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Proof of Lemma 1

Note that V n
1 = 0 for all n by assumption. This establishes statement (i) for t = 1. Notice that

in ΠBS−B, for any α, the allocation rule makes production decisions which can be computed by

knowing the opening shortfalls in a period. So, the ending shortfalls in period t, for any t > 1,

depend exclusively on the ending shortfalls in period t−1, the demands in period t−1 and κ. This

proves statement (i) for any t. Note that any weighted balancing allocation rule, i.e. any allocation

rule in ΠBS−B, is monotone with respect to the shortfalls in the sense that if the shortfall of a

product is perturbed non-negatively in period t, the shortfall of that product is perturbed non-

negatively in period t + 1. Then, (ii) follows from Lemma 1 of Loynes (1962) and the remark

following that lemma. Statement (iii) follows directly from (i) and (ii). To show (iv), observe

that V n
1 = 0 for all n by assumption. Therefore, V agg

1 = 0. Now, consider period t + 1 for any

t ≥ 0. The aggregate opening shortfall in period t + 1 is V agg
t + Dagg

t . If this is smaller than κ,

all inventory levels are raised to the respective base-stock levels and thus V n
t+1 is zero for each n.

Thus, V agg
t+1 = 0 in this case. If V agg

t + Dagg
t > κ, the entire production capacity is used, i.e.∑N

n=1 q
n
t+1 = κ and none of the inventory levels exceeds the corresponding base-stock level. So, the

new aggregate shortfall, V agg
t+1 equals

∑N
n=1(V n

t +Dn
t −qnt+1) which can be written as V agg

t +Dagg
t −κ.

Combining the two cases, we get V agg
t+1 = (V agg

t +Dagg
t − κ)+.

Proof of Lemma 2

Consider the subclass of policies mentioned in the statement of the lemma. Once the base-stock

vector S is chosen for a policy within this class, the policy is entirely specified. The long run average

cost of this policy is

N∑
n=1

E[hn · (Sn − V α,n
∞ −Dn)+ + bn · (V α,n

∞ +Dn − Sn)+] .

Since the distribution of Vα
∞ does not depend on the base-stock vector, the expression above is

separable in (S1, . . . , SN ); thus, the optimal value of Sn is simply the minimizer of the “newsvendor-

type” expression within the summation above. The desired result is immediate.

Proof of Lemma 3

By assumption V 1,n
1 = 0 for all n. This establishes statement (i) for t = 1. Under the symmetric

allocation rule, if the distribution of the vector V1
t is exchangeable for some t and the distribution of
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the demand vector in period t is also exchangeable across n, then the distribution of V1
t+1 will also

be exchangeable. Statement (i) follows for all t by induction. Statement (ii) is a direct consequence

of statement (i).

Proof of Theorem 4

Lemma 2 establishes the optimality of the base-stock vector S1∗ for policies in ΠBS−B that use the

weight vector 1. It remains to show that the policy in ΠBS−B defined by the base-stock vector S1∗

and the weight vector 1 is an optimal policy when all policies in Π are considered.

Let us first consider the finite horizon discounted cost problem with a discount factor γ ∈ (0, 1]

and a planning horizon of T periods, that is, the problem of minimizing E[
∑T

t=1 γ
t · Ct] over Π.

This finite horizon dynamic program can be represented through the cost-to-go functions {fγt,T :

t = 1, . . . , T} as follows:

fγt,T (x) = min
y

N∑
n=1

(
hn · E[(yn −Dn)+] + bn · E[(Dn − yn)+]

)
+ γ · E[fγt+1,T (y −D)]

s.t. y ≥ x and
N∑
n=1

yn ≤
N∑
n=1

xn + κ ,

where fγT+1,T (x) := 0 for all x.

It is fairly easy to show using induction that under Assumption 1, the function fγt,T is convex

and symmetric. Using standard dynamic programming arguments, we can establish the pointwise

convergence of the finite horizon cost-to-go functions {fγ1,T (x)} to {fγ(x)} the cost-to-go function

of the infinite horizon, discounted cost dynamic program (defined for γ ∈ (0, 1)) represented below:

fγ(x) = min
y

gγ(y) (3)

s.t. y ≥ x and

N∑
n=1

yn ≤
N∑
n=1

xn + κ , (4)

where gγ(y) =
∑N

n=1 (hn · E[(yn −Dn)+] + bn · E[(Dn − yn)+]) + γ · E[fγ(y −D)]. The infinite

horizon discounted cost optimal policy is defined by a selector yγ∗(x) such that for every x, the

vector yγ∗(x) is a solution to the above minimization problem. The convergence of {fγ1,T (x)}
to {fγ(x)} ensures that gγ is also convex and symmetric. The convexity and symmetry of gγ

implies the existence of a vector Sγ∗ such that (a) it minimizes gγ(y) and (b) all its components

are identical; let us denote this identical base-stock value for all components as Sγ∗. Using the

convexity and symmetry of gγ , it is also straightforward to show through the K.K.T. conditions

that the symmetric allocation rule applied in combination with the base-stock vector Sγ∗ is an

optimal policy for the infinite horizon, discounted cost problem defined in (3)-(4) when x ≤ Sγ∗.

Let us now return to the infinite horizon average cost problem. Schäl (1993) shows that, under

certain conditions, the sequence of infinite horizon discounted cost optimal policies converges to
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an infinite horizon average cost optimal policy as the discount factor γ approaches 1. Huh et al.

(2011) refer to this convergence as the preservation property and verify Schäl’s conditions for the

single product capacitated problem. A straightforward extension of their analysis can be used to

verify Schäl’s conditions for our multi-product problem, and is available on request.

Thus the above mentioned convergence of discounted cost optimal policies to an average cost

optimal policy holds in our case. This implies that there exists a vector S∗, in which all components

are identical, such that the symmetric allocation rule applied in combination with the base-stock

vector S∗ is an average cost optimal policy. Finally, we know from Lemma 2 that, within ΠBS−B,

the optimal base-stock vector corresponding to the weight vector 1 is S1∗. Thus, S1∗ is a valid

choice for S∗; this completes the proof.

Proof of Lemma 5

Without loss of generality, we assume that the priority order (1), (2), . . . , (N) is 1, 2, . . . , N . When

the capacity is not binding (i.e.
∑N

j (W j) ≤ κ), the shortfalls after ordering are zero under both

rules (for any m). Thus, the statement holds for any m.

Similarly, if the shortfall before ordering, W j , is zero for any j, then the shortfalls after ordering

V P,j and V αm,j are both zero. Thus, it is sufficient to consider the case where W is strictly positive

in every component.

When capacity is binding, there exists some k, 1 ≤ k < N such that
∑k

1 W
j ≤ κ and∑k+1

1 (W j) > κ. Then, under the priority policy V P,j = 0 ∀ j = 0, . . . , k, V P,k+1 = W k+1 +

κ −
∑k

1 W
j , and V P,j = WP,j ∀ j = k + 2, . . . , N . Let us define β = W k+1 + κ −

∑k
1 W

j , i.e.

β = V P,k+1.

Let M be large enough that W k+2/Mk+1 ≥ W k+3/Mk+2 ≥ . . . ≥ WN/MN−1. That is, k + 2

is the product with the largest weighted shortfall before ordering among products {k + 2, . . . , N}.
Let ε̃ ∈ (0, ε/k) and let ε̃ ≤ min{W 1, . . . ,W k, β/k}. Moreover, let M be large enough that

ε̃ ≥ W k+1/Mk, ε̃/M ≥ W k+1/Mk, . . ., ε̃/Mk−1 ≥ W k+1/Mk and (β − k · ε̃)/Mk ≥ W k+1/Mk.

(All the inequalities above except the first and the last are redundant - but we present them here

for ease of verification of our next claim). These inequalities ensure that even if the first k + 1

components of the shortfall vector before ordering were reduced to (ε̃, . . . , ε̃, β− k · ε̃), the weighted

balancing rule defined by the vector αm prefers to allocate the next incremental amount of capacity

to the first k + 1 products and not the products in {k + 2, . . . , N}.
It is now easy to verify that Vαm satisfies the following inequalities for all m ≥M :

V αm,j = W j = V P,j for all j ∈ {k + 2, k + 3, . . . , N},
V αm,j ∈ [0, ε̃] = [V P,j , V P,j + ε̃] for all j ∈ {1, 2, . . . , k}, and

V αm,k+1 ∈ [β−k · ε̃, β] = [V P,k+1−k · ε̃, V P,k+1]. The proof of the lemma is complete from the fact

that ε̃ ≤ ε/k.
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Proof of Lemma 6

The first inequality is trivial to establish because the cost incurred by any policy in any period when

the backorder costs are given by b exceed the corresponding quantity when all backorder costs are

min(b). The second inequality follows from the definition of C∗(h,b) and C1∗(h,b) as the optimal

cost over all policies and the cost of the optimal weighted balancing policy, respectively. We now

show the third inequality. From Theorem 4, we know that

C1∗(h, avg(b)) = C∗(h, avg(b)) .

Observe that C1∗(h,b) is a constant with respect to permutations to b due to the assumption of

an exchangeable demand distribution and the symmetric nature of the symmetric allocation rule.

The average of all possible permutations of b is

avg(b) · (1, 1, . . . , 1) .

Since the single period function is linear with respect to b for any given state and action, it is easy

to show that, for any policy π, Cπ(h,b) is concave with respect to b. This implies that

C1∗(h,b) ≤ C1∗(h, avg(b)) .

Recalling that C1∗(h, avg(b)) = C∗(h, avg(b)), we have

C1∗(h,b) ≤ C∗(h, avg(b)) .

Proof of Theorem 7

The first statement follows directly from Lemma 6. We now prove the asymptotic limit result by

invoking a known result.

Lemma 13 (Huh et al. (2009)). Let X be a random variable such that M = sup{x : P (X ≤ x) < 1}
and limx↑M

E[X−x | X>x]
x = 0, where M ∈ R+ ∪ {∞}. Then,

lim
β→∞

(
L(h, β · b′ , X)

L(h, β · b,X)

)
= 1 for all (h, b

′
, b) .

We know from (1) that

C∗(h, avg(b)) = N · L(h, avg(b), V 1,1
∞ +D1) and

C∗(h,min(b)) = N · L(h,min(b), V 1,1
∞ +D1) .

Therefore, (
C1∗(h,b)

C∗(h,b)

)
≤

(
L(h, avg(b), V 1,1

∞ +D1)

L(h,min(b), V 1,1
∞ +D1)

)
.
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The desired asymptotic result now follows directly from Lemma 13 and Assumption 2 (c). This

completes the proof of Theorem 7.

Proof of Lemma 8

We begin our proof with some preliminaries from Esary et al. (1967) who state and prove the fol-

lowing properties of associated random variables that we will use. (We reproduce these properties

verbatim.) (P1) Any subset of associated random variables are associated. (P2) If two sets of

associated random variables are independent of one another, then their union is a set of associated

random variables. (P3) The set consisting of a single random variable is associated. (P4) Non-

decreasing functions of associated random variables are associated. (P5) If T
(k)
1 , T

(k)
2 , . . . , T

(k)
n are

associated for each k, and T(k) → T in distribution, then T1, T2, . . . , Tn are associated.

We will first show that the random variables W 1,1
∞ ,W 1,2

∞ , . . . ,W 1,N
∞ are associated.

Recall that for every j, W 1,j
∞ = V 1,j

∞ + Dj . Let V denote the vector (V 1,1
∞ , V 1,2

∞ , . . . , V 1,N
∞ )

and let D denote the vector (D1, D2, . . . , DN ). Since these two vectors are independent of each

other and the demands are associated, properties (P2) and (P4) imply that the random variables

W 1,1
∞ ,W 1,2

∞ , . . . ,W 1,N
∞ are associated if the random variables V 1,1

∞ , V 1,2
∞ , . . ., V 1,N

∞ are associated.

Since these steady state shortfall random variables are the limits (in the sense of convergence in

distribution) of the corresponding shortfalls in period t ≥ 1, we again know from property (P5)

that it is sufficient to show that the random variables V 1,1
t , V 1,2

t , . . ., V 1,N
t are associated for every

t ≥ 1. Recall that the evolution of the shortfall vector under the symmetric allocation policy can

be expressed as a recursion of the form

V1
t+1 = Λ(V1

t + Dt) ,

for a specific componentwise increasing mapping Λ (please see the discussion following the definition

of weighted balancing policies in Section 3). We claim that V1
t is associated by induction.

Claim 1. For all t ≥ 1, the vector V1
t is associated.

Proof of Claim: The proof is by induction. Since V1
1 = 0, it is trivially associated. We proceed by

assuming V1
t is associated. We are required to show that V1

t+1 = Λ(V1
t +Dt) is associated. In other

words, for any two non-decreasing functions f and g such that E[f(Λ(V1
t +Dt))], E[g(Λ(V1

t +Dt))]

and E[f(Λ(V1
t + Dt))g(Λ(V1

t + Dt))] exist, it remains to show that

E[f(Λ(V1
t + Dt))g(Λ(V1

t + Dt))] ≥ E[f(Λ(V1
t + Dt))]E[g(Λ(V1

t + Dt))]. (5)

Since V1
t and Dt are independent of each other, we can rewrite this equation as

EDt

[
EV1

t
[f(Λ(V1

t + Dt))g(Λ(V1
t + Dt))]

]
≥ EDt

[
EV1

t
[f(Λ(V1

t + Dt))]
]
EDt

[
EV1

t
[g(Λ(V1

t + Dt))]
]
. (6)
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It suffices to prove (6). To do this, we need to define some functions: For every d ∈ RN and every

v ∈ RN , let

f̂d(v) := f(Λ(v + d)) and ĝd(v) := g(Λ(v + d)).

Then, (6) can be rewritten as

EDt

[
EV1

t
[f̂d(V1

t )ĝd(V1
t )]|Dt = d

]
≥ EDt

[
EV1

t
[f̂d(V1

t )]|Dt = d
]
EDt

[
EV1

t
[ĝd(V1

t )]|Dt = d
]
. (7)

We proceed to prove (7). Since Λ is an non-decreasing function, we observe that, for every d, the

functions f̂d and ĝd are also non-decreasing functions. Therefore, since V1
t is an associated random

vector, we know that the L.H.S. of (7) can be bounded from below as follows:

EDt

[
EV1

t
[f̂d(V1

t )ĝd(V1
t )]|Dt = d

]
≥ EDt

[
EV1

t
[f̂d(V1

t )]EV1
t
[ĝd(V1

t )]|Dt = d
]
. (8)

For every d ∈ RN , let

F (d) := EV1
t
[f̂d(V1

t )] and G(d) := EV1
t
[ĝd(V1

t )].

Using these definitions, we can rewrite (8) as

EDt

[
EV1

t
[f̂d(V1

t )ĝd(V1
t )]|Dt = d

]
≥ EDt [F (Dt)G(Dt)] . (9)

Since f , g and Λ are all non-decreasing functions, it follows from the definitions of f̂d, ĝd, F and

G that the functions F and G are also non-decreasing. This, along with the fact that Dt is an

associated random vector, implies

EDt [F (Dt)G(Dt)] ≥ EDt [F (Dt)]EDt [G(Dt)] . (10)

Using the definitions of F and G, we see that the R.H.S. of this equation can be expressed as

follows:

EDt [F (Dt)]EDt [G(Dt)] = EDt

[
EV1

t
[f̂d(V1

t )]|Dt = d
]
EDt

[
EV1

t
[ĝd(V1

t )]|Dt = d
]
. (11)

Combining (9)-(11) yields (7), thus completing the proof of Claim 1. �

We are now ready to show that the random variable W 1,1
∞ is light-tailed. We will first show

that the aggregate shortfall is light tailed and use that fact to show that W 1,1
∞ is light-tailed.

Let W agg
∞ = W 1,1

∞ +W 1,2
∞ + . . .+W 1,N

∞ denote the steady-state aggregate end-of-period shortfall

random variable. Then, we know that W agg
∞ is the convolution of V agg

∞ and Dagg, where V agg
∞ =

V 1,1
∞ + V 1,2

∞ + . . . + V 1,N
∞ and Dagg = D1 + D2 + . . . + DN . We also know that V agg

∞ , the steady

state aggregate shortfall (at the beginning of a period), is the limit (in the sense of convergence in
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distribution) of the recursion V agg
t+1 = (V agg

t +Dagg
t −κ)+, where V agg

0 = 0 and Dagg
t is the aggregate

demand in period t. As mentioned earlier, when Dagg is light-tailed, the Cramér − Lundberg

approximation (please see Asmussen, 2000, Glasserman, 1997) can be used to show that as x

becomes large, P (V agg
∞ + Dagg > x) approaches an exponential function of (−x). More precisely,

there exist constants θ1 and θ2 such that

P (W agg
∞ > x) ∼ θ1e

−θ2x ,

where the notation f(x) ∼ g(x) means that limx→∞ f(x)/g(x) = 1.

Next, since all products are symmetric, we know that W 1,1
∞ , W 1,2

∞ , . . ., W 1,N
∞ all have the same

distribution. Thus,

P (W 1,1
∞ > x) =

(
P (W 1,1

∞ > x)P (W 1,2
∞ > x) . . . P (W 1,N

∞ > x)
)1/N

≤
(
P (W 1,1

∞ > x,W 1,2
∞ > x, . . . ,W 1,N

∞ > x)
)1/N

∵ W 1,1
∞ , W 1,2

∞ , . . . ,W 1,N
∞ are associated

≤ P (W 1,1
∞ +W 1,2

∞ + . . .+W 1,N
∞ > Nx)1/N = P (W agg

∞ > Nx)1/N

∼ (θ1e
−θ2Nx)1/N = (θ1)1/Ne−θ2x.

This implies the desired result that W 1,1
∞ is light-tailed.

Proof of Lemma 9

We will establish the result by proving the following more general claim.

Claim 2. Consider a non-negative random variable X with distribution function F and a strictly

positive density function f in (0,∞). Assume that X is light-tailed; that is, there exist non-

negative constants α and β such that P (X ≥ x) ≤ αe−βx for all x ≥ 0. Furthermore, assume that

limx→∞ F (x)/f(x) exists. Then, limx→∞m(x)/x = 0, where m(x) = E[X − x|X > x].

Proof. Notice that m(x) can also be written as
∫∞
x F (u)du/F (x), where F (x) = 1− F (x). Then,

lim
x→∞

m(x) = lim
x→∞

F (x)/f(x)

by L’Hopital’s rule. Also,

lim
x→∞

−x/ln(F (x)) = lim
x→∞

F (x)/f(x)

by L’Hopital’s rule. Thus,

lim
x→∞

m(x) = lim
x→∞

−x/ln(F (x)).

But

F (x) ≤ αe−βx ∀ x ≥ 0.

So,

ln(F (x)) ≤ ln(α)− βx.
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Thus,

− ln(F (x)) ≥ βx− ln(α) > 0

for sufficiently large x. This implies that

−x/ ln(F (x)) ≤ x/(βx− ln(α))

for sufficiently large x. Therefore,

lim
x→∞

−x/ ln(F (x)) ≤ lim
x→∞

x/(βx− ln(α)) = 1/β <∞ .

Thus,

lim
x→∞

m(x) = lim
x→∞

−x/ ln(F (x)) = 1/β <∞ .

Therefore, limx→∞m(x)/x = 0.

Proof of Lemma 10

Proof. First, we observe that

C∗(h,b, κ) ≥ C∗(h, b, κ) , if 0 < h ≤ hj ∀ j and 0 < b < bj ∀ j , (12)

where C∗(h, b, κ) is the optimal cost of a system in which all products have the same holding cost

h and the same backorder cost b. Thus, it suffices to show that, for any h > 0 and b > 0,

lim
κ↓µ

C∗(h, b, κ) =∞ .

Next, let us define V agg
∞ (κ) as the steady state version of the aggregate shortfall process

{V agg
t (κ)} defined by the recursion V agg

t+1 (κ) = (V agg
t (κ)+Dagg−κ)+ (recall that Dagg =

∑N
j=1D

j).

We claim that

C∗(h, b, κ) ≥ min
S
h · E[(S − V agg

∞ (κ)−Dagg)+] + b · E[(Dagg + V agg
∞ (κ)− S)+] . (13)

The proof of the claim is the following: Consider any feasible policy in the multi-product system.

We can use this policy to construct a feasible policy in the “aggregate system” whose optimal long

run average cost is represented on the right side of (13) such that the cost in the latter system (and

therefore, the long run average cost) is smaller than that in the former system every period. This

is done by ordering, in the latter system, the sum of the quantities ordered for all the products in

the former system – the fact that the cost in the latter system is smaller in every period follows
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from the inequalities

N∑
j=1

(xj − dj)+ ≥

 N∑
j=1

(xj − dj)

+

and

N∑
j=1

(dj − xj)+ ≥

 N∑
j=1

(dj − xj)

+

.

This proves the claim.

Thus, it only remains to show that

lim
κ↓µ

min
S
h · E[(S − V agg

∞ (κ)−Dagg)+] + b · E[(Dagg + V agg
∞ (κ)− S)+] =∞.

To show this, we first note that replacing Dagg by its expectation, µ, in the expression within the

limit above we obtain a lower bound on that expression (this is a consequence of Jensen’s inequality

and the convexity of the function (x)+). Letting S̃ = S − µ, it is sufficient to show that

lim
κ↓µ

min
S̃
h · E[(S̃ − V agg

∞ (κ))+] + b · E[(V agg
∞ (κ)− S̃)+] =∞. (14)

Next, observe that the recursion for {V agg
t (κ)} is the same as that for the waiting time process for a

G/G/1 queue in which the inter-arrival times are deterministic and equal to κ and the service time

for the tth customer is Dagg
t . We know from Kingman (1962) that the distribution of the random

variable [ (κ−µ)
σ2 ] · V agg

∞ (κ) converges to an exponential distribution with mean 1/2, i.e.,

lim
κ↓µ

P

(
(κ− µ)

σ2
· V agg
∞ (κ) ≥ z

)
= e−2z , for all z ≥ 0 ,

where σ2 is the variance of the aggregate demand Dagg. We can verify using straight forward

calculus that this implies that

lim
κ↓µ

min
S′

h · E
[
(S′ − (κ− µ)

σ2
· V agg
∞ (κ))+

]
+ b · E

[
(
(κ− µ)

σ2
· V agg
∞ (κ)− S′)+

]
= (h/2) · ln ((b+ h)/h) . (15)

It is easy to verify that the desired equality in (14) follows directly from (15).

Proof of Theorem 11

Proof. The second statement follows directly from the first statement and Lemma 10. We proceed

to show the first statement. Our plan is to find an upper bound on CP (h,b, κ) and a lower bound

on C∗(h,b, κ) and show that the difference between these bounds is finite for all κ.

Let S(κ) be defined as arg minS h
N ·E[(S−Dagg−V agg

∞ (κ))+] + bN ·E[(Dagg +V agg
∞ (κ)−S)+].

Now, consider a policy π which uses the same priority rule as P but uses the following non-optimal

base-stock levels:

Sj = 0 for all j < N and SN = S(κ) .
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Let Cπ(h,b, κ) (Cπ,N (hN , bN , κ)) denote the long run average cost for the system (product N)

under π given the respective parameters. Since P uses the optimal base-stock levels under the

given priority allocation rule and π does not, we obtain the following relations:

CP (h,b, κ) ≤ Cπ(h,b, κ)

=
N−1∑
j=1

bj · E[Dj + V P,j
∞ ] + Cπ,N (hN , bN , κ) . (16)

The equality above follows from the fact that under π, there is never any inventory of products 1

through N − 1 on hand and from the fact that the shortfall process under π is the same as that

under P. Let bmax := max{b1, b2, . . . , bN}. It follows from (16) and the definition of π that

CP (h,b, κ) ≤ bmax ·
N−1∑
j=1

(
E[Dj + V P,j

∞ ]
)

+ Cπ,N (hN , bN , κ)

= bmax ·
N−1∑
j=1

(
E[Dj + V P,j

∞ ]
)

+ hN · E[(S(κ)−DN − V P,N
∞ (κ))+] + bN · E[(DN + V P,N

∞ (κ)− S(κ))+] .(17)

The inequality above provides an upper bound on CP (h,b, κ).

Next, we proceed to identify a lower bound on C∗(h,b, κ). By Assumption 5, we have

C∗(h,b, κ) ≥ C∗(hN , bN , κ) . (18)

Now, observe that C∗(hN , bN , κ) is the optimal cost of a multi-product inventory system in which

all products have identical holding and shortage costs. We have shown in the proof of Lemma 10

that this quantity exceeds the optimal cost of a single product inventory system with a holding

cost hN , backorder cost bN , capacity κ and demand distribution Dagg. That is,

C∗(hN , bN , κ) ≥ min
S
hN · E[(S −Dagg − V agg

∞ (κ))+] + bN · E[(Dagg + V agg
∞ (κ)− S)+] ,

= hN · E[(S(κ)−Dagg − V agg
∞ (κ))+] + bN · E[(Dagg + V agg

∞ (κ)− S(κ))+] .(19)

Let us define V
P,[1,N−1]
∞ as

∑N−1
j=1 V P,j

∞ and D[1,N−1] as
∑N−1

j=1 Dj . Now, comparing (17) and (19)

and using (18), we can write

CP (h,b, κ)− C∗(h,b, κ)

≤ bmax ·
N−1∑
j=1

(
E[Dj + V P,j

∞ ]
)

+ hN · E[D[1,N−1] + V P,[1,N−1]
∞ (κ)]

= (bmax + hN ) · E[D[1,N−1] + V P,[1,N−1]
∞ (κ)] , (20)
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where the inequality follows from the facts that

(S(κ)−DN − V P,N
∞ (κ))+ − (S(κ)−Dagg − V agg

∞ (κ))+ ≤ D[1,N−1] + V P,[1,N−1]
∞

and that (DN + V P,N
∞ (κ) − S(κ))+ ≤ (Dagg + V agg

∞ (κ) − S(κ))+. Notice that V
P,[1,N−1]
∞ (κ) is the

steady state distribution of the stochastic process {V P,[1,N−1]
t (κ)} which evolves according to the

recursion

V
P,[1,N−1]
t+1 (κ) =

(
V
P,[1,N−1]
t (κ) +D

[1,N−1]
t − κ

)+
. (21)

The reason for this recursion is that under the priority policy P, the inventory and shortfall dy-

namics of product 1 are the same as that in a system with only product 1 present and with κ

units of production capacity. So, product 1’s shortfall process follows the recursion V P,1
t+1(κ) =(

V P,1
t (κ) +D1

t − κ
)+

. By the same reasoning, for any n ≤ N , we have the more general recursion

V
P,[1,n]
t+1 (κ) =

(
V
P,[1,n]
t (κ) +D

[1,n]
t − κ

)+
.

Returning to (21), we observe that since µ > E[D[1,N−1]], V := limκ↓µE[V
P,[1,N−1]
∞ (κ)] exists (in

fact, V := E[V
P,[1,N−1]
∞ (µ)] ) and is finite. Using this observation in (20), we obtain CP (h,b, κ)−

C∗(h,b, κ) ≤M := (bmax + hN ) ·E[D[1,N−1] +V ] < ∞ for all κ > µ . This completes the proof

of the theorem.

Proof of Lemma 12

Consider any non-anticipatory policy π. Let yπt denote the aggregate inventory level after ordering

in period t, when this policy is followed. Similarly let yπt (xπt ) denote the vector of inventory

levels after (before) ordering in period t and let Cπt be the cost incurred in that period. Thus,

E[Cπt ] =
∑N

n=1G
n(yπ,nt ). Therefore, we know from the definition of F1 that

E[Cπt ] ≥ F1(yπt ) .

⇒ inf
π∈Π

lim sup
T→∞

E
[∑T

t=1C
π
t

]
T

≥ inf
π∈Π

lim sup
T→∞

E
[∑T

t=1 F1(yπt )
]

T
.

Note that Π is the class of non-anticipatory policies satisfying the constraints yπt ≥ xπt and∑N
n=1 y

π,n
t ≤

∑N
n=1 x

π,n
t + κ, in every period. Let Π′ denote the larger class of policies which

are non-anticipatory and require that only the second constraint, i.e. the capacity constraint, is

satisfied in every period. This implies that

inf
π∈Π

lim sup
T→∞

E
[∑T

t=1 F1(yπt )
]

T
≥ inf

π∈Π′
lim sup
T→∞

E
[∑T

t=1 F1(yπt )
]

T
.
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The quantity on the right side of the above inequality is nothing but the long run average optimal

cost for a single product inventory problem with a capacity limit of κ and an expected single period

cost F1(·), which is a convex function. We know from Federgruen and Zipkin (1986) and Huh et al.

(2011) that a base-stock policy is optimal for this problem. Thus, we obtain

inf
π∈Π′

lim sup
T→∞

E
[∑T

t=1 F1(yπt )
]

T
= min

S
E[F1(S − V agg

∞ )]

using the strong law of large numbers for Markov Chains (see Resnick (1992) for details). This

leads to the desired result that

inf
π∈Π

lim sup
T→∞

E
[∑T

t=1C
π
t

]
T

≥ min
S
E[F1(S − V agg

∞ )] .
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