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Predictable variations in excess returns have often been attributed to the presence of time-varying 
risk premia. In this paper, we use an insight based upon new techniques from time series analysis to 
test whether stationary risk premia can alone explain the behavior of excess returns to long bonds 
relative to rolling over short rates, Surprisingly, we reject this hypothesis using U.S. T-bill returns. 
We then show that either permanent shocks to the risk premia and/or rationally anticipated shifts in 
the interest rate process could produce anomalous results. 
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1. Introduction 

A great deal of research has explored the information in the term structure of 
interest rates. This research examines whether the relationship between interest 
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rates at different maturities helps to explain future movements in rates.’ Some of 
the empirical research has focused upon the ‘expectations theory’ that relates the 
yield on long-term bonds to expected future short rates. This theory has 
frequently been tested and rejected using regression tests of the slope of the yield 
curve.’ Explanations for the rejections have focused on the presence of either 
time-varying risk premia or biased forecast errors in the regression residuals. 
Either explanation implies that excess bond returns are predictable, since they 
are the sum of risk premia and forecast errors by definition. 

In this paper, we ask whether time-varying risk premia that are covariance- 
stationary can alone explain the behavior of excess bond returns.3 For this 
purpose, we use an insight based upon new techniques from time series analysis. 
When interest rates contain unit roots and when forecasts are unbiased, the 
coefficient from the cointegrating regression of the level of a forward interest rate 
upon the level of its corresponding future interest rate will be contaminated by 
the presence of a time-varying risk premium only if this risk premium contains 
a unit root. Thus, the cointegrating coefficient can tell us whether the risk 
premium contains a unit root component or not. 

After reviewing the standard regression tests of the ‘expectations theory’ in 
section 2, section 3 of the paper uses this methodology to test whether the risk 
premia in excess U.S. T-bill returns are I(0)-stationary.4 The test is rejected for 
many maturities less than one year. These results point to the surprising 
conclusion that excess returns are subject to permanent shocks. 

We then investigate the source of these findings with a series of Monte Carlo 
experiments. In section 4 we examine whether our results are due to treating 
bond yields as variables with unit roots when in fact they are stationary. Our 
experiments calculate the empirical distribution of the coefficient estimates 
assuming stationary processes for short-term interest rates and the risk premia. 
In this case, the results demonstrate that there is a less than 1% probability of 
observing our coefficient estimates, given the observed degree of autocorrelation 
in the risk premia. Thus, it is highly unlikely that our results are due to 
incorrectly assuming that interest rates are subject to permanent disturbances. 

In section 5 we conduct a second set of experiments to examine whether our 
results are consistent with the observed autocorrelation in excess returns. We 
show that it is possible for risk premia with a small unit root component 
to generate both our cointegrating regression results and a first-order 

‘Mishkin (1988), Campbell and Shiller (1987) and Fama (1984a), among many others, find that 
the term structure contains information about future rates. 

*For a list of references, see Campbell and Shiller (1991) or Shiller (1987). 

‘Risk premia in the term structure are typically treated as stationary variables both in the 
theoretical and empirical investigations. For a theoretical example, see Backus, Gregory, and Zin 
(1989) and for empirical examples see footnote 1. 

4We follow the literature in calling variables that follow stationary processes as I(0) and those that 
follow processes with permanent disturbances as I(1). 
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autocorrelation in excess returns as low as we observe in the data. In particular, 
when permanent shocks contribute to between 5% and 10% of the variability of 
the risk premia, we are likely to observe the cointegrating results we find in the 
data but are very unlikely to detect the presence of a unit root in excess returns 
using standard methods. Our results are therefore completely consistent with 
the observation that excess returns appear stationary. 

Under standard rational expectations, our cointegration results imply that 
the risk premium contains a unit root component, since excess returns are 
comprised of a risk premium and a stationary forecast error. In section 6 we 
offer an alternative explanation for the presence of permanent shocks to excess 
returns. In particular, we show how rational expectations of a shift in the process 
for interest rates can produce forecast errors that appear to contain unit roots. 
Thus, our cointegrating results may be attributable to either permanent shocks 
to the risk premium, or shifts in the interest rate process, or both. 

In section 7 we re-examine the standard regression tests of the ‘expectations 
theory’ in the light of our cointegration results. We show how the regression 
coefficients are affected by the presence of unit roots in excess returns. Interest- 
ingly, the coefficients from different regression tests have distinct large-sample 
distributions that appear consistent with the estimates we observe in the data. 

The paper ends with some concluding remarks. 

2. Standard regression tests 

To illustrate how our cointegrating tests below relate to the previous litera- 
ture, we begin by briefly reviewing two standard regression tests of the ‘expec- 
tations theory’ of the term structure. As has been documented in earlier studies, 
some forms of the regression tests tend to reject the theory while others do not. 
In the final section of this paper, we will show how our cointegration results lead 
to a reinterpretation of these standard findings. 

2.1. The framrwork 

The ‘expectations theory’ of the term structure of interest rates relates the 
equilibrium yield of long bonds to the expected value of short rates over the 
maturity of the bond. Since we will be discussing these results in the presence of 
time-varying risk premia, we consider a framework that allows for risk premia 
and incorporates the expectations theory as a special case.5 For the case of pure 

*As emphasized by Cox, Ingersoll, and Ross (1981), the expectations hypothesis has several forms. 
They show that only the ‘local expectations hypothesis’ is consistent with equilibrium asset pricing 
models such as in Cox, Ingersoll, and Ross (1985). If excess holding returns were constant, then 
discretely compounded excess returns would yield our regression restrictions below. See, for 
example, the model in Vasicek (1977) with constant risk premia. Campbell (I 986) and Shiller, 
Campbell, and Schoenholtz (1983) argue that the expectations hypothesis may be linearly approxi- 
mated, an approach that we follow below. 
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discount bonds, this relationship is 

k-l 

Rf = (l/k) C EtR:+i + (l/‘k)o:, (1) 

i=O 

where R: is the yield on a k-period bond purchased at time t, E, denotes the 
market’s expectations conditional upon information available at time r, and Q: is 
a time-varying risk premium on holding the k-period bond relative to rolling 
over one-period bonds. Tests of the expectations theory examine a special case 
of eq. (1) where the risk premium is equal to zero. 

A slightly different form of the risk premia will also prove expositionally 
useful for the investigation below. In particular, we define the one-period 
holding premium as 

4: = kR: - (k - l)E,R;;; - R;, (2) 

where 4: is the time-varying premium relative to the risk-free one-period rate 
R: on a risky position of holding a k-period bond for one period and then selling 
the proceeds at the prevailing rate. Iterating (2) forward verifies that 
0: = 1:;: E,@:;f , or that the risk premium on holding a long bond relative to 
rolling over short bonds is equal to the expected value of the sum of holding 
premia from today until the maturity period of the long bond. We will use this 
basic framework to review standard regression tests in order to motivate our 
cointegrating regression tests below. 

2.2. Yield spread regressions 

According to the expectations theory, the difference between the long 
k-period bond and the short one-period bond is the market’s forecast of the 
change in the long bond. Hence, tests of the expectations theory have frequently 
used this yield spread as a regressor.6 These regression tests have typically taken 
two forms. In the first, the yield spread predicts the one-period change in the 
long bond: 

(k - l)(R:,k - Rf) = a0 + al(R: - R:) + u~,~+~. (3) 

We can re-express (3) in terms of the framework in (1) and the definition in (2) by 
setting a, = 1, so that 

ul.f+l = -4: + (k - l)(R:;: - E,R:;:) ~ ao, (4) 

‘Another strand of the literature uses forward premia as regressors. See Evans and Lewis (1990) 
for a discussion of these studies. 



and a, equals the mean of the risk premium. Notice that u I. ,+ 1 can be 
interpreted as the ex post excess return on the k-period bond relative to the 
one-period rate. Standard regression tests of the expectations hypothesis would 
test aI = 1 and a0 = 0.’ As (3) and (4) show, however, if risk premia are 
time-varying and correlated with the yield spread, then the estimates of a, will 
deviate from one due to standard omitted variables problems. 

The second form of the yield spread regression relates the yield spread to the 
L’X posf changes in the short rate over the maturity of the bond: 

k-l 

(l/k) 1 $+; - [(k ~ l)/klR: = &I + h(R: ~ R:) + U2.t+k. 

i= 1 
(5) 

This regression can be re-expressed in terms of (1) and (2) by setting b, = 1, and 

k-l 

UZ,f+k = -(l/“)Qf + (I/k) 1 (R:+i - ErRi+,) - bo> (6) 
i=l 

where b0 equals the mean of the risk premium on holding the bond over its 
maturrty. u2, ,+k can be viewed as the ex post excess return on holding the 
k-period bond relative to rolling over short bonds. Standard regression tests of 
the expectations hypothesis test b, = 1 and b0 = 0 in eq. (5). Again, if risk 
premia are time-varying and correlated with the yield spread, (5) and (6) imply 
that the estimates of bI will deviate from one. 

The first and second columns of table 1 report the coefficient estimates of a, 
and b,, respectively, for one-month through eleven-month U.S. T-bill rates. 
These data correspond to the series first constructed by Fama (1984) using the 
U.S. Government Securities File of the Center for Research in Security Prices at 
the University of Chicago. The data set provides prices of U.S. Treasury bills for 
the end of the month over the period of availability from June 1964 to December 
1988. The estimates we report are based upon the midpoints between the bid 
and ask rates. We will discuss the sensitivity of our results to this choice below. 

Table 1 shows that the parameter estimates for a, are negative and increase in 
absolute value with maturity k. All of the coefficients are significantly less than 
the hypothesized value of one and even become significantly negative as the 
maturity horizon lengthens. Furthermore, this pattern continues with longer 
maturities up to ten years, as described in Campbell and Shiller (1991). This 
regression test points to a strong rejection of the expectations theory. 

By contrast, the estimates for b, are positive, though less than one at values 
near 0.4. Since the residuals contain k overlapping forecast errors under the null 
hypothesis, the reported standard errors are corrected for a moving average 

‘Campbell and Shiller (1991) also examine a modified expectations theory where a, = 1 and 
a, = -(b”. 
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Table 1 

Regressions tests of short-horizon change in long bond and long-horizon change in short bond on 
current yield spread.” 

This table reports two regressions results. First, the change in the return on the k-period bond is 
regressed on the spread between a k-period bond and a one-period bond, 

(k - l)(R:;: - R:) = a, + u,(R: - R:) + u,.,+, , (3) 

where Rf is the annualized return on a k-month U.S. T-bill. Second, the k-period return on rolling 
over one-period bond returns is also regressed on the spread between a k-period bond and 

a one-period bond, 

LrmI 

(l/k) 1 R:,, - [(k - l)/k]R: = h, + h,(R: - R,‘) + uZ.,+k. (5) 
I=, 

Equations are estimated by OLS using Hansen’s (I 982) estimate of the varianceecovariance matrix 
to allow for conditional heteroskedasticity and moving average error terms. Standard errors are in 
parentheses. Data are monthly US. T-bill rates from the CRSP for the period June 1964 to 

December 1988. 

Regression coefficients 

(1) (2) 

Maturity k 
in months &., (S& 

2 ~ 0.17b 0.42’ 
(0.24) (0.12) 

3 ~ 0.43 b 0.32b 
(0.48) (0.19) 

4 - 0.70b 0.39b 
(0.61) (0.19) 

5 - 1.15b 0.36” 
(0.68) (0.17) 

6 - 1.27” 0.38 h 
(0.72) (0.20) 

7 ~ 1.4gb 0.40b 
(0.79) (0.18) 

8 ~ l.52b 0.41 b 
(0.83) (0.20) 

9 - I.72 0.37b 
(0.79) (0.17) 

10 ~ 1.89b 0.39h 
(0.86) (0.20) 

11 - 1.90b 0.40b 
(0.88) (0.22) 

“Column (1) is the regression coefficient a, for the regression in eq. (3). Column (2) is the regression 
coefficient h, for the regression in eq. (5). Standard errors are corrected for an MA(k - 1) error. 

‘Significantly less than one at the 95% confidence level. 
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component of order k - 1. Using these standard errors, the hypotheses that the 
coefficients equal one are rejected in all cases. For the longer maturities investi- 
gated in Campbell and Shiller (1991) the point estimates increase and become 
insignificantly different than one. 

The pattern of rejection in these regression tests provides information about 
the correlation between the risk premia 4: and the yield spread. Applying 
arguments similar to those in Fama (1984), Evans and Lewis (1990) show how 
the coefficient estimates of a1 and h1 can be interpreted in terms of the variances 
and covariance between the risk premia and the yield spreads. These interpreta- 
tions assume that nonoverlapping forecast errors are white noise, consistent 
with standard rational expectations, and that the time-varying risk premia are 
I(O)-stationary. Together, these assumptions imply that excess returns must also 
be l(O)-stationary. 

3. Are excess returns stationary? 

In this section, we examine whether excess returns are indeed I(O)-stationary. In 
particular, we will show how the regression tests above can be transformed into a 
cointegrating regression framework that provides information about long-term or 
low-frequency behavior of excess returns. Under standard rational expectations 
assumptions, this framework allows us to jointly test the hypothesis that interest 
rates contain unit roots while time-varying risk premia do not. In this section, we 
begin by developing the test and reporting the results. In the next section we 
consider the robustness of our results if interest rates are actually stationary. 

3.1. A ,joint test qf’nonstationary interest rutes and stationary time-varying 

risk premiu 

Empirical studies have found that interest rates appear to have disturbances 
with unit root components.’ This observation has led to regression tests based 
upon differenced interest rate series, such as those in (3) and (5) above. We will 
first maintain the assumption that interest rates are subject to unit root disturb- 
ances and show how cointegrating regressions can provide information about 
whether excess returns contain unit root disturbances. 

To develop the cointegrating regression, we use the definitions in (1) and (2) to 
rewrite the regression equation (3):9 

(k - l)(R:;; - R;) = (R: - R:) - 4: + (k - l)(Rt;; - E,R:,;). (7) 

‘See, for example, Mishkin (1989). To confirm these results with our data, we tested the hypothesis 
ofumt roots for interest rates using modified Dickey-Fuller tests and found we could not reject unit 
roots. Since these findings are similar to those in the literature, we do not report them to save space. 

“Inspecting regression equation (3) and the detinition of its residual in (4) makes clear that the 
following equation simply rewrites the regression equation with a, = 1. 



After subtracting (k - 1)R: from both sides and rearranging, eq. (7) may be 
rewritten as 

(k - 1)R:;: = cto + cc,(k - l)F:-‘3’ + ~,,~+i, 63) 

where x0 equals ao, the constant in the stationary regression (3) ai = 1, 
F’:-‘, ’ = (kR: - R:)/(k - l), and u i, 1+, is the long-rate regression residual 
from eq. (4). Within the framework of (1) and (2) this residual is the excess return 
comprising the risk premium on holding a k-period bond, 4:, and the one- 
step-ahead forecast error on the k - 1 bond, R:Ti - E,R:;i. F:- ‘. ’ is the 
forward rate contracted at time t for a (k - I)-period bond to be bought at t + 1. 
More generally, we define 

F/-l = [(j + [)Rj+’ - 1 Rf)]/j, (9) 

as the forward rate contracted at time t for a j-period bond to be bought at t + 1. 
We have formed (8) in terms of the levels of interest rates and forward rates to 

exploit a result from time-series analysis when variables have unit root disturb- 
ances. Specifically, as long as the residual is I(O)-stationary, a regression of an 
I(l)-nonstationary variable on another I(1) variable that shares its stochastic 
trend will provide an asymptotically consistent coefficient estimate. Such regres- 
sions are termed cointegrating regressions [see Campbell and Perron (1991) for 
a recent discussion]. 

This result means that, as long as u 1, I+ 1 is I(O)-stationary, the regression in (8) 
provides an estimate of c~i that is asymptotically consistent and independent of 

U1.t+1. By definmon, the residual u 1, t+ 1 e uals a risk premium plus a forecast q 
error when pi equals one (i.e., the excess return). Under standard rational 
expectations, the one-step-ahead forecast error follows a white noise process, an 
I(0) process. Therefore, if risk premia are stationary, they cannot contaminate 
estimates of c(~. Thus, we can test a minimum requirement for stationary risk 
premia to explain the results of the regressions tests in table 1 by estimating z1 in 
eq. (8) and testing whether it is equal to one. Since we have written eq. (8) in the 
form of I(1) variables, this regression provides coefficient estimates of g1 that are 
asympotically consistent even though the yield spread may not be independent 
of the stationary risk premia. 

3.2. Cointegrating regression results ,for one-period regressions 

The first column of table 2 reports the OLS coefficient estimates of a, in eq. (8) 
for different (k-month) maturities of T-bills. As the column shows, all of the point 
estimates are less than one. While this regression provides asymptotically 
consistent estimates of ai, OLS estimates are biased in finite samples. The 
appendix describes two methods we used that adjust for this bias. 



M. D.D. Eram und K.K. Lewi.r. Do stutionqv risk premiu explain il roll? 293 

Table 2 

Cointegrating regressions of one-month-ahead spot rates on current forward rates. 

(k - I)R:,: = q, + rl(k - l)F:-‘.’ + u,,,+r, (8) 

where c(, is OLS estimate of the regression, R f-’ is the yield on a (k - l)-month U.S. T-bill, 
F:- ‘. ’ is the forward rate on a contract bought at time t for a (k - I)-period bond at time t + 1. 
H-P, are the Hansen and Phillips (1989) z’(l) Wald test statistics of the hypothesis that ml = 1 
assuming that cov(u,, , u ,,,_,)=OforallrrIforI=Oand1=6.S-WisthetestthatG(, = lusing 
the ~‘(1) test statistic from Stock and Watson (1989). Marginal significance levels are in parentheses. 
Data are monthly U.S. T-bill rates from the CRSP for the period June 1964 to December 1988. The 
Monte Carlo p-values show the probability of observing the estimate of ~(r in column (1) when the 
true value of X, = 1. The upper value assumes conditional homoscedasticity in the data generation 
process, the lower value allows for conditional heteroscedasticity. Details of the experiments are 

described in the appendix. 

Maturity k 
in months 

2 

3 

4 

5 

6 

7 

8 

9 

10 

II 

(1) 

21 

0.92 1 

0.929 

0.95 1 

0.956 

0.960 

0.967 

0.967 

0.962 

0.962 

0.968 

(2) (3) 

H-P, H-P, 
(M.S.L.) (M.S.L.) 

15.43 4.52 
( < 0.001) (0.034) 

32.5 1 9.35 
( < 0.001) (0.002) 

8.84 1.64 
(0.003) (0.203) 

3.82 0.0 1 
(0.051) (0.999) 

2.62 0.33 
(0.106) (0.566) 

0.09 0.05 

(0.764) (0.823) 

0.25 0.01 
(0.617) (0.999) 

2.88 0.15 
(0.090) (0.699) 

3.16 0.12 
(0.075) (0.729) 

0.01 0.03 
(0.999) (0.862) 

(4) (5) 

SW Monte Carlo 
(M.S.L.) p-values 

~~ .~. 

5.21 < 0.001 
(0.022) 0.003 

3.51 < 0.001 
(0.06 1) < 0.001 

0.26 < 0.001 
(0.610) 0.015 

0.11 0.009 
(0.740) 0.019 

0.93 0.032 
(0.335) 0.084 

0.03 0.420 
(0.862) 0.429 

0.03 0.203 
(0.862) 0.295 

0.06 0.029 
(0.806) 0.070 

0.00 0.009 
(1.00) 0.044 

0.06 0.537 
(0.0806) 0.538 

The first method is from Hansen and Phillips (1990) who use the asymptotic 
variance-covariance matrix of the residuals to adjust the OLS coefficient for the 
finite-sample bias. The second and third columns of table 2 report Wald 
statistics for the null hypothesis that CI~ = 1 using the Hansen and Phillips 
adjustment. When the risk premium, and therefore u 1, f+ 1, are serially corre- 
lated, a consistent estimator of the covariance matrix must incorporate autocor- 
relations of the error process. We calculated the HansenPhillips statistic for 
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two extreme assumptions about the degree of autocorrelation. The statistics 
reported in column (2) are based on the assumption of no serial correlation in 

Ul,f+l. Those in column (3) allow for autocorrelation for up to six months. 
Inspection of the regression residuals revealed this to be a conservative over 
estimate of the degree of autocorrelation. 

The results of these tests are reported in the table together with their marginal 
significance levels. For the statistics assuming no serial correlation, in column 
(2), the hypothesis that g1 equals one is rejected with marginal significance levels 
less that 10% for six of the eleven maturities. The more conservative covariance 
estimates incorporating autocovariances up to six months tend to blow up the 
covariance matrix. As a result, the statistics in column (3) do not reject the 
hypothesis except at maturities of two and three months. 

Column (4) of table 2 reports an alternative set of Wald tests for the hypothe- 
sis that c(] = 1, using the Stock and Watson (1989) procedure to adjust for the 
finite-sample bias in the OLS coefficients.” As the results indicate, the hypothe- 
sis that CI~ equals one is again rejected for the two- and three-month maturities. 
It should be noted that the tests reported in columns (2)-(4) are not independent 
across maturities. 

The results in table 2 are based on returns calculated from the midpoints of 
the bid and ask T-bill rates rather than true quote rates, and so are potentially 
subject to an errors-in-variables bias. Since Stambaugh (1988) has shown that 
quotation errors can significantly affect the results of standard regression of 
holding returns on yield spreads, we re-estimated the cointegrating regressions 
in table 2 using the bid and ask rates to check the robustness of our results. 
These results, which are reported in the appendix table, are very similar to those 
in table 2. The appendix also shows that bid and ask rates are cointegrated one 
for one with each other. This evidence means that the use of the average bid-ask 
rate in table 2 introduces at most a stationary quotation error into the residual 
of the cointegrating equation (8) which cannot contaminate the estimates of 
cur .ll These findings indicate that the results in the columns (2))(4) of table 2 are 
robust to effects of quotation errors. 

“As the appendix describes in detail, the Stock and Watson method includes leads and lags of 
first differences of the right-hand-side variables as additional regressors in order to correct for the 
finite-sample bias in estimating a,. The statistics shown uses two leads and lags. As in the 
HansenPhillips method, the test statistics also allow for serial correction in the residuals. Here we 
allowed for autocorrelation of up to two months. The results are not sensitive to this choice or the 
number of leads or lags we include. 

“Our cointegrating regression differs in one other respect from the standard regressions studied 
by Stambaugh. He notes that regressions of holding returns on yield spreads typically introduce the 
same current rate on both sides of the regression, possibly biasing the coefficient estimates. This 
potential source of bias does not appear in eq. (8). The left-hand-side variable is the future realized 
rate, while the right-hand side is the forward rate and each of these variables are observed at different 
periods in time. 
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Column (5) of table 2 reports the results of some Monte Carlo experiments. 
These experiments were motivated by the fact that both the HansenPhillips 
and Stock-Watson procedures require a consistent estimate of the asymptotic 
varianceecovariance matrix of the regression residuals. Since Chesher and 
Jewitt (1987) have shown that consistent estimators of this matrix may be biased 
in small samples, it is possible that the statistics in columns (2)-(4) may be 
affected by poor estimates of the varianceecovariance matrix. 

To investigate this issue, we conducted Monte Carlo experiments that incor- 
porated the finite-sample properties in the data. For this purpose, we generated 
time series for the future interest rate based upon the actual data series. In order 
to examine the sensitivity of our experiments, we constructed the series in two 
ways that reflect different assumptions about conditional heteroscedasticity. We 
then estimated the cointegrating regression (8) repeatedly to produce the empiri- 
cal distribution of the coefficient estimate zl. Details of the experiments are 
provided in the appendix. 

Table 2, column (5) reports the results of these Monte Carlo experiments. The 
numbers are the p-values for the hypothesis that the estimates of rl at each 
maturity are significantly different from one. The upper number is the p-value 
from the distribution of coefficients when the data are generated from a condi- 
tionally homoscedastic process. The lower number is the corresponding p-value 
based on a conditionally heteroscedastic process. As the column shows, the null 
hypothesis of z1 = 1 is rejected at the 5% marginal significance level for all 
maturities except for six, seven, eight, nine, and eleven months. At the 10% level, 
we would also reject for the six- and nine-month maturities. 

Overall, the results in table 2 provide fairly strong evidence against the null 
hypothesis of sll = 1. Although the asymptotic results suggest that the null can 
only be rejected for two- and three-month bonds, the small-sample Monte Carlo 
experiments ~ that do not depend upon estimates of the asymptotic vari- 
ante-covariance matrix - indicate much stronger rejections of the null hypothe- 
sis across a wide range of maturities. Since a rninimul condition for stationary 
risk premia with standard rational expectations is that aI is always equal to one, 
it is surprising to find rejections at any of the maturities. 

3.3. Cointegrating regressions ,for ex post sht-rute regwssions 

We will now use a similar cointegrating regression to examine the short-rate 
regression tests in (5). For this purpose, subtract (l/k)R: from both sides of 
the definition (1) as well as the forecast errors (E,R:+, - R:+,)/k for all 
i=l , . , k - I. This rearrangement yields the following form for the definition: 

k-l 

(l/k) 1 R:+i = (l/k)(kRf - R:) - (l/k)B: 
i=1 k-l 

+ (l/k) 1 (R:+i - E,R/+i). 

i=l 
(10) 
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Eq. (10) is the relationship behind the short-rate regression test in (5)” 
We can now proceed by rewriting (kRf - R:) as the sum of the one- 

month forward rates, F/3 i, using the definitions of the forward rates in (9). 
Substituting the result into (lo), we obtain 

k-l k-l k-l 

(l/k) 1 R;+i = (l/k) 1 F+’ - (f/k)o: + (l/k) C (R/+i - E,R/+i) 
i=l i=l i=l 

k-l 

= tllk) 1 F:” + Uz,,+k_l, 
i=l 

(11) 

where u2, t+k _ 1 is the residual in the regression equation (5) defined in (6) and 
where we have set the constant b, equal to zero for expositional simplicity.13 In 
table 1, we examined this relationship for different maturities. With each in- 
cremental maturity, k, an additional future spot rate, R:+k_ 1, and forward rate, 
F’.k-‘, were included in the summations shown in (11). To examine each 
cdmponent of the summation separately, we first note from (11) and (6) that 
fl:-’ = xfIF(F’:. i - E,R:+,) and define the difference between risk premia on 
holding bonds between adjacent maturities as dfI: = (3: - tI_ ‘. Note also that 
if the risk premia, fl: and S:- ‘, are covariance-stationary variables, AtI: must be 
as well. Next, subtract the components, (l/k)xf:,2 E,R:+ 1, from each side of (11). 
Rearranging and leading the maturity one period, gives 

R ;+k = F;.k - &i’;+’ + (R:+k - E,R:+k). (12) 

We can now rewrite this equation in terms of the cointegrating regression, 

R :+k = h + plF:‘k + n’t+k> (13) 

where fll = 1 and ,‘“t+k = -de:+’ + (R:,, - E,R;+k) - PO. 
We may apply the same intuition to the cointegrating regression in (13) as we 

did to the the regression in (8). Since forward rates contain unit roots, then the 
forward rate must be asymptotically independent of all stationary variables. 
Therefore, under standard rational expectations and the null hypothesis of 
stationary risk premia, the excess return w,+k will be asymptotically independent 

of F:sk and we must find /?r = 1. 
Table 3 reports the results of estimating eq. (13). The left-hand margin gives 

the forecast horizon k and column (1) reports the coefficient estimate for PI. As 

‘*To see this clearly, add [(k - 1)/k] R,’ to both sides of(S), impose h, = I, and use the definition 
of the residual in (6). 

‘“Incorporating h, will simply include a constant in the relationship that will be captured by the 
constant in our cointegrating regression estimated by [I, below. 
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Table 3 

Cointegrating regressions of k-month-ahead short rates on current forward rates. 

R:+k = Po + B,F:,* + ~‘,+k, (13) 

where [r’, is the OLS estimate of the regression, R:,, is the rate on a one-month T-bill at t + k, F:‘” is 
the forward rate on a contract at time t for a one-month bill at time t + k. H-P, denote the Hansen 
and Phillips (1989) x’(1) Wald test statistics of the hypothesis that [jr = 1 assuming that 
cov(w,,u_,) = 0 for all r > I for I = 3 and I = 9. S-W is the test that fii = 1 using the x*(l) test 
statistic from Stock and Watson (1989). Marginal significance levels are in parentheses. Data are 
monthly US. T-bill rates from the CRSP for the period June 1964 to December 1988. The Monte 
Carlo p-values show the probability of observing the estimate of 8, in column (1) when the true value 
ofb, = 1. The upper value assumes conditional homoscedasticity in the data generation process, the 
lower value allows for conditional heteroscedasticity. Details of the experiments are described in the 

appendix. 

Horizon k 
in months 

2 

3 

4 

5 

6 

7 

8 

9 

10 

(1) 

Pi 

0.835 

0.832 

0.711 

0.764 

0.757 

0.735 

0.696 

0.658 

0.694 

(2) 

H-P, 
(M.S.L.) 

13.66 
( < 0.001) 

7.02 
(0.008) 

7.42 
(0.006) 

7.84 
(0.005) 

6.88 
(0.009) 

8.97 
(0.003) 

11.99 
(0.00 1) 

11.32 
( < 0.001) 

11.01 
( < 0.001) 

(3) 

H-P9 
(M.S.L.) 

_ _~ _ 

16.10 
( < 0.001) 

5.62 
(0.018) 

4.11 
(0.043) 

3.84 
(0.050) 

2.17 
(0.141) 

3.24 
(0.072) 

4.98 
(0.026) 

7.48 
(0.006) 

4.20 
(0.040) 

(4) (5) 

SW Monte Carlo 
(M.S.L.) p-values 

10.46 
(0.001) 

3.93 
(0.047) 

3.44 
(0.064) 

3.47 
(0.063) 

3.25 
(0.07 1) 

4.61 
(0.032) 

6.57 
(0.010) 

11.37 
(0.00 I ) 

5.86 
(0.015) 

< 0.000 
< 0.000 

0.004 
0.008 

0.004 
0.02 1 

0.009 
0.029 

0.02 1 
0.068 

0.019 
0.057 

0.003 
0.017 

0.001 
0.03 1 

0.018 
0.073 

in table 2, the point estimates for the coefficient are all less than one. Columns (2) 
and (3) report the Hansen-Phillips statistic and marginal significance levels for 
the hypothesis that /3, = 1. The statistics in columns (2) and (3) respectively 
allow for residual autocorrelations up to three and nine months in the calcu- 
lation of the asymptotic varianceecovariance matrix.14 As the results show, the 

14Estimate allowing for autocovariances from zero to six months as in table 2 gave similar results. 
In table 3. we allow for longer lags to account for the overlap in the forecast errors. 
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hypothesis is strongly rejected at the 5% marginal significance level for 15 of the 
18 cases. In addition, the hypothesis is rejected at the 10% level for all cases 
except for the six-month-ahead forecast in column (3). 

Column (4) of table 3 reports the Wald statistics and marginal significance 
levels using the StockkWatson method for the same hypothesis. In this case, we 
reject fl, = 1 at the 10% level for all horizons and at the 5% level for most 
horizons. 

As before, we re-estimated the cointegrating regressions in the table using the 
bid and ask rates to examine the potential impact of quotation errors. The 
appendix table shows these results to be very similar to those reported in table 3. 
We also conducted Monte Carlo experiments (described in the appendix) to 
insure that our results were not unduly affected by poor estimates of the 
asymptotic variance-covariance matrix used by both the Hansen-Phillips and 
StockkWatson tests. Column (5) of table 3 reports the two sets of Monte Carlo 
p-values from the null hypothesis of pi = 1. The upper values assume condi- 
tional homoscedasticity in the data generation process, while the lower allow for 
conditional heteroscedasticity. As the results show, the null hypothesis is rejec- 
ted at the 5% level in 15 of the 18 reported cases and at the 10% level in all cases. 

Overall, the results in table 3 provide even stronger evidence against the null 
hypothesis than those in table 2. They imply that the results of the regression test 
(5) cannot be interpreted solely in terms of the relationship between covariance 
stationary risk premia and the yield spread. Some component of the regression 
residual in (5) is correlated with the permanent component of the forward rate. 
Since forward rates contain unit roots, this means that the sum of the risk 
premium and the forecast error must contain a unit root as well. 

Tables 2 and 3 also show that the point estimates of the cointegrating 
regression coefficients sli and fll are relatively close to one. Thus, while our 
results indicate that a number of excess returns contain a unit root component, 
this component may be small empirically. As we will show below in section 5, 
a small unit root component sufficient to generate results like those in tables 
2 and 3 would be very hard to empirically detect with standard techniques. 
Thus, there is no necessary inconsistency between our cointegration results and 
the standard observation that excess returns appear stationary. 

4. Are the cointegration results robust? 

Our cointegrating tests are joint tests of the hypothesis that excess returns are 
stationary and interest rates contain unit roots. Although unit root tests cannot 
be rejected in interest rates, these tests cannot distinguish between roots equal to 
one or very close to one in finite samples. Since the asymptotic distribution of 
the estimators above are based upon the assumption that interest rates have unit 
roots, it is possible that our inferences are incorrect because interest rates are in 
fact borderline stationary. 



To address this issue, we consider the following thought experiment. Suppose 
that interest rates had roots close to, but strictly less than, one. In this case, serial 
correlation in the risk premia and/or correlation between the risk premia and 
the yield spread could produce estimates of a(1 and /?r in the cointegrating 
regressions that deviate from one due to standard omitted variables problems. If 
this were so, how likely are we to observed our estimates of 2, and fir? 

To evaluate this possibility we conducted Monte Carlo experiments where the 
data was generated from the following processes: 

R:+I = 0.998 R; + L’,+, - O.O65c, + 0.0571:,_ 1 - 0.175~,_~ 

- O.l13P_,, a; = 0.621, (14a) 

F’,’ = E,R:+r + (6:, f (f4b) 

4: = -0.291 + p4:_, + e,, 0; = 0.092. (14c) 

(14a) is a stationary ARMA(1?4) process estimated from data on the one-month 
T-bill. (14b) defines the forward rate as the sum of the expected one-month rate 
[implied by the ARMA process in (14a)] and the risk premia 4:. The dynamics 
of the risk premia are given by (14~). We parameterized this last equation to be 
consistent with the observed process for excess returns, F:. ’ - R:, 1, assuming 
that R:+l follows the process in (14a) and corr(v,,e,) = 0. 

We used this data generation process to examine the regression (8) with 
k equal to two: 

Ri+,= a0 + cc,F:.’ + u~,,+~. (15) 

Standard regression theory suggests that the relationship between the risk 
premia 4t and the estimates of r 1 will depend upon the degree of serial 
correlation p and corr(u,, e,). We therefore generated the empirical distribution 
for the estimates of aI based upon different assumptions about each of these 
parameters. Specifically, for a given p and corr(r,, e,), we generated a sequence of 
normal shocks {ut, e,) equal in length to our data sample. With these shocks we 
constructed series on R:, 1 and F:. 1 with (14), and used these generated series to 
run the regression in (15). This entire procedure was repeated 1000 times to form 
the empirical distributions. 

Table 4 reports the lower percentiles (l%, 5%, and 10%) of the empirical 
distribution using different values of p ranging from 0 to 0.9. This range includes 
p = 0.29, estimated from the actual data. We can use the empirical distribution 
of c(r to consider whether values of 0 consistent with those observed in the data 
are likely to produce our cointegrating results. 
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Table 4 

Monte Carlo distribution of cointegrating regressions assuming stationary regressors 

We assume that the data on the short rate R,’ and forward rate F,‘, ’ are generated by 

R:,, = 0.998 R,’ + L‘,+, - O.O65r, + O.O57v,_, - 0.1750,_, - O.l13a,_,, 0: = 0.621, (14a) 

F:, ’ = E,R:+, + 4:) (14’3 

4: = -0.291 + p&r + e,, 0; = 0.092. (14c) 

Using this data generation process, the table below reports the empirical distribution of the 
estimates of cxl from 

R:+I = x,, + ?r,F,‘.’ + u I.f+*’ 05) 

The percentiles in the left-hand margin refer to the left-hand tail of the empirical distributions of 0~~. 
All distributions are based on the results of 1000 experiments. The corresponding estimate of 0~~ in 

table 2 is = rl 0.921. 

p = 0.0 0. I 0.3 0.5 0.7 0.9 

(A) corr(n,, e,) = 0 

1% 1.001 0.999 0.993 0.974 0.953 0.78 1 
5% 1.008 1.006 1.000 0.99 1 0.970 0.860 

10% 1.011 1.010 1.005 0.999 0.979 0.886 

(B) corr(r,. e,) = -0.3 

1% 1.003 1.001 0.996 0.983 0.959 0.836 
5% 1.004 1.009 1 .OQ4 0.999 0.978 0.891 

10% 1.012 1.012 1.009 1.004 0.989 0.918 

(C) corr(t,, e,) = 0.3 

I % 1.002 0.997 0.993 0.976 0.944 0.780 
5% 1.009 1.005 0.999 0.988 0.964 0.830 

10% 1.010 1.008 1.004 0.995 0.973 0.855 

Panel A of table 4 reports the results based upon a benchmark case assuming 
no correlation between the risk premium and the interest rate, i.e., 
corr(u,, e,) = 0. The probability of observing an estimate for x1 equal to 0.921, as 
found in table 2, is less than 1% for autocorrelation coefficients p ranging from 
0 to 0.7. Only when p reaches 0.9 is the probability of obtaining our estimate 
greater than 10%. However, this value for p is inconsistent with the empirically 
observed estimate of 0.29. Panels B and C give the critical values for the lower 
percentiles of the empirical distributions when the correlation between the risk 
premium and the interest rates are -0.3 and 0.3, respectively. These results 

differ little from those in panel A. The probability of observing our estimate for 
x1 is greater than 1% only when we assume an autocorrelation coefficient equal 
to 0.9. 



Overall, these results suggest that we are unlikely to observe cointegrating 

coefficients as low as those reported in tables 2 and 3, even in the case where 
interest rates are borderline stationary, unless the degree of autocorrelation in 
the risk premia is almost as high as the degree of autocorrelation in interest rates 
themselves. However, the autocorrelations in excess returns are not nearly this 
high.’ 5 Thus, it appears unlikely that we would find the cointegrating coefficient 
estimates we do in tables 2 and 3 if interest rates and risk premia were jointly 
stationary. 

5. Excess returns with nonstationary risk premia 

To this point, our evidence suggests that excess returns appear to be much 
more persistent than previously thought. Under the assumption that interest 
rates contain unit roots, the cointegrating regression tests indicate that excess 
returns also have unit roots. Moreover, even if we allow for the possibility that 
interest rates are borderline stationary, our results indicate that excess returns 
must also be borderline stationary. These results are quite surprising since the 
autocorrelations in excess returns are empirically well below one. 

In this section, we reconcile our cointegrating regression tests with the low 
autocorrelations in excess returns. We begin by describing the link between the 
permanent disturbance to excess returns and the permanent disturbance to the 
interest rate. Using this link, we demonstrate that plausible relationships be- 
tween the stationary and nonstationary components of excess returns can 
generate both the cointegrating regression estimates we find and autocorrela- 
tion coefficients in excess holding returns well below one. For the present, we 
shall continue to assume that nonoverlapping forecast errors are white noise as 
standard rational expectations implies. Consequently, we shall focus on the 
dynamics of the risk premia as an explanation for the behavior of the excess 
returns. In section 6 we will relax the standard rational expectations assumption 
in order to provide an alternative explanation for the behavior excess returns. 

The results above provide information about the cointegrating reiationship 
between the risk premium and the interest rates. To see why, reconsider the 
cointegrating regression 

R :+J( = po + fi,F:.k + w,+k. (13) 

“Heston (1991), for example. finds that the autocorrelation of excess holding returns are well 
below one. 
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This equation estimates the cointegrating variables, 8’ = (1, -pi), for the 
vector, Xi z (R:+k, F:, k), such that /YX, is I(O)-stationary. Therefore, by con- 
struction, the excess return can be written as a stationary component and a unit 
root component that depends upon the unit root in forward rates, 

R’ - F13k = (fl1 - l)F,i’k + I(0) terms. f+k , (16) 

Because R:+k - E,R:+, is I(O)-stationary under standard rational expectations, 
the identity in (12) implies that R:+k - F:s k = -AN:+’ + I(0) terms. Combin- 

ing this expression with (16) gives 

-de:” = (pi - l)F:xk + I(0) terms. (17) 

Therefore, since forward rates and spot rates are cointegrated, the risk premium 
d@+’ must also be cointegrated with these rates according to the divergence 
between pi and one. 

If pi is close to one, as our results suggest, and if the variability in the 
I(O)-stationary component of the risk premium is large, then the unit root 
component in the risk premia may be difficult to detect with univariate time 
series tests of the excess returns. In our bivariate setting, however, the low- 
frequency relationship between spot and forward interest rates is sufficiently 
informative to detect the unit root components. 

5.2. Monte Carlo ecidrnce 

We conducted a series of Monte Carlo experiments to examine whether 
a small unit root component in the risk premium can reconcile our cointegration 
results with the conventional wisdom that excess returns are stationary. The 
experiments were based upon the following processes: 

R: = Ro.t + RI,,, R o., = 0.792R,, r-, + u,, a,? = 0.482, 

(184 
R 1.r = RI,,-, + u,, 

2 
gu = 0.219, 

F:-k = E,R:+k + AtI:+' , (18b) 

do:+’ = &., + 41,t, &., = -0.291 + e,, cr,Z = 0.092, 

(18~) 

Eq. (18a) describes an I(1) process for the short rate that comprises the sum of 
a random walk and an AR(l) process. This specification implies that the first 
difference of the short rate follows the ARMA(1, 1) process we estimate in the 



data.16 (18b) shows how forecasts of future short rates [derived from (18a)] are 
combined with the risk premia to form forward rates. (18~) specifies an I(1) 
process for the risk premia comprising the sum of a random walk #l,Z and 
stationary component &. !. (For notational simplicity we have suppressed the 
k superscript on these components.) The unit root component of the risk 
premium depends upon the permanent disturbance in the interest rates 
according to J.. This variable parameterizes the ratio of the variance of 
the I(1) component to the I(0) component in the risk premium. e.g.) 
J. = (var(~~,)~var(~~)). We will examine the effects of changing jI upon the 
cointegrating coefficients as well as the first-order autocorrelation in excess 
returns. 

In each of our experiments we first generated a sequence of normal shocks 
{e,, @,,a,) equal in length to our data sample. Given a value for L, we then 
constructed series for R:+k and F:’ k in (18) from these shocks. We then used 
these constructed series to both run the cointegr~ting regression 

R :+k = PO + B,F:,k + \v,+~, (13) 

and to estimate the autocorrelations in excess returns R:yk - F,!ek. These steps 
were repeated 10,000 times in each experiment. 

Table 5 reports the results of the Monte Carlo experiments for different levels 
of i. and for two different horizons, k = 1 and 6 months. Panel A illustrates the 
empirical distribution of the estimates of PI for the values of 3. ranging from 0 to 
0.10. The first three rows report the 5, 50, and 95 percentiles of the empirical 
distributions. The fourth row shows the p-values of the estimates we found in 
tables 2 and 3 with respect to each of these distributions. When d = 0 (i.e., when 
the risk premium process does not contain a unit root), the probability is less 
than 3% that we would find estimates as low as we do in tables 2 and 3; i.e., when 
k = 6, the p-value is 2.6%, and when k = 1, the p-value is less than 0.001. 
However, the estimates become quite likely for values of R( = var(~~~)/var(~~)) 
between 0.05 and 0.10. Thus, we conclude that our estimates are consistent with 
risk premium processes where only 5% to 10% of the variance comes from 
a unit root component relative to the stationary component.” 

lhThe estimated process is AR: = 0.792 AR:_, + rt - 0.862 u,_ $, CT: = 0.651. 

“These are probably conservative estimates of how large i has to be to explain our results. Our 
specification for the risk premia process in (I&) implies that all of the serial correlation in excess 
returns arise from the unit root component. Serial correlation in the stationary component 

6 would add to the persistence of the risk premia, which would push the cointegrating coefficient 
fu%her below one (as in table 4). The process in (18~) forces the variance of the unit root component 
(i.e., A) to be higher than the truth in order to explain the divergence of the cointegrating coefficient, 
fi L, from one. 
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Table 5 

Monte Carto distribution of cointegrating regressions with nonstationary risk premia.” 

We assume that the data on the short rate R,’ and farward rate Fj,k are generated by 

R: = Ro., + RI,,, R o. i = 0.792Ro.r-, _t I:,, 0, = 0.482, 
(18a) 

R 1.8 = RI.,-1 + ut, cr: = 0.219, 

F:.k = E,R:+& f dO:+r, (18b) 

do:+’ = &., + &.r. &I., = -0.291 -i-e,? a: = 0.092. 
(IQ) 

4r.i = &-r -I- JGGKJn,- 

Using this data generation process, the table reports the empirical distribution of the estimates 
of /Ii from 

R:,, = fl,q + /IIF,‘,” + w,+~, (13) 

and the autocorrelations pi, in excess returns R:.ck - Fj,‘. The left-hand margin shows the 
percentiles of the empirical distributions. All distribution are based on the results of 10,000 

experiments. 

ii=1 k=6 

7.: 0.0 0.05 0.10 0.0 
- .-.l____--.-.-.- 

(A) Marginal distribution of j?, 

0.05 0.10 

5% 099 f 0.916 0.888 0.792 0.737 0.7t7 
50% 1.004 0.930 0.903 0.940 OK/I 0.846 
95% I.021 0.95ti 0.323 L.009 0.935 0.906 

p-value 0.000 0.127 0.936 0.026 0.074 0.105 
____I____-_...__._ ,. __ 

(B) Marginal distribution of pn: for R:,, - F:.!’ 

5% - 0.101 - 0.019 0.024 - 0.212 - 0.193 - 0.177 
50% - 0.003 0.118 0.199 - 0.027 0.007 0.033 
95% 0.092 0.343 0.503 0.160 0.206 0.255 

.._._..__ ..__...__-.. ..__ -- . .._. - 

(C) Conditional distributions of pk for R,‘+& - F:.’ [conditioned on j?r < ,!?I J 

5% .- 0.098 - 0.007 0.056 - 0.245 - 0.242 - 0.239 
50% .--- 0.008 0.119 0.194 - 0.066 - 0.066 - 0.050 
95% 0.089 O.271 0.414 0.133 0.113 O.131 

-.---- - 

(III! Conditional distributions of ok for Rj,& - F:,L [conditioned on fir 2 P’J 

5% - 0.096 - 0.088 - 0.049 - 0.204 - 0.25 I - 0.216 
50% - 0.004 0.024 0.056 - 0.030 0.054 - 0.039 
95% 0.093 0.121 0.175 0.133 0.128 0.148 

. -..-- --- _ 

“The p-values are calculated using the estimates of @I = 0.921 (k = 1) and /St = 0.757 (k = 6) from 
table 3. /le. and @’ denote the 5% and 95% critical vahres for /St calculated from the empirical 
distributions. pi is the ith autocorrelation coefficient. 
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This evidence shows that a small unit root component in the risk premia can 
generate our cointegrating regression results. However, it does not explain why 
standard unit root tests on excess returns would not pick up this component, 
nor why the autocorrelations in excess returns are quite small. To address this 
issue, panel B of table 5 provides the 5, 50, and 95 percentiles of the distribution 
of Pk, the kth-order autocorrelation ofexcess returns, for each of the levels of Lr8 
As the panel shows, the upper tail of the distribution of first-order autocorrela- 
tion is about 0.5 for E, = 0.10 and 0.3 for 1” = 0.05. (The probability of observing 
both p1 = 0.29 and p6 = -0.07 estimated in the actual data are greater than 
10% in each case.) Thus, the autocorrelation coefficients are typically well below 
one, even though a unit root component is incorporated into the returns by 
construction! This evidence indicates that there is a less that 5% probability 
that we would observe pk greater than 0.5 even though the unit root component 
in the risk premia is sufficiently large to generate our cointegrating regression 
results. 

Examining the joint distribution of the cointegrating regression coefficient, 
PI, and the autocorrelation coefficient, pk, provides even stronger evidence for 
these basic findings. Panels C and D in table 5, respectively, report the percen- 
tiles of the distribution of pk conditioned on the cointegrating coefficients being 
in the lower and upper tails of their distribution. For the k = 1 case, 
/3i coefficients in the lower 5% of the distribution generate estimates of p1 that 
are slightly higher in panel C than for the corresponding estimates when fll is in 
the upper tail in panel D. Moreover, the probability of observing the autocorre- 
lation coefficients we observe still remains high even when we condition upon 
unrealistically low values of 8,. We therefore conclude that unit root compo- 
nents in risk premia consistent with our estimates of pi in the cointegrating 
regressions would be very unlikely to generate autocorrelation coefficients in 
excess returns even as high as 0.5. 

Overall, these results indicate that if the sample variance of the unit root 
component in excess returns is 5% to 10% of the variance of the stationary 
disturbances, then we would be very likely to find: (a) cointegrating regression 
results consistent with our estimates and (b) low serial correlation in excess 
returns. Thus, there is no inconsistency between our cointegrating results and 
standard test results indicating that excess returns appear I(O)-stationary. 

6. Excess returns with shifts in the interest rate process 

The results in the previous section show that a small unit root in excess 
returns can simultaneously explain our cointegration results and the observed 

“Note that excess returns at a six-month horizon contain overlapping forecast errors that induce 
an MA(5) term. Taking the sixth-order autocorrelation avoids picking up the effects of the overlap. 
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autocorrelations in excess returns. Since excess returns are comprised of a risk 
premia and forecasts error, under standard rational expectations, the unit root 
in excess returns must be attributable to the risk premia. From this perspective, 
our results highlight the need for future research examining the source of the 
I( I)-nonstationary component in the risk premia. 

There exists an alternative explanation for the presence of permanent shocks 
in excess returns, however. In this section, we will show how rational expecta- 
tions of shifts in the process of interest rates can produce systematic forecast 
errors. It is therefore quite possible for excess returns to contain small unit roots 
even though the risk premia are I(O)-stationary. We should stress that this 
discussion is only meant to be suggestive. Our aim is to demonstrate that 
occasional shifts in the interest rate process can make excess returns appear to 
contain permanent shocks. The question of whether permanent shocks to the 
risk premia or shifts in the interest rate process, or both, contribute to the unit 
root in excess returns is left for future research. 

Rational forecasts qf‘process sh#s. The effects of rationally expected shifts in 
the interest rate process may be illustrated with an example. Suppose the market 
believes at time t that the policy process generating interest rates may change by 
period t + j with probability rr,, j. Let interest rate realizations from the current 
process be denoted R,, f and realizations from the alternative process be written 
R A, f, where we suppress the superscript k for maturity to provide expositional 
clarity. In this case, the market’s assessed forecast at time t of the rate at t + j is 

E,R,+j = (1 - n,,j)E,Rc,,+j + ~,,jE~RA,t+j~ (19) 

where E,Rc,t+j and E,RA,,+j are the expected values conditional upon time 
t information of time t + j rates that are realizations from the ‘C’ process the ‘A’ 
process, respectively. 

Now suppose that ex post the interest rate process continues to be driven by 
the current process ‘C’.’ 9 In this case, the observed rates would be uncorrelated 
with the forecasts that were conditioned upon the current process ‘C’, i.e., 

E{R C,t+j - ErRc.t+j } = 0. However, the actual market forecast error may be 
correlated with current information. For example, if the forecasting horizon is 
j periods ahead, the market’s error in forecasting when viewed ex post is the 
difference between the actual realized rate and the forecast given in eq. (19): 

E t+j = R,+j - E,R,+j 

= (R c,t+j - E,R c. t+j) + n,, j(E,Rc, t+j - ErRA, t+j) (20) 

= (R C.r+j - EtRC,t+j ) + 6t,jEtRC,r+j, 

“For the following analysis, this condition is more restrictive than we need. As will be discussed 
below, we require only that any switches in the process occur infrequently within the sample. 



where 6r.j E Z,,j(l - /Lt,j) and E,R,, t+j = pl.jE,Rc, t+j. Although the first 
term on the right is uncorrelated with current information, the second term 
depends upon the efficient forecast conditional upon the current process accord- 
ing to a parameter that reflects both the probability of a switch, II,,~, and the 
difference between forecasts, (1 - ~,,j).20 

Eq. (20) provides a simple way to express the implications of process switch- 
ing. When there is no anticipated switch, 6 is always equal to zero and we have 
the standard rational expectations condition on the forecast errors since the 

mean of (Rc. t+j - E,Rc, r+j ) is zero. But if a switch is anticipated, 6, varies over 
time and measures the direction and magnitude of the switch. For example, if 
people anticipate that rates will shift to a process with a higher conditional 
expectation, then ErRA, t+j > E,Rc, t+j so that ,u~,~ will be greater than one. If 
this shift does not occur in the sample, then 6,,j will be negative, on average, so 
that the sample mean of the forecast errors will also be negative.21 

The implications of process switching for the behavior of excess returns are 
easily seen. Combining the identity in (12) E,R,i+k = F:,k - de:+‘, with the 
link between the true expected interest rate and the expectation conditional 
upon the current process, E,R:+,, = (1 - 6,,k)E,Rh,,+k, we have that E,R&+, = 
[F:,k - Llu:+ l ]/(l - 6,. k). When future rates are realized from the current 
process, we may use this expression to write the excess returns as 

R;,,+, - F:- k = [d,J/(l - h,.,)]F:‘k - (1 - 6,&-‘@+’ 

+ R:‘,,+k - E&,,+,. (21) 

Eq. (21) shows that excess returns will share the same unit root process as the 
forward rate during periods where S,,, persistently deviates from zero. Thus, 
anticipated switches in the interest rate process can generate the appearance of 
unit roots in excess returns which in turn will cause the sample cointegrating 
coefficient on the forward rate to deviate from one. Notice also that the 
coefficient on the forward rate depends upon the magnitude of the probability of 
a switch over k periods, x,, k, through the term 6,. k. Insofar as the probability of 

“‘As discussed in Lewis (I 989), a similar relationship arises if the market believes that a policy shift 
may have recently taken place. 

‘IIf switches occur within the sample, but market participants believe rates may revert back to the 
old process [as in Lewis (1991)] or they are learning about the new process [as in Lewis (1989)], then 
forecast errors would continue to have the same basic form as (20). In this case, we would have 

G+, = (R,.,+, - E,R,,,+, ) + (1 ~ ~r.,W -(P’~.,)-‘IE,RA.,+,. 

With interest rate realizations arising from process ‘A’, the first component would be white noise, 
while systematic forecast errors would arise from the second term. If the probability of a shift back to 
process ‘c’ is not zero, then forecast errors with incorporate a component that depends upon the 
expected alternative process. 
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a switch increases with k, (21) suggests that we should expect to see cointegrating 
coefficients ‘pushed’ further below one as the forecast horizon lengthens. Inter- 
estingly, this pattern is precisely what we observe in tables 2 and 3. 

It is worth stressing that this discussion does not rule out the possibility that 
the risk premium contains a unit root. As (21) shows, permanent shocks to the 
risk premia can also induce unit roots in excess returns through the second term 
(1 - 6,,,)-‘de:f1. If we redefine $i,, in our Monte Carlo experiments to 
represent the unit root components in [b,,,/(l - 8,,,)]F:%k - (1 - S,,,))’ x 
Ad:+‘, the results in table 5 can be reinterpreted as showing the combined 
effects of process shifts and/or permanent shocks to the risk premia. 

In summary, if agents anticipate shifts in the interest rate process, then excess 
returns may appear to contain a unit root component whether or not the risk 
premia are subject to permanent shocks. This component will trend with the 
permanent component of forward rates, biasing the cointegrating coefficient 
estimates on forward rates away from one. 

7. Reinterpreting standard regressions 

The results above provide evidence of small but statistically significant perma- 
nent disturbances in excess bond returns. These findings raise the question of 
how these disturbances contribute to the standard findings of regression tests in 
table 1. In this section, we return to the results in table 1 and consider how they 
are affected by the presence of permanent shocks to excess returns. 

For this analysis we will use a decomposition of interest rates and risk premia 
similar to that introduced in the Monte Carlo experiments described in sec- 
tion 5. Based upon the discussion in section 6, we now recognize that the unit 
root in the predictable component in excess returns, 4 11, can come from either 
expectational errors or risk premia or both. We represent the process for the 
short rate and this predictable excess return as 

R: = Ro,, + RI,,, R o.t -I(O), RI,, = RI,,-1 + u,, 
(22) 

6 = 40,t + 4l.h 40.1 -I(O), 41,, = 41.t-1 + h. 

Our analysis below allows for correlation between I(0) components of Rf and 
4,, but not between these components and u*.” 

22Allowing for this correlation significantly complicates the analysis, but the basic tendencies of 
the estimators will continue to hold. Notice also that we could incorporate the effects of process 
shifts if we defined ~+5 r, , as the unit root component in [~?,,~/(l - 6,,,)]F,‘,’ - (1 - a,,,))’ do:+’ 
and assumed that all realizations came from the current process. Allowing for actual shifts in the 
process would add further complications to the analysis that we leave for further work. 
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In order to examine the regression coefficients across equations involving 
different maturity bonds, we need to place some minimal restrictions on the 
structure of predictable excess returns across maturities. For this purpose, we 
assume that the unit root components of these returns have a single-factor 
structure: 

d4.t = ~(~)~1,t. (23) 

Eq. (23) does not place any restriction on the total number of factors governing 
the risk premia since the stationary components may have a multiple-factor 
structure.23 

7.1. Implications ,for long-rate regression tests 

We can use the structure in (22) and (23) to evaluate the effects of permanent 
disturbances upon the regression tests reported in table 1. For this purpose, it 
will be useful to define the yield spread as VR: E RF - R:, so that the first 
regression test of the change in the long rate on the yield spread in eq. (3) can be 
written as 

(k - I)(R;;; - RF) = a0 + a, VR: + u l.f+l’ (3’) 

Using eq. (1) and (2) and standard regression theory, the estimate of a, is 

a,=l- 
covA6:, VR:) 

var,( VR:) ’ 
(24) 

where var,( .) and covT( .) denote the sample variance and covariance for 
sample size T. 

To relate these sample moments to the estimates of a, when the risk premium 
contains a unit root component, we note that the spread can also be written as 

VR: = VRkg,t + VR:, (, where the subscripts 0 and 1 refer to the I(0) and I(1) 
components, respectively. Using this decomposition, the appendix shows that 
the sample estimate of a, can be written as 

U T - 1 = (& - 1) 
varr( VRkO, ,) 

var,(VR:, ,) + var,(VRk,, I) 

r(k)’ + k2var,( VRk,,r)varr(4 r, r)-l ’ 
(25) 

131n this respect (23) is consistent with Stambaugh’s (1988) finding that a single-factor structure is 
rejected across maturities of one-period holding returns. The only assumption in (23) is that interest 
rates across maturities are cointegrdted, consistent with our findings above. 
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Factor structures for the I(1) component of the risk premia, y(k) = .4’ 
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where T(k) = ~~r~y(k - i) and C& is the estimate of a, that would be obtained if 
the risk premium were stationary (based on T observations). 

In addition to the conventional factors that push the estimate of a, away from 
one when the risk premia are stationary (identified by &. - l), eq. (25) shows 
that ar will depend upon the factor structure y(k) and the sample covariances 
and variances of the spreads and the I( 1) component of the risk premia. As the 
sample size increases, the variance of the unit root in the yield spread will 
explode and the first term on the right-hand side will vanish. Similarly, the 
variance of the unit root in the risk premium, varT(4i, *), will become arbitrarily 
large, and the last term will collapse to the ratio of factor structure parameters, 
ky(k)/r(k). Thus the limiting value of aT reveals nothing about the correlation 
between the stationary components of the risk premia and the yield spread. 

Fig. 1 plots the limiting value of a, [equal to 1 - ky(k)/r(k)] for different 
maturity regressions and different factor structures. The upper panel of the 
figure plots examples of different factor structures y(k) = Ak. The lower panel 
shows the corresponding limiting coefficients across maturities. For all the 
factor structures, the coefficients tend to decline as the maturity increases. 
Interestingly, the estimates of a, in table 1 show a similar pattern. 

7.2. Implicutions ,for short-rute regression tests 

In the case of the second standard regression, 

k-l 

(l/k) C R:+i - C(k - l)/klR: = bo + bl VR: + U2,t+k, 
i=O 

the framework in (1) and (2) implies that the estimate of hi is given by 

(5) 

(26) 

When the predictable component of excess returns follows an I(1) process, the 
appendix shows that 

br - 1 = (6, - 1) 
var,( VR:O. 0 

varT(VRt,,) + varT(VRkg,,) 

Wd2 
r(k)’ + k’VarT( VRkg, ,)VarT(4 1, t)-l ’ 

(27) 

where bT is the sample estimate of bl if the risk premium is stationary. 
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Inspection of (27) reveals that as the sample size increases and the variance of 
the unit root components rises, the first term and the second term on the 
right-hand side go to zero and to one, respectively. Thus, the estimate of b, goes 
to zero regardless of the factor structure. Interestingly, this result also appears 
consistent with the evidence in table 1, where the point estimates of bl are all 
relatively low and close to zero. Furthermore, there is no apparent pattern to the 
coefficients across maturities. 

8. Concluding remarks 

In this paper, we used a cointegrating regression framework to test whether 
excess returns of U.S. T-bills are stationary. Surprisingly, we rejected this 
hypothesis for bonds of two- to eleven-month maturities. The cointegrating 
regression analysis suggests that a component of excess returns is subject to 
permanent shocks. Monte Carlo experiments show that a permanent disturb- 
ance with variance equal to 5% to 10% of the stationary disturbance in excess 
returns can explain our results. A component of this size would induce both 
cointegrating regression estimates compatible with our findings and low serial 
correlation in excess returns. We also demonstrated that this unit root compon- 
ent would tend to make some standard regression tests reject at longer horizons, 
but not others. This implication is also consistent with the empirical evidence. 

The cointegrating results presented in this paper can be interpreted in two 
ways. First, time-varying risk premia could contain unit roots, in contradiction 
to conventional wisdom. Second, errors in forecasting interest rates could be 
systematically biased over some periods in the post-war sample reflecting 
rationally anticipated shifts in interest rates processes. It is the task of future 
research to sort out these explanations. 

Appendix 1: Cointegrating methods 

In this appendix, we describe the methods used in section 3 to adjust for the 
small sample bias in the cointegrating regressions (8) and (13). For more detailed 
and thorough discussions, see Hansen and Phillips (1989) and Stock and Watson 
(1989). We will focus upon eq. (8) although the same analysis applies to (13) as well. 

For notational simplicity, note that eq. (8) may be written as 

Yt = YX, + u1t 64.1) 

Ax, = uzt, 64.2) 

where ulr and u2, are stationary, y, = Rf-’ ,xt = Ff-‘- ‘, and the constant 
term is omitted for simplicity. We are interested in testing y = 1. Since x, is 
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Table A.1 

Cointegrating regressions with bid and ask ratesa 

This table examines the cointegrating regressions 

(k - l)R$,’ = a, + r,(k ~ l)FP”~‘~’ + ul,,+l, (8) 

R “1 
I+k = PO + BIFP’~’ + “t+k? (13) 

FY1.k = y0 + 2’, FP1.k + l,, 

where the ‘a’ and ‘b’ superscripts denote ask and bid rates, RF is the yield on a k-month U.S. T-bill 

and F{,’ is the forward rate contracted at time t for a j period bond to be bought at I + 1. The table 

below reports Wald tests for the hypotheses that x1 = 1, /J’, = 1, and ~1 = 1, using the Stock and 

Watson procedure to adjust for small-sample bias in the OLS coefficient estimates. Marginal 

significance levels are in parentheses. Data are monthly U.S. T-bill rates from CRSP for the period 

June 1964 to December 1988. 

Maturity k 

in months 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

(1) (2) (3) 

H,: c(, = 1 H,: [I, = 1 H,: y, = 1 

(M.S.L.) (M.S.L) (M.S.L) 

5.949 1 I.242 0.721 

(0.015) ( <O.OOl) (0.396) 

12.588 4.176 3.665 

( <O.OOl) (0.041) (0.056) 

3.179 3.386 2.129 

(0.074) (0.066) (0.144) 

1.709 2.300 1.757 

(0.191) (0.129) (0.185) 

1.394 4.172 2.680 

(0.238) (0.041) (0.102) 

0.171 5.331 2.475 

(0.679) (0.021) (0.116) 

1.301 4.965 3.300 

(0.254) (0.026) (0.103) 

3.158 6.465 1.103 

(0.053) (0.011) (0.294) 

1.243 6.465 3.101 

(0.265) (0.047) (0.078) 

0.984 6.011 2.680 

(0.321) (0.014) (0.102) 

“The statistics in columns (1) and (2) use the same StockkWatson procedure as tables 2 and 3. For the 

statistics in column (3), we include three leads and lags of dFP’,’ on the right-hand side, and allow 
for autocovariances up to six lags in the varianceecovariance matrix. 
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endogenous, it is likely that cov(x,,ur,) # 0. In this case, ?/ will be biased in any 
finite sample. Therefore, test statistics on y must take account of this bias. This 
bias arises even though the estimate of y remains consistent. We use two 
methods to adjust for the bias. Below, we give the steps for estimating (A. 1) and 
(A.2) using each of these methods. 

Hansen and Phillips method 

(1) Estimate (A.l) and (A.2) to get the estimates of uIr and Us, and the OLS 
estimate of ‘J. For future reference, define the vector of residual estimates as 

ut = CUIt,UZrl’. 

(2) Calculate 

Y ; = Y, - L’2,,Q;,‘Ax,, 

where 

ck[.Qij]=T-‘~ 
I 

u,u; + T-’ c w,~ 
r=1 r=l 

i.e., 52 is the Newey-West estimator of the varianceecovariance matrix with 
1 lags of autocovariances and weights w. 

(3) Calculate the ‘bias-adjusted’ estimate of y as 

ir T l-1 

where 

r T I T 1 

(4) Calculate a modified Wald statistic, known as the G-statistic, to test ‘J+ = 1. 
This G-statistic is 

Gl = (y’ - 1)2 [Q”.2+Ixi)-1]-1 -x:r,, 

where 

Q 11.2 = Qll - 5212522;'Q2, 

Note that subscript I refers to the number of lags included in the estimators 
Q and /1. 
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Stock and Watson procedure 

Rewrite eq. (A.l) according to 

L’r = yo + i’x, + p(L)dx, + Ull, (A.3) 

where p(L) is a polynomial in the lag operator, L, i.e., B(L) = (L” + L”-’ 
+ . . . + L + 1 + L-l + . . . + L-“+l + Lm”). The idea to rewriting (A.l) in 

this form is to include as many of leads and lags of dx, on the right-hand side of 
the equation to make uit independent of x. This implies that the asymptotic 
distribution of the OLS estimator of y is normal. Intuitively, including the leads 
and lags of dx, on the right-hand side gets rid of the simultaneous equation bias 
problem. Note that since ul( will be serially correlated in general, the Wald test 
of 7 = 1 from (A.3) should also use the NeweyyWest estimator for the 
covariance matrix. The results reported in the text are not sensitive to these 
choices, however. 

Appendix 2: Description of Monte Carlo experiments in tables 2 and 3 

The Monte Carlo p-values reported in tables 2 and 3 we calculated as follows: 

(1) 

(2) 

We estimated the StockkWatson version of eqs. (8) and (13), saving the 
residuals and the coefficient estimates. As discussed in Stock and Watson 
(1989), the residuals from this equation are independent of the entire se- 
quence of the right-hand-side variable, and so can be treated as strictly 
exogenous. In the case of (13), the residuals contain overlapping forecast 
errors, and so it is necessary to remove the induced serial correlation before 
sampling. For this purpose we estimated AR(6) models for the residuals and 
used the estimated errors in the sampling procedure described in (2) below. 

In the experiments that assumed conditional homoscedasticity, we then 
drew randomly from the distribution of residuals in the data. In the experi- 
ments that allowed for conditional heteroscedasticity we first estimated an 
ARCH process with residuals. 24 We then scaled the residuals by the predic- 
tions of the ARCH model and drew randomly from the scaled distribution. 
Finally, we resealed the distribution of residuals using predictions from the 
ARCH process and used these to generate the time series process of rates. 

141n estimating the ARCH process, we used a simple rule of thumb to be consistent across 
maturities. We first estimated an ARCH process of order six and checked to make sure that the 
implied variances were positive. In the few instances where negative variances were encountered, we 
reduced the order of the ARCH process until variances were always positive. 
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(3) 

(4) 

(5) 

(6) 

M.D.D. Evans and K.K. Lewis, Do stationary risk premia explain if all? 

In table 2 we took the coefficient estimates for a0 (and the Stock-Watson 
coefficients), set a, = I, and generated a time series for Rf,j equal to the 
number of observations, 294. In table 3 we took the coefficient estimates for 
fiO (and the Stock-Watson coefficients), set fll = 1, and generated a time 
series for R :+k. In this instance we used the estimates of our AR(6) model to 
generate a new set of serially correlated residuals (due to the forecast 
overlap) from which we then generated a new time series for R:+k. 

Using the generated time series for rates on the left-hand side, we estimated the 
cointegrating regressions (8) and (13) and saved the estimates of czl and pi. 

We then repeated steps (2) through (4) 1000 times to from empirical distribu- 
tions for the estimates. 

The p-values are calculated by comparing the empirical distributions against 
the estimates in column (1) of each table. 

Appendix 3: Derivations of the regression coefficients in section 7 

To calculate the expression in (25), we first note that (24) can be rewritten as 

UT = 1 - y(k) 
COVT(41. t> VR:, t) cov,C4: - ?/(W,, t> VRkg, 1) 

var,( VR:) - var,( VR:) 
(A.4) 

Eq. (A.4) makes use of the fact that the I(1) and I(0) components of the risk 
premia and yield spread are uncorrelated with one another. Next we use the 
framework in (1) and (2), together with the assumption about the factor structure 
in (23), to write the I(1) component of the yield spread as 

k-2 

w, f = (l/k) c dk - iMl.t. (A.5) 
i=O 

If we substitute this expression in the second term on the right of (A.4), and note 
that var,( VR:) = var,( VR:, ,) + var,( VRk,, ,), we obtain 

+=l- 

qyi2 Y(k - i)vard41, A 
1-O 

varT i*g2y(k - i)cjl,, + vard VRkg, J 
1-O 1 

_ covddd - GM~, t> VRkg. t) 

var,( VR:, ,) + var,( VRk,, ,)’ 
(A4 



M.D.D. Evans and K.K. Lenis, Do stationary risk premia explain it ail? 317 

Finally, we note that when the risk premia is I(O)-stationary, the estimate of the 
regression coefficient a, is 

(A.7) 

Combining (A.7) with (A.6) and simplifying gives the expression in (25). 

To obtain the expression in (27) we substitute for 4:;; in (26) using (23), 

covTb(k - +$I, f, vR:, ,) 
var (vRk) 

T f 

As before, we have made use of fact that the I(1) and I(0) components of the risk 
premia and yield spread are uncorrelated with one another. Also, we note that 
when the risk premia is I(O)-stationary, the estimate of the regression coefficient 

b, is 

‘“i2 
(A.9) 

Substituting (A.5) in (A.8) and combining the result with (A.9) gives, after some 
simplification, the expression in (27). 
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