.8% 1.2%
56 87.5 106.6 104.3 100.3 98.9 -11.5% 7.8% 5.5% 1.4%
54 88.8 112.4 110.4 105.9 103.5 -14.2% 8.6% 6.7% 2.2%
52 91.5 120.7 119.7 114.2 110.3 -17.0% 9.4% 8.5% 3.6%
50 97.2 133.4 133.5 127.3 120.8 -19.5% 10.4% 10.5% 5.4%
48 110.1 154.0 159.0 149.5 138.3 -20.4% 11.4% 14.9% 8.1%
46 144.5 195.5 216.7 190.6 175.5 -17.7% 11.4% 23.5% 8.6%
45 184.3 238.6 290.1 234.9 216.8 -15.0% 10.1% 33.8% 8.8%

Table 2: Cost behavior of our policy as the total capacity becomes scarcer. The asymmetric demands are

reversed from the previous table.

Capacity Priority DA AF Search

60 60 35 24 60 29 16 60 29 16 60 32 20
58 60 36 26 60 29 16 60 29 16 60 33 21
56 60 37 28 64 31 17 60 30 16 60 34 22
54 60 39 32 68 33 18 60 30 17 60 35 26
52 60 41 38 72 35 19 60 31 18 63 37 29
50 60 43 47 82 40 22 60 33 20 66 40 34
48 60 47 64 93 45 25 60 37 24 70 44 47
46 60 52 101 122 59 33 60 46 44 75 49 77
45 60 56 139 150 73 40 60 48 79 77 52 113

Table 3: Base-stock levels under different policies for instances in Table 2.

In Table 3, we show the base-stock levels for the scenarios reported in Table 2. In general,

it appears that the priority policy assigns a significantly higher base-stock for the product 3. On

the other hand, the DA heuristic chooses inventories such that a significantly higher base stock

is assigned to Product 1. Our Search policy and the AF heuristic both choose base-stock levels

that are in between those chosen under the Priority and the DA heuristics. It appears that the

AF heuristic chooses weakly lower base-stocks for the products, compared to our policy - Note

both AF and DA policies do not propose optimal basestock levels for asymmetric problems. These

differences are more pronounced as the capacity becomes tighter. It also appears that our policy

significantly outperforms other policies when the capacity is scarce, by setting up the base-stock

parameters appropriately. The difference in the base-stock levels in our policy and those in the

other heuristics may be possibly due to the better allocation approach used in our policy.

7.5 Comparison with the Optimal Policy

In this section, through Tables 4 through 7, we explore our performance against the optimal cost

evaluated from the dynamic program (DP) over a set of computational experiments with limited
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state space, such that the DP solutions can be achieved within a few hours in each instance.2 In

all computational tables that follow, we fix the same capacity (κ = 10), and report the costs of all

the heuristics, the lower bound and the optimal cost along with optimality gap for our policy.

(k1, k2, k3) = (3, 4, 3)
(λ1, λ2, λ3) = (1, 1, 1.5), h = (1, 1, 1) Costs % Optimality Gap

b1 b2 b3 LB DP Pri DA AF Search Search-DP

2 2 2 5.90 7.08 8.71 7.43 7.42 7.32 3.37%
3 3 3 7.17 8.61 10.88 9.01 9.82 8.93 3.68%
4 4 4 8.06 9.76 12.53 10.20 10.65 10.14 3.89%
6 6 6 9.46 11.41 15.06 11.86 12.43 11.81 3.51%
10 10 10 11.27 13.56 18.48 14.57 15.84 14.07 3.80%
12 12 12 11.90 14.33 19.63 14.90 15.73 14.89 3.94%
15 15 15 12.65 15.26 21.09 15.98 17.69 15.85 3.86%

Table 4: Cost behavior of our policy and the lower bound against the optimal solution. The costs are

symmetric and the demands are asymmetric. The symmetric penalty costs increase progressively down the

column.

In Table 4, we study symmetric cost instances, and the demand distributions are asymmetric.

Both our policy and the lower bound grow weaker as the backorder costs increase. However, we

find that that our search policy is better than the other heuristics suggested in the literature,

deviating only about < 4% from the optimal costs. In Table 5, we study the effect of varying

demand asymmetry for fixed symmetric backorder costs.

(k1, k2, k3) = (3, 4, 3)
b = (10, 10, 10),h = (1, 1, 1) Costs % Optimality Gap

λ1 λ2 λ3 LB DP Pri DA AF Search Search-DP

1 1 1.1 11.38 20.35 35.85 28.91 32.05 28.91 42.08%
1 1 1.2 17.31 18.65 29.89 23.40 25.74 23.37 25.32%
1 1 1.3 13.46 16.21 23.80 18.11 19.78 18.11 11.72%
1 1 1.4 12.00 14.64 20.62 15.79 16.95 15.64 6.88%
1 1 1.5 11.27 13.56 18.48 14.57 15.84 14.07 3.80%

Table 5: Cost behavior of our policy and the lower bound against the optimal solution. Penalty costs are

symmetric, and demands progressively asymmetric.

In Table 5, we varied the asymmetric demand, holding the variance of product 1 at the smallest

value, and product 3 at the highest value. We notice in this case, both the lower bound and our

policy perform better as the demand asymmetry increases. In particular, the performance of our

policy improves from 42.08% to 3.8% as the demand becomes more asymmetric and as capacity

tightens.

In Table 6, we repeat the same scheme in Table 5, except that the penalty costs are also

made asymmetric. Thus backorder costs, mean demands, and standard deviations of the demand
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(k1, k2, k3) = (3, 4, 3)
b = (15, 6, 3),h = (1, 1, 1) Costs % Optimality Gap

λ1 λ2 λ3 LB DP Pri DA AF Search Search-DP

1 1 1.1 15.74 15.88 23.74 26.74 21.74 21.70 36.68%
1 1 1.2 13.25 14.82 20.34 21.55 18.76 18.36 23.85%
1 1 1.3 11.14 13.30 16.81 16.60 15.20 15.04 13.10%
1 1 1.4 10.34 12.29 14.94 14.36 13.42 13.32 8.35%
1 1 1.5 9.95 11.63 13.73 12.87 12.89 12.31 5.81%

Table 6: Cost behavior of our policy and the lower bound against the optimal solution. Both holding costs

and the demands are now asymmetric.

distributions are all asymmetric in this set of experiments. Our policy improves as the demands

become more asymmetric, as observed from the last column (from 36.68% to 5.81%),

(k1, k2, k3) = (3, 4, 3)
b = (6, 3, 1),h = (1, 1, 1) Costs % Optimality Gap

λ1 λ2 λ3 LB DP Pri DA AF Search Search-DP

1 1 1.1 9.77 10.27 13.78 18.70 13.98 13.28 29.35%
1 1 1.2 8.60 9.72 12.08 15.06 12.30 11.61 19.52%
1 1 1.3 7.65 8.92 10.34 11.87 10.63 9.90 11.06%
1 1 1.4 7.24 8.40 9.42 10.27 9.88 9.03 7.49%
1 1 1.5 7.04 8.04 8.82 9.47 8.52 8.45 5.10%

Table 7: Cost behavior of our policy and the lower bound against the optimal solution. The penalty costs

and the demands are asymmetric. The asymmetry of the demands is increased progressively.

In Table 7, we increased the ratio of the highest backorder cost to the lowest backorder cost.

Our policy further improves under asymmetry, as can be seen by comparing the corresponding

optimality gaps from Tables 6 and 7, showing (net) gains in performance gap ranging from 0.7%

to 7%.

To summarize, the performance of our Search policy improves with respect to the optimal cost

(i) as demands become more asymmetric, and (ii) as the holding and penalty costs become more

asymmetric. In all tested cases, the performance of our policy is superior to the other policies

suggested in the literature.

7.6 Comparisons for Larger Product Portfolio

We extensively tested our policy for the same multiple-product instances tested in Aviv and Fed-

ergruen (2001) and DeCroix and Arreola-Risa (1998).

In Table 8, we report our policy performance for all relevant test cases in Aviv and Federgruen

(2001), using three sub-tables in the increasing order of demand variability. Within each sub-table,

we progressively decreased the available capacity. The scenarios tested in Aviv and Federgruen
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Utilization Costs (µ = 40, σ = 5) Cost Gap

of capacity LB Pri DA AF Search Pri DA AF

0.5 2.814 2.814 2.814 2.814 2.814 0.0% 0.0% 0.0%
0.66 2.814 2.814 2.814 2.814 2.814 0.0% 0.0% 0.0%
0.80 2.814 2.814 2.814 2.816 2.814 0.0% 0.0% 0.1%
0.889 2.814 2.814 2.814 4.686 2.814 0.0% 0.0% 66.4%
0.952 2.81469 3.27728 2.88981 47.3965 2.88963 13.4% 0.0% 1540.2%
0.976 2.8146 4.28293 3.26035 215.012 3.25688 31.5% 0.1% 6501.8%
0.990 2.8149 7.20741 5.47431 1275.34 5.47156 31.7% 0.1% 23208.5%

Utilization Costs (µ = 40, σ = 10) Cost Gap

0.5 5.88411 5.88411 5.88411 5.88411 5.88411 0.0% 0.0% 0.0%
0.66 5.88411 5.88414 5.88412 5.89053 5.88412 0.0% 0.0% 0.1%
0.80 5.88411 5.91856 5.88781 8.06056 5.88781 0.5% 0.0% 36.9%
0.889 5.88411 6.42585 5.95338 31.0372 5.953 7.9% 0.0% 421.4%
0.952 5.88418 8.81775 6.72287 218.26 6.72232 31.2% 0.0% 3146.8%
0.976 5.88828 12.9048 9.49216 860.201 9.49108 36.0% 0.0% 8963.3%

Utilization Costs (µ = 40, σ = 20) Cost Gap

0.50 10.1326 10.1326 10.1326 10.1326 10.1326 0.0% 0.0% 0.0%
0.66 10.1326 10.1459 10.1341 10.8818 10.1341 0.1% 0.0% 7.4%
0.80 10.1326 10.6219 10.183 22.9873 10.183 4.3% 0.0% 125.7%
0.889 10.1328 13.9616 10.8966 130.44 10.897 28.1% 0.0% 1097.0%
0.952 10.1369 18.4581 13.5375 408.124 13.5372 36.4% 0.0% 2914.8%
0.976 10.1587 25.153 18.8255 1001.33 18.8254 33.6% 0.0% 5219.0%
0.990 10.2182 34.777 27.5254 2150.47 27.5252 26.3% 0.0% 7712.7%

Table 8: Cost behavior of our policy against other heuristics for the multiple product cases (N = 5) in Aviv

and Federgruen (2001). The cases tested in Aviv and Federgruen (2001) are all symmetric with holding costs

at 0.05 and backorder costs at 1.0 for all products. Demands as shown above.

(2001) were all symmetric and comprise the first four rows in each sub-table. When utilization

is low, the performances are comparable, as capacity constraints do not bind, and the allocation

issues do not arise. However, as utilization increases, our policy outperforms other policies; the

performance of the AF degrades quickly for high-utilization (i.e., tight capacity).

Demand and Cost Description Utilization Cost Gap over

of capacity Pri DA AF

(I) Symmetric Demand and Symmetric Costs 83.3% 17.7% 0.3% 275.0%
k = 2, λ = 1 91.6% 36.4% 5.7% 1347.9%

(II) Symmetric Demand and Asymmetric Costs 83.3% 3.20% 4.45% 255.35%
k = 2, λ = 1 91.6% 4.67% 13.40% 1012.7%

(III) Asymmetric Demand and Asymmetric Costs 83.7% 6.90% 9.09% 417.09%
ki = (1, 2, 3, 4, 5) 90.9% 2.23% 42.8% 1090%

λi = (1.5, 1.6, 0.68, 11, 1.49) 98.9% 1.57% 169.2% >2000%

Table 9: Summary of our policy performance against other heuristics for the multiple product cases (N = 5)

in DeCroix and Arreola-Risa (1998).

We also tested our policy for over more than 160 multiproduct cost scenarios described in De-

Croix and Arreola-Risa (1998). We summarize the computational results from the 5-product cases

in Table 9. We test symmetric cost and symmetric demand scenario in (I), and asymmetric costs
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in (II) and asymmetric costs and asymmetric demands in sub-table (III). Just as in DeCroix and

Arreola-Risa (1998), the unit holding costs are such that hi = η ∗ ci for η ∈ {0.01, 0.05, 0.10, 0.15},

and the backorder costs at bi = π ∗ ci for π ∈ {0.5, 1, 1.5, 3} where, ci = 2, 4, 8, 12. Following their

approach, for each sub-table in Table 9, we generated 20-24 cost scenarios from the above test set,

and calculated the average costs of all policies over identical instances. We varied utilization by

adjusting the capacity κ, and repeated the scenarios to re-calculate the average cost savings of our

policy. Our policy performance is consistently superior to other policies (our policy costs were lower

in every tested instance). We note that our policy performance is significantly better under the

cases when flexibility is most valuable, – scenarios of multiple asymmetric products sharing tight

capacity.

7.7 Discussion of Policy Performance

Based on the extensive computational experiments, we note that: (i) In virtually all of the problem

instances we computed, our policy significantly outperforms all the extant heuristics. Our policy

is optimal for symmetric cases. (ii) When the capacity utilization is low (i.e., excess capacity),

our performances are comparable. As capacity decreases, our policy consistently outperforms other

heuristics. (iii) Finally, when the number of products increase, or when the product characteristics

are asymmetric, our policy significantly outperforms all other policies.

It is hard to fully characterize the optimal policy structure. However, we illustrate why our

policy may perform well using a simple 3-product scenario with asymmetric products and tight

capacity: κ = 45 with costs reported in the last row in Table 2, and the corresponding base stock

levels in the last row of Table 3. Let the beginning inventory levels in some period be (70, 70, 80)

for the three products. Under the priority policy, the optimal base stock levels are (60, 56, 139).

Hence, we have to produce 59 units of product 3 and none for products 1 and 2. Due to limited

capacity (κ = 45 units), shortfalls continue to exist (for product 3). Under the DA heuristic, the

optimal base stock levels are (150, 73, 40). Hence, we have to produce 80 units of product 1, 3 units

of product 2 and none for product 3. Even in this case, shortfalls continue to exist, and surely for

product 1, since capacity available is 45 but 80 units have to be produced. Under the AF heuristic,

the optimal base stock levels are (60, 48, 79). All items are above their base stock levels under the

AF heuristic, so the entire capacity goes unused. Under our policy, the optimal base stock levels
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are (77, 53, 113). 33 units of product 3 alone are produced. There is no shortfall. In this scenario,

the DA and priority heuristics allow for too much shortfall for different products, and under the AF

heuristic, the capacity may go unused (compared to the Search policy). Our policy searches over

different weights and tries to achieve a balance between excessive shortfalls (due to high base-stock

levels) and low capacity utilization (due to low base-stock levels).

The search policy picks the lowest cost policy by searching across weighted balancing policies

(by choosing the best value of the parameter m). Observe that for appropriately chosen values of

m, the corresponding weighted balancing policy is (a) optimal when all products are symmetric,

(b) asymptotically optimal when the shortage cost to holding cost ratio approaches infinity and (c)

asymptotically optimal as the capacity utilization (i.e., the ratio of the mean aggregate demand to

the capacity) approaches 1. The values of m that achieve optimality (Theorem 4) or asymptotic

optimality (Theorem 7) are quite different across these cases; for (a) and (b), the choice of m = 1

(i.e., all the weights being equal) achieves this whereas for (c) the choice of an extremely large

value of m achieves this (i.e., the priority policy - see Theorem 11). Thus, the search policy can be

loosely viewed as an appropriately chosen instance-specific convex combination of policies which

are known to be optimal or asymptotically optimal for some special cases/asymptotic regimes of

problem parameters.

8 Concluding Remarks

We have developed an intuitive, theoretically appealing and implementable policy for managing

finite flexible capacity shared by multiple products. To implement our allocation policies, one

just needs to examine their current shortfalls to determine the allocation of capacity amongst

different products. In addition to being simple and intuitive to implement, our policies (a) have

the theoretical appeal of being asymptotically optimal at high service levels and at high utilization

levels, and (b) perform well when flexible capacity is most valuable (i.e., scarce capacity, varying

demands and cost structures). Nevertheless, there are several challenging questions that are left

unanswered. We note that set-up costs are absent in our model. Incorporating such costs and

obtaining asymptotically optimal policies would be a worthwhile future research direction. Very

little is known about the structure of the optimal policy when products are asymmetric. Even

26



under our base-stock based policy, the structure of optimal allocation weight vector is not known.

For the sake of computational ease, our heuristic calculates allocation vectors with a constant ratio

between two successive products. A better understanding of the allocation structure would be

beneficial in identifying some rules of thumb to employ flexible capacity better. We hope that our

paper is a step towards achieving that objective.
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Notes

1We note that the conclusion of Theorem 3 of DeCroix and Arreola-Risa (1998) is not completely correct. For

example, they claim the following: if, in some period, some products have inventory levels which exceed their optimal

base-stock levels and if it is feasible to raise the inventory levels of the other products to their optimal base-stock

levels, then the optimal policy is to not produce any of the products in the former category while bringing the other

products’ inventories to their optimal base-stock levels. This claim is incorrect because the optimal inventory level

for a product after ordering depends non-trivially on the inventory levels of the other products since the cost-to-go

function is not separable even though the single period cost function is separable with respect to the inventory levels

of the products. However, we note that their claims are correct for every inventory vector in which every component

is below its corresponding optimal base-stock level. The above comments also apply to Theorem 1 of their paper.

2We solve the finite horizon un-discounted dynamic program with a horizon length of 80 periods and take the

minimum (over all starting states) average cost as a proxy for the optimal infinite horizon, average cost. The choice

of the horizon length was based on our observation that our computed cost converges in the first two decimals. It

can easily be shown that the cost we get is a lower bound on the optimal infinite horizon average cost. Thus the

optimality gap that we report is numerically close to, but never smaller than the true optimality gap. In other words,

our approach does not under-report the gap.
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