Search frictions and market power in negotiated price markets

Jason Allena Robert Clarkb Jean-François Houdec

Abstract

This paper develops and estimates a search and bargaining model designed to measure the welfare loss associated with frictions in oligopoly markets with negotiated prices. We use the model to quantify the consumer surplus loss induced by the presence of search frictions in the Canadian mortgage market, and evaluate the relative importance of market power, inefficient allocation, and direct search costs. Our results suggest that search frictions reduce consumer surplus by almost $20 per month per consumer, and that 17% of this reduction can be associated with discrimination, 30% with inefficient matching, and the remainder with the search cost.

aThis version: April 24, 2014. First version: February 2, 2012. Correspondence to Jason Allen: Bank of Canada, Ottawa, Ontario, K1A 0G9; Email: jallen@bankofcanada.ca, bRobert Clark: HEC Montréal, CIRANO and CIRPÉE, Montreal, Quebec; Email: robert.clark@hec.ca, cJean-François Houde: Wharton School, University of Pennsylvania, 3620 Locust Walk, Philadelphia, PA 19104, USA. E-mail: houde@wharton.upenn.edu. This research has benefited from the financial support of the NSF (SES-1024840). We thank the Canada Mortgage and Housing Corporation and Genworth Financial for providing us with the data. We also thank the Altus-Group. We thank the many seminar participants who have provided feedback on this paper. We have greatly benefited from discussions with Ken Hendricks, Ali Hortacşu, Matt Lewis, Jack Porter, Alan Sorensen, and Andrew Sweeting. The views in this paper are those of the authors and do not necessarily reflect those of the Bank of Canada. All errors are our own. This paper has previously circulated under the title: “Price negotiation in differentiated product markets: The case of insured mortgages in Canada”.

1 Introduction

In a large number of markets, prices are determined through a negotiation process between buyers and sellers. Our focus in this paper is on one such environment: the Canadian mortgage market. In this market, national lenders post common interest rates, but in-branch loan officers have considerable freedom to negotiate interest rates directly with borrowers. Consistent with this practice, less than 25% of new home buyers pay the posted-rate, and observed financial characteristics of borrowers explain roughly 40% of the variance of the interest rate spread between transaction rates and the cost of funds.\footnote{Prices are dispersed despite the fact that banks are fully insured against default risks, and consumers purchase homogeneous mortgage contracts. See Allen et al. (2013) for a descriptive analysis of dispersion in this market.} Price negotiation is not unique to the Canadian mortgage market. For instance, while U.S. mortgage lenders post market-specific interest rates, Hall and Woodward (2012) document that brokers charge different closing fees for seemingly homogenous services, by bargaining directly with borrowers.

In negotiated-price markets, transaction prices are determined by the relative bargaining leverage of buyers and sellers. On the seller side, leverage depends on the spread between the posted price and costs. For buyers, leverage is created by the threat of obtaining competitive offers. Importantly, the credibility of this threat depends on the level of competition and product differentiation between sellers, and on the cost of searching for multiple offers. In our setting, search is costly for most consumers both because of the difficulty of obtaining information about prices, and because of the time cost associated with haggling with multiple sellers. In addition, most consumers combine the majority of their financial services, including their mortgage, with the one bank, and face sizable switching costs. Therefore, while mortgage contracts are homogenous across lenders, banks offer differentiated services.

The main objective of this paper is to quantify the welfare impact of search frictions in this class of markets. To do so, we build and estimate an equilibrium model of bargaining with asymmetric information that incorporates switching costs and imperfect competition into a setting where consumers endogenously choose whether or not to search for multiple offers. This allows us to disentangle price differences caused by price discrimination from those caused by cost differences, and to estimate the distribution of costs for consumers of haggling. We use the estimated model to measure the effect of eliminating search frictions on consumer surplus, and to analyze how competition attenuates these frictions in determining the distribution of negotiated prices.

Despite its prevalence, negotiation-based pricing has largely been ignored by empirical researchers. The main contribution of this paper is therefore to propose a tractable model that incorporates three key features shared by most negotiated price markets: (i) the existence of search frictions, (ii) market concentration and differentiated products, and (iii) bargaining between buyers and sellers. Although previous papers have studied related questions with models that incorporate some of these features, none have combined all three in a coherent framework. First, while
there exists an extensive literature in Industrial Organization (IO) on price competition in differentiated product markets, it has so far ignored dispersion in transaction prices across consumers, and/or abstracted from the price-setting mechanism actually used in the market. Second, the IO search literature has focused mostly on models in which firms offer random posted-prices to consumers irrespective of their characteristics, thereby ignoring the presence of price discrimination. Third, there is a growing empirical literature evaluating market power in markets with price negotiations, using frictionless bargaining models with perfect information. Abstracting from information and search frictions implies that negotiations never fail, and allocations are efficient. Finally, there is a large literature in labor economics and finance studying search and matching frictions in markets with bargaining. However, the models used in these literatures do not address the fact that different buyers face different market structures, and, as a result, would mis-measure the bargaining leverage of consumers in concentrated markets such as retail banking.

The closest paper to our’s in the search and bargaining literature is Gavazza (2013), who studies the secondary business-aircraft market, and measures the misallocation of planes caused by the presence of search frictions relative to a perfectly competitive Walrasian market. In contrast, we evaluate the welfare cost of search frictions relative to a counter-factual environment in which consumers are able to freely obtain a large number of quotes, while still facing an imperfectly competitive market. This allows us to quantify the consumer surplus loss due to the presence of price discrimination and market power, which is a first-order concern in many negotiated price markets. Indeed, a large number of papers have tested for the presence of price discrimination by analyzing negotiated prices in the markets for new cars (Goldberg (1996), Scott-Morton et al. (2001), and Busse et al. (2006)), hospital equipments (Grennan (2013)), and health insurance (Dafny (2010)). Our model allows us to quantify the importance of search frictions in generating such price discrimination opportunities.

We build a two-period search model, in which incumbent banks can price discriminate based on the expected value of their clients’ search opportunities. In particular, individual borrowers are initially matched with their main financial institution (home bank) to obtain a quote, and can then decide, based on their expected net gain from searching, whether or not to gather additional quotes. If they reject the initial offer and choose to search, lenders located in their neighborhood compete via an English auction for the mortgage contract. This modeling strategy is related to

2In their study of the demand for new automobiles Berry et al. (2004) use the median transaction price. Langer (2011) exploits price differences across car buyers of different demographic groups in a model of third-degree price discrimination, but abstracts from individual bargaining.

3See for instance Hortacsu and Syverson (2004), Hong and Shum (2006), and Wildenbeest (2011). There is also a large literature in economics and marketing, devoted to measuring the magnitude of consumer search costs, using exogenous price distributions (see for instance Sorensen (2001), De Los Santos et al. (2011), and Honka (2012)).

4See for instance Grennan (2013), Lewis and Pflum (2013), and Gowrisankaran et al. (2013)). Crawford and Yu-rukoglu (2011) estimates a related model applied to the cable market.

5The on-the-job search and finance literatures uses a similar price-setting mechanism, for instance Postel-Vinay and Robin (2002), Dey and Flynn (2005) and Duffie et al. (2005), but do not study concentrated markets with product differentiation.
the search and bargaining models developed by Wolinsky (1987), Chatterjee and Lee (1998), and Bester (1993), in which consumers negotiate with one firm, but can search across stores for better prices.

In this framework, market power arises from three sources. First, the initial bank visited by a consumer is in a quasi-monopoly position, and can tailor individual offers to reflect the consumer’s outside option. In addition, all lenders in our data-set offer multiple complementary financial services. Therefore, to the extent that the cost of switching banks is non-negligible, home banks offer a differentiated service, which reduces the bargaining leverage of consumers. Finally, the small number of lenders available in the market allows banks to earn an additional profit margin.

To estimate the model we use detailed administrative data on a large set of approved mortgages in Canada between 1999 and 2002. Our analysis focuses on individually negotiated contracts, thereby excluding transactions generated through intermediaries (e.g. mortgage brokers), which account for about 25% of total transactions. These data provide information on features of the mortgage, household characteristics (including place of residence), and market-level characteristics. An advantage of our setting is that all of the mortgage contracts in our sample are insured by the government. This allows us to abstract from concerns related to the risk of default, and focus on homogeneous contracts.

In order to quantify the magnitude of search costs, relative to other forms of loyalty, we supplement these mortgage-contract data with aggregate moments obtained from a survey of the shopping behavior of new mortgage buyers. We use this auxiliary source of information to calculate the search probability across different demographic groups: city size, income group, region, and new/previous home buyers.

The key parameters generating market power are those related to search and switching costs, and the relative importance of cost differences across lenders. We estimate that firms face relatively homogeneous lending costs for the same borrower. In contrast, we estimate that borrowers face significant search costs and loyalty-premium. We find that the median consumer in our data faces an upfront a search cost of $1,028. In addition, consumers are willing to forego on average $22 a month to stay with their home bank, and potentially avoid having to switch banks.

The presence of search costs and differentiation generates nearly 60% of the average positive profit margins. The average profit margin above the marginal cost of lenders is estimated to be slightly lower than 30 basis points (bps), which leads to a 4.31% average markup. Not surprisingly, profit margins are also highly dispersed: the inter-decile range is equal to 55 bps, or about twice the median margin. This corresponds to about 50% of the residual dispersion of transaction rates.

In order to quantify the welfare cost of search frictions, we perform a set of counter-factual experiments in which we eliminate the search costs of consumers. The surplus loss associated with search frictions originates from three sources: (i) misallocation of buyers and sellers, (ii)
price discrimination, and (iii) the direct cost of gathering multiple quotes. Our results suggest that, overall, search frictions reduce average consumer surplus by almost $20 per month, over a five years period. Approximately 17% of the loss in consumer surplus comes from the ability of home banks to price discriminate with their initial quote. A further 30% is associated with the misallocation of contracts, and 55% with the direct cost of searching.

Moreover, we find that the presence of a home-bank premium attenuates the effect of search frictions by reducing search costs and improving allocation: by starting their search process with the highest expected value firm, consumers reduce the extent of misallocation in the market. This improvement in consumer surplus is present despite the fact that switching costs increase market power. Similarly, the presence of a posted-rate limits the ability of firms to price discriminate, and therefore reduces the welfare cost of search frictions.

To study the role of competition, we simulate counter-factual mergers in increasingly competitive markets. We find that as the number of firms in the market increases, the welfare loss from price discrimination shrinks, but this benefit is more than offset by an increase in misallocation and larger search costs.

In addition, our results show that the benefits of competition (i.e. profit-margin reduction) are not equally distributed across consumers, due to the presence of heterogeneous search costs. In particular, eliminating a lender significantly raises the rates paid by consumers at the bottom and middle of the rate distribution, but has little effect on consumers at the top. As a result, we show that the dispersion of transaction prices is increasing in the number of competitors in the market. This prediction is confirmed empirically by Allen et al. (2014). In that paper, we conduct a retrospective analysis of a merger that took place in the same market, and find that the loss of a lender is associated with a 10 to 15 percent reduction in the residual dispersion of transaction rates. We interpret this empirical finding through the lens of a complete information analogue to the bargaining model used in this paper, but in which residual price dispersion is determined only by the number of lenders and heterogeneity in the search costs of consumers. The model is parametrized to match distributional effects of the merger, and quantify the underlying increase in market power.

The paper is organized as follows. Section 2 presents details on the Canadian mortgage market, including market structure, contract types, and pricing strategies, and introduces our data sets. Section 3 presents the model. Section 4 discusses the estimation strategy and Section 5 describes the empirical results. Section 6 presents the counterfactuals. Finally, Section 7 concludes.
Table 1: Summary statistics on mortgage contracts in the selected sample

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>N</th>
<th>Mean</th>
<th>SD</th>
<th>P25</th>
<th>P50</th>
<th>P75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest rate spread (bps)</td>
<td>29,000</td>
<td>129</td>
<td>61.4</td>
<td>86.5</td>
<td>123</td>
<td>171</td>
</tr>
<tr>
<td>Residual spread (bps)</td>
<td>29,000</td>
<td>0</td>
<td>49.7</td>
<td>-32.1</td>
<td>-2.96</td>
<td>34.7</td>
</tr>
<tr>
<td>Positive discounts (bps)</td>
<td>22,240</td>
<td>77.7</td>
<td>40</td>
<td>50</td>
<td>75</td>
<td>95</td>
</tr>
<tr>
<td>1(Discount=0)</td>
<td>29,000</td>
<td>23.3</td>
<td>42.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monthly payment ($)</td>
<td>29,000</td>
<td>966</td>
<td>393</td>
<td>654</td>
<td>906</td>
<td>1219</td>
</tr>
<tr>
<td>Total loan ($/100K)</td>
<td>29,000</td>
<td>138</td>
<td>57.2</td>
<td>92.2</td>
<td>129</td>
<td>176</td>
</tr>
<tr>
<td>Income ($/100K)</td>
<td>29,000</td>
<td>69.1</td>
<td>27.9</td>
<td>49.2</td>
<td>64.8</td>
<td>82.8</td>
</tr>
<tr>
<td>FICO score</td>
<td>29,000</td>
<td>669</td>
<td>73.6</td>
<td>650</td>
<td>700</td>
<td>750</td>
</tr>
<tr>
<td>Switcher</td>
<td>22,875</td>
<td>26.7</td>
<td>44.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(Max. LTV)</td>
<td>29,000</td>
<td>38.2</td>
<td>48.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1(Previous owner)</td>
<td>29,000</td>
<td>24.3</td>
<td>42.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of FIs (5 KM)</td>
<td>29,000</td>
<td>7.82</td>
<td>1.73</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>HHI (5 KM)</td>
<td>29,000</td>
<td>1800</td>
<td>509</td>
<td>1493</td>
<td>1679</td>
<td>1918</td>
</tr>
<tr>
<td>Relative branch network</td>
<td>29,000</td>
<td>1.46</td>
<td>.945</td>
<td>.84</td>
<td>1.22</td>
<td>1.83</td>
</tr>
</tbody>
</table>

2 Data

2.1 Mortgage contracts and sample selection

Canada features two types of mortgage contracts – conventional, which are uninsured since they have a low loan-to-value ratio, and high loan-to-value, which require insurance (for the lifetime of the mortgage). Today, 80% of new home-buyers require mortgage insurance. The primary insurer is the Canada Mortgage and Housing Corporation (CMHC), a crown corporation with an explicit guarantee from the federal government. During our sample period a private firm, Genworth Financial, also provided mortgage insurance, and had a 90% government guarantee. CMHC’s market share during our sample period averages around 80%. Both insurers use the same guidelines for insuring mortgages, and charge the lenders an insurance premium, ranging from 1.75 to 3.75% of the value of the loan, which is passed on by lenders to borrowers. Appendix A describes the insurance rules, and defines all of the variables included in the data-set.\(^6\)

Our main data-set is a sample of insured contracts from the CMHC, from January 1999 and October 2002. We obtained a 10% random sample of all contracts from CMHC. The data-set contains information on 20 household/mortgage characteristics, including the financial characteristics of the contract (i.e. rate, loan-size, house price, debt-ratio, risk-type), and some demographic characteristics (e.g. income, prior relationship with the bank, residential status, dwelling type). In addition, we observe the location of the purchased house up to the forward sortation area (FSA).\(^7\)

We restrict our sample to contracts with homogenous terms. In particular, from the original

\(^6\)See also Allen et al. (2013) for a detailed discussion of the data.

\(^7\)The FSA is the first half of a postal code. We observe nearly 1,300 FSA in the sample. While the average forward sortation area (FSA) has a radius of 7.6 kilometers, the median is much lower at 2.6 kilometers.
sample we select contracts that have the following characteristics: (i) 25 year amortization period, (ii) 5 year fixed-rate term, (iii) newly issued mortgages (i.e. excluding refinancing and renewal), (iii) contracts that were negotiated individually (i.e. without a broker), (iv) contracts without missing values for key attributes (e.g. credit score, broker, and residential status).

The final sample includes 29,000 observations, or about 33% of the initial sample. 18% of the initial sample contained missing characteristics; either risk type or business originator (i.e. branch or broker). This is because CMHC started collecting these transaction characteristics systematically only in the second half of 1999. We also drop broker transactions, (28%), as well as short-term, variable rate and mortgage renewal contracts (40%). Finally, we drop 10% of transactions for which the lender is located more than 5 KM away from the centroid of FSA of the new house (see discussion below).

Table 1 describes the main financial and demographic characteristics of the borrowers in our sample, where we trim the top and bottom 0.5% of observations in terms of income, and loan-size. The resulting sample corresponds to a fairly symmetric distribution of income and loan-size. The average loan-size is about $138,000 which is twice the average annual household income. The average monthly payment is $966.

Importantly, only about 27% of households switch banks when negotiating a new mortgage loan. This high loyalty rate is consistent with the fact that most consumers combine multiple financial services with the same bank. The large Canadian banks are increasingly offering bundles
of services to their clients, helped in part by the deregulation of the industry in the early 1990s. For instance, a representative survey of Canadian finances from Ipsos-Reid shows that 67% of Canadian households have their mortgage at the same financial institution as their main checking account. In addition, 55% of household loans, 78% of credit cards, 73% of term deposits, 45% of bonds/guaranteed investments and 39% of mutual funds are held at the same financial institution as the household’s main checking account.

The loan-to-value (LTV) variable shows that many consumers are constrained by the minimum down-payment of 5% imposed by the government guidelines. Nearly 40% of households invest the minimum, and the average loan-to-value ratio is 91%. Because of the piece-wise linear structure of the insurance premiums, LTV ratios are highly localized around 90 and 95.

2.2 Pricing and negotiation

The Canadian mortgage market is currently dominated by six national banks (Bank of Montreal, Bank of Nova Scotia, Banque Nationale, Canadian Imperial Bank of Commerce, Royal Bank Financial Group, and TD Bank Financial Group), a regional cooperative network (Desjardins in Québec), and a provincially owned deposit-taking institution (Alberta’s ATB Financial). Collectively, they control 90% of banking industry assets. For convenience we label these institutions the “Big 8.”

The large Canadian banks operate nationally and post prices that are common across the country on a weekly basis in both national and local newspapers, as well as online. There is little dispersion in posted prices, especially at the big banks where the coefficient of variation on posted rates is close to zero. In contrast, there is a significant amount of dispersion in transaction rates. Approximately 25% of borrowers pay the posted rate. The remainder receive a discount. Conditional on receiving a positive discount, the median discount is 75 basis points, while the 25th and 75th percentile discounts are 50 and 95 basis points respectively.

Figure 1 illustrates this dispersion by plotting the distribution of retail interest rates in the sample. We measure spreads using the swap-adjusted 5-year bond-rate as a proxy for marginal cost. The transaction rate is on average 1.3 percentage points above the 5-year bond rate, and exhibits substantial dispersion. Importantly, a large share of the dispersion is left unexplained when we control for a rich set of covariates: financial characteristics, week fixed effects, lender/province fixed-effects, lender/year fixed-effects, and location fixed-effects. These covariates explain 44% of the total variance of observed spreads. The figure also plots the residual dispersion in spreads. The standard-deviation of retail spreads is equal to 61 basis points, while the residual spread has a standard-deviation of 50 basis points.

8This figure is slightly lower than the 73% reported in Table 1 because we excluded broker-negotiated transactions. Consumers dealing with brokers are significantly more likely to switch bank (75%).

9The 25% is based on the posted price being defined as the posted rate within 90 days from the closing date minus the negotiated rate. The majority of lenders offer 90-day rate guarantees, which is why we use this definition. Some lenders have occasionally offered 120-day rate guarantees.
This dispersion comes about because potential borrowers can search for and negotiate over rates. Borrowers bargain directly with local branch managers or hire a broker to search on their behalf.10 Our model excludes broker transactions and focuses only on branch-level transactions.

Our data do not provide direct information on the number of quotes gathered by borrowers, therefore we supplement them with survey evidence from the Altus Group (FIRM). This survey reveals a number of facts regarding the way Canadians shop for mortgages. On average 59\% of Canadians search. Broken down by ownership we see that 67\% of new home buyers gather multiple quotes, compared to just 51\% for previous home owners. The search probability also varies significantly across demographic groups. In particular, it is higher in more populated than in less populated areas, and for high income than for low income individuals. Since the survey does not condition on more than one variable at a time, the latter results most likely reflect the relationship between loan size and search. In our empirical analysis below we will match these moments.

2.3 Local markets and lender information

Our main data-set contains the lender information for ten lenders during our sample period (the big 8 plus Canada Trust and Vancity). For mortgage contracts where we do not have a lender name but only a lender type, these are coded as “Other Bank”, “Other credit union”, and “Other trusts”. The credit-union and trust categories are very fragmented, and contain mostly regional financial institutions. We therefore combine both into a single “Other Lender” category.

The “Other Bank” category includes mostly two institutions: Laurentian Bank and HSBC. The former is only present in Québec and Eastern Ontario, while the latter is present mostly in British Colombia and Ontario. We exploit this geographic segmentation and assign the “Other banks” customers to HSBC or Laurentian based on their relative presence in the local market around each home location. After performing this imputation, consumers face at most 13 lending options: the Big 8, Canada Trust, Laurentian Bank, Vancity, HSBC, and Other Lender.

Not all consumers have access to every option, because of the uneven distribution of branches across local markets. We exploit this variation by assuming that consumers shop for their mortgage locally, in a neighborhood around the location of their new house (e.g. municipality). We define this as a consumer’s choice set, which is their home bank h plus all other banks in their neighborhood, N_i. To implement this, we match the new house location with the postal code associated with each financial institution’s branches (available annually from Micromedia-ProQuest). The information relative to the location of each house is coarser than the location of branches. Therefore, we assume that each house is located in the center of its FSA, and calculate a somewhat large Euclidian distance radius of 5KM around it to define the borrower’s maximum choice-set.

10Local branch managers compete against rival banks, but not against other branches of the same bank. Brokers are “hired” by borrowers to gather the best quotes from multiple lenders but compensated by lenders.
Formally, a lender is part of consumer \(i\)'s maximum choice-set if it has a branch located within less than 5KM of the house location. With the help of this, we measure the relative presence of each lender (i.e. number of branches in a choice-set) as the ratio of the number of branches of each bank, divided by the average number of branches of competing networks.

Figure 2 illustrates the distribution of minimum distances between each house’s FSA centroid and the closest branch of each lender. On average consumers transact with banks that tend to be located close to their house. The average minimum Euclidian distance is nearly 1.5KM for the chosen institution, and 2.4KM for the other lenders. In fact the distributions indicate that 80% of consumers transact with a bank that has a branch within 2KM of their new house, while only 40% of consumers have an average distance to competing lenders less than or equal to 2KM.

This feature reflects the fact that consumers tend to choose lenders with large networks of branches. Table 1 reports the average network size of the chosen institution relative to the average size of others present in the same neighborhood (i.e. relative network size). On average consumers transact with lenders that are nearly 60% larger than their competitors in terms of branches; the median is smaller at 28%. Table 1 also presents measures on the level of concentration in a consumers choice-set. On average each consumer faces 7.8 lenders within 5 KM. Most of these banks have a relatively small presence, indicated by the large Herfindahl-Hirschman index, calculated using the distribution of branches within 5KM of each contract.
3 Model

Our modeling assumptions reflect three characteristics of mortgage markets. First, while a significant fraction of consumers obtain only one rate quote, nearly everyone visits their home bank when shopping for a new mortgage. Second, loan officers can lower previously made offers in an effort to retain potential clients. Third, competition takes place locally between branch managers of competing banks, since consumers must contact loan officers directly in order to obtain discounts, and branches that are part of the same network do not compete for the same customers.

We describe the model in detail in the next three subsections. First, we present the notation, and formally define the timing of the model. Then, we solve the model backwards, starting with the second stage of the model in which banks are allowed to compete for consumers. Finally, we describe the search decision of consumers, and the process generating the initial quote.

3.1 Timing and payoffs

The timing of the model is as follows. In an initial period outside the model, consumers choose the type of house they want to buy, the loan-size L_i, and the timing of home purchase. Buyers also observe the posted price of lenders, which for simplicity we assume is the same across banks. Empirically this is nearly always true throughout our entire sample period. In addition, for a particular bank, the posted price is common for all regions in the country.

Taking these characteristics as given, consumers then visit their home bank h, and receive an initial quote, p_i^0, measured in dollars per month. At this point information about the home bank’s cost is publicly revealed, and consumers privately observe their cost of gathering additional quotes (denoted κ_i).\(^{11}\)

If the initial offer is rejected, consumer i organizes a multilateral negotiation game between N_i banks in their choice-set, denoted by \mathcal{N}_i. Borrower i’s full choice-set is given by $\mathcal{N}_i \cup h$ since we allow the home bank to participate in the second-stage negotiation, implying that there are $N_i + 1$ lenders in the full choice set.

We model the multilateral negotiation process as an English auction game among lenders in $\mathcal{N}_i \cup h$, with a bid-preference advantage for the home bank. To our knowledge, the use of auction theory to model multilateral bargaining was first used in the labor literature by Postel-Vinay and Robin (2002). Recently, Hall and Woodward (2012) use a similar price mechanism to measure the gains from search in the market for mortgage brokers. The simultaneous assumption in the second stage allows us to abstract from considerations related to the order of arrival of competing offers. We believe it is a more accurate description of the market than a model with sequential offers without recall. In practice, banks are able to lower their initial offer if consumers receive a

\(^{11}\)Note that information about lenders other than the home bank is not revealed at this stage. This would be a “full information” version of the model, and is available upon request.
lower price quote from a competing bank.12

We assume the following payoff structure for consumers and firms, respectively:

\begin{align*}
\text{Consumers:} & \quad U_{ij} = \lambda_i 1(j = h) - p_{ij}, \\
\text{Firms:} & \quad \pi_{ij} = p_{ij} - (c_{ij} + \varepsilon_i),
\end{align*}

where \(p_{ij}\) is the monthly payment offered by bank \(j\).

The parameter \(\lambda_i\) measures consumer \(i\)’s willingness to pay for their home-bank, and is observed by all parties. Throughout we refer to \(\lambda_i\) using the terminology loyalty premium and switching cost interchangeably. Consumers are assumed to be associated with at most one lender, and therefore \(1(j = h)\) is a dummy variable equal to one if consumer \(i\) has prior experience dealing with bank \(j\), and zero otherwise.

The cost term measures the direct lending costs for the bank, net of the future benefits associated with selling complementary services to consumer \(i\). Both components are related to variables affecting the risk of default, and the risk of pre-payment over the length of the contract. While lenders are fully insured against default risk, the event of default implies additional transaction costs to lenders that lower the value of lending to risky borrowers. Pre-payment risk is perhaps more relevant in our context, since consumers are allowed to reimburse up to 20\% of their mortgage every year without penalty.13

Since we do not observe the performance of the contract along these two dimensions, \(c_{ij} + \varepsilon_i\) approximates the net present value of the contract. This cost function includes a common unobserved attribute \(\varepsilon_i\) that symmetrically affects all lenders. The idiosyncratic component \(c_{ij}\) contains variables that are observed such as bank-specific effects and consumer characteristics, and a match value shock that is privately observed by lenders and realized only in the game’s second stage. The match value is independently distributed across lenders and consumers. It is important to note that we rule out the possibility that the home bank has more information than other lenders, since otherwise, the problem would involve adverse selection, and the initial quote would be much more complicated. For a discussion about competition when one firm has more information about a consumer learned from their past purchases see the survey by Fudenberg and Villas-Boas (2007).14

12A restrictive assumption of our model is that consumers search the entire set after paying the search cost \(\kappa_i\). Alternatively, consumers could endogenously choose a search effort in order to determine the actual number of lenders to investigate (as in Moraga-González et al. (2014) for instance). We do not take this route in this paper in order to reduce the computational burden. In the model, the identity of the lenders matter because of differentiation and observable cost differences (i.e. bank fixed-effects). Therefore, modeling heterogeneity in the consideration-set of consumers would lead to a curse of dimensionality.

13In practice, however, borrowers pre-pay, on average, an additional 1\% of their mortgage every year.

14A subset of this literature has focused on credit markets and the extent to which lenders can learn about the ability of their borrowers to repay loans and use this information in their future credit-decisions and pricing. See for instance: Dell’Ariccia et al. (1999) and Dell’Ariccia and Marquez (2004).
In both pricing stages, banks are constrained by their posted rate, essentially a price ceiling on the negotiation.15 We assume that each consumer faces a posted price given by the monthly payment associated with the posted rate valid at the time of negotiation, denoted by \bar{p}_i. The presence of the posted rate forces some lenders to reject loans that would lead to negative profits. The loan qualifying condition for all banks is given by: $c_{ij} + \varepsilon_i < \bar{p}_i$.

The value of shopping, net of the search cost κ_i, is a function of the equilibrium price vector offered by banks. Consumers choose the lender that generates the highest indirect utility:

$$W_i = \begin{cases}
\lambda_i - p_h & \text{If } \lambda_i - p_h > -\min_{j \in N} p_j, \\
-\min_{j \in N} p_j & \text{Else.}
\end{cases}$$

The value of shopping is a random variable determined by the realization of firms’ costs, and the mode of competition. The search cost κ_i therefore measures both the time cost of generating competition between firms, and the cost of obtaining additional information about lenders.

The gross transaction surplus from an (ij) match is equal to:16

$$V_{ij} = \lambda_i 1(j = h) - (c_{ij} + \varepsilon_i).$$

Finally, we use $c_{(k)}$ to denote the k^{th} lowest cost option in N_i. The distribution of costs for firm j is given by $G_j(x) = \Pr(c_{ij} < x)$, and we use $G_{(k)}(x) = \Pr(c_{(k)} < x)$ to denote the CDF of the k^{th} order statistic of the cost distribution.

3.2 Competition stage

Conditional on rejecting p^0, the home bank h competes with lenders in the choice-set N_i. We model this competition as an English auction with heterogeneous firms, and bid-preference favoring the home bank. Since the initial quote can be recalled, firms face a reservation price equal to: $p^0 \leq \bar{p}$.

We can distinguish between two cases leading to a transaction: (i) $\bar{p}_i - c_h < \varepsilon_i$, and (ii) $\varepsilon_i < p^0_i - c_h \leq \bar{p}_i - c_h$. In the first case the borrower does not qualify at the home bank. As such, the lowest cost bank will win by offering a price equal to the lending cost of the second most efficient qualifying lender:

$$p^*_i = \min\{c_{(2)} + \varepsilon_i, \bar{p}_i\}. \quad (5)$$

This occurs if and only if, $\varepsilon_i < \bar{p}_i - c_{(1)}$.

If the borrower qualifies at the home bank, the highest surplus bank will win, and offer a quote

15 In Canada overage, i.e. pricing over the posted rate, is illegal.
16 It should be noted that most of the model’s predictions are very similar whether we assume that the match value enters firms’ profits, or consumers’ willingness to pay.
that provides the same utility as the second best option. The equilibrium pricing function is:

\[p_i^* = \begin{cases}
 p_i^0 & \text{if } c(1) > p_i^0 - \varepsilon_i - \lambda_i \\
 \lambda_i + c(1) + \varepsilon_i & \text{if } c_h - \lambda_i < c(1) < p_i^0 - \varepsilon_i \\
 \min\{c_h - \lambda_i, c(2)\} + \varepsilon_i & \text{otherwise.}
\end{cases} \] (6)

This equation highlights the fact that at the competition stage loyal consumers will on average pay a premium, while lenders directly competing with the home-bank will on average have to offer a discount by a margin equal to the switching cost in order to attract new customers.

Equations 5 and 6 highlight the fact that the transaction price is determined by three lenders: the home bank, and the two most cost-efficient lenders. Therefore, while we assume that consumers search the entire choice-set to learn \(c_{ij} \)'s, an implication of the model is that consumers need to obtain formal quotes from at most three lenders. This is in line with a Bertrand-Nash interpretation of the game, in which consumers learn the ranking of lenders’ costs after paying the search cost, for instance through advertising, by calling banks directly, or indirectly through a real-estate agent.

Finally, we assume that consumers and lenders have rational expectations over the outcome of the competition stage, which leads to the following expression for the expected value of shopping:

\[E[W_i|p_i^0, \varepsilon_i] = (\lambda_i - p_i^0)(1 - G(1)(p_i^0 - \varepsilon_i - \lambda_i)) + \int_{c_h - \lambda_i}^{p_i^0 - \varepsilon_i} -\left(c(1) + \varepsilon_i\right)g(1)(c(1))dc(1) \\
+ (\lambda_i - c_h - \varepsilon_i) \left[G(1)(c_h - \lambda_i) - G(2)(c_h - \lambda_i) \right] + \int_{-\infty}^{c_h - \lambda_i} -\left(c(2) + \varepsilon_i\right)g(2)(c(2))dc(2). \] (7)

3.3 Search decision and initial quote

Consumers choose to search for additional quotes by weighing the value of accepting \(p_i^0 \), or paying a sunk cost \(\kappa_i \) in order to lower their monthly payment. The search decision of consumers is defined by a threshold function, which yields a search probability that is increasing in the outside option of consumers and decreasing in the loyalty premium:

\[\Pr(\text{Reject}|p_i^0, \varepsilon_i) = \Pr(\lambda_i - p_i^0 < E[W_i|p_i^0, \varepsilon_i] - \kappa_i) = H_i(p_i^0, \varepsilon_i). \] (8)

Note that we index the search probability by \(i \) to highlight the fact that consumers face different expected values of shopping, and different search cost distributions (e.g. increasing in income).

Lenders do not commit to a fixed interest rate, and are open to haggling with consumers based on their outside options. This allows the home bank to discriminate by offering up to two quotes to the same consumer: (i) an initial quote \(p^0 \), and (ii) a competitive quote \(p^* \) if the first is rejected.

The price discrimination problem is based on the expected value of shopping and the distri-
bution of search costs. More specifically, anticipating the second-stage outcome, the home bank chooses \(p^0 \) to maximize its expected profit:

\[
\max_{p^0 \leq \bar{p}} (p^0 - c_h - \varepsilon_i)[1 - H_i(p^0, \varepsilon_i)] + H_i(p^0, \varepsilon_i)E(\pi^*|p^0, \varepsilon_i),
\]

where, \(E(\pi^*|p^0, \varepsilon_i) = [1 - G_{(i)}(c_h - \lambda_i)]E(p^* - c_h - \varepsilon_i|c_{(i)} > c_h - \lambda_i). \)

Importantly, the home bank will offer a quote only if it makes positive profit: \(\epsilon < p - c_h \). The optimal initial quote first order condition is:

\[
p^0 - c_h - \varepsilon_i = \frac{1 - H_i(p^0, \varepsilon_i)}{h_i(p^0, \varepsilon_i)} + \frac{E(\pi^*|p^0, \varepsilon_i)}{h_i(p^0, \varepsilon_i)} + \frac{H_i(p^0, \varepsilon_i)}{h_i(p^0, \varepsilon_i)} \frac{\partial E(\pi^*|p^0, \varepsilon_i)}{\partial p^0}
\]

(9)

where \(h_i(p^0, \varepsilon_i) = \partial H_i(p^0, \varepsilon_i)/\partial p^0 \) is the marginal effect of \(p^0 \) on the search probability, which is analogous to the slope of the demand curve for the initial lender.

The previous expression implicitly defines firms’ profit margins from price discrimination. It highlights three sources of profits for the home bank: (i) positive average search costs, (ii) market power from differentiation in cost and quality (i.e. match value differences and loyalty premium), and (iii) the reserve price effect. If firms are homogenous, the only source of profits will stem from the ability of the home bank to offer higher quotes to high search cost consumers.

Although the initial quote does not have a closed-form solution, it is additive in the common cost shock in the interior: \(p^0_i = \bar{p}^0_i + \varepsilon_i \). To see this, note that if \(p^0_i \) is additive, since the equilibrium second-stage price is additive in \(\varepsilon_i \), the expected value of shopping is also additive in \(\varepsilon_i \). As a result, in the interior, the search probability is independent of \(\varepsilon_i \), since only the difference between \(p^0 \) and \(E(W_i|p^0_i) \) matters for determining the threshold of consumers. We use \(\bar{H}_i \) to denote the equilibrium search probability when \(p^0_i < \bar{p}_i \). Similarly, the expected second-stage profit is independent of \(\varepsilon_i \), since \(p^* \) is additive in \(\varepsilon_i \). Therefore, the right-hand-side of equation 9 is independent of \(\varepsilon_i \), which confirms that \(p^0_i = \bar{p}^0_i + \varepsilon_i \) is a solution to the first-order condition of the initial lender.

4 Estimation method

In this section we describe the steps taken to estimate the model parameters. We begin by describing the functional form assumptions imposed on consumers and lenders’ unobserved attributes. Then we derive the likelihood function induced by the model, and discuss the sources of identification in the final subsection.
4.1 Distributional assumptions

Our baseline model has three sources of randomness beyond observed financial and demographic characteristics: (i) the identity of banks with prior experience and origin of the first quote, (ii) the common unobserved profit shock ϵ_i, and (iii) idiosyncratic cost differences between lenders. We describe each in turn.

Distribution of main financial institutions The identity of the home bank is partially observed when consumers transact with a bank with which they have at least one month of experience, and consumers are assumed to have experience with at most one bank. For consumers who switch institutions, the identity of the home bank is unknown (i.e. we only know that it is not chosen). Moreover, this variable is absent for the 20% of contracts insured by Genworth, and is missing entirely for one bank (M/V).

We assume that $1(j = h)$ is a multinomial random variable with probability distribution $\psi_{ij}(X_i)$. This distribution is a function of consumers’ locations, income group, region, and year. We estimate this probability distribution separately using a survey of consumer finances conducted by Ipsos-Reid, which identifies the main financial institution of consumers. This data-set surveys nearly 12,000 households per year in all regions of the country. We group the data into six years, ten regions, and four income categories. Within these sub-samples we estimate the probability of a consumer choosing one of the twelve largest lenders as their main financial institution. This probability corresponds to the density of positive experience level given the year, income, and location of borrower i.

We use the distribution of main financial institutions to integrate over the identity of the home-bank for switching consumers or for consumers with missing data. Formally, we let $\text{Status}_i \in \{\text{Loyal, Switching, M/V}\}$ denote the switching status of consumer i. Then the conditional probability that bank h is the first mover is:

$$
\Pr(h|b_i, \text{Status}_i, X_i, N_i) = \begin{cases}
1(h = b_i) & \text{If } \text{Status}_i = \text{Loyal}, \\
1(h \neq b_i)\psi_h(X_i)/\sum_{j\neq b_i}\psi_j(X_i) & \text{If } \text{Status}_i = \text{Switching}, \\
\phi_h(X_i) & \text{If } \text{Status}_i = \text{M/V}.
\end{cases}
$$

An additional problem is that the experience duration variable might be measured with error. For instance, some loyal consumers who obtained a pre-qualifying offer might be considered loyal because they received an offer more than a month before closing. We take this feature into account by incorporating a binomial IID measurement error. With probability ρ the identity of the home bank is drawn from the conditional probability described in equation 10, and with probability $1 - \rho$ the identity of the home bank is drawn from the unconditional distribution $\phi_h(X_i)$. Let

17 Source: Consumer finance monitor (CFM), Ipsos-Reid, 1999-2002.
Pr(h|b_i, \rho, \text{Status}_i, X_i) denote the measurement-error adjusted probability distribution function.

Cost function We parametrize the cost of lending to consumer i using the following reduced-form function:

$$c_{ij} = L_i \times (Z_i\beta + \varepsilon_i - u_{ij}) ,$$

where $u_{ij} = 0$ if $j = h$.

Lending costs are measured on a monthly basis, using a 25-year amortization period. The function in parenthesis parametrizes the monthly cost of a $100,000 loan. The vector Z_i controls for observed financial characteristics of the borrower (e.g. income, loan-size, FICO score, LTV, etc), the bond-rate, as well as period, location and bank fixed-effects. The location fixed-effects identify the region of the country where the house is located, defined using the first digit of the postal code (i.e. postal district). Because of the small number of observations in the Maritimes and Prairies, we group these provinces in two regions. This leaves us with ten unique regions.

The common shock ε_i is normally distributed with mean zero and variance σ^2_{ε}, and the vector of bank-specific idiosyncratic profit shocks $\{u_{ij}\}$ are independently distributed according to a type-1 extreme-value (EV) distribution with location and scale parameters $(-\sigma_u \gamma, \sigma_u)$.18 We interpret u_{ij} as a mean-zero deviation from the lending cost of the home-bank.

As a result, conditional on ε_i, the lending cost is also distributed according to a type-1 extreme-value distribution. The EV distribution assumption leads to analytical expressions for the distribution functions of the first and second-order statistics, and has often been used to model asymmetric value distributions in auction settings (see for instance Brannan and Froeb (2000)).

We use $g(k)(x)$ to denote the density of the k^{th} order statistic of the lending cost distribution, and $f(x)$ to denote the density of the common component ε_i.

Other functional forms Our main empirical specification allows for heterogeneous expected search-cost and loyalty premium. In particular, we allow $\bar{\kappa}$ and λ to vary across new and experienced home buyers, and income categories:

$$\log(\bar{\kappa}_i) = \bar{\kappa}_0 + \bar{\kappa}_{\text{inc}} \text{Income}_i + \bar{\kappa}_{\text{owner}} 1(\text{Previous owner}_i),$$

$$\log(\lambda_i) = \lambda_0 + \lambda_{\text{inc}} \text{Income}_i + \lambda_{\text{owner}} 1(\text{Previous owner}_i).$$

4.2 Likelihood function

We estimate the model by maximum likelihood. The endogenous outcomes of the model are: the chosen lender and transaction price (B_i, P_i), as well as the selling mechanism $M_i = \{A, N\}$ (i.e. Auction versus Negotiation). The observed prices are either generated from consumers accepting

18The location parameter of u_{ij} is normalized to $-\sigma_u \gamma$ so that u_{ij} is mean-zero.
the initial quote (i.e. $M_i = N$), or accepting the competitive offer (i.e. $M_i = A$). Importantly, only the latter case is feasible if $B_i \neq h$, while both cases have positive likelihood if $B_i = h$. We first derive the likelihood contribution for the loyal case followed by the case of switchers.

In order to derive the likelihood contribution of each individual, we first condition on the choice-set N_i, the observed characteristics Z_i, the identity of home-bank h, and the model parameter vector θ. After describing the likelihood contribution conditional on $I_i = (N_i, Z_i, h)$, we discuss the integration of h.

Moreover, since we only observe accepted offers, we must adjust the likelihood to control for endogenous selection. In particular, because of the posted-rate, some consumers fail to qualify for a loan at every bank in their choice-set. To control for this possibility, we maximize a conditional likelihood function, adjusted by the probability of qualifying for a loan given observed characteristics Z_i and choice-set N_i.

Finally, in the last subsection we describe how we incorporate aggregate moments on the probability of search.

We use the following notation. We use cap-letters to refer to random outcome variables, and small-case letters to refer to the realizations of consumer i. In order to simplify the notation, we use individual subscripts i only for the outcomes variables and random shocks, with the understanding that all functions and variables are consumer-specific and depend on I_i and the parameter vector θ.

Likelihood contribution for loyal consumers The main obstacle in evaluating the likelihood function is that we do not observe the selling mechanism, M_i. The unconditional likelihood contribution of loyal consumers is therefore:

$$L_i(p_i, B_i = h|I_i, \theta) = L_i^N(p_i, B_i = h, M_i = N|I_i) + L_i(p_i, B_i = h, M_i = A|I_i, \theta).$$

Recall that the interior solution of the home-bank first-order condition is additive in ε_i: $p^0_i = \bar{p}^0 + \varepsilon_i$. Therefore, if $\varepsilon_i < p - \bar{p}^0$ we have $p_i = \bar{p}^0 + \varepsilon_i$ and the search probability is constant: $H(\varepsilon_i) = \bar{H}$. Otherwise we do not have an interior solution and the price is equal to \bar{p}. The likelihood of observing p_i thus has a truncated form:

$$L_i^N(p_i, h|I_i, \theta) = \begin{cases} f(p_i - \bar{p}^0)(1 - \bar{H}) & \text{If } p_i < \bar{p}, \\ \int_{p_i - \bar{p}}^{\bar{p}} (1 - H(\varepsilon_i)) f(\varepsilon_i) d\varepsilon_i & \text{If } p_i = \bar{p}, \end{cases}$$

where the search probability in the constrained case is equal to $H(\varepsilon_i) = 1 - \exp \left(-\frac{E[W|\bar{p}, \varepsilon_i] - \lambda + \bar{p}}{\bar{\kappa}_i}\right)$.

The likelihood contribution from the auction mechanism involves the distribution of lowest-
cost lender among competing options, denoted by $g_{(1)}(x)$. If the observed price is unconstrained, the transaction price is either equal to the competitive price $\lambda + c_{(1)} + \varepsilon_i$, or the reserve price $\bar{p}_i = \lambda + c_{(1)} + \varepsilon_i$. The latter outcome is realized if the initial quote is preferred to the price offered by the most efficient lender: $\bar{p}_i + \varepsilon_i < \lambda + c_{(1)} + \varepsilon_i$. In contrast, the observed price is equal to \bar{p}_i if the competitive price is larger than the posted price, and the initial quote is constrained: $\lambda + c_{(1)} + \varepsilon_i > \bar{p}_i > \bar{p}_i + \varepsilon_i$.

The likelihood of observing p_i from loyal consumers with the auction mechanism is given by:

$$L_i^A(p_i, h|I_i, \theta) = \begin{cases} \int_{-\infty}^{\bar{p}_i-c_{(1)}} g_{(1)}(p_i - \lambda - \varepsilon_i)H(\varepsilon_i)f(\varepsilon_i)d\varepsilon_i & \text{If } p_i < \bar{p}, \\ \left[1 - G_{(1)}(\bar{p} - \lambda - \varepsilon_i)\right]H(\varepsilon_i)f(\varepsilon_i)d\varepsilon_i & \text{If } p_i = \bar{p}. \end{cases} \quad (14)$$

Likelihood contribution for switching consumers If the observed price is unconstrained and the home bank offers a quote (i.e. $c_h + \varepsilon_i < \bar{p}$), the transaction price is equal to the minimum of $c_h - \lambda + \varepsilon_i$ and $c_{(2)} + \varepsilon_i$. If the consumer does not qualify for a loan at his/her home bank, the transaction price is the minimum of the posted-price, and the second-lowest cost. This occurs if $\varepsilon_i > c_h$. Therefore, the transaction price for switching consumers is equal to \bar{p} if and only if the chosen lender is the only qualifying bank.

In the two cases where the transaction price is equal to $c_{(2)} + \varepsilon_i$, the consumer’s choice reveals the most efficient lender (i.e. $c_{(1)} = c_{b_i}$), and the value of $c_{(2)}$ is the minimum cost among other lenders. We use $g_{-b_i}(x)$ to denote the density of lowest cost among $N_i \setminus b_i$ lenders. Using this notation, we can write the likelihood contribution in the unconstrained case as the sum of three parts:

$$L_i(p_i, b_i|I_i, \theta) = \int_{\bar{p}-c_{(1)}}^{\bar{p}} g_{-b}(p_i - \varepsilon_i)G_{b_i}(p_i - \varepsilon_i)f(\varepsilon_i)d\varepsilon_i + \int_{p_i-c_h+\lambda}^{\bar{p}-c_{(1)}} g_{-b}(p_i - \varepsilon_i)G_{b_i}(p_i - \varepsilon_i)H(\varepsilon_i)f(\varepsilon_i)d\varepsilon_i + \left[1 - G_{-b_i}(c_h - \lambda - \varepsilon_i)\right]G_{b_i}(c_h - \lambda)f(p_i - c_h + \lambda)H(p_i - c_h + \lambda). \quad (15)$$

Note that the search probability is set to one in the first term, since the home-bank does not offer a quote (i.e. $c_h + \varepsilon_i > \bar{p}$). Also, the second term is equal to zero if $\bar{p} < p_i + \lambda$.\(^{19}\)

In the constrained case, the likelihood contribution is given by:

$$L_i(p_i, b_i|I_i, \theta) = \int_{\bar{p}-c_{(1)}}^{\infty} \left[1 - G_{-b_i}(\bar{p} - \varepsilon_i)\right]G_{b_i}(\bar{p} - \varepsilon_i)f(\varepsilon_i)d\varepsilon_i, \quad \text{If } p_i = \bar{p}. \quad (16)$$

\(^{19}\)This creates a discontinuity in the likelihood, affecting primarily the parameters determining λ. To remedy this problem we smooth the likelihood by multiplying the second term in equation 15 by $(1 + \exp((\lambda - \bar{p} + p_i)/s))^{-1}$, where s is a smoothing parameter set to 0.01.
Integration of other unobservables and selection

The unconditional likelihood contribution of each individual is evaluated by integrating out the identity of the home bank h. Recall, that h is missing for a sample of contracts, and is unobserved for switchers. We therefore express the unconditional likelihood by summing over all possible combinations:

$$L_i(p_i, b_i | X_i, \theta) = \sum_h \Pr (h | b_i, \rho, X_i) L_i(p_i, b_i | X_i, h, \beta),$$

where $\Pr (h | b_i, \rho, X_i)$ is the conditional probability distribution for the identity of the home bank, and incorporates measurement error (ρ). Note that we condition on b_i when evaluating the home-bank probability since for switchers the probability that $h = b_i$ is zero.

In order to correct for selection, we calculate the probability of qualifying for a loan from at least one bank in consumer i’s choice-set. This is given by the probability that the minimum of $c(1) + \varepsilon_i$ and $c_h + \varepsilon_i$ is lower than \bar{p}:

$$\Pr(\text{Qualify} | X_i, \theta) = \sum_h \psi_h(X_i) \int_{-\infty}^{\infty} F(\bar{p} - \min\{c(1), c_h\}) g(1)(c(1)) dc(1), \quad (17)$$

where $\psi_h(X_i)$ is the unconditional probability distribution for the identity of the home bank.

Using this probability, we can evaluate the conditional likelihood contribution of individual i:

$$L^c_i(p_i, b_i | X_i, \theta) = L_i(p_i, b_i | X_i, \theta) / \Pr(\text{Qualify} | X_i, \theta). \quad (18)$$

Aggregate likelihood function

The aggregate likelihood function sums over the n observed contracts, and incorporates additional external survey information on search effort. We use the results of the annual FIRM survey conducted by the Altus Group (described in Section 2.2) to match the probability of gathering more than one quote along four dimensions: new-home buyers, city-size, region, and income group.

Using the model and the observed new-home buyer characteristics we calculate the probability of rejecting the initial quote; integrating over the model shocks and the identity of the home bank. Let $\tilde{H}_g(\theta)$ denote this function for demographic group G. Similarly, let \hat{H}_g denote the analog probability calculated from the survey.

We use the central-limit theorem to evaluate the likelihood of observing \hat{H}_g under the null hypothesis that the model is correctly specified. That is, under the model specification, $\hat{H}_g - \tilde{H}_g(\theta)$ is normally distributed with mean zero and variance σ^2_g / N_g, where σ^2_g is the model predicted variance in the search probability across consumers in group g, and N_g is the number of households.
The likelihood of the auxiliary data is therefore given by:

\[
Q(\hat{H}|\theta) = \prod_g \phi \left(\sqrt{N_g} (\hat{H}_g - \bar{H}_g(\theta)) / \sigma_g \right),
\]

(19)

where \(\phi(x)\) is the standard normal density.

Finally, we combine \(Q(\hat{H}|\theta)\) and \(L_{ci}(p_i, b_i|X_i, \theta)\) to form the aggregate log-likelihood function that is maximized when estimating \(\theta\):

\[
L(p, b|X, \theta) = \sum_i \log L_{ci}(p_i, b_i|X_i, \theta) + \log Q(\hat{H}|\theta).
\]

(20)

Notice that the two likelihood components are not on the same scale, since the FIRM survey contains fewer observations than the mortgage contract data-set. Therefore, we also test the robustness of our main estimates to the addition of an extra weight \(\omega\) that penalizes the likelihood for violating the aggregate search moments:

\[
L_{\omega}(p, b|X, \theta) = \sum_i \log L_{ci}(p_i, b_i|X_i, \theta) + \omega \log Q(\hat{H}|\theta).
\]

(21)

Computational steps In order to evaluate the aggregate likelihood function, we must first solve the optimal initial offer defined implicitly by equation 9. This non-linear equation needs to be solved separately for every consumer/home bank combination. We perform this operation numerically using a Newton algorithm that uses for the first and second derivatives of firms’ expected profits. We also use starting values defined as the expected initial quote from the complete information problem, for which we have an analytical expression. This procedure is very robust and converges in a small number of steps. Notice that since the interior solution is additive in \(\varepsilon_i\), this non-linear equation needs to be solved only once for each evaluation of the likelihood contribution of each household, \(L_i(l_i, b_i|X_i, h, \beta)\).

In addition, the integrals are evaluated numerically using a quadrature approximation. We use Monte-Carlo integration to calculate the predicted search probability used in equation 19. The average search probability is calculated over a large number of households within each category, and is therefore less sensitive to approximation errors even with a small number of simulated draws (we use ten draws for each household).

20 We estimate \(\sigma_g\) by calculating the within group variance in search probability using the sample of individual contracts. Since this variance depends on the model parameter values, we follow a two-step approach: (i) calculate \(\sigma_g\) using an initial estimate of \(\theta\) (e.g. starting with \(\sigma_a = 1\)), and (ii) hold \(\sigma_g\) fixed to estimate \(\theta\).

21 The parameters are estimated by maximizing the aggregate log-likelihood function using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) numerical optimization algorithm within the Ox matrix programming language (Doornik 2007).
4.3 Identification

The model includes four groups of parameters: (i) consumer observed heterogeneity (β), (ii) unobserved cost heterogeneity (σ_u and σ_ϵ), (iii) search cost ($\bar{\kappa}$), and (iv) switching cost (λ).

Although we estimate the model by maximum likelihood, it is useful to consider the empirical moments contained in the data. The contract data include information on market share, and conditional price distributions. For instance, we can measure the reduced-form relationship between average prices and the number of lenders in consumers’ choice-sets, or other borrower-specific attributes. Similarly, we measure the fraction of switchers, along with the premium that loyal consumers pay above switchers. Finally, we augment the contract data with the fraction of consumers who gather more than one quote along four key borrower characteristics.

Intuitively, the cost parameters can be identified from the sample of switchers. Under the timing assumption of the model, most switchers are consumers who reject the initial quote, and initiate the competitive stage. The transaction price therefore reflects the second-order statistic of the cost distribution. This conditional price distribution can therefore be used to identify the contribution of observed consumer characteristics.

The residual dispersion can be explained by u or ϵ: the idiosyncratic and common unobserved cost shocks. To differentiate between the two, we exploit variation in the size of consumers’ choice-sets. Indeed, the number of lenders directly affects the distribution of the second-order statistic through the value of σ_u. The reduced-form relationship between transaction rates and number of lenders, and the importance of residual price dispersion, therefore identify the relative importance of σ_u and σ_ϵ.

The data exhibit three sources of variation in the choice-set of consumers. First, consumers living in urban areas tend to face a richer choice-set than do consumers living in small cities. Second, nearly 50% of consumers were directly affected by the merger between Canada Trust and Toronto Dominion Bank in 2000, and effectively lost one lender. The third source of variation comes from changes in the distribution of branches across markets.

The two remaining groups of parameters are identified from differences in the price distribution across switching and loyal consumers, and from the relative fraction of switchers and searchers. Intuitively the task is to differentiate between two competing interpretations for the observed consumer loyalty: high switching cost (or loyalty premium), and/or high search cost.

In the model, the search and switching probabilities are functions of the search-cost and loyalty premium parameters. Intuitively, differences between these two probabilities reveal the presence of positive switching cost. Indeed, we observe that 59% of consumers search in the population, while more than 75% of consumers remain loyal. This suggests a sizable loyalty premium. In addition, the level of the premium is separately identified from the observed price difference between loyal and switching consumers. Therefore, we have at least three moments to identify three parameters.
Table 2: Maximum likelihood estimation results

<table>
<thead>
<tr>
<th>Heterogeneity and preferences</th>
<th>Cost function</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Est.</td>
</tr>
<tr>
<td>Common shock (σ_e)</td>
<td>0.291</td>
</tr>
<tr>
<td>Idiosyncratic shock (σ_u)</td>
<td>0.146</td>
</tr>
<tr>
<td>Avg. search cost</td>
<td></td>
</tr>
<tr>
<td>$\bar{\kappa}_0$</td>
<td>-1.680</td>
</tr>
<tr>
<td>$\bar{\kappa}_{inc}$</td>
<td>0.603</td>
</tr>
<tr>
<td>$\bar{\kappa}_{owner}$</td>
<td>0.289</td>
</tr>
<tr>
<td>Home premium</td>
<td></td>
</tr>
<tr>
<td>λ_0</td>
<td>-2.040</td>
</tr>
<tr>
<td>λ_{inc}</td>
<td>0.715</td>
</tr>
<tr>
<td>λ_{owner}</td>
<td>0.036</td>
</tr>
<tr>
<td>Measurement error</td>
<td>0.948</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of parameters</td>
<td>47</td>
</tr>
<tr>
<td>Sample Size</td>
<td>29,000</td>
</tr>
<tr>
<td>Log-likelihood/10,000</td>
<td>-4.015</td>
</tr>
</tbody>
</table>

Average search cost function: $\log(\bar{\kappa}_i) = \kappa_0 + \kappa_{inc}Income_i + \kappa_{owner}Previous\ owner_i$. Home bank premium function: $\log(\lambda_i) = \lambda_0 + \lambda_{inc}Income_i + \lambda_{owner}Previous\ owner_i$. Cost function: $C_i = L_i \times (Z_i\beta + \varepsilon_i - u_i)$. Units: $/100$

The model also implies strong restrictions on the relationship between search/switching, and observed characteristics of markets and loans. For instance, the value of shopping is increasing in the loan-size and the number of competitors; both features that we observe in the survey data. Therefore, in practice the search cost and loyalty premium parameters are identified from more than three sources of variation.

Finally, the fact that we observe search and switching outcomes by income and home buyer status allows us to parametrize $\bar{\kappa}_i$ and λ_i as a function of these two variables.

5 Estimation results

Table 2 presents the maximum likelihood estimates of the key parameters of the model. The model is estimated on the sample of 29,000 CMHC-insured contracts. Our main specification incorporates heterogenous average search-cost and loyalty premium functions. Table 12 in the Appendix contains additional results for three alternative specifications: (i) with homogenous average search-cost and loyalty premium functions, (ii) with both CMHC and Genworth contracts, and (iii) with a larger weight on the aggregate search moments (i.e. $\omega = 100$ in equation 19). Overall, the first specification allows us to easily reject the null hypothesis of homogenous search and switching costs, while the second specification suggests that the fit of the model is better
within the CMHC sample. This result is in part due to the fact the Genworth excludes contracts from the “Other bank” category, while CMHC does not. The third specification reveals that it is necessary to increase the average search cost and loyalty premium in order to match the aggregate search moments. We discuss the tradeoff between fitting the price data and the search moments in greater detail in Section 5.2.

5.1 Preference and cost function parameter estimates

Consumer-preference and consumer-heterogeneity parameters are presented on the left-hand side of Table 2, and the cost function parameters (β) on the right. The price coefficient is normalized to one and monthly payments are measured in hundreds of dollars. In order to better illustrate the magnitude of the estimates, in Table 3 we also present marginal effects obtained by simulating contract terms using the estimated model.\footnote{To obtain a simulated sample of contracts, we sample the random shocks of the model for every household in our main data-set, and compute the equilibrium outcomes. We repeat this process ten times for each borrower.} We use this simulated sample in the goodness of fit analysis presented in the next subsection. Next, we describe the predictions of the model in terms of profit margins, search/switching costs, and price discrimination.

Unobserved heterogeneity and profit margins The first two parameters, σ_ε and σ_u, measure the relative importance of consumer unobserved heterogeneity with respect to the cost of lending. The standard-deviation of the common component is 62% larger than the standard-deviation of idiosyncratic shock (i.e. 0.291 versus 0.187), suggesting that most of the residual price dispersion is due to consumer-level unobserved heterogeneity rather than to idiosyncratic differences across lenders.\footnote{The standard deviation of an extreme-value random variable is equal to $\sigma_u \pi / \sqrt{6}$, or 0.18 in our case.} Similarly, the estimates of the bank fixed-effects reveal relatively small systematic differences across lenders. Three of the eleven coefficients are not statistically different from zero (relative to the reference bank), and the standard deviation across the fixed-effects is equal to 0.106, or 56% of the dispersion of the idiosyncratic shock.

Our estimate of σ_u has key implications for our understanding of the importance of market power in this market. Abstracting from bank fixed-effects, the average difference between the first and second lowest cost lender, $c_{(1)}$ and $c_{(2)}$, is equal to $20 in duopoly settings, $12 with three lenders, and approaches $5 when N goes to 12. These differences imply that in an environment without switching costs, the competition stage would lead to profit margins of about $7 per month for the average market and a loan-size of $100,000.

In the model, market power also exists because of price discrimination motives (i.e. first-stage quote), and product differentiation associated with the loyalty premium. The first two rows of Table 3 show the distribution of monthly payments and lending costs for a homogenous loan-size of $100,000. The difference between the two leads to an average profit margin of $17. Therefore,
Table 3: Model predictions and marginal effects

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Mean (1)</th>
<th>Std-Dev (2)</th>
<th>P-25 (3)</th>
<th>Median (4)</th>
<th>P-75 (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly payment</td>
<td>705.99</td>
<td>49.55</td>
<td>672.09</td>
<td>703.59</td>
<td>739.94</td>
</tr>
<tr>
<td>Lending cost</td>
<td>688.49</td>
<td>50.12</td>
<td>653.80</td>
<td>686.87</td>
<td>724.43</td>
</tr>
</tbody>
</table>

Payment marginal effects:
\[\Delta^{sd} \]
\[\text{Income} \]
\[4.59 \]
\[2.70 \]
\[2.55 \]
\[4.33 \]
\[6.36 \]
\[\Delta^{sd} \]
\[\text{Loan size} \]
\[-10.83 \]
\[3.51 \]
\[-12.70 \]
\[-10.11 \]
\[-8.33 \]

Lending cost marginal effects:
\[\Delta^{sd} \]
\[\text{Income} \]
\[1.40 \]
\[3.19 \]
\[-1.01 \]
\[1.10 \]
\[3.50 \]
\[\Delta^{sd} \]
\[\text{Loan size} \]
\[-5.44 \]
\[4.16 \]
\[-7.65 \]
\[-4.58 \]
\[-2.49 \]

Search cost – \(\kappa_i \)
\[29.52 \]
\[33.01 \]
\[6.86 \]
\[19.15 \]
\[40.70 \]
\[\Delta^{sd} \]
\[\text{Income} \]
\[5.31 \]
\[1.42 \]
\[4.34 \]
\[4.90 \]
\[5.88 \]
\[\Delta \]
\[\text{Previous owner} \]
\[11.07 \]
\[7.56 \]
\[6.19 \]
\[9.51 \]
\[13.73 \]

Home bank premium – \(\lambda_i \)
\[21.99 \]
\[5.42 \]
\[18.60 \]
\[20.82 \]
\[23.73 \]
\[\Delta^{sd} \]
\[\text{Income} \]
\[4.42 \]
\[1.09 \]
\[3.74 \]
\[4.19 \]
\[4.77 \]
\[\Delta \]
\[\text{Previous owner} \]
\[0.80 \]
\[0.19 \]
\[0.68 \]
\[0.76 \]
\[0.86 \]

Monthly payment and Lending costs are normalized to represent a $100,000 loan. \(\Delta^{sd} \) corresponds to the effect of a one standard deviation increase in income or loan size. \(\Delta \)
\[\text{Previous owner} \] measures the marginal effect of being a previous owner borrowers relative to a new home buyers. Search costs and home-bank premiums are measured on a per-month basis.

About 60% of observed margins are caused by factors other than idiosyncratic cost differences between lenders; namely product differentiation (switching costs/loyalty premium), and the presence of search costs.

Importantly, profit margins are highly dispersed across consumers. In Figure 3 we plot the distribution of profits, expressed in basis points, for two groups of borrowers: searchers and non-searchers. Consistent with the previous discussion, margins for searchers are significantly lower, and mostly concentrated between 0 and 25 bps (the median is 16 bps). In contrast, the median profit margin is 33 bps for non-searchers. In both cases, the distribution has coverage from 0 to more than 100 bps, and the inter-decile range is equal to 54 bps. This corresponds to about 50% of the residual dispersion of transaction rates.

In addition, our results imply that the market is more competitive than what the average spread between transaction rates and the 5-year bond-rate might initially suggests; the average profit margin is equal to 27 bps, and the average spread is 130 bps. This is consistent with the idea that mortgage contracts are nearly homogenous across lenders, and represent a large share of consumers’ budgets. It also implies that each transaction involves significant transaction costs.
over the cost of funds. Recall that the average borrower is able to negotiate 75 bps off the posted-rate. The marginal cost of lending is therefore roughly 100 bps below the posted-rate, and 100 bps above the 5-year bond-rate. This cost originates from a variety of sources: the compensation of loan officers (bonuses and commissions), the premium associated with pre-payment risks, and transaction costs associated with the securitization of contracts.

Search cost and loyalty premium The bottom two panels of Table 3 report the predicted distribution of search costs and loyalty premiums, as well as the effect of loan-size and income on these two parameters. The parameters entering the search cost distribution suggest that search frictions are economically important. The average search cost is $29, and is increasing in income and ownership experience. New home-buyers are estimated to have significantly lower search costs on average ($11.07). The effect of income is somewhat smaller. A one standard-deviation increase in income leads to a $5 increase in the average search cost of consumers. This is consistent with an interpretation of search costs as being proportional to the time cost of collecting multiple quotes.

The fact that new home-buyers face lower search costs is somewhat counter-intuitive, since previous owners are, in principle, more experienced at negotiating mortgage contracts. In the data, this difference is identified from the fact that new-home buyers are significantly more likely to switch, and are less likely to gather more than one quote according to the national survey. However, despite these differences, conditional on other financial characteristics, previous owners are observed to pay only slightly more than new-home buyers (about 3 bps). Therefore, the model

![Figure 3: Distribution of profit margins for searchers and non-searchers](image-url)
reconciles these facts by inferring that new home buyers face relatively low search costs, but are associated with a higher lending cost of about $1.5/month for a $100,000 loan.

To understand the magnitude of these estimates, it is useful to aggregate the monthly search cost over the length of the contract. According to the model, the marginal consumer accepting the initial quote is indifferent between searching, and reducing his expected monthly payment by κ_i. Over a five year period, assuming an annual discount factor of 0.96, these estimates correspond to an average upfront search cost of $1,657, and a median of $1,028.\footnote{The search cost is measured in terms of monthly payment units. Since the contract is written over a 60 month period, the discounted value of the search cost is equal to $\sum_{t=0}^{60} \frac{\kappa_i}{(1 + 0.96)^t}$. We use an annual discount factor of 0.96.} Are these number realistic? Hall and Woodward (2012) calculate that a U.S. home buyer could save an average of $983 on origination fees by requesting quotes from two brokers rather than one. Our estimate of the search cost is consistent with this measure.

Turning to the estimate of λ_i, we find that the average loyalty premium is equal to $22 per month. Like with search costs, new home-buyers enjoy a larger premium, but the difference is small ($0.80 per month). In comparison, the effect of income on the loyalty premium is much larger; a one standard deviation increase in income raises λ_i by $4.42 per month.

Over five years, the discounted value of the loyalty premium corresponds to an upfront value of approximately $1,028. This utility gains originates from the presence of switching costs, and complementarities between mortgage lending and other financial services. For instance, consumers could perceive that combining multiple accounts under one bank improves the convenience of the services, which would lead to direct utility gains. In addition, the home bank can compete with rival mortgage lenders by offering discounts on other services, such as checking/saving accounts or preferential terms on other loans or lines of credits. This interpretation is valid only if other multi-product lenders cannot make similar offers, because, for instance, switching main financial institutions is too costly.

How do our results compare to existing estimates of search and switching costs in the literature? Perhaps the closest point of comparison comes from Honka’s (2012) analysis of the insurance market. She estimates the cost of searching for policies to be $28 per online search and $100 per offline search, and switching costs of $115. To compare these numbers to ours we calculate the ratio of the search cost to the standard-deviation of monthly payments for the average loan-size (i.e. $70/Month). In our context, this ratio is 27% ($= 19/70$).\footnote{Note that the median search cost of $19 corresponds to roughly 22 bps. Given rate spread in basis points of 61 bps, this corresponds to a ratio of about 35%}. In comparison, the estimates from Honka (2012) range between 10% for online transactions, and 35% for offline.

We can also compare our findings to those of Hortaçsu and Syverson (2004) and Hong and Shum (2006). Hortaçsu and Syverson (2004) estimate a median search cost of 5 basis points (or $5 per $10000 invested), yielding a ratio of 8%. The average search cost across the four books considered by Hong and Shum (2006) is $1.58 (for non sequential search), yielding a ratio of 33%.
Overall our estimates of the cost of search are comparable with those found in the literature. This is despite the fact that, because of the negotiation process, it is more complicated to obtain information about mortgage prices than about most products studied up until now.

Price discrimination vs cost differences An important concern when studying markets with price dispersion is to separate the observed differences caused by price discrimination, from those caused by cost differences across individuals. In our context, differences in loan-size and income across borrowers lead to major differences in prices across borrowers. In Table 3, we report the marginal effect of both variables on monthly payments (i.e. the reduced-form of the model) and on lending costs, for a standardized loan-size of $100,000.\(^{26}\) Consistent with previous findings in Allen et al. (2013), the model predicts that, after conditioning on financial and demographic characteristics of borrowers, richer households pay higher rates, and consumers financing bigger loans are more likely to obtain large discounts. For a loan-size of $100,000, a one standard-deviation increase in income increases payments by $4.59/month, while a one standard-deviation increase in loan-size decreases payments by $10.83/month.

The estimated lending cost function reveals that only about thirty percent of the income effect on payments is due to cost differences; the rest is explained by larger search and switching costs. Similarly the lending cost function is non-monotonic in income: the effect of increasing income by one standard-deviation is negative at the top of the income distribution (i.e. from the 75th percentile). The positive relationship between lending cost and income is consistent with the fact that banks mostly face pre-payment risks, given the insurance coverage provided by the government against default risks. The fact that the sign of the income effect is reversed at the top highlights the value of attracting wealthier customers, both because of lower default risks and larger revenues from complementary services.

Looking at the loan-size marginal effects, roughly half of the reduced-form relationship is explained by cost differences. A one standard-deviation increase in loan-size reduces the cost of lending by $5.44 per month. The remainder is explained by the search decision of consumers, since borrowers financing larger loans are more likely to search. This is because the gains from search are increasing in loan-size, while the search cost is fixed. Note that this relationship is also true in the FIRM survey. Households earning more than $60,000 (a proxy for loan-size) are 10.5% more likely to search multiple lenders than those earning less than $60,000.

5.2 Goodness of fit

We next provide a number of tests for the goodness of fit of our model. Figure 4 shows that the estimated model reproduces fairly well the overall shape of the discount distribution. There are

\(^{26}\)The monthly payment marginal effects are obtained by regressing predicted monthly payments on all the state variables of the model (i.e. financial characteristics, market structure, and fixed-effects), while the lending cost marginal effects are obtained directly from the cost function reported in Table 2.
two main takeaways. First, the data show a large mass of consumers receiving 75 and 100 bps discounts. It seems as though 100 bps is a focal point in the discount distribution.

Second, a related implication of this behavior is that few consumers receive small discounts, and the density of discounts is sharply increasing past zero in the data. The model predicts a similar pattern, but much less pronounced. This is mostly caused by the distribution of discounts among non-searchers, which is strictly decreasing. In contrast, the model implies a discount distribution for searchers that has a similar dip at 25 bps, because few consumers gathering multiple quotes receive small discounts.

Table 4 looks at how well the model matches the search probabilities of different demographic groups. The first column corresponds to the model prediction using our baseline specification, and the last two reproduce the aggregate moments from the national survey of new home buyers.

The model tends to over-predict search. The unconditional average search probability predicted by the model is 64%, compared with 59% according to the national survey. Similarly, while the model matches reasonably well the survey’s qualitative predictions, it has a hard time matching the magnitude of the differences across groups. This is especially true for the differences across small and large cities, which are nearly 20 percentage points in the survey data, and 10 percentage points in the model. Despite this, note that most of the differences between the model predicted probabilities and survey results are not statistically significant, given the relatively small number of observations in the survey. In the baseline specification, three out ten mean differences are
Table 4: Observed and predicted search probability by demographic groups

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$>$ $60K</td>
<td>0.657</td>
<td>0.623</td>
<td>0.619</td>
</tr>
<tr>
<td>\leq $60K$</td>
<td>0.614</td>
<td>0.540</td>
<td>0.560</td>
</tr>
<tr>
<td>Ownership status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New home buyers</td>
<td>0.650</td>
<td>0.673</td>
<td>0.673</td>
</tr>
<tr>
<td>Previous owners</td>
<td>0.606^b</td>
<td>0.509</td>
<td>0.509</td>
</tr>
<tr>
<td>City size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop. $>$ 1M</td>
<td>0.673</td>
<td>0.645</td>
<td>0.640</td>
</tr>
<tr>
<td>$1M \geq$ Pop. $>$ 100K</td>
<td>0.627</td>
<td>0.565^b</td>
<td>0.667</td>
</tr>
<tr>
<td>Pop. \leq 100K</td>
<td>0.584a</td>
<td>0.506</td>
<td>0.443</td>
</tr>
<tr>
<td>Regions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>0.586</td>
<td>0.492</td>
<td>0.515</td>
</tr>
<tr>
<td>Ontario</td>
<td>0.669</td>
<td>0.655</td>
<td>0.716</td>
</tr>
<tr>
<td>West</td>
<td>0.638c</td>
<td>0.564</td>
<td>0.534</td>
</tr>
</tbody>
</table>

Mean tests: Survey average = Model average. Significance levels: $a = 1\%$, $b = 5\%$, $c = 10\%$.
P-values are calculated using the asymptotic standard-errors of the survey.

Importantly, the middle column shows that the model can rationalize most of the observed search patterns, by imposing a larger weight on the aggregate moments (i.e. specification 3 in Table 12 presented in the Appendix). Across all groups, the model matches the survey results qualitatively and quantitatively. Only the mean difference corresponding to the non-monotonicity of the search probability with respect to city size is statically different from zero.

The fact that the baseline specification does not as accurately match the aggregate moments highlights a tension between the price and search moments. As hinted by specification (3) in Table 12, the model requires a relatively large search cost and loyalty premium to bring the search probability down to less than 60%. In turn, this increases the predicted average discount that switching consumers obtain, much beyond what we observe. In addition, the model requires larger idiosyncratic differences across lenders to match the observed relationship between market size and search. This is because σ_u determines the rate at which the gain from search increases with competition. However, increasing σ_u also leads to a steeper reduced-form relationship between price and market structure than the one we observe in the data. Since the number of observations in the contract data is much larger than the number of households in the survey, the un-penalized likelihood resolves this conflict by assigning relatively more weight to the price relationships.

Finally, in Table 5 we evaluate the ability of the model to reproduce the observed reduced-form relationships between transaction rates and observed characteristics of borrowers. To highlight
Table 5: Reduced-form interest rate spread regressions

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Sample (1)</th>
<th>Simulations (2)</th>
<th>Simulations (3)</th>
<th>Simulations (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prior relationship</td>
<td>-0.0792a</td>
<td>-0.368a</td>
<td>-0.453a</td>
<td>-0.218a</td>
</tr>
<tr>
<td></td>
<td>(0.00866)</td>
<td>(0.00254)</td>
<td>(0.00203)</td>
<td>(0.00248)</td>
</tr>
<tr>
<td>Search indicator</td>
<td></td>
<td></td>
<td>-0.353a</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.00217)</td>
<td></td>
</tr>
<tr>
<td>Previous owner</td>
<td>0.0305a</td>
<td>0.0183a</td>
<td>0.0128a</td>
<td>0.00796a</td>
</tr>
<tr>
<td></td>
<td>(0.00720)</td>
<td>(0.00245)</td>
<td>(0.00225)</td>
<td>(0.00218)</td>
</tr>
<tr>
<td>Relative network size</td>
<td>0.0174a</td>
<td>0.0154a</td>
<td>0.00382a</td>
<td>0.00193</td>
</tr>
<tr>
<td></td>
<td>(0.00405)</td>
<td>(0.00145)</td>
<td>(0.00124)</td>
<td>(0.00118)</td>
</tr>
<tr>
<td>Number of competitors (log)</td>
<td>-0.0426a</td>
<td>-0.0867a</td>
<td>-0.0630a</td>
<td>-0.0762a</td>
</tr>
<tr>
<td></td>
<td>(0.0128)</td>
<td>(0.00499)</td>
<td>(0.00400)</td>
<td>(0.00395)</td>
</tr>
<tr>
<td>Average marginal effects:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income effect</td>
<td>0.487</td>
<td>0.384</td>
<td>0.347</td>
<td>0.335</td>
</tr>
<tr>
<td>Loan size effect</td>
<td>-0.313</td>
<td>-0.246</td>
<td>-0.215</td>
<td>-0.207</td>
</tr>
</tbody>
</table>

Prior relationship W/ Error W/ Error True True
Observations 29,000 301,136 301,136 301,136
R-squared 0.345 0.407 0.450 0.493

Dependent variable: Negotiated rate - 5 year bond rate. Additional controls: Financial characteristics of borrowers, region, year and quarter fixed-effects. Robust standard errors in parentheses. Significance levels: \(a = 1\%\), \(b = 5\%\), \(c = 10\%\).

the ability of the model to explain the cross-sectional distribution of rates, we regress the interest-rate spread, simulated and observed, on financial and market characteristics of the borrowers. Although we omit the financial characteristics variables form this table, the model does a good job at predicting most of these reduced-form relationships, as hinted by the \(R^2\) reported at the bottom of the table. Similarly, the average marginal effects of loan-size and income on transaction rate are well explained by the model (bottom).

The model also predicts well the relationship between the relative size of branch networks and rates. We measure the network size by taking the ratio of the number of branches over the average number of branches of competing banks. The estimated model reproduces well the fact that consumers dealing with large-network banks pay higher rates on average. In the model, this is entirely due to the fact that consumers start their search with their home bank, and face large search costs on average. Column (4) shows that after controlling for the search decision of consumers, the effect of network size on rates is zero.

The model tends to over-predict the impact of the log number of competitors on rates. One likely cause is the correlation between consumers’ unobserved characteristics and the number of competitors in each local market. Indeed, controlling for location (FSA) fixed-effects in column (1) lowers the competition coefficient by a factor of three. This suggests that our estimates suffer
from a simultaneity bias, which biases downward our estimate of σ_u; the parameter measuring the strength of competition across lenders. Since this parameter determines the size of profit margins, it implies that our estimates provide a lower bound of the amount of market power.\(^{27}\)

The reduced-form regressions reveal that the model also over-estimates by a significant margin the premium that loyal consumers pay (i.e. 8 bps versus 36.8 bps). This is despite the fact that the model incorporates measurement error in the identity of the home bank. In the baseline specification, we estimate that about 5% of borrowers report this variable with error. Column (3) shows that incorporating measurement error helps bring this coefficient closer to the data. Using the true prior-relationship variable, the model predicts that loyal borrowers pay on average 45 bps more than switchers. Column (4) shows that this is mostly due to the fact that searchers are more likely to switch. Conditional on searching, loyal consumers pay about 22 bps more than switchers. This suggests that the model over-estimates the average discount that switchers receive because “switching” is strongly associated with “searching”; more so than in the data. This link could be relaxed somewhat by introducing heterogeneity in the timing of search across consumers, or by incorporating “multi-homing” in the model. We chose a more parsimonious model in part because our data contain limited information on search and prior experiences of consumers, as well as for computational reasons.

6 Counter-Factual Analysis

In this section, we use the estimated model to simulate a counter-factual equilibrium with zero search costs in order to quantify the effect of search frictions on consumer welfare. We also analyze the extent to which switching costs and the presence of a price ceiling can amplify or attenuate the welfare cost of search frictions.

Then, in the following subsection, we explore the channels through which competition impacts the adverse effects of search frictions. We perform this analysis by calculating the welfare cost of search frictions in hypothetical markets of different sizes, and by simulating the effect of counter-factual mergers across increasingly competitive markets.

6.1 Quantifying the effect of search frictions

The presence of search costs lowers the welfare of consumers for three distinct reasons. First, it imposes a direct burden on consumers searching for multiple quotes. Second, it can prevent non-searching consumers from matching with the most efficient lender in their choice set (adjusting for differences in the willingness to pay), thereby creating a misallocation of buyers and sellers. Lastly, it opens the door to price discrimination, by allowing the initial lender to make relatively

\(^{27}\) Incorporating location fixed-effects in the structural model could solve this problem, but would lead to an incidental parameters problem.
high offers to consumers with poor outside options and/or high expected search costs. These factors can be identified by decomposing the change in consumer surplus caused by the presence of search frictions:

$$\Delta \text{CS}_i = \lambda_i 1\{b_i = h\} - c_i - p_i - S_i \kappa_i - \lambda_i 1\{b_i^0 = h\} - c_i^0 - p_i^0$$

$$= \left[(\lambda_i 1\{b_i = h\} - c_i) - (\lambda_i 1\{b_i^0 = h\} - c_i^0) \right] - (m_i - m_i^0) - \kappa S_i$$

$$= \Delta V_i - \Delta m_i - S_i \kappa_i,$$

(22)

where the 0 superscript indicates the equilibrium outcomes without search cost, $V_i = \lambda_i 1\{b_i = h\} - c_i$ is the transaction surplus (excluding of the search cost), $m_i = p_i - c_i$ is the profit margin, and S_i is an indicator variable equal to one if the consumer rejects the initial offer.

We label the three components misallocation, discrimination, and search cost, respectively. The first and third are standard frictions in the search literature, and lead to a decrease in total welfare. The elimination of the price discrimination incentive, on the other hand, may not be welfare improving for all consumers.

We simulate the counter-factual experiments as follows. First, we randomly select a sample of 5,000 households from the main data set. Second, for each simulated household, we randomly sample the realization of their idiosyncratic shocks: (i) the identity of their home bank h_i, (ii) the common lending cost ε_i, (iii) the vector of idiosyncratic match values u_{ij}, and (iv) the private-value search cost κ_i. Third, at each realization of these shocks, we find the optimal initial offer and search decision, and then store the endogenous outcomes. Fourth, we simulate the equilibrium without search costs by using solely the competitive auction stage with a reserve price equal to the posted-rate, holding fixed the realized shocks. Finally, we repeat steps (ii) to (iv) 100 times, and average the equilibrium outcomes across the realization of the idiosyncratic shocks.

Table 6 presents the main simulation results. Panel (A) corresponds to the baseline environment, and uses the observed distributions of posted-rates and loyalty premiums. The other two panels report the simulation results in two counter-factual environments: (B) no differentiation between lenders (i.e. $\lambda_i = 0$ for all i), and (C) no posted-rates.

Columns 1 through 3 show the change in the misallocation, discrimination and search cost components respectively, while column 4 presents the total change in consumer surplus. To illustrate the heterogeneity across consumers, the first line of each panel reports the fraction of simulated consumers experiencing zero changes, and the next three describe the conditional distribution of non-zero changes. To calculate the cumulative changes, we sum the changes across all consumers qualifying for a loan, and divide by the number of simulated consumers (5,000).28 The

28 Note that the cumulative effect differs from the average across qualifying consumers, since a fraction of consumers fail to qualify for a loan when the posted-rate is present. On average we estimate that 5.4% of consumers in the baseline environment are not able to qualify for a loan because of the posted rate (same in Panel B).
Table 6: Decomposing the effect of search frictions on welfare

<table>
<thead>
<tr>
<th></th>
<th>Consumer surplus change decomposition</th>
<th>Δ CS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Misallocation</td>
<td>Discrimination</td>
</tr>
<tr>
<td>Panel A: Baseline environment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero changes (%)</td>
<td>79.7</td>
<td>67.5</td>
</tr>
<tr>
<td>Non-zero changes ($)</td>
<td>P10</td>
<td>-63.18</td>
</tr>
<tr>
<td></td>
<td>P50</td>
<td>19.46</td>
</tr>
<tr>
<td></td>
<td>P90</td>
<td>3.17</td>
</tr>
<tr>
<td>Cumulative changes $</td>
<td>-5.36</td>
<td>3.21</td>
</tr>
<tr>
<td>%</td>
<td>28.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Panel B: No differentiation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero changes (%)</td>
<td>77.95</td>
<td>75.38</td>
</tr>
<tr>
<td>Non-zero changes ($)</td>
<td>P10</td>
<td>-72.24</td>
</tr>
<tr>
<td></td>
<td>P50</td>
<td>-26.85</td>
</tr>
<tr>
<td></td>
<td>P90</td>
<td>-6.56</td>
</tr>
<tr>
<td>Cumulative changes $</td>
<td>-7.23</td>
<td>1.32</td>
</tr>
<tr>
<td>%</td>
<td>32.7</td>
<td>6.0</td>
</tr>
<tr>
<td>Panel C: No price-ceiling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zero changes (%)</td>
<td>81.51</td>
<td>68.51</td>
</tr>
<tr>
<td>Non-zero changes ($)</td>
<td>P10</td>
<td>-65.24</td>
</tr>
<tr>
<td></td>
<td>P50</td>
<td>-20.38</td>
</tr>
<tr>
<td></td>
<td>P90</td>
<td>-3.33</td>
</tr>
<tr>
<td>Cumulative changes $</td>
<td>-5.36</td>
<td>5.80</td>
</tr>
<tr>
<td>%</td>
<td>25.0</td>
<td>27.0</td>
</tr>
</tbody>
</table>

Each entry corresponds to an average over 100 simulated samples. Each sample is equal to 5,000 consumers. Averages in the first four lines are calculated using the samples of consumers facing non-zero changes. The fraction of zero changes is computed over the samples of qualifying consumers. Cumulative changes are the sum of all changes divided by the total number of simulated consumers, including non-qualifying consumers. The welfare decomposition corresponds to: \(\Delta CS_i = \Delta V_i - \Delta m_i - \Delta \kappa_i S_i \), where \(\Delta V_i \) is Discrimination, \(\Delta m_i \) is Search cost, and \(\Delta \kappa_i S_i \) is Misallocation. The last row reports the contribution of each component, in percentage of the cumulative change.

Percentage shares of each component is expressed relative to the cumulative changes.

In the baseline environment, we estimate that the cumulative reduction in consumer surplus associated with search frictions is equal to $18.91 per month. The largest component (55%) is attributed to the sunk cost of searching, followed by the misallocation of contracts (28%), and the increase in margins associated with price discrimination (17%). Over 96% of consumers are affected, with the median consumer experiencing a $16 reduction in surplus.

We look first at the misallocation and search-cost components. The first row measures the fraction of buyers and sellers that are matched efficiently and the fraction of non-searchers in the presence of search frictions. In the baseline environment, search frictions cause 20% of transactions to be misallocated, despite the fact that more than 35% of consumers are not searching (column (3)). Note that this difference would be zero if firms had homogenous costs and willingness to pay.
Since banks’ fixed-effects are not highly dispersed, this difference results mostly from the fact that consumers visit the highest expected surplus seller first, which reduces the fraction of inefficient matches.

Panel B illustrates this point by removing differentiation. The home bank now makes the first offer, but does not provide the highest expected transaction surplus. This inefficient sequencing of quotes leads to an increase in search, from 64% to 75%, and therefore to an increase in search costs, from $10.34/month to $13.60/month. Despite the increased search, the fraction of inefficient matches increases by about two percentage points without switching costs, and the cumulative losses associated with misallocation increase by 35%, from -5.36 to -7.23. This reflects mostly a direct loss in surplus associated with the reduction in willingness-to-pay for loyal consumers.

We next consider the change in consumer surplus associated with profit margins. Column (2) shows that the relatively small contribution of the price discrimination component (17% in the baseline), is due largely to the fact that many consumers pay higher markups in the frictionless market. In the baseline, the median change in profit margins is equal to $13.22 per month; slightly more than the median increase in search cost. However, the 10th percentile consumer benefits from a $15.27 reduction in profit margins, which brings the cumulative effect down to $3.21.

To understand this heterogeneity, it is important to note that the initial quote is used both as a price discrimination tool, and as a price ceiling in the competition stage. The home-bank is in monopoly position in the first stage, and can set individual prices based on consumers’ expected outside options. This is analogous to first-degree price discrimination, and leads to strictly higher expected profit margins.\footnote{We use expected profits here because the outcome of the second stage is random, and the realized profit margins of the home bank at the auction can be larger than the known margin in the first stage.} This adverse effect is weighed against the fact that the initial offer can be recalled, and therefore protects consumers against excessive market power at the auction stage. Notice that this factor is present only because consumers and banks are uncertain about the gains from search. If firms had perfect information about the outcome of the auction, the initial offer would not distort prices in the second stage.

Panel B shows that removing the loyalty premium forces the home bank to behave more competitively in the first stage, which reduces the price discrimination contribution to the welfare cost of search frictions by close to 60%. This change is the result of a reduction in the home bank’s markup, and an increase in the relative market power of competing lenders in the second stage. The latter effect implies that a larger fraction of consumers experience a decrease in profit margins following the elimination of search costs, and leads to an increase in the dispersion of the price discrimination component, relative to the baseline. Conditional on experiencing a non-zero change in profit margins, the 10th percentile of the distribution of profit margin changes is $7 lower per month. Therefore, while the market is overall more competitive without the loyalty premium, the effect of search frictions on profit margins is more heterogeneous.

Overall, the comparison between the baseline and no-loyalty environments can help us under-
stand the role of product differentiation in search markets. When one seller offers a strictly higher quality service, eliminating differentiation reduces its ability to price discriminate. Because this increases the relative market power of competing firms, it does not offset the increases in misallocation and search costs that result from making products ex-ante homogenous. Therefore, the cumulative welfare cost of search frictions increases by 17.5% when we remove differentiation.

The last panel simulates an environment with no price ceiling. Relative to the baseline, the cumulative effect on surplus increases by 13.5%, implying that the posted rate attenuates the welfare cost of search frictions. As column (2) clearly shows, this is the result of a large increase (80%) in the welfare contribution of price discrimination. This highlights the fact that the presence of a price ceiling greatly limits the ability of the initial lender to price discriminate. In the baseline simulation, we estimate that nearly 50% of initial quotes are constrained by the posted rate.

Notice also that the cumulative search and misallocation components are nearly identical with or without a posted-rate. This is the result of two offsetting forces. On the one hand, eliminating the posted rate raises substantially the initial quote, which in turn increases the search probability for consumers qualifying for a loan from their home bank. On the other, by eliminating the price ceiling, more consumers with relatively poor financial characteristics are able to get a quote from their home bank, and therefore do not necessarily have to search for additional quotes (especially those with high search costs). These two forces cancel each other out almost exactly.

6.2 Market structure and search frictions

In this section, we study the effect of market structure on consumer surplus and negotiated prices by simulating a series of counter-factual experiments in which we vary the number of competitors. Specifically, we eliminate all systematic cost differences between lenders, and assume that consumers start their search with the same home bank. Then, for each simulated consumer and each realization of the idiosyncratic shocks, we solve the equilibrium outcomes by incrementally changing the number of competitors in \(N_i \), from 1 to 12. Importantly, at each step, we solve the game holding fixed the match values of all existing lenders. Therefore, in the zero search-cost environment, the expected transaction surplus is strictly increasing in \(N \).

We use the results of these experiments to answer two questions. First, following on the analysis performed above, we evaluate to what extent competition attenuates the welfare cost of search frictions. Second, we study directly the effect of competition on welfare and prices, by comparing the equilibrium outcomes with search frictions across alternative market structures. This effectively creates twelve counter-factual “mergers”, which we use to study the effect of competition of consumer welfare, search effort, and price dispersion.

Table 7 decomposes the effect of search frictions on consumer surplus in different market structures. Each row represents a different market structure, and the columns summarize the welfare impact of introducing search frictions. Columns (1) to (3) present the percentage contribution of
Table 7: Welfare effects of search frictions in competitive and non-competitive markets

<table>
<thead>
<tr>
<th>Nb. of comp.</th>
<th>Search Probability (%)</th>
<th>Misallocation (%)</th>
<th>Discrimination (%)</th>
<th>Search cost ($/month)</th>
<th>∆ CS ($/month)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.46</td>
<td>12.97</td>
<td>42.03</td>
<td>45.00</td>
<td>-12.13</td>
</tr>
<tr>
<td>3</td>
<td>0.53</td>
<td>18.89</td>
<td>32.77</td>
<td>48.35</td>
<td>-14.33</td>
</tr>
<tr>
<td>4</td>
<td>0.57</td>
<td>23.34</td>
<td>26.28</td>
<td>50.38</td>
<td>-15.72</td>
</tr>
<tr>
<td>5</td>
<td>0.59</td>
<td>26.50</td>
<td>21.53</td>
<td>51.97</td>
<td>-16.76</td>
</tr>
<tr>
<td>6</td>
<td>0.61</td>
<td>28.72</td>
<td>17.83</td>
<td>53.45</td>
<td>-17.62</td>
</tr>
<tr>
<td>7</td>
<td>0.63</td>
<td>30.17</td>
<td>15.04</td>
<td>54.79</td>
<td>-18.36</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.72</td>
<td>31.22</td>
<td>7.60</td>
<td>61.19</td>
<td>-21.39</td>
</tr>
</tbody>
</table>

Each entry corresponds to an average over 100 simulated samples. Each sample is equal to 5,000 consumers. The last column reports the cumulative change in consumer welfare divided by the total number of simulated consumers, including non-qualifying consumers. The welfare decomposition corresponds to: $\Delta CS_i = \Delta V_i - \Delta m_i - \Delta \kappa_i S_i$, where ΔV_i = Misallocation, Δm_i = Discrimination, $\Delta \kappa_i$ = Search cost. Columns (2)-(4) report the percentage contribution of each component to the cumulative change.

Each component, and the last column presents the cumulative change in consumer surplus, measured as before in $$/month per simulated consumer.

Looking at the cumulative surplus changes, the results suggest that competition amplifies the adverse effect of search frictions on welfare. In other words, by setting search costs to zero, we can improve the welfare of consumers by a larger margin in competitive markets than in concentrated markets. For instance, the surplus decrease is 76% larger (in absolute value) in markets with 13 lenders than in markets with two.

The decomposition exercise shows that this might not always be true, and depends on the importance of market power. Indeed, as competition increases, the welfare loss contribution from price discrimination shrinks very sharply from 42% to less than 8%. This is a direct consequence of the improvement in consumer bargaining leverage, caused by the increase in the number of competing lenders. However, in our simulations, this improvement comes at the cost of more search effort and a greater misallocation of contracts.

The contribution of the search cost component increases because, in equilibrium, consumers are more likely to search in more competitive markets. Column (1) shows that the fraction of borrowers searching more than one bank increases from 46% in duopoly markets, to over 70% in the most competitive market structures. Note that the model does not necessarily predict this strict positive relationship for all parameter values. On the one hand, competition increases the benefit of search, and therefore the probability of rejecting the initial offer (holding fixed the initial offer). On the other hand, the initial quote is decreasing in N, which leads to a decrease in the relative gain from search. Our simulation results show that the former effect dominates for most consumers.
Table 8: Decomposing the effect of mergers on consumer welfare

<table>
<thead>
<tr>
<th>Mergers</th>
<th>∆ Fraction non-qualify</th>
<th>Welfare change decomposition ($/Month)</th>
<th>∆ CS ($/Month)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>3 to 2</td>
<td>0.03</td>
<td>-2.18</td>
<td>5.11</td>
</tr>
<tr>
<td>4 to 3</td>
<td>0.02</td>
<td>-2.06</td>
<td>2.19</td>
</tr>
<tr>
<td>5 to 4</td>
<td>0.02</td>
<td>-2.01</td>
<td>1.05</td>
</tr>
<tr>
<td>6 to 5</td>
<td>0.01</td>
<td>-1.95</td>
<td>0.54</td>
</tr>
<tr>
<td>7 to 6</td>
<td>0.01</td>
<td>-1.87</td>
<td>0.28</td>
</tr>
<tr>
<td>8 to 7</td>
<td>0.01</td>
<td>-1.81</td>
<td>0.13</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 to 12</td>
<td>0.00</td>
<td>-1.45</td>
<td>-0.03</td>
</tr>
<tr>
<td>Cumulative effect</td>
<td>0.12</td>
<td>-19.83</td>
<td>9.26</td>
</tr>
</tbody>
</table>

Each entry corresponds to an average over 100 simulated samples. Each sample is equal to 5,000 consumers. The last column reports the cumulative changes in consumer welfare divided by the total number of simulated consumers, including non-qualifying consumers (5,000). The welfare decomposition corresponds to: \[\Delta CS_i = \Delta V_i - \Delta m_i - \Delta \kappa_i S_i = \text{Misallocation}_i - \text{Market power}_i - \text{Search cost}_i. \] Columns (2)-(4) report the contribution value of each component (in $/month).

The contribution of the misallocation component also increases sharply with the number of competitors, from 12% to more than 30%. While the fraction of misallocated contracts is not necessarily larger in more competitive markets (since the fraction of searchers is also larger), the potential improvement in transaction surplus is much larger in competitive markets. Therefore, eliminating search frictions corrects a larger market imperfection in markets with 13 lenders, relative to markets with only 2 lenders.

Next, we study directly the effect of concentration on welfare and prices in markets where search costs are present. We can decompose the effect of losing a potential bargaining partner on consumer surplus into three terms:

\[
\Delta CS_i = [V_i(N-1) - V_i(N)] - [m_i(N-1) - m_i(N)] - \kappa_i [S_i(N-1) - S_i(N)]
= \Delta V_i - \Delta m_i - \Delta \kappa_i S_i. \tag{23}
\]

The change in transaction surplus, \(\Delta V_i \), captures both the change in the allocation of consumers across lenders, and the cost increases associated with each merger. The second component measures the change in market power caused by reducing the number of competitors, rather than solely the elimination of the price discrimination opportunity. The last component measures the cost saving that results from consumers searching less in more concentrated markets.

Table 8 shows the results of this decomposition exercise. The first column shows the evolution of the change in the fraction of non-qualifying consumers as we increase the number of competitors. Similar to what we observed when the posted rate was eliminated, increasing the number of
competitors leads to a 12% expansion in the number of loans issued, from 84% in duopoly markets to about 96% in the most competitive market. The adverse effect of mergers on the supply of loans is mostly felt in highly concentrated markets.

The results also show that competition increases aggregate consumer surplus by a significant margin. Although the effect of each merger is modest, the difference in consumer surplus between the most competitive market structure (13 lenders) and the least competitive (2) is larger in magnitude than the effect of eliminating search frictions altogether ($24.6 vs $18.9 per month).

The welfare cost of each merger falls as the number of lenders in the market increases. The largest change comes from the market power component: the effect of losing a competitor on profit margins is decreasing in N. The same pattern exists, but is less pronounced, for misallocation. Finally, the offsetting effect of the reduction in search costs is not large enough to compensate for the misallocation and market-power effects of mergers. The reduction in search effort following each merger reduces the cumulative search costs by less than $0.75/month in duopoly markets, and by about $0.35/month in the most competitive markets.

Lastly, we focus our attention on the effect of mergers on the distribution of prices. While Table 8 clearly shows that the market power effect is rapidly decreasing in the number of competitors, it hides the fact that this competitive effect differs significantly across consumers.

The effect of mergers on negotiated prices is heterogeneous in part because it is passed through differently to searchers and non-searchers. To see this, note that we can decompose the average change in rates into a change in the competitive quote, a change in the initial quote, and a change in rates for consumers adjusting their search effort post-merger:

$$E[\Delta r_i] = E[(r^*_i(N-1) - r^*_i(N))S_i(N)] + E[(r^0_i(N-1) - r^0_i(N))(1 - S_i(N))]$$

$$+ E[(r^*_i(N-1) - r^0_i(N-1))(S_i(N-1) - S_i(N))].$$

(24)

The first two terms are positive, while the third can, in theory, be positive or negative depending on how the probability of search changes with N. As Table 7 shows, reducing the number of lenders lowers the average probability of search, and therefore all three terms are positive in our simulations.

Table 9 summarizes the results of this decomposition. The average effect of losing a competitor ranges from 9.26 bps in markets with three lenders, to 2 bps in markets with 13 lenders. The decomposition reported in columns (4)-(6) shows that the bulk of the price increase (70%) is associated with consumers facing higher prices at the competition stage. In contrast, the contribution of the initial quote is much smaller, and decreases towards zero for mergers in more competitive markets. The fact that consumers adjust their search behavior to engage in less search following
Table 9: Decomposition of merger effects on negotiation rates

<table>
<thead>
<tr>
<th>Mergers</th>
<th>Change in rates (bps)</th>
<th>Decomposition (%)</th>
<th>Change dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average (1)</td>
<td>2nd-stage (2)</td>
<td>1st-stage (3)</td>
</tr>
<tr>
<td>3 to 2</td>
<td>9.26</td>
<td>11.89</td>
<td>5.04</td>
</tr>
<tr>
<td>4 to 3</td>
<td>6.01</td>
<td>7.73</td>
<td>2.93</td>
</tr>
<tr>
<td>5 to 4</td>
<td>4.62</td>
<td>5.83</td>
<td>1.86</td>
</tr>
<tr>
<td>6 to 5</td>
<td>3.84</td>
<td>4.70</td>
<td>1.24</td>
</tr>
<tr>
<td>7 to 6</td>
<td>3.35</td>
<td>3.98</td>
<td>0.86</td>
</tr>
<tr>
<td>8 to 7</td>
<td>2.98</td>
<td>3.42</td>
<td>0.60</td>
</tr>
<tr>
<td>...</td>
<td>2.04</td>
<td>2.08</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Each row corresponds to the simulation of a merger from N to $N - 1$. Columns (1) to (3) report the average change in transaction rate, and in the second-stage and initial quotes. Columns (4) to (6) decompose the average rate change into the contribution of searchers and non-searchers, and the contribution of consumers changing their search decisions. The last column reports the change residual rate dispersion, measured using the inter-decile range.

the merger implies that the effect on rates is amplified by the presence of search frictions, but by a small margin.

The small contribution from the initial stage arises mostly because the initial quote is less responsive to changes in market structure. Columns (2) and (3) compare changes in the competitive and initial quotes for all simulated consumers, irrespective of search decisions. Systematically, the change in the second stage offer is two to three times larger than the change in the initial quote.

This difference is explained in part by the presence of the posted rate, which constrains roughly 50% of initial quotes, and is independent of market structure. However, even absent the posted rate, the model predicts larger changes in transaction prices at the auction stage following each merger. Therefore, consumers with low search costs benefit more from increased competition, than do consumers with high search costs.

This difference between searchers and non-searchers has implications for the relationship between market structure and price dispersion. In the last column of Table 9 we show that a decrease in the number of competitor systematically leads to a decrease in residual price dispersion. This is because as we increase the number of competitors in a market, the bottom of the price distribution decreases faster than the top, which increases the dispersion of prices.

Figure 5a below illustrates this point by plotting the conditional average rate increases following a merger, against the percentiles of the residual rate distribution. Each line represents this relationship for market structures ranging from 3 to 8 lenders. It is clear that it is consumers at the bottom of the rate distribution that are most affected by the loss of a competitor. With 3 lenders, a merger leads to a substantial increase in rates, over 20 bps, at the 10th percentile. Similarly, with 5 competitors, the effect of the merger at the 10th percentile is smaller, about 10 bps, but much larger than at the 90th percentile.
Moreover, as Figure 5b shows, there exists a clear relationship between the percentiles of the residual rate distribution and the contribution of each component. For individuals at the bottom of the residual distribution, i.e. those paying the lowest price, any merger effect is coming from the second-stage. At the top of the residual distribution are individuals who are less likely to search, and therefore most of the merger effect comes through the initial quote. A similar relationship exists for simulated mergers.

The model’s predictions about the relationship between market structure and both rates and dispersion are corroborated by findings in Allen et al. (2014). In it we study the effect of an actual merger between lenders that occurred in the Canadian banking industry. Our results suggest that following the merger there was a positive rate increase, but that only consumers at the bottom and middle of the rate distribution were affected. As a consequence, price dispersion decreased following the merger.

6.3 Summary of counter-factual results

Our counter-factual results show that search frictions reduce consumer surplus by almost $20 per month, with the biggest part of this loss associated with the direct cost of searching for multiple quotes, and the remainder with price discrimination and inefficient matching.

Product differentiation, associated with the presence of switching costs or loyalty premium, increases market power. Overall though, differentiation attenuates the effect of search frictions by reducing direct search costs and improving allocation: there is a loyalty premium attached to the initial lender, and it makes the first offer. As discussed formally in Weitzman (1979), the sequence of search that we use is optimal only when the home bank offers the higher quality product.

The posted rate also attenuates the welfare cost of search frictions. Its impact comes mostly
through its effect on the ability of the home bank to discriminate: in its absence, lenders can increase the initial quote, which can increase the search probability of consumers. This is not to say that the presence of a price ceiling is good overall for consumers. While the posted price reduces the adverse effect of price discrimination, it also reduces access to credit. We estimate that eliminating the posted rate would increase the number of mortgages issued by 5.4% on average. Furthermore, lowering the posted rate to reflect the average discount in the market would increase the fraction of non-qualifying loan applications to nearly 20%. Therefore, while our model cannot assign a value to increasing access to credit, it is important to note that a uniform pricing policy in this market would not necessarily improve consumer welfare.

The effect of concentration on welfare and prices in search markets is more ambiguous, as pointed out by Janssen and Moraga-Gonzalez (2004). We find that while competition increases consumer welfare overall, it also amplifies the welfare cost of search frictions. As the number of firms in the market increases, the welfare loss from price discrimination shrinks, but the welfare loss from misallocation and direct search costs increases. In addition, the presence of heterogeneous search costs implies that the benefits of competition are not spread equally across consumers. Specifically, we find consumers with low search costs benefit more from competition, and so eliminating a lender impacts rates paid by consumers at the bottom and middle of the rate distribution, but has a smaller effect on consumers at the top. This leads to a positive relationship between number of competitors in a market, and the importance of residual price dispersion. This is consistent with the empirical findings of Borenstein and Rose (1994), which suggest that an increase in competition lowers the prices paid by price-sensitive consumers, while leaving unchanged prices paid by loyal consumers at the top of the price distribution.

7 Conclusion

The paper makes three main contributions. The first is to provide an empirical framework for studying markets in which prices are negotiated. The second is to show that search frictions are important and generate significant welfare losses for consumers that can be decomposed into misallocation, price discrimination, and direct search cost components. We also show that the welfare loss is mitigated by switching costs (loyalty premium) and posted prices, but amplified by competition. The final contribution is to show that the role of competition is also important in markets with search frictions, but that this effect is not spread equally across consumers.

Although the overall fit of our model is good, the goodness of fit analysis highlights several caveats. First, reduced-form estimates using the data show that loyal consumers pay around 8 bps more, while the model predicts more than 35 bps. This difference is directly related to our modeling assumptions: the timing and order of search are the same for all consumers, and all

30 This result is available upon request.
consumers have a single home bank. These are simplifying assumptions that closely link search and switching in the model.

Similarly, the model tends to over-estimate the impact of competition on rates. This likely reflects the fact that that market structure is assumed to be independent of consumers’ unobserved attributes, up to regional fixed-effects. If this is not the case, our estimates of firms’ cost differences, which determine markup levels, would suffer from a attenuation bias, and therefore our results would correspond to a lower bound on the size of profit margins in this market.

A related interpretation of the small reduced-form effect of competition on rates and discounts, is that consumers face heterogenous consideration sets, conditional on being located in the same postal-code area. This would create measurement error in the choice-set of consumers. Because lenders are ex-ante heterogeneous, it is computationally prohibitive to incorporate this type of measurement error in the model. Moreover, we do not have access to data on the set, or identity of lenders considered by borrowers.

Finally, in order to keep the model tractable, we decided to focus only on branch-level transactions, and ignore contracts that are negotiated through brokers. Brokers, act as intermediaries and can potentially lower the search cost of individuals by searching over a larger set of lenders. Since brokers are used by approximately 25% of borrowers it would be important to understand better the role they play in this environment. In an ongoing project we are working on modeling the behavior of these intermediaries.

References

Moraga-González, J. L., Z. Sándor, and M. R. Wildenbeest (2014). Do higher search costs make markets less competitive?

A Data description

Our data-set consists of a 10% random sample of insured contracts from CMHC. It covers the period from 1992 to 2004. We restrict our analysis to the 1999-2002 period for two reasons. First, between 1992 and 1999, the market transited from one with a larger fraction of posted-price transactions and loans originated by trust companies, to a decentralized market dominated by large multi-product lenders. Our model is a better description of the latter period. Second, between November 2002 and September 2003, TD-Canada Trust experimented with a new pricing scheme based on a “no-haggle” principle. Understanding the consequences of this experiment is beyond the scope of this paper, and would violate our confidentiality agreement.

We also have access to data from Genworth Financial, but use these only to test for robustness, since we are missing some key information for these contracts. We obtained the full set of contracts originated by the 12 largest lenders and further sampled from these contracts to match Genworth’s annual market share.

Both insurers use the same guidelines for insuring mortgages. First, borrowers with less than 25% equity must purchase insurance. Second, borrowers with monthly gross debt service (GDS) payments that are more than 32% of gross income or a total debt service (TDS) ratio of more than 40% will almost certainly be rejected. Crucial to the guidelines is that the TDS and GDS calculations are based on the posted rate and not the discounted price. Otherwise, given that mortgages are insured, lenders might provide larger discounts to borrowers above a TDS of 40 in order to lower their TDS below the cut-off. The mortgage insurers charge the lenders an insurance premium, ranging from 1.75 to 3.75% of the value of the loan – lenders pass this premium onto borrowers. Insurance qualifications (and premiums) are common across lenders and based on the posted rate. Borrowers qualifying at one bank, therefore, know that they can qualify at other institutions, given that the lender is protected in case of default.

31This is, in fact, not a guideline, but a legal requirement for regulated lenders. After our sample period, the requirement was adjusted and today borrowers with less than 20% equity must purchase insurance.
Table 10: Definition of Household / Mortgage Characteristics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI</td>
<td>Type of lender</td>
</tr>
<tr>
<td>Source</td>
<td>Identifies how lender generated the loan (branch, online, broker, etc)</td>
</tr>
<tr>
<td>Income</td>
<td>Total amount of the borrower(s) salary, wages, and income from other sources</td>
</tr>
<tr>
<td>TDS</td>
<td>Total debt service ratio</td>
</tr>
<tr>
<td>GDS</td>
<td>Gross debt service</td>
</tr>
<tr>
<td>Duration</td>
<td>Length of the relationship between the borrower and FI</td>
</tr>
<tr>
<td>R-status</td>
<td>Borrowers residential status upon insurance application</td>
</tr>
<tr>
<td>FSA</td>
<td>Forward sortation area of the mortgaged property</td>
</tr>
<tr>
<td>Market value</td>
<td>Selling price or estimated market price if refinancing</td>
</tr>
<tr>
<td>Applicant type</td>
<td>Quartile of the borrowers risk of default</td>
</tr>
<tr>
<td>Dwelling type</td>
<td>10 options that define the physical structure</td>
</tr>
<tr>
<td>Close</td>
<td>Closing date of purchase or date of refinance</td>
</tr>
<tr>
<td>Loan amount</td>
<td>Dollar amount of the loan excluding the loan insurance premium</td>
</tr>
<tr>
<td>Premium</td>
<td>Loan insurance premium</td>
</tr>
<tr>
<td>Purpose</td>
<td>Purpose of the loan (purchase, port, refinance, etc.)</td>
</tr>
<tr>
<td>LTV</td>
<td>Loan amount divided by lending value</td>
</tr>
<tr>
<td>Price</td>
<td>Interest rate of the mortgage</td>
</tr>
<tr>
<td>Term</td>
<td>Represents the term over which the interest rate applies to the loan</td>
</tr>
<tr>
<td>Amortization</td>
<td>Represents the period the loan will be paid off</td>
</tr>
<tr>
<td>Interest type</td>
<td>Fixed or adjustable rate</td>
</tr>
<tr>
<td>CREDIT</td>
<td>Summarized application credit score score (minimum borrower credit score).</td>
</tr>
</tbody>
</table>

Some variables were only included by one of the mortgage insurers.
B Robustness

Table 11: Summary statistics on mortgage contracts in the joint CMHC and Genworth sample

<table>
<thead>
<tr>
<th>variable</th>
<th>N</th>
<th>mean</th>
<th>sd</th>
<th>p25</th>
<th>p50</th>
<th>p75</th>
</tr>
</thead>
<tbody>
<tr>
<td>loan</td>
<td>35,457</td>
<td>140,015</td>
<td>56,606</td>
<td>94,257</td>
<td>131,846</td>
<td>177,548</td>
</tr>
<tr>
<td>income</td>
<td>35,457</td>
<td>69,535</td>
<td>27,630</td>
<td>49,946</td>
<td>65,292</td>
<td>83,232</td>
</tr>
<tr>
<td>payment</td>
<td>35,457</td>
<td>974</td>
<td>.63</td>
<td>665</td>
<td>920</td>
<td>1223</td>
</tr>
<tr>
<td>spread</td>
<td>35,457</td>
<td>1.26</td>
<td>.63</td>
<td>1.22</td>
<td>1.69</td>
<td></td>
</tr>
<tr>
<td>I(no discount)</td>
<td>35,457</td>
<td>22.6</td>
<td>41.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>switch</td>
<td>22,815</td>
<td>26.7</td>
<td>24.2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>credit score</td>
<td>35,457</td>
<td>668</td>
<td>72.1</td>
<td>650</td>
<td>700</td>
<td>750</td>
</tr>
<tr>
<td>I(LTV=95)</td>
<td>35,457</td>
<td>36.9</td>
<td>48.2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>previous owner</td>
<td>35,457</td>
<td>24.3</td>
<td>42.9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1 provides summary statistics for the main data-set, which is based only on contracts insured by CMHC. For robustness we also include estimate the model using contracts insured by Genworth Financial, even though there are more missing observations. This table provides summary statistics of the full sample.

Table 12: MLE estimation results for alternative specifications

<table>
<thead>
<tr>
<th>Parameters</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common shock (σ_c)</td>
<td>0.288</td>
<td>0.290</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.002)</td>
</tr>
<tr>
<td>Idiosyncratic shock (σ_u)</td>
<td>0.124</td>
<td>0.156</td>
<td>0.155</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>Avg. search cost:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\bar{\kappa}_0$</td>
<td>-1.080</td>
<td>-1.660</td>
<td>-1.275</td>
</tr>
<tr>
<td></td>
<td>(0.013)</td>
<td>(0.028)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>$\bar{\kappa}_{inc}$</td>
<td>0.576</td>
<td>0.143</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.039)</td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>$\bar{\kappa}_{owner}$</td>
<td>0.326</td>
<td>0.820</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.043)</td>
<td>(0.013)</td>
<td></td>
</tr>
<tr>
<td>Loyalty premium:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_0</td>
<td>-1.780</td>
<td>-1.973</td>
<td>-1.822</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.008)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>λ_{inc}</td>
<td>0.692</td>
<td>0.670</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.002)</td>
<td></td>
</tr>
<tr>
<td>λ_{owner}</td>
<td>0.020</td>
<td>0.260</td>
<td></td>
</tr>
</tbody>
</table>

46
<table>
<thead>
<tr>
<th>Metric</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement error:</td>
<td>0.936</td>
<td>0.941</td>
<td>0.886</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Cost function:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>3.510</td>
<td>3.871</td>
<td>3.430</td>
</tr>
<tr>
<td></td>
<td>(0.063)</td>
<td>(0.247)</td>
<td>(0.043)</td>
</tr>
<tr>
<td>Bond rate</td>
<td>0.610</td>
<td>0.580</td>
<td>0.629</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.039)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>Loan size</td>
<td>0.035</td>
<td>0.083</td>
<td>0.077</td>
</tr>
<tr>
<td></td>
<td>(0.012)</td>
<td>(0.015)</td>
<td>(0.015)</td>
</tr>
<tr>
<td>Income</td>
<td>-0.024</td>
<td>-0.214</td>
<td>-0.098</td>
</tr>
<tr>
<td></td>
<td>(0.025)</td>
<td>(0.030)</td>
<td>(0.028)</td>
</tr>
<tr>
<td>Loan/Income</td>
<td>-0.078</td>
<td>-0.109</td>
<td>-0.077</td>
</tr>
<tr>
<td></td>
<td>(0.009)</td>
<td>(0.012)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Other debt</td>
<td>-0.054</td>
<td>-0.046</td>
<td>-0.043</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.007)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>FICO score</td>
<td>-0.501</td>
<td>-0.518</td>
<td>-0.463</td>
</tr>
<tr>
<td></td>
<td>(0.029)</td>
<td>(0.033)</td>
<td>(0.029)</td>
</tr>
<tr>
<td>Max. LTV</td>
<td>0.060</td>
<td>0.060</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
<td>(0.004)</td>
</tr>
<tr>
<td>Previous owner</td>
<td>0.017</td>
<td>-0.008</td>
<td>-0.093</td>
</tr>
<tr>
<td></td>
<td>(0.005)</td>
<td>(0.006)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Number of parameters</td>
<td>43</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>LLF/10,000</td>
<td>-4.062</td>
<td>-4.279</td>
<td>-5.037</td>
</tr>
<tr>
<td>Likelihood-ratio test: $2 \times (L_{base} - L_0)$</td>
<td>943.371</td>
<td>5274.540</td>
<td>20437.486</td>
</tr>
<tr>
<td>Sample size</td>
<td>29,000</td>
<td>35,457</td>
<td>29,000</td>
</tr>
</tbody>
</table>

32 Average search cost function: $\log(\kappa) = \kappa_0 + \kappa_{\text{inc}} \text{Income}_i + \kappa_{\text{owner}} \text{Previous owner}_i$. Home bank premium function: $\log(\lambda) = \lambda_0 + \lambda_{\text{inc}} \text{Income}_i + \lambda_{\text{owner}} \text{Previous owner}_i$. Cost function: $C_i = L_i \times (Z_i \beta + \varepsilon_i - u_i)$. Units: $/100$. All specifications include year, market and bank fixed-effects. The likelihood ration test is calculated relative to the baseline specification presented in Table 2.