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We consider a rental firm with two types of customers. Contract customers pay fixed, prenegotiated rental
fees and expect a high quality of service. Walk-in customers have no contractual relations with the firm

and are “shopping for price.” Given multiple contract and walk-in classes, the rental firm has to decide when
to offer service to contract customers and what fees to charge walk-in customers for service.
We formulate this rental management problem as a problem in stochastic control and characterize optimal

policies for managing contract and walk-in customers. We also consider static, myopic controls that are simpler
to implement, and we analytically establish conditions under which these policies perform optimally. Comple-
mentary numerical tests provide a sense of the range of systems for which myopic policies are effective.
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1. Introduction
Rental businesses provide a cost-effective alternative
to ownership in many branches of the economy. The
range of products that are offered for rent extends
from relatively inexpensive items such as videotapes,
DVDs, and home electronics to expensive ones such
as cars, trucks, real estate properties, and construc-
tion equipment. Despite many obvious differences,
all rental businesses possess some common character-
istics: A rental company acquires and maintains an
inventory of items, which are used by the customers
for a limited period of time. Typically, rental durations
are short compared to the items’ useful lifetime, and
items become available for future rentals shortly after
they are returned to inventory.
Heterogeneity of customer preferences is often an

important factor in determining rental management
practices, and in many industries rental companies
separate their customer base into two groups. The first,
contract group consists of customers whose rentals are
regulated by prenegotiated contracts, which usually
specify a fixed rental fee as well as certain service
obligations. The second customer group consists of
walk-in customers, to which a rental company has
no long-term contractual obligations. Typically, these
customers “shop for price” and do not expect a high
degree of service.
The nature of contract and walk-in profiles can de-

pend on the type of rental business. For example

in car rentals, business customers play the role of
the contract group, and leisure customers are best
described as walk-ins. On the other hand, in truck-
trailer rentals there are no leisure customers, and
the role of the walk-ins is assumed by the small
business customers, whereas contract customers are
large corporations that typically bring in significant
rental volumes. In these systems, short-term capac-
ity imbalances—either congestion or idleness—can be
managed through a number of mechanisms. Demand
from walk-in customers can be controlled by the rais-
ing or lowering of prices. Similarly, rental requests
from contract customers can be honored or denied,
but at a price.
Customer heterogeneity, combined with demand

and supply uncertainty, makes the determination of
how best to control capacity a difficult problem in
these systems. At what point should contract cus-
tomers be turned away? And by how much should
walk-in prices be raised as the system becomes con-
gested? Furthermore, which classes should be con-
sidered “better” than others and be given priority or
better prices? In this paper, we provide some initial
answers to these questions.
We consider a setting in which there are multiple

classes of contract and walk-in customers. Arriving
contract customers can be offered a rental unit and
charged their contract’s class-specific rental fee, or
they may be rejected, in which case the rental system
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pays a class-specific penalty. Arriving walk-in cus-
tomers are quoted prices that may dynamically vary
with the system’s level of congestion. Given a quote,
these customers either accept or balk, with class-
specific probabilities.
This model is related to two different streams of re-

search in the literature on capacity management. The
first one considers the use of admission controls to
allocate fixed capacity among different classes of cus-
tomers. For example, see Littlewood (1972), Alstrup
et al. (1986), Brumelle and McGill (1993), Belobaba
(1996), Kleywegt and Papastavrou (1998), Rothstein
(1974), Ladany (1977), Williams (1977), Liberman and
Yechiali (1978), Bitran and Gilbert (1996), Ross and
Tsang (1989), Ross and Yao (1990), Altman et al.
(2001), Örmeci et al. (2001, 2002), Örmeci and van der
Wal (2006), Örmeci and Burnetas (2004, 2005), and
Savin et al. (2005). These allocation papers assume
that all prices are fixed and that capacity is man-
aged solely via admission controls. The second group
analyzes models in which capacity is controlled via
dynamic pricing. For example, see Low (1974), Kelley
(1997), Kelley et al. (1998), Zhao and Zheng (2000),
Paschalidis and Tsitsiklis (2000), Yoon and Lewis
(2004), and Gayon et al. (2004). These pricing papers
assume that service fees can be changed as often as
needed for all customer classes.
The present paper brings together these two streams

of research. We model a more general setting, in
which some customer classes (the contract-customer
group) have fixed rental fees and are controlled
through admission control, whereas others (the walk-
in group) may tolerate dynamic price setting. Our
analysis characterizes the nature of effective controls
in these “hybrid” systems.
The contract and walk-in customer groups of our

model are also similar in spirit to the guaranteed and
best-effort customers in Maglaras and Zeevi (2005), a
paper that models information services. Its processor-
sharing model, for the service of best-effort customers,
does not fit well the dynamics of traditional rental
businesses, however. In addition, it does not consider
the dynamic admission and pricing controls, which
are central to our analysis. Rather, it concentrates on
the asymptotic optimality of simpler, static controls.
Our model is Markovian—arrivals of different cus-

tomer classes are independent Poisson processes and
service times are exponentially distributed—and we
analyze the system as an infinite-horizon Markov
decision process (MDP). Arrival rates are class-
specific.
We first model the various customer classes as shar-

ing a common service rate. This assumption, although
restrictive, places our initial formulation and analy-
sis as direct parallels with more traditional, finite-
horizon revenue-management problems. For example,

in airline revenue-management problems, all cus-
tomers are assumed to take one (equally sized) seat,
no matter what their ticket prices are. As such, this
“special case” is of interest in and of itself.
The assumption also allows us to clearly and fully

characterize the structure of optimal policies, as well
as the sensitivity of optimal policy parameters to
primitive system parameters. Specifically, our analysis
yields the following insights:
1. We show that threshold-based policies are opti-

mal for managing the admission of contract cus-
tomers and that the optimal fees charged to walk-in
customers grow with the degree of system conges-
tion. We also establish that the optimal rental fees to
be charged to a particular walk-in customer class are
at least as high as the fee that maximizes the expected
revenue from a walk-in rental.
2. In turn, we demonstrate that optimal policy

parameters are monotone with respect to system
parameters. Each contract class’s optimal threshold is
decreasing in customer arrival intensities and rental
durations, as well as in the rental fees paid by other
contract customers, and it is increasing in the rental
fees paid by the customers of that class. Similarly, the
optimal rental fee for a class of walk-in customer is
increasing in arrival rates and rental durations, as well
as the fixed fees paid by contract customers.
3. We also show how the problem’s revenue struc-

ture establishes hierarchies among the various cus-
tomer classes: For contract customers, higher fees
guarantee higher level of access; and for walk-ins,
a specific form of price sensitivity guarantees system-
atically lower rental fees.
4. We then introduce the related notions of pre-

ferred customer classes and myopic revenue-manage-
ment policies. We establish sufficient conditions for a
particular class to be preferred, as well as a range of
problem parameters under which myopic policies are
optimal.
We next consider the more general model in which

the expected duration of contract rentals differs from
that of walk-ins. Although this additional problem
complexity prevents us from demonstrating the mono-
tonicity properties outlined (in point 1) above, we are
able to prove that variants of all of our other analyti-
cal characterizations carry over. In particular, we note
that limiting results for the asymptotic optimality of
myopic policies (for large systems), trivially hold for
systems with non-Markovian rental durations as well.
Our paper concludes with two sets of numerical

tests that complement the analytical results de-
scribed above. In the first, we consider the effective-
ness of myopic policies as simple, heuristic solutions
to the revenue-management problem. Here we find
that, given capacity levels that roughly match some
(pricing-dependent) measure of the offered load, as
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well as contract fees that fall sufficiently close to those
offered to walk-in customers, myopic policies can be
optimal. Conversely, when these two conditions are
not met, more complex control policies can perform
significantly better.
In the second, we consider how the use of a given

control, myopic or optimal, affects the choice of rental
fleet size. Here, we find that the fleet size that maxi-
mizes expected profits, when using a myopic policy,
can be smaller or larger than the one that maximizes
profits under the optimal control. Furthermore, the
relative price sensitivity of walk-in customers helps
to drive this effect: Lower walk-in price sensitivity
drives optimal capacity under the myopic policy to
exceed that under the optimal control.
Finally, we note that our MDP results hold for both

infinite-horizon, discounted, and average-reward
objectives. Our numerical results are based on
average-reward formulations. Because average-re-
ward results are independent of a system’s starting
state, they facilitate the interpretation of the numerical
tests.
The remainder of the paper is organized as fol-

lows. In the next section we formulate our model
and its associated dynamic programming value func-
tion. Then in §3, we derive structural and sensitivity
properties of optimal capacity-management policies.
In §4, we focus on myopic capacity-management poli-
cies, as well as the related issue of preferred customer
classes, and we establish sufficient conditions for the
preferred status of a particular customer class. Sec-
tion 5 extends our basic model to the case in which
contract and walk-in customers rent equipment for
different durations. Section 6 reports the results of our
numerical study. We conclude with a brief discussion
of the results, as well as directions for future research.

2. The Model and Associated Value
Function

In this section we formulate the rental profit man-
agement problem, along with its associated dynamic
programming value function.

2.1. Model Description
We consider a firm operating a fleet of c identical
units of rental equipment. The fleet is accessed by
two groups of customers, contract and walk-in, each
represented by several customer classes. The various
classes of contract customers are indexed i= 1� � � � �N ,
and those for walk-ins, j = 1� � � � �M .
The system’s dynamics are Markovian. Requests

for rental services arrive according to independent
Poisson processes with parameters ��

i for contract
customers and ��

j for walk-ins. Each rental request
is for one unit of capacity, and a request that is

fulfilled rents the unit of capacity for an exponen-
tially distributed quantity of time. Rental durations
are independent of each other and of the arrival pro-
cesses, and we assume that the expected duration of
all requests is the same, 1/
. (In §5 we consider the
more general model in which contract and walk-in
customers’ expected rental durations may differ.)
When a contract customer arrives to the system

and demands a unit of capacity, the firm must decide
whether to grant or to deny the rental request. If the
request is accepted, then a contract customer from
class i pays a prenegotiated revenue of �i per unit of
time for the duration of the rental. If it is rejected, then
the customer departs immediately and the firm incurs
a lump-sum service penalty �i. Such a penalty may
be interpreted as a direct rebate that the rental firm
pays to customers that it cannot accommodate or as
a more indirect good-will cost. (For more on service
penalties, as well as their relationship to service-level
constraints, see Savin et al. 2005.) If an arrival occurs
when all equipment units have already been rented
out, then the service request is likewise denied and a
lump-sum service penalty of �i is paid.
If the service request comes from a walk-in cus-

tomer of class j and at least one unit of capacity is
available, the firm decides on the spot what rental fee
to charge. The fee that is chosen from a finite (but
arbitrarily large) set of possible walk-in rates W =
��1� � � � ��L� consisting of L ordered elements: �1 <
�2 < · · ·<�L. If a fee of �l is offered to a walk-in cus-
tomer of class j , she accepts it with probability pjl and
pays �l per unit of time for the duration of the rental.
This price-response scheme is analogous to that in
Low (1974).
Alternatively, a walk-in customer of class j rejects

the offer �l with probability 1−pjl and is immediately
lost. In this case, no penalty is imposed on the rental
firm. The absence of a penalty reflects our assump-
tion that walk-in customers do not have high service
expectations and are mostly interested in obtaining
a “good” price. Again, if no equipment is available,
then the request is simply denied and, in this case,
there is no service penalty.
We make two mild assumptions concerning accep-

tance probabilities:

Assumption 1. For any walk-in class j : (1) pj1 >
pj2 > · · · > pjL is a monotone sequence; and (2) the max-
imum price offered, wL, has an acceptance probability
pjL = 0.
Part (1) is quite natural: customers that are offered

higher prices are less likely to buy. Part (2) is a sim-
ply a mechanism by which the rental firm may deny
access to an arriving walk-in customer, if warranted.
We formulate the problem as a Markov decision

process. We define a continuous-time discount rate of
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� > 0 and define the firm’s objective as the maximiza-
tion of expected discounted reward, the difference
between the expected discounted revenues it receives
from rentals and the expected discounted penalties it
must pay due to contract-customer rejections. Below
we will show that these results also extend directly to
the limiting case, � → 0, in which the firm maximizes
expected average rewards.

2.2. MDP Formulation and Value Function
As stated, our problem evolves over continuous time.
More difficultly, the rate at which rental revenues
accrue depends on the numbers of each class of cus-
tomer in the system, a representation that leads to an
N + M-dimensional state space. To overcome these
complications, we make a simple transformation that
will allow us to analyze the problem using a lower-
dimensional state space in discrete time.
In particular, we note that the expected duration—

hence expected discounted revenue—of a given rental
is independent of the system state. Therefore, rather
than tracking revenues in continuous time, we track
expected discounted revenues on arrival. In effect, we
treat rental revenues as lump sums that are paid on
arrival, and because the rate at which a given class
of customer pays does not affect system evolution, it
does not need to be tracked in the system state.
Given an expected rental duration of 1/
, we de-

note the expected discounted revenue of a class i
contract customer as ri = �i/�
 + ��, and that of
a walk-in customer that accepts the offered price l
as wl = �l/�
 + ��. As before, we label the set of
expected walk-in revenues W = �w1� � � � �wL�, order
them w1 < · · ·<wN , and assume that the corre-
sponding class j acceptance probabilities are ordered
pj1 > · · ·> pjL.
The fact that interarrival times and rental durations

are exponentially distributed means that the system
evolves as a continuous-time Markov chain. This, in
turn, allows us to make three common simplifications.
First, it implies that, at times between events, the state
of the rental system can be completely described by
the numbers of various types of customers in service.
Furthermore, because all customer classes have the
same mean service time, 
, the system state may be
described by the total number of rental units in ser-
vice, k. Formally, we define the state space for the
rental problem as a set S = �k � 0≤ k≤ c�.
Second, it implies that system controls—in the form

of the acceptance or rejection of an arriving class i cus-
tomer, or the price offered to a class j customer—needs
to be exercised only at arrival epochs. That is, when
determining the form of effective system controls, it
is sufficient to consider only the discrete-time process
embedded at arrival and departure epochs (see Puter-
man 1994, Chapter 11).

Third, Markovian dynamics allow us to “uni-
formize” the system, so that the distribution of times
between events, such as arrivals and service com-
pletions, occurs at a constant (uniform) rate. Uni-
formization ensures that the expected discounted
rewards earned at these discrete event epochs equal
the expected discounted rewards that would have
accrued in continuous time (Lippman 1975).
We define the aggregate event rate to be � =∑N
i=1 �

�
i +∑M

j=1 �
�
j +
c+�, so that the system evolves

with exponentially distributed interevent times of uni-
form rate � . Without loss of generality, we define the
time scale so that � = 1. This implies that, in any state,
k, the probability that the next event is a class i or
class j arrival equals ��

i or ��
j , respectively. Analo-

gously, given there are k customers in the system, the
probability that the next event is a service completion
equals k
, and the probability that it is a nonevent—
which sends the system back into the same state—
equals �c− k�
.
The discount rate, �, can be interpreted as the prob-

ability that the next event is terminating, in which
case the system “stops” and no more profits are
earned. The use of such a termination probability is
equivalent to discounting (see Puterman 1994, §5.3)
Furthermore, the formulation allows us to extend
our analysis and results straightforwardly to case
of average rewards: As � → 0, ri = �i/�
 + �� and
wl/�
+�� converge to their average-reward counter-
parts, and the interpretation of event rates as proba-
bilities remains unchanged.
An equivalent, alternative representation defines

the aggregate event rate to be
∑N

i=1 �
�
i +∑M

j=1 �
�
j +
c

and explicitly discounts future rewards. This alterna-
tive makes the relationship between the discounted
and average-reward problems less transparent, how-
ever. In §EC.1 in the online appendix (provided in the
e-companion)1 we explain the relationship between
the two uniformization schemes.
Finally, rather than formally stating and analyzing

the objective of maximizing discounted expected cash
flows, we will instead analyze the MDP value func-
tion associated with the problem. Formally, we note
that the problem’s state and action spaces are both
finite, as are all one-period rewards. Therefore, there
exists a stationary, deterministic allocation/pricing
policy that is optimal, and such value function exists
(see Puterman 1994, §6.2).
The value function associated with our control

problem is defined as follows:

1 An electronic companion to this paper is available as part of
the online version that can be found at http://mansci.journal.
informs.org/.
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v�k� =
N∑
i=1

��
i H

�
i �v�k��+

M∑
j=1

��
j H�

j �v�k��

+
kv�k− 1�+
�c− k�v�k�� (1)

where the operators

H�
i �f �k��

=


max�f �k�−�i� f �k+ 1�+ ri� when k < c

f �k�−�i when k= c
(2)

and

H�
j �f �k��=




max
l

�pjl�f �k+1�+wl�+�1−pjl�f �k��

when k<c

f �k� when k=c

(3)

are defined for any arbitrary function f defined on S.
The operator H�

i in (2) reflects the capacity allocation
choice between accepting or rejecting a rental request
coming from class i contract customer. The pricing
operator H�

j , introduced in (3), represents the choice
of the best fee for rental requests from walk-in cus-
tomers of class j .
Therefore, v�k� is the expected discounted stream of

future rewards and penalties, given the system is now
in state k and is operated optimally. In the next section
we analyze the value function (1) to derive structural
properties of optimal profit management policies.

3. The Structure of Optimal Profit
Management Policies

Given a discounted problem (� > 0) with time units
selected so that � = 1, the sum of the arrival and
departure rates,

∑N
i=1 �

�
i +∑M

j=1 �
�
j +
c, is strictly less

than 1. In this case, the so-called value iteration oper-
ator, T , defined as

Tf �k� =
N∑
i=1

��
i H

�
i �f �k��+

M∑
j=1

��
j H�

j �f �k��

+
kf �k− 1�+
�c− k�f �k�� (4)

is a contraction operator and can be repeatedly ap-
plied to find the value function through successive
approximation. If the c-vector v0 represents an initial
estimate of v, then one pass of the value-iteration pro-
cedure produces, v1 = Tv0, n applications of T pro-
duce vn, and limn→� vn = v (see Puterman 1994, §6.3).
This fact is important for establishing structural

properties of optimal profit management policies. In
particular, when v0 has a specific property, such as
monotonicity or concavity, and the application of T
can be shown to maintain the property, then we can

inductively prove that the value function, v�k�, itself
has the property as well (Porteus 1982).
When � = 0, our problem’s structure is also

sufficient to ensure that we can continue to use
value iteration to approximate the so-called gain, the
optimum expected reward per transition. Specifically,
we observe that, given the use of any (arbitrary) sta-
tionary policy, there exists a state, k = 0, to which
there is a positive probability of returning within c <
� transitions, no matter what the starting state. This
implies that the problem is unichain.
In this case, T can be shown to be a so-called J -step

contraction operator, so that the value-iteration pro-
cedure can be used to successively approximate the
average reward per transition—the gain—with any
precision (see Puterman 1994, §8.5). By demonstrat-
ing that the operator T maintains a desirable property,
such as concavity, we can again prove that value itera-
tion identifies an average-reward-optimal policy with
that property.
Thus, the MDP results we report hold for both

discounted and average-reward problems. To avoid
confusion regarding the definition of v�k�, we state
all MDP-related analytical results in the context of
discounted problems. In contrast, we perform all
of the paper’s numerical tests using an average-
reward criterion. Because average reward per transi-
tion (the gain) does not depend on the starting state,
k, average-reward results are more straightforward to
interpret numerically.

3.1. Structural Properties of the Value Function
The first maximization operator, H�

i , is quite simi-
lar to those found in a variety of capacity-allocation
studies. (For an early example see Miller 1969; for a
recent one see Lewis et al. 1999.) These papers often
prove that the associated value function is nonincreas-
ing and concave and, in turn, that so-called “trunk-
reservation” (or threshold) policies are optimal. Our
first task is to check for the existence of this type of
structure.
In our setting, however, the addition of walk-in

customers and controls, H�
j , complicates the analy-

sis. Although we have imposed little structure on the
form of the relationship between walk-in prices and
acceptance probabilities, the restrictions imposed by
Assumption 1 are sufficient to ensure that optimal
walk-in prices also propagate the desired properties
(see also Low 1974).
To demonstrate this, we first note that, formally, we

denote a function f �k� as nonincreasing in k when-
ever f �k+ 1�≤ f �k� for k= 0� � � � � c− 1. Similarly, we
write that f �k� is concave in k whenever f �k + 1�
− f �k� ≤ f �k� − f �k − 1� for k = 1� � � � � c − 1. We
then define three quantities that are intimately related
to H�

j .



Gans and Savin: Pricing and Capacity Rationing for Rentals with Uncertain Durations
Management Science 53(3), pp. 390–407, © 2007 INFORMS 395

Figure 1 Example of the Functions gj �A� and lj �A� Defined in (5)
and (7)

l = 4
l = 3

l = 2

l =
1

l = 5

maxl{pjl(–A+wl)} = gj(A)

pjl(–A + wl)

lj(A) = 3 lj(A) = 4 lj(A) = 5

A
a*0

0

First, for A≥ 0 let
gj�A�=max

l
�pjl�−A+wl��� (5)

and note that, when k < c,

H�
j �f �k��= gj�f �k�− f �k+ 1��+ f �k�� (6)

If v�k� − v�k + 1� is the opportunity cost associated
with the acceptance of an arriving walk-in customer
when in state k, then gj�v�k�−v�k+1�� is the expected
net gain from offering the optimal price, should that
customer be of class j . From Assumption 1, we know
that pjL = 0, so gj�A�≥ 0 for all j and any A≥ 0.
Second, define

lj �A�= argmax
l

�pjl�−A+wl��� (7)

to be the index of the optimal price. If there is more
than one maximizer, then define lj �A� to be the largest
of them. Then from (6) we see that lj �v�k�− v�k+ 1��
is also the maximizer of H�

j �v�k��.
Figure 1 illustrates the functions gj�A� and lj �A� for

a walk-in pricing function that includes five price-
probability pairs, l = 1�2�3�4�5. The figure’s hor-
izontal axis tracks A, and the solid lines display
pjl�−A+wl� for each of the five different price points.
The dashed line shows gj�A�, the point-wise maxi-
mum of the solid lines. We use the brackets below
the horizontal axis to denote ranges of A for which
various l’s are optimal. Recall that, when more than
one index maximizes gj�A�, we define lj �A� to be the
greatest such index. For example, at a∗, the point at
which both l = 3 and l = 4 maximize gj�A�, we let
lj �A�= 4.
Several of the figure’s features are worth noting.

First, note that the lines’ slopes are the −pjl’s, which
increase with increasing l. Furthermore, in this exam-
ple, the lines for first two price points, l= 1 and l= 2,

are dominated; it is never optimal to use them for any
A≥ 0. Most important are following two monotonic-
ity properties shown in the graph.
One is that lj �A� cannot decrease as A grows larger.

That this is always true is a fact that follows from
the assumption that lower indices (and lower prices)
are associated with higher pjl’s. That is, lines with
higher slopes (−pjl’s) dominate lower-sloped lines as
A grows. In turn, the higher the opportunity cost of
the capacity (the greater is A), the higher the index of
the optimal walk-in price.
The other is the fact that gj�A� is nonincreasing

in A. It is not difficult to see that this is always the
case as well, because the first derivative of gj�A� is
some −pjl, a negative of probability. Note that for k <
c− 1 we have

H�
j �f �k+ 1��−H�

j �f �k��

= �gj�f �k+ 1�− f �k+ 2��− gj�f �k�− f �k+ 1���
+ �f �k+ 1�− f �k���

Therefore, because gj�A� is nonincreasing in A, we can
use gj�A� to show that H�

j �f �k+ 1�� is nonincreasing
whenever f �k� is nonincreasing and concave.
The third quantity that is closely related to

H�
j �f �k�� is

hj�A�=−A− gj�A��

That hj�A� is nonincreasing in A is also easily demon-
strated: Its first derivative is �−1+ pjl� for some pjl ∈
�0�1�. In turn, for k < c− 2, we have
�H�

j �f �k+ 2��−H�
j �f �k+ 1���

− �H�
j �f �k+ 1��−H�

j �f �k���

= �hj�f �k+ 1�− f �k+ 2��−hj�f �k�− f �k+ 1���
+�gj�f �k+2�−f �k+3��−gj�f �k+1�−f �k+2����

(8)
and the fact that both gj�A� and hj�A� are nonincreas-
ing implies that H�

j �f �k�� propagates the concavity of
f �k�.
The monotonicity of gj�A�, lj �A�, and hj�A� suggests

that H�
j �f �k�� itself propagates the monotonicity and

concavity of f �k�, and this is in fact the case:

Theorem 1. (a) If f �k� is a nonincreasing concave
function of k, then Tf �k� is also a nonincreasing concave
function of k. Consequently, the optimal value function
v�k� is a nonincreasing concave function of k.
(b) For contract class i, let

k∗i =




c� if v�c�− v�c− 1�≥−��i + ri��

min�k � v�k+ 1�− v�k� <−��i + ri���

if v�c�− v�c− 1� <−��i + ri��

(9)

Then, the optimal policy provides a rental unit to an arriv-
ing class i customer if and only if the number already in
service is k < k∗i .
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Figure 2 Example Walk-in Acceptance Probability Function (Left); Example Optimal Policy (Right)
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(c) Let w∗�j� k� be the optimal price to offer a walk-
in customer of class j that arrives to find k rental units in
service. Then w∗�j� k+ 1�≥w∗�j� k�, k= 0� � � � � c− 1.
A formal statement of the monotonicity properties

of gj�A�, lj �A�, and hj�A�, as well as all proofs, can be
found in the online appendix.
Given the concavity result of Part (a), Part (b) states

that, as can be expected, the optimal allocation of
rental capacity between contract classes is achieved
by threshold policies. Part (c) further verifies that, as
in Low (1974), optimal walk-in pricing is congestion
dependent: for a bigger k, the rental of a unit implies
greater loss (v�k�−v�k+1�) and induces a higher price
to be charged.
Conversely, a loss of v�k� − v�k + 1� = 0 would

induce the lowest possible price. We observe that, in
fact, the case in which there is no congestion cost
corresponds to one of (effectively) unlimited residual
capacity. Furthermore, the fact that lj �A� is nonde-
creasing in A implies that this minimum price max-
imizes expected discounted revenue from the rental
itself:

Corollary 1. Define the index of the price that max-
imizes the expected (discounted) rental revenue from a
class j customer as

ej = lj �0�= argmax
l

�wl · pjl�� (10)

Then w∗�j� k�≥wej
, k= 0� � � � � c− 1.

Thus, the myopic, revenue-maximizing walk-in
price, wej

, provides a lower bound on the price offered
to any class j customer. In turn, it is the implied
cost of incremental congestion that drives the rental
firm to increase its price above wej

. A price increase
above wej

lowers immediate expected (discounted)
revenue, and it effectively reserves capacity by low-
ering the associated acceptance probability. Further-
more, it increases the actual (conditional) revenue that

is paid, should the offer be accepted and additional
congestion be incurred.
We next provide a brief example that illustrates

the results of Theorem 1 for the case of N = 1 cus-
tomer class and M = 1 walk-in class. In this and all of
the paper’s numerical examples and tests, we use the
following form for “walk-in” acceptance probability
functions

pj�wl�=
(

wmax−wl

wmax−wmin

))j

� (11)

where wmax, wmin are constants pj�wmin� = 1 and
pj�wmax�= 0� and )j is the parameter that determines
the “curvature” of pj . The values of the walk-in prices
are set to uniformly cover the interval �wmin�wmax�:

wl =wmin+ �wmax−wmin�
l− 1
L− 1� l= 1� � � � �L� (12)

so that w1 =wmin, wL =wmax.
The left panel of Figure 2 illustrates the shape of

the acceptance probability function (11)–(12) for three
different values of the price sensitivity factor ). In
each of the three curves, wmin =w1 = 1, wmax =wL = 4,
and L= 50.
We note that the class of functions that can be

defined by (11) is quite broad. For larger ), the accep-
tance probability declines more quickly with price
increases, reflecting increased sensitivity to higher
prices. As ) drops from 1, toward 0, the decline weak-
ens and becomes more concave, and as ) increases
beyond 1, the decline becomes more strongly convex.
At the same time we emphasize that this class is

just one example of a much wider range of pricing
functions addressed in the paper: The only restrictions
we place on the relationship among the pjl’s and wl’s
are those found in Assumption 1.
The right panel of Figure 2 depicts an example

of the results of Theorem 1. To generate it, we let
�� = �� = 7, 
 = 1, and c = 10. For contract cus-
tomers, we let r = 0�2 and � = 0, and for walk-ins



Gans and Savin: Pricing and Capacity Rationing for Rentals with Uncertain Durations
Management Science 53(3), pp. 390–407, © 2007 INFORMS 397

Figure 3 Optimal Contract Thresholds k∗ (Left) and Walk-in Prices (Right) as Functions of �
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we use the pricing function (11)–(12) with wmin = 1,
wmax = 4, L = 10, and ) = 2. The panel then displays
the optimal rental policy under the average-reward
objective: The top shows that the rental requests from
contract customers are accepted as long as the number
of rented units is less than k∗ = 7; the bottom shows
that optimal walk-in fees form a monotone sequence,
increasing with the degree of congestion in the rental
system. Furthermore, when the system is far from
being congested (k≤ 5), it is optimal to charge the fee,
which maximizes the expected revenue from a walk-
in rental, we = 1�3.
Although Theorem 1 characterizes the structure of

optimal policies—for example, thresholds for contract
customers—it does not provide direct insight into the
nature of optimal policy parameters. The concavity of
the value function allows us to characterize aspects of
the parameters themselves, however. In fact, optimal
capacity allocation and pricing policies are sensitive
to the choice of the demand and service parameters,
as well as to revenue and penalty values.
For contract customers it is the incremental bene-

fit of accepting—rather than rejecting—a request that
drives the choice of control parameters, and to cap-
ture this fact we define the penalty-adjusted contract
rental fee to be *i = ri+�i. Then given this definition,
the nature of the relationship is as follows:

Theorem 2. (a) The optimal threshold level for class i
contract customers, k∗i , is a nonincreasing function of the
arrival rates ��

n , n = 1� � � � �N , and ��
j , j = 1� � � � �M ,

as well as a nondecreasing function of the service rate 
.
Also k∗i is a nondecreasing function of the class i penalty-
adjusted rental fee, *i, and a nonincreasing function of
penalty-adjusted rental fees *n, n �= i, of the other contract
classes.
(b) For every state of the system, k, the optimal price

for class j walk-in customers, w∗�j� k�, is a nondecreasing
function of the arrival rates ��

i , i = 1� � � � �N , and ��
j ,

j = 1� � � � �M , as well as a nonincreasing function of the

service rate 
. Also, w∗�j� k� is a nondecreasing function of
the penalty-adjusted rental fees of contract customers: *i,
i= 1� � � � �N .

Theorem 2 indicates that, as expected, capacity
rationing intensifies as the offered service load from
any customer class is increased. Such an increase
in service load raises the “value” of each unit of
the available capacity, forcing the system manager to
reduce thresholds for competing classes of contract
customers and to charge higher fees for walk-in ser-
vices. An increase in the penalty-adjusted fee for any
contract class has a similar effect: Although access
increases for the class with the increased penalty-
adjusted fee, it is further restricted for all other
classes.
We illustrate the results of Theorem 2 in Figure 3.

For this example there are N = 1 contract and M = 1
walk-in classes, �� = �� = 5, 
 = 1, c = 10, and the
walk-in probability function is (11)–(12) with wmin = 1,
wmax = 4, )= 2, and L= 10. Again, the maximization
criterion is average reward.
The left panel of Figure 3 shows the optimal con-

tract threshold k∗ as a function of the penalty-adjusted
contract fee, *. Note that the smallest value of the fee
that ensures that contract customers are served when-
ever possible, 0.79, is equal to only a fraction of the
smallest walk-in fee, wmin = 1.
The figure’s right panel shows how optimal walk-

in pricing changes as a function of *. For a low value
of *, optimal walk-in pricing is virtually static, set at
or near the level that maximizes immediate expected
walk-in revenue, we = 1�3. As * increases, so does the
value of each unit of rental capacity, however, and
walk-in prices increase with greater levels of conges-
tion. Finally, when the contract fee is high enough, it
becomes optimal to deny walk-in customers access to
rentals in highly congested states by charging a price
that is rejected with certainty.
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Figure 4 Two Examples of Two Fee-Acceptance Probability Functions for Which p1l /p2l Is Increasing in l
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The monotonicity properties described in Theo-
rem 2 suggest that the value of the penalty-adjusted
fee is an important characteristic determining the
capacity allocated to serving a particular contract
class. Analogously, we expect the status of a walk-in
class j to be determined by the shape of its fee-accep-
tance probability curve:

Theorem 3. For contract classes i1 and i2, *i1
≥ *i2

⇒
k∗i1 ≥ k∗i2 . For walk-in classes j1 and j2, if pj1l

/pj2l
is

an increasing function of l for l = 1� � � � �L − 1, then
w∗�j1� k�≥w∗�j2� k� for all k= 0� � � � � c− 1.
Theorem 3 states that a higher penalty-adjusted fee

affords greater access to the rental units. Similarly, the
rate at which the fee-acceptance probability declines
with l determines the price sensitivity of a given
walk-in class, and more price-sensitive classes should
be offered systematically lower prices.
The fact that one class is more price-sensitive than

another does not, however, imply that the first is more
or less profitable than the second. For instance, Fig-
ure 4 shows two examples in which class 1 is less
price sensitive than class 2; in both, class 2 customers
are offered a lower price over the range �a2� a1�. In the
left panel g1�A�≥ g2�A� for all A≥ 0, whereas in the
right the reverse is true.

4. Myopic Profit Management and
Preferred Customer Classes

The value of the penalty-adjusted rental fee for a
contract class and the degree of price sensitivity for
a walk-in class serve as indicators of the relative
“importance” of a particular class. High values of
these indicators may result in a preferential treatment
of rental requests coming from customers of these
classes. Formally, we make the following definition:
Definition 1. Contract class i is called preferred if

k∗i = c. Walk-in class j is called preferred if w∗�j� k�=
wej
, for all k= 0� � � � � c− 1.

Preferred classes receive treatment that can be char-
acterized as myopic: A preferred contract customer
receives service as long as there is available capacity; a
preferred walk-in customer is offered a fee that maxi-
mizes the expected (discounted) revenue immediately
obtained from his or her rental, as well as the prob-
ability the he will accept the offer in the first place.
Clearly, such profit management policies would be
optimal in the case of unlimited rental capacity.

4.1. Asymptotic Optimality of Myopic Policies
More interestingly, myopic capacity management is
also asymptotically optimal in highly utilized sys-
tems, as both the offered load and system capacity
become large. To establish this result, we note that,
under a myopic policy, the rental system behaves like
an Erlang loss system with arrival rate

�� =
( n∑

i=1
��
i +

m∑
j=1

��
j pej

)
� (13)

and offered load ,� = ��/
. Here, the subscript, �,
denotes statistics related to the myopic policy. Note
that the effective arrival rate includes only walk-in
customers that accept the myopic offer of wej

.
For a system with an offered load of , and c rental

units, the Erlang loss function allows us to calculate
the probability that an arriving customer is blocked,

B�,� c�= ,c/c!∑c
l=0 ,l/l!� (14)

and given B�,� c� it is straightforward to calculate ex-
pected reward per unit of time. Assuming no blocking,
the potential expected revenue on customer arrival is

r� =
∑n

i=1 �
�
i ri +

∑m
j=1 �

�
j pej

wej∑n
i=1 �

�
i +∑m

j=1 �
�
j pej

� (15)

and, given blocking, the expected penalty on a loss is

.� =
∑n

i=1 �
�
i �i∑n

i=1 �
�
i +∑m

j=1 �
�
j pej

� (16)
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Then, under the myopic policy, the average reward
per unit of time can be written as

r����1−B�,�� c��−.���B�,�� c�

= r��� − �r� +.����B�,�� c�� (17)

Clearly, r��� represents an upper bound on the
profit earned under any capacity-management policy,
including the optimal profit, and the loss due to a
myopic policy is bounded above by

�r� +.����B�,�� c�� (18)

In turn, it is not difficult to show that, for large c,
this loss can be small, even for ,� “close” to c. In
particular, we have the following results:

Lemma 1. (a) Suppose ,� = c + /
√
c for some fixed,

real /. Then limc→� ,�/c= 1 and

lim
c→�

√
c ·B�,�� c�= )+ o�1/√c�� (19)

where ) is a function of /.
(b) Suppose ,� = /c for some fixed 0</< 1. Then

B�,�� c�≤
√
1/2�c�/e�1−/��ce−1/�12c+1�

1− �/e�1−/��c
� (20)

Part (a) of Lemma 1 is due to Jagerman (1974),
and the proof of Part (b) can be found in the online
appendix. These two results are complementary.
The limiting result in Part (a) shows that, when

,� and c are nearly balanced—so that the difference
can be measured in units of

√
c—the rate at which

the blocking probability drops is of order 1/
√
c as

c → �. Therefore, the fraction of customers that is
blocked vanishes, and from (18) we see that the abso-
lute rate at which revenue is lost, �r�+.����B�,�� c�,
is approximately

�r� +.���c+/
√
c�


)√
c

= �r� +.��
 · �√c+/�)=O�
√
c�0 (21)

a rate which may be large in absolute terms but van-
ishes (is O�

√
c/c� = O�1/

√
c�) as a percentage of the

total reward rate.
The result of Part (b) is an upper bound on the

blocking probability given a fixed /< 1, so that excess
capacity remains of order c. The term /e1−/ < 1, so the
bound declines exponentially quickly in c. In contrast
to the result of Part (a), the absolute loss rate is itself
bounded by

�r� +.����B�,�� c�

≤ �r� +.��
 ·/c
√
1/2�c�/e�1−/��ce−1/�12c+1�

1− �/e�1−/��c

=O�
√
c · �/e1−/�c�� (22)

and absolute losses also vanish as c becomes large.

Figure 5 Upper Bound on the Loss Rate Calculated as in (22), with
r� +�� = 1, and = 1
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For large systems with some excess capacity, myopic
policies will afford nearly optimal average rewards.
Indeed, when / is not too close to one, the bound
declines quickly with c. But for a given c, the bound
grows rapidly as / ↑ 1. Figure 5 illustrates these
effects for various /’s and c’s.
At the same time, longer-run capacity-sizing deci-

sions must account for capacity costs as well, and
when accounting for these costs, it may not be opti-
mal to operate with as much as O�c� units of excess
capacity. In particular, (21) implies that excess capac-
ity on the order O�

√
c� generates losses of that order.

Therefore, to the extent that capacity costs, revenues,
and loss penalties are of the same order of magnitude,
lower orders of excess capacity will generate higher
long-run average profits for very large systems.
Remark. The comparison among scaling results

presented in Lemma 1, as well as the resulting cost
and revenue trade-offs, loosely follows along the lines
of Borst et al. (2004). This paper systematically ana-
lyzes various scaling regimes for M/M/c queueing
systems, describes systems with excess capacity of
order O�c� as “quality driven” and those with excess
capacity of order O�

√
c� “rationalized.” For more on

differences among scaling regimes, see also Gans et al.
(2003, §4).

4.2. Sufficient Conditions for Classes to Be
Preferred

The notion of a preferred class introduced in Defini-
tion 1 also naturally leads to the following questions:
In the presence of constraining rental capacity, does
there always exist such a class? If so, what makes a
class preferred? We address these questions below.
We first establish conditions that ensure “preferred”

status for a contract or a walk-in class. Without loss
of generality we assume that *1 ≥ *2 ≥ · · · ≥ *N , and
to ease the notational burden, we define �wj�A�=wlj �A�

and p̄j �A�= pjlj �A�.
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Thus, �wj�A� represents the optimal walk-in fee to
be charged to class j customers when the expected
opportunity cost of capacity is A ≥ 0, and p̄j �A�
reflects the probability that such fee will be accepted.
We will show below that �wj�*i� and p̄j �*i� are impor-
tant characteristics when determining the preferred
status of walk-in class j .
The analogous quantity for class j walk-in cus-

tomers is
r̂j = inf�A≥ 0 � lj �A� > ej�� (23)

That is, r̂j is the minimum opportunity cost such
that the optimal price index lj �A� falls above that for
myopic pricing. For example, in Figure 1, r̂ = a∗, and
in both panels of Figure 4, r̂1 = a1 and r̂2 = a2.
Furthermore at r̂j , the myopic price is also optimal,

p̄j �r̂j ��−r̂j + �wj�r̂j ��= pej
�−r̂j +wej

�, so

r̂j =
wej

pej
− �wj�r̂j �p̄j �r̂j �

pej
− p̄j �r̂j �

� (24)

Note that the value of r̂j is completely determined by
the set of walk-in fees wl and by the shape of the
fee-sensitivity function pjl. In particular, it does not
depend on any demand or service characteristics.
Using the definitions above, we can characterize

conditions that ensure a preferred status for a partic-
ular customer class:

Theorem 4. (a) Define

G�
i �A�

=
∑

n�=i �
�
n max�A�*n�+

∑M
j=1 �

�
j �wj�A�p̄j �A�∑

n�=i �
�
n +∑M

j=1 �
�
j p̄j �A�+


� (25)

Then there exists a unique A∗
i such that A∗

i =G�
i �A

∗
i �, and

A > G�
i �A� for all A > A∗

i . Furthermore, contract class i
is preferred whenever *i ≥A∗

i .
(b) Define

G� �A�

=
∑N

i=1 �
�
i max�A�*i�+

∑M
m=1 �

�
m �wm�A�p̄m�A�∑N

i=1 �
�
i +∑M

m=1 ��
m p̄m�A�+


� (26)

Then there exists a unique A∗ such that A∗ =G� �A∗�, and
A > G� �A� for all A > A∗. Furthermore, walk-in class j
is preferred whenever r̂j ≥A∗.

Thus, A∗
i and A∗ are lower bounds on the benefit

that an arriving class i or j customer must bring to
the system to be preferred. For contract customers,
the lower bound is on the penalty-adjusted fee, *i,
whereas for walk-in customers the bound is on the
maximum loss for which a myopic price offer of wej

is still optimal.
In addition, if we recall that arrival and service rates

correspond to event probabilities, then the bounds

associated with (25)–(26) can be interpreted proba-
bilistically. To more clearly illustrate these results, we
consider three special cases.
Our first example is one in which the entire cus-

tomer base consists of contract customers: N > 1 and
M = 0. In this case, the revenue-management problem
reduces to a simplified version of a stochastic knap-
sack problem (Ross and Tsang 1989). Recalling that
*1 ≥ *2 ≥ · · · ≥ *N , the sufficient condition (25) can be
expressed as

*i ≥
∑i−1

n=1 �
�
n *n∑i−1

n=1 ��
n +


� (27)

For class i= 1, the sufficient condition (27) becomes
*1 ≥ 0, and we see that contract class 1 always has
unrestricted access to available rental units. Rental
requests of class 2 customers, however, are always
granted only if the class 2 penalty-adjusted fee *2 ≥
���
1 /��

�
1 +
��*1, a fraction of the corresponding fee

for class 1 customers. This fraction represents the
probability that a class 1 customer will arrive before a
class 2 customer returns the rental equipment to the
rental pool, and it is an upper bound on the proba-
bility that a class 1 customer will be lost because a
class 2 customer is put into service.
A similar argument applies for any contract class.

The benefit of renting to a class i customer, *i, should
outweigh the expected revenue lost due to blocking
of higher-paying customers, and the expression on
the right-hand side of (27) is an upper bound on this
opportunity cost. We note that the expression only
includes the contribution from the customers who pay
higher penalty-adjusted fees because, as indicated in
Theorem 3, the denial of access to class i customers
implies that all customers of lower-paying classes are
also rejected.
The second example is one in which the entire cus-

tomer base consists of a single walk-in class: N = 0
and M = 1. Here, our problem reduces to a simplified
version of a pricing problem considered in Paschalidis
and Tsitsiklis (2000). Because there is only one class of
customer, we drop the subscript j , and (26) reduces to

A∗ = �� �w�A∗�p̄�A∗�
�� p̄�A∗�+


� (28)

for A∗.
Now suppose r̂ > A∗. Then it follows from (23) that

�w�A∗� = we and p̄�A∗� = pe, where we is the fee that
maximizes the immediate expected revenue from a
given walk-in customer. In turn, we have

r̂ > A∗ = �� pe

�� pe +

we� (29)

Note that the expression on the right-hand side is an
upper bound on the expected revenue lost due to the
blocking of a walk-in customer.
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Next define le = l�0� to be the index of the myopic
price. Then (23) also implies that pe�−r̂ + we� ≥
pl�−r̂ +wl� for l= le + 1� � � � �L or equivalently

pewe − plwl

pe − pl

≥ r̂ l= le + 1� � � � �L�

Together with (29) this implies

pewe − plwl

pe − pl

>
�� pe

�� pe +

we� l= le + 1� � � � �L�

and the above inequality can be re-expressed as

pe

(
we −

�� pe

�� pe +

we

)
> pl

(
wl −

�� pe

�� pe +

we

)
�

l= le + 1� � � � �L� (30)

Recalling (5), we see that (30) states that myopic
pricing is optimal for an expected loss of ��� pe/
��� pe +
��we. But this quantity is an upper bound on
the expected loss when admitting a customer, and we
find that, for r̂ > A∗, a price of we, maximizes expected
profit in any state.
Comparing these first two examples, we note that

there exists an important difference between contract
and walk-in classes. The first example showed that,
in the presence of only contract classes, there always
exists at least one preferred class: the one with the
highest value of penalty-adjusted fee. The second
analysis was predicated on r̂ > A∗, however. Indeed,
even if the customer base is uniform and consists of
a single walk-in class, the preferred status of such a
class is not guaranteed.
In the third example, there exists a single contract

and a single walk-in class: N = 1 and M = 1, and
again for simplicity we drop the indices i and j . Here,
(25) and (26) become

*≥ �� �w�*�p̄�*�

�� p̄�*�+

� and

r̂ ≥ ��max�*� r̂�+�� �w�r̂�p̄�r̂�

�� +�� p̄�r̂�+

�

(31)

The first inequality in (31) stipulates that contract
customers are preferred whenever the gain from
their admittance exceeds the potential losses due to
reduced walk-in rental capacity. The expression on
the inequality’s right-hand side represents an esti-
mate of these losses and, similar to (27), it includes
only the contribution from the customers who pay
a fee of at least *. (Note that �w�*� ≥ * provided
that p̄�*� > 0.) This expression can be interpreted as
an unrealized revenue �w�*� multiplied by the prob-
ability �� p̄�*�/��� p̄�*�+
� that a walk-in customer
would arrive and accept an offer of �w�*� before
the admitted contract customer returns her rental.
The second inequality in (31) is similar to (28) and

reduces to it when r̂ ≥ *. It has a closely related
interpretation.

5. Different Rental Durations for
Contract and Walk-in Classes

The analysis of §§3 and 4 assumes that all customers’
rental durations have the same distribution, irrespec-
tive of the group to which they belong. In this sec-
tion we extend this analysis to the more general case
in which rental durations of contract customers differ
from those of walk-in customers. Despite this addi-
tional complexity, we show that many of the prop-
erties of the optimal capacity-management policies
established in the simpler setting can be extended to
the case of group-dependent rental times.
We assume that rental durations are indepen-

dent, exponentially distributed random variables with
expectations 1/
� and 1/
� for contract and walk-
in customers, respectively. Given this assumption, at
any time t we must distinguish between the numbers
of contract and walk-in customers already in service.
Thus, the state of the rental system is now described
by the two-dimensional vector �k�� k� � representing
the numbers of contract and walk-in customers in ser-
vice. The new state space for the rental problem is
defined as S̃ = ��k�� k� � � 0 ≤ k� ≤ c� 0 ≤ k� ≤ c� 0 ≤
k� + k� ≤ c�.
As before, both the state space and the number of

available actions are finite, and it is not difficult to
show that, under any stationary, deterministic pol-
icy, there is a positive probability of returning to the
idle state �0�0� within c <� transitions. Therefore, for
both the discounted and average-reward problems,
there exists a stationary, deterministic policy that is
optimal, and it can identified via value-iteration.
The difference between service rates 
� and 
�

leads us to uniformize the system at rate � =∑N
i=1 �

�
i +∑M

j=1 �
�
j + �
� +
� �c+�. Again we choose

the time scale so that � = 1 and its component transi-
tion rates may be viewed as probabilities. In turn, the
optimality equation (1) is replaced by

v�k��k� �=
N∑
i=1

��
i H

�
i �v�k��k� ��+

M∑
j=1

��
j H�

j �v�k��k� ��

+�
�k�v�k�−1�k� �+
� k� v�k��k� −1��
+�
��c−k��+
� �c−k� ��v�k��k� �� (32)

where the maximization operators are extended to
become

H�
i �f �k�� k� ��

=




max�f �k�� k� �−�i� f �k� + 1� k� �+ ri�

when k� + k� < c�

f �k�� k� �−�i when k� + k� = c�

(33)



Gans and Savin: Pricing and Capacity Rationing for Rentals with Uncertain Durations
402 Management Science 53(3), pp. 390–407, © 2007 INFORMS

and

H�
j �f �k�� k� ��

=




max
l

�pjl�f �k�� k� + 1�+wl�+ �1− pjl�f �k�� k� ��

when k� + k� < c�

f �k�� k� � when k� + k� = c�

(34)

for any arbitrary function f defined on S̃.
The nonincreasing and concave properties of opti-

mal profit management policies that were established
in §3 were defined for functions with one dimen-
sional domains. To extend them, we provide the fol-
lowing definitions. First, a function f �k�� k� � defined
on S̃ is nonincreasing in k� and k� if f �k� + 1� k� �≤
f �k�� k� � and f �k�� k� + 1�≤ f �k�� k� �, respectively.
Similarly, we say that f �k�� k� � is submodular on S̃
if f �k� + 1� k� + 1�− f �k� + 1� k� � ≤ f �k�� k� + 1�−
f �k�� k� � whenever 0≤ k� + k� ≤ c− 2.
Then given the definitions above, we can state our

first results for systems with 
� �=
� :

Theorem 5. (a) The optimal profit function v�k�� k� �
is a nonincreasing, submodular function on S̃.
(b) Let �k�� k� � ∈ S̃ be the state of the rental system

at the time of a class i arrival. The rental request will be
granted if and only if k� is less than a certain threshold
value, k∗i �k��.
(c) Let w∗�j� k�� k� � be the optimal fee to charge for the

walk-in service of an class j customer when that arrives
to a system in state �k�� k� �. Then, w∗�j� k� + 1� k� � ≥
w∗�j� k�� k� �≥wej

, for �k�� k� �, �k� + 1� k� � ∈ S̃.
(d) For contract classes i1 and i2, *i1

≥ *i2
⇒ k∗i1�k��≥

k∗i2�k�� for all k� = 0� � � � � c − 1. For walk-in classes j1
and j2, if pj1r

/pj2r
is an increasing function of r , then

w∗�j1� k�� k� �≥w∗�j2� k�� k� � for all �k�� k� � ∈ S̃.

Parts (a)–(c) of the theorem are analogues to the
statements of Theorem 1, and Part (a) directly implies
Parts (b) and (c). Part (b) states that optimal admis-
sion of contract-class customers can be achieved by
“switching curve” policies (Altman et al. 2001, Savin
et al. 2005). These policies place thresholds on the
number of walk-in customers that are renting units.
This differs both from Theorem 1, which considers
the total number of rental units in service, as well as
from controls on the numbers of contract customers
in servers. Similarly, Part (c) shows that walk-in prices
are increasing in the number of units currently rented
to contract customers. In particular, it is the “decreas-
ing differences” property of v�k�� k� � that makes the
control of one customer group depend on the system
state of the other.
Part (d) of the theorem is a direct analog to The-

orem 3. As before, class i customers with higher
penalty-adjusted fees and class j customer that are

more price sensitive continue to be granted greater
access to rental units. Furthermore, the characteriza-
tion of preferred customer classes in Theorem 4 also
has a direct analog:

Theorem 6. (a) For contract class i define

�G�
i �A�=

∑
n�=i �

�
n max�A�*n�+

∑M
j=1 �

�
j wej

pj� ej∑
n�=i �

�
n +
�

� (35)

Then there exists a unique Ã∗
i such that Ã∗

i = �G�
i �Ã

∗
i �, and

A > �G�
i �A� for all A > Ã∗

i . Furthermore, contract class i
is preferred whenever *i ≥A∗

i .
(b) Define

�G� �A�=
∑N

i=1 �
�
i *i +

∑M
m=1 �

�
m �wm�A�p̄m�A�∑M

m=1 ��
m p̄m�A�+
�

� (36)

Then there exists a unique Ã∗ such that Ã∗ = �G� �Ã∗�, and
A > �G� �A� for all A > Ã∗. Furthermore, walk-in class j
is preferred whenever r̂j ≥A∗.

Finally, we note that the well-known insensitivity
property of the Erlang loss function implies that the
results of Lemma 1 also hold for a much broader class
of problems. (For example, see Ross 1996.)

Corollary 2. Suppose class i customers have gener-
ally-distributed service times with mean 1/
i < �, i =
1�2� � � � �N . Similarly, suppose class j customers have
generally-distributed service times with mean 1/
j < �,
j = 1�2� � � � �M . Then the results of Lemma 1 hold without
modification.

Therefore, our limiting results, which show that
myopic policies are asymptotically (average-reward)
optimal in large, heavily-loaded systems, hold for gen-
erally-distributed, class-specific service times as well.
Thus, many of the essential characterizations that

we developed for systems with 
� = 
� also hold
for the more general case of 
� �= 
� . In particular,
the form of our characterization of preferred customer
classes holds for the wider range of systems as well.

6. Effectiveness of Myopic Profit
Management: Numerical Study

Myopic profit management policies have several im-
portant advantages. They are simple to justify and im-
plement; they depend neither on the values of demand
and service parameters nor on the state of the rental
system. They also turn out to be optimal for a range
of problem parameters, as indicated in Lemma 1 and
Theorem 4. It is clear, however, that the inflexibility of
myopic policies may be a disadvantage in instances in
which demand for rentals significantly exceeds capac-
ity, leading to the loss of profits compared to more
flexible state-dependent policies. To better understand
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the effectiveness of myopic policies, we conducted two
sets of numerical studies.
The first examines the situation in which overall

rental capacity is fixed. Here, we focus on the rev-
enue performance of the myopic heuristic as we vary
the overall intensity and the composition of the rental
demand, as well as price parameters of contract and
walk-in customers.
The second considers the case in which capacity

can be changed to maximize the expected value of
rental profit. In this setting, we fix the rental demand
intensity and vary the composition of the demand,
the value of the walk-in fee sensitivity factor as well
as the unit holding cost for the rental capacity. For
each example, we then compare the optimal number
of rental units, c, given the use of the optimal and the
myopic policy.
In both sets of tests, we consider examples with N =

1 contract class and M = 1 walk-in classes, a simple
setting which highlights the competition between con-
tract and walk-in classes. (We also report results of pre-
liminary tests with N = 2 and M = 2 in §EC.10 in the
online appendix.) Given the results of Lemma 1, we
also consider primarily examples with small numbers
of rental units—c in the ones or low teens—because
these are the cases in which myopic policies are most
likely to perform poorly. As before, we report results
for average-reward problems.

6.1. Performance of Myopic Control Given Fixed
Rental Capacity

First, we focus on the case in which the value of the
rental capacity is fixed. Our test suite is constructed as
follows. The rental capacity level is set at c= 10 units,
and of the three demand and service parameters (�� ,
�� , and 
), we fix the service rate 
 at 1. For the walk-
in class, we use a walk-in pricing function (11)–(12)
with fixed wmin = 1, wmax = 4, and L= 10. We then con-
duct numerical studies for different combinations of
penalty-adjusted contract fees, walk-in customer price
sensitivities, and demand intensities.
Let R�4�c� denote the expected net contribution

(expected revenues, less expected penalties) per unit
of time achieved under policy 4 for rental capacity c.
Then Table 1 reports the average and the maximum (in

Table 1 Performance of the Myopic Profit Management Policies for One Contract and One
Walk-in Class

�= 0�1 �= 0�5 �= 1 �= 2 �= 3 �= 10

�= 0�1 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)
�= 0�5 2.9 (3.1) 0.05 (0.08) 0.06 (0.08) 0.08 (0.09) 0.09 (0.11) 0.18 (0.25)
�= 1�0 9.2 (11.8) 3.9 (5.1) 2.4 (3.6) 2.6 (3.6) 3.1 (3.9) 5.3 (6.7)
�= 1�5 24.2 (28.6) 12.1 (15.7) 7.5 (11.0) 6.3 (10.3) 7.4 (10.7) 13.3 (17.3)
�= 2�0 35.5 (41.6) 21.6 (26.0) 13.0 (18.0) 8.9 (16.0) 10.5 (16.9) 19.1 (26.3)

Note. The average (and maximum in parentheses) percentage deviations from the optimal profit.

parentheses) percentage deviation between the opti-
mal (OPT) and myopic (MYO) policies: �R�OPT � c�÷
R�MYO�c� − 1� × 100%. In figures we refer to this
quantity as the myopic % shortfall.
All tests shown in Table 1 use )= 1, and each cell in

the table reports the results of 9 numerical examples.
In each cell, we fixed values of * �0�1�0�5�1�2�3�10�
and , = ��� + �� �/�
c� �0�1�0�5�1�1�5�2�, and for
these fixed values we run 9 test cases: ��/��� +�� �=
0�1� � � � �0�9.
The table’s results indicate that myopic profit man-

agement policies can be effective as long as two
general conditions are satisfied. First, as already
indicated in Lemma 1, the overall demand load
should be adequately matched by the rental capac-
ity. Conversely, the importance of careful capacity-
management becomes apparent in cases in which the
offered load, ,, significantly exceeds one. Second, the
contract penalty-adjusted fee * should be in the neigh-
borhood of wmin and wmax. Indeed, when *�wmin,
the policy severely restricts the service of the low-
paying contract customers, and the performance of the
myopic policy, which freely admits those customers,
understandably deteriorates. For * � wmax the situ-
ation is reversed: Walk-in customers have very little
to offer and are, therefore, virtually priced out by the
optimal policy. In this case, the performance of the
myopic policy is compromised because it continues to
charge the low, myopically optimal walk-in fee, we.
The nonmonotonicity of the performance of the

myopic policy as a function of the penalty-adjusted
contract fee is further illustrated in Figure 6, which
fixes �� = �� = 5 (so that , = 1) and systematically
varies *. (The rest of the example’s parameters are
fixed as in Table 1.) The figure’s left panel shows the
myopic policy’s percentage revenue shortfall over the
full range of *, whereas its right panel shows differ-
ences in policy actions for three representative *’s.
Note that the myopic policy performs best when

the penalty-adjusted fee is near (slightly below) the
myopic walk-in fee of we = 1�9. In this case, the loss of
one type of customer—contract or walk-in—is not sig-
nificantly different from that of another, and the reser-
vation of capacity for a particular class of customer
does not have a significant effect.
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Figure 6 Average Performance Gap (Left) and Policy Differences (Right) for Different Values of �
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It is plausible that both of these general conditions
are satisfied in many practical settings. On the one
hand, whereas short-term mismatches between rental
demand and the supply of rental capacity are almost
unavoidable in stochastic settings, in the long run
one should expect that demand and supply should be
properly matched. (In the next subsection, we analyze
this issue in more detail.) On the other hand, given
the fact that contract and walk-in customers derive the
same type of economic benefit from the use of a rental,
it is reasonable to expect that * is in the neighborhood
of �wmin�wmax�.
The arguments above indicate that, among the com-

binations of parameters we studied, the ones with
�� + �� ≈ 
c and wmin ≤ * ≤ wmax are of particular
importance. For these settings, the maximum relative
difference between the performances of myopic and
optimal policies, 3.9%, is observed for high value of
penalty-adjusted contract fee * �*= 3�.

Figure 7 Average Performance Gap (Left) And Policy Differences (Right) for Different Values of �
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Figure 7 highlights differences between the myopic
and the optimal capacity-management policies as a
function of the walk-in fee sensitivity factor, ). In these
examples, �� = �� = 5, c = 10, 
 = 1, and the walk-
in pricing function (11)–(12) has wmin = 1, wmax = 4,
and L= 10. Then we fix *= 3 and systematically vary
) between 0.1 and 10. The figure’s left panel shows
the myopic’s percentage revenue shortfall over the full
range of ), and the right shows differences in policy
actions for three representative )’s.
The left panel shows that, as with *, percentage

revenue shortfall is not necessarily a monotonic func-
tion of ), and the right panel provides some insight
into why this is the case. When ) is near 0, walk-in
customers are willing to accept high rental fees and
both myopic pricing and myopic capacity allocation
are close to optimal. For high values of ), walk-in cus-
tomers are relatively inflexible, and the myopic price
values are driven down toward wmin. However, even
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Table 2 Optimal Fleet Sizes and Expected Profits for the Optimal (OPT) and Myopic (MYO) Policies

Optimal fleet size, c∗��� Profit, ���� c∗����

��/��� + �� � 0.1 0.5 0.9 0.1 0.5 0.9

h/� � OPT MYO OPT MYO OPT MYO OPT MYO OPT MYO OPT MYO

0.3 0�2 11 12 12 12 13 13 16�1 16�06 13�58 13�57 11�12 11�12
1 9 10 11 11 13 13 7�33 6�71 8�73 8�39 10�15 10�08
5 8 10 11 12 13 13 3�03 2�68 6�36 6�02 9�68 9�6

0.5 0�2 10 10 10 11 11 11 12�03 11�92 9�18 9�14 6�55 6�53
1 6 8 8 9 10 10 4�44 3�38 5�06 4�5 5�74 5�62
5 4 3 7 8 10 10 0�85 0�05 2�99 2�09 5�32 5�09

0.7 0�2 8 9 8 8 8 8 8�3 8�05 5�3 5�18 2�62 2�61
1 5 5 6 6 7 7 2�12 0�81 2�06 1�34 2�03 1�89
5 0 0 4 0 7 7 0 0 0�69 0 1�75 1�43

Note. In all cases the following parameters are fixed: �= 2, wmin = 1, wmax = 4, L= 10, = 1, �� + �� = 10.

in these cases higher fees are demanded from walk-in
customers as the rental capacity becomes tight. That is,
to successfully compete for capacity with contract cus-
tomers, whose penalty adjusted fees may be greater
than wmin, walk-in customers must also pay more.
Thus, the optimal capacity-management policy is to
treat contract customers as a preferred class, while
raising walk-in fees above the myopic levels when
occupancy is nearing the system’s capacity.
Remark. Results of numerical tests for systems

with N = 2 classes of contract customers and M = 2
classes of walk-in customers, whereas more complex,
are generally consistent with those described above.
First, as penalty-adjusted contract fees, *i, move out-
side of the interval �wmin�wmax�, the myopic policy’s
performance suffers. Second, myopic policies appear
to perform well for very price-sensitive and very
price-insensitive walk-in customers. Myopic pricing
performs less well for walk-in customers with inter-
mediate )’s, however. Here, dynamic pricing appears
to more effectively modulate walk-in demand. Sec-
tion EC.10 in the online appendix provides a detailed
description of the experiments and results.

6.2. The Effect of Myopic Controls on Capacity
Choice and Overall Performance

In the previous subsection we tested the myopic pric-
ing heuristic in the setting in which rental capacity is
fixed. Below, we focus on the setting in which the over-
all rental demand is fixed and the rental company can
adjust its rental capacity to maximize expected profits.
To account for the expenses of capacity investment

and maintenance, we introduce a holding cost of h per
unit of capacity per unit of time, and we let 8�4�c�=
R�4�c� − hc for the overall expected profit per unit
of time. Then given a set of problem parameters and
chosen capacity-management policy, 4, we search for
the rental capacity, c, that maximizes 8�4�c�, and we
denote the optimal capacity as c∗�4�.

The problem parameters used in the numerical
study are as follows. Overall demand for rental ser-
vices is fixed at �� + �� = 10. The service rate for
rental customers and the contract penalty-adjusted fee
are fixed at 
= 1 and *= 2. The walk-in pricing func-
tion (11)–(12) uses parameters wmin = 1, wmax = 4, and
L= 10. We then systematically vary the customer mix,
��/��� + �� � = �0�1�0�5�0�9�, the price sensitivity of
walk-in customers, )= �0�2�1�0�5�0�, and the relative
cost of capacity, h= �0�3*�0�5*�0�7*�.
Table 2 illustrates the results of these 27 examples

for both the OPT and MYO policies. The left side of
the table reports optimal rental fleet sizes, c∗�4�. The
right lists optimal profits8�4�c∗�4��. The tests’ results
prompt several observations. First, the performances
of both the optimal and the myopic controls change
in a similar, intuitive fashion as the problem param-
eters are varied. All other parameters being fixed, an
increase in the capacity holding cost, h, results in the
decrease in the optimal size of the rental fleet, as
well as the values of profits (and profit margins). An
increase in the value of the walk-in fee sensitivity fac-
tor, ), implies more price-sensitive walk-in customers.
Lower prices, in turn, result in decreased profits and
fleet sizes. At the same time, sensitivity to ) is natu-
rally moderated by fleet composition: When �� com-
prises 90% of the offered load, the price sensitivity of
walk-in customers matters little.
Second, we note that the optimal capacity under

a myopic policy can be either higher or lower than
the one under optimal revenue control. When capac-
ity costs are low enough, h = 0�3* in our examples,
then it is profitable to add capacity to satisfy the addi-
tional load induced by myopic pricing. As capacity
costs climb, however, this added load is only prof-
itable if walk-in customers are not too price sensitive.
In particular, for h= 0�5*, there is a reversal. For ) ∈
90�2�1�0:, optimal capacity for the MYO policy exceeds
that for OPT, and for )= 5�0 it falls short.
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In fact, this type of reversal is an example of a more
general phenomenon. Our myopic policy, by defini-
tion, restricts the offered load less than more dynamic
controls. Therefore, when capacity costs are low, it is
worth adding capacity so that marginal (lower-value)
customers—which would have been excluded under
the optimal control—do not “crowd out” more prof-
itable customers. As capacity costs grow, however, the
rental firm cannot afford to serve them. An extreme
instance of the latter can be seen in the example in
which h= 0�7*, )= 5, and �� makes up 50% of total
demand. (For a more general discussion and analysis,
see Savin et al. 2005.)
Finally, we note that the myopic policy’s profits

(and profit margins) improve, relative to those of the
optimal policy, as the fraction of contract customers
increases and as capacity costs decrease. Thus, in the
examples shown in Table 2, it appears to be the opti-
mal policy’s ability to control walk-in demand—rather
than contact customers—that boosts its performance.

7. Conclusion
In this paper, we analyze a model of rental opera-
tions in which customers are heterogeneous and both
rental requests and durations are stochastic. An impor-
tant, novel feature of our model is the explicit treat-
ment of the interaction between customer groups with
fundamentally different attitudes toward rental fees
and quality of service: Contract customers expect sta-
ble rental fees and a high quality of service; in con-
trast, walk-in customers can be dynamically quoted
prices and have no expectations regarding equipment
availability.
We derive structural properties of optimal capacity-

management policies and showhowpolicy parameters
are affected by changes in problem parameters.
We also characterize preferred customer classes and
related myopic policies. We demonstrate that myopic
policies can perform well in a wide variety of circum-
stances. On the one hand, we develop sufficient condi-
tions for the preferred status of a particular customer
class that do not depend on the number of rental units,
c, only on offered load and price attributes. When sat-
isfied by all customer classes, these conditions iden-
tify a range of problem’s parameters, independent of
c, for which myopic policies are optimal. On the other,
we provide limiting results that imply that, in large
systems, myopic policies are (asymptotically) optimal
for any set of pricing attributes, as long as c roughly
matches the offered load.
Numerical results indicate that myopic manage-

ment can be effective even in smaller systems, given
capacity is roughly balanced with demand. Con-
versely, in cases in which rental capacity is severely
constrained, the inflexibility of the myopic policies
may lead to significant profit losses.

Although our analysis captures some of the impor-
tant characteristics of rental businesses, more work
remains to be done. One immediate question con-
cerns the directness with which our numerical results
translate to more complex systems that have multiple
classes of contract and walk-in customers. The numer-
ical tests in §EC.10 of the online appendix suggest
that, with N = 2 and M = 2, the relative performance
of myopic policies is not inconsistent with the results
depicted in Figures 6 and 7. Still, we do not yet thor-
oughly understand system behavior, even in this rel-
atively simple setting, and a more systematic analysis
is warranted.
In addition, two potential extensions to the paper’s

model look especially relevant and interesting to us.
The first addresses the fact that, in many cases, rental
units can be heterogeneous, and customers may be
inclined to substitute one type of unit for another. The
second explicitly models arrival rates, and perhaps
rental durations, as being affected by price and avail-
ability.

8. Electronic Companion
An electronic companion to this paper is available as
part of the online version that can be found at http://
mansci.journal.informs.org/.
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Online Appendix
EC.1. Uniformization
An alternative representation of uniformization defines the aggregate event rate to be � =∑N

i=1 �
�
i +∑M

j=1 �
�
j +�c, so that the system evolves with exponentially distributed interevent times of � . Again

the normalized version of each event rate, for example ��
i /� , becomes the conditional probability that

the next event is of that rate’s type. In this case, one explicitly defines a discrete-time discount factor
associated with the expected interevent time,

∫ �
0 e−�t�e−�t dt =�/�� +��.

It is not difficult to see that this formulation is equivalent to the one that we use. For instance,
suppose that the next event is a type i arrival and that the resulting expected discounted value at that
arrival epoch is X. Then, under this scheme, the marginal contribution to expected discounted value
(now) is ��

i /� ·�/�� +�� ·X = ��
i /� ·X, precisely the same contribution as under our scheme.

EC.2. Properties of gj�A�, lj�A�, and hj�A�
We demonstrate the properties of gj�A�, lj �A�, and hj�A�:

Lemma 2.
(a) lj �A� is nondecreasing in A;
(b) gj�A� is nonincreasing in A; and
(c) hj�A� is nonincreasing in A.

Proof.
Part (a)—By definition,

pjlj �A��−B+wlj �A��≤ pjlj �B��−B+wlj �B�
��

Now let A>B, and by contradiction, suppose that lj �B� > lj�A�. Then pjlj �B� < pjlj �A�, so

0 > pjlj �A��−B+wlj �A��− pjlj �B��−B+wlj �B�
�

= pjlj �A��−A+wlj �A��− pjlj �B��−A+wlj �B�
�+ �B−A��pjlj �B� − pjlj �A���

But the expression on the right-hand side is positive, which is a contradiction.
Part (b)—B >A implies

gj�B�= pj� l�B��−B+wl�B�� < pj� l�B��−A+wl�B��≤max
l

�pjl�−A+wl��= gj�A��

Part (c)—B >A implies

h�B�−h�A� = −B+A− pj� l�B��−B+wl�B��+ pj� l�A��−A+wl�A��

≥ B−A− pj� l�B��B+wl�B��+ pj� l�B��A+wl�B��= �1− pj� l�B���B−A�≥ 0� �

EC.3. Proof of Theorem 1
Part (a)—Consider a nonincreasing concave function f �k�. The image of this function under T can be
expressed as

Tf �k�=
N∑
i=1

��
i H

�
i �f �k��+

M∑
j=1

��
j H�

j �f �k��+�H�k�� (EC1)

ec1
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where H�k�= kf �k− 1�+ �c − k�f �k�. Because ��
i , �

�
j , and � are all positive, it is sufficient to show

that H�
i �f �k��, H

�
j �f �k��, and H�k� are all nonincreasing concave functions of k.

We start with H�k�. For any 0≤ k≤ c− 1,

H�k+ 1�−H�k�= k�f �k�− f �k− 1��+ �c− k− 1��f �k+ 1�− f �k��≤ 0� (EC2)

Also, for any 0≤ k≤ c− 2, we have

H�k+ 2�+H�k�− 2H�k+ 1�

= �c− k− 2��f �k+ 2�+ f �k�− 2f �k+ 1��+ k�f �k+ 1�+ f �k− 1�− 2f �k��≤ 0� (EC3)

Next, consider H�
i �f �k�� for any i= 1� � � � �N . When k= c− 1, H�

i �f �k+ 1��= f �c�−#i so that

H�
i �f �k+ 1��−H�

i �f �k��= f �k+ 1�−max�f �k+ 1�+ ri +#i� f �k��≤ 0% (EC4)

for k < c− 1,

H�
i �f �k+ 1��−H�

i �f �k��=max�f �k+ 2�+ ri +#i� f �k+ 1��−max�f �k+ 1�+ ri +#i� f �k��� (EC5)

and three cases are possible. If f �k+ 2�− f �k+ 1�≥−�ri +#i�, then the fact that f �k� is nonincreasing
implies that H�

i �f �k + 1�� − H�
i �f �k�� = f �k + 2� − f �k + 1� ≤ 0. If f �k + 2� − f �k + 1� < −�ri + #i� ≤

f �k+1�−f �k� then H�
i �f �k+1��−H�

i �f �k��=−�ri+#i�≤ 0. Finally, if f �k+1�−f �k� <−�ri+#i�, then
we have H�

i �f �k+ 1��−H�
i �f �k��= f �k+ 1�− f �k�≤ 0.

For the proof of concavity of H�
i �f �k�� we again start with the boundary case of k= c− 2:

H�
i �f �k+ 2��+H�

i �f �k��− 2H�
i �f �k+ 1�� = f �k+ 2�+max�f �k+ 1�+ ri +#i� f �k��

− 2max�f �k+ 2�+ ri +#i� f �k+ 1��� (EC6)

We use the monotonicity and concavity of f �k� to evaluate each of the 3 cases that must be considered.
If f �k+2�− f �k+1�≥−�ri +#i�, (EC6) becomes f �k+1�− f �k+2�− ri −#i ≤ 0. If f �k+2�− f �k+1� <
−�ri +#i�≤ f �k+ 1�− f �k�, then (EC6) reduces to f �k+ 2�− f �k+ 1�+ ri +#i ≤ 0. Finally, if f �k+ 1�−
f �k� <−�ri +#i�, we obtain H�

i �f �k+ 2��+H�
i �f �k��− 2H�

i �f �k+ 1��= f �k+ 2�+ f �k�− 2f �k+ 1�≤ 0.
In considering nonboundary states, with k < c−2, we note that we only have to prove concavity for

the case in which f �k+3�−f �k+2�≥−�ri+#i�, because the other two cases were effectively considered
above. Here, the monotonicity of H�

i �f �k�� implies that H�
i �f �k+2��+H�

i �f �k��−2H�
i �f �k+1�� reduces

directly to f �k+ 3�+ f �k+ 1�− 2f �k+ 2�, which is less than or equal to zero by the concavity of f �k�.
Now, consider H�

j �f �k�� for any j = 1� � � � �M . First, we demonstrate that H�
j �f �k�� is nonincreasing.

Let l1 = argmaxl�pjl�f �k+ 1�+wl�+ �1− pjl�f �k��. Then for k= c− 1

H�
j �f �k+ 1��−H�

j �f �k�� = f �k+ 1�− pjl1�f �k+ 1�+wl1
�− �1− pjl1�f �k�

= �1− pjl1��f �k+ 1�− f �k��− pjl1wl1
≤ 0� (EC7)

given nonincreasing f �k�. Similarly, let l2 = argmaxl�pjl�f �k + 2� + wl� + �1 − pjl�f �k + 1��. Then for
k < c− 1, we have

H�
j �f �k+ 1��−H�

j �f �k��≤H�
j �f �k+ 1��− �pjl2�f �k+ 1�+wl2

�− �1− pjl2�f �k��

because �pjl1�wl1
� maximizes H�

j �f �k��. In turn, we have

H�
j �f �k+ 1��−H�

j �f �k�� ≤ pjl2�f �k+ 2�+wl2
�+ �1− pjl2�f �k+ 1�− �pjl2�f �k+ 1�+wl2

�− �1− pjl2�f �k��

= f �k+ 1�− f �k�+ pjl2�f �k+ 2�+ f �k�− 2f �k+ 1��≤ 0� (EC8)

which follows from the monotonicity and concavity of f �k�.
Finally, we show that H�

j �f �k�� is concave. For k= c− 2, we have

H�
j �f �k+ 2��+H�

j �f �k��− 2H�
j �f �k+ 1�� = f �k+ 2�+H�

j �f �k��− 2H�
j �f �k+ 1��

= f �k+ 2�+ f �k�− 2f �k+ 1�+ pjl1�f �k+ 1�− f �k�+wl1
�

− 2pjl2�f �k+ 2�− f �k+ 1�+wl2
�� (EC9)
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where l1 and l2 are defined as before. Again, because �pjl1�wl1
� maximizes H�

j �f �k��, we have

H�
j �f �k+ 2��+H�

j �f �k��− 2H�
j �f �k+ 1��

≤ f �k+ 2�+ f �k�− 2f �k+ 1�+ pjl1�f �k+ 1�− f �k�+wl1
�− 2pjl1�f �k+ 2�− f �k+ 1�+wl1

�

= �1− pjl1��f �k+ 1�+ f �k�− 2f �k+ 1��+ pjl1�f �k+ 1�− f �k+ 2�−wl1
�

≤ 0+ pjl1�f �k�− f �k+ 1�−wl1
�� (EC10)

given the concavity of f �k�. By definition (3), pjl1�f �k+ 1�+wl1
�+ �1− pjl1�f �k�≥ f �k�, which implies

pjl1�f �k� − f �k + 1� − wl1
� ≤ 0 and completes the argument for k = c − 2. For k < c − 2, we define

l3 = argmaxl�pjl�f �k+ 3�+wl�+ �1− pjl�f �k+ 2��, so that

H�
j �f �k+ 2��+H�

j �f �k��− 2H�
j �f �k+ 1��

= f �k+ 2�+ f �k�− 2f �k+ 1�+ pjl3�f �k+ 3�− f �k+ 2�+wl3
�

+ pjl1�f �k+ 1�− f �k�+wl1
�− 2pjl2�f �k+ 2�− f �k+ 1�+wl2

�� (EC11)

Then because �pjl2�wl2
� maximizes H�

j �f �k+ 1��, we have

H�
j �f �k+ 2��+H�

j �f �k��− 2H�
j �f �k+ 1��

≤ f �k+ 2�+ f �k�− 2f �k+ 1�+ pjl3�f �k+ 3�− f �k+ 2�+wl3
�

+ pjl1�f �k+ 1�− f �k�+wl1
�− pjl3�f �k+ 2�− f �k+ 1�+wl3

�− pjl1�f �k+ 2�− f �k+ 1�+wl1
�

= �1− pjl1��f �k+ 2�+ f �k�− 2f �k+ 1��+ pjl3�f �k+ 3�+ f �k+ 1�− 2f �k+ 2��≤ 0� (EC12)

The fact that the class of concave functions is closed under the action T implies that the optimal profit
function v�k� is also concave.
Part (b)—Using the definition of k∗i (9), for i= 1� � � � �N we observe that H�

i �v�k��= v�k+ 1�+ ri for
k < k∗i , and H�

i �v�k��= v�k�−#i for k ≥ k∗i . Thus, class i contract customers are admitted into service
if and only if k < k∗i .
Part (c)—Recall that w1 < w2 < · · · < wL and that wL is offered whenever a walk-in arrival finds

k ≥ c rental units busy. Then Lemma 2(a) and the concavity of v�k� imply that the fee indices form
a monotone sequence: lj �v�k + 1�− v�k + 2�� ≥ lj �v�k�− v�k + 1��, so that w∗�j� k + 1� ≥ w∗�j� k�, k =
0� � � � � c− 1.

EC.4. Proof of Theorem 2
Part (a)—Recall that the optimality equation for the profit function can be expressed as

v�k�= Tv�k�� (EC13)

where

Tv�k�=
N∑
i=1

��
i H

�
i �v�k��+

M∑
j=1

��
j H�

j �v�k��+�kv�k− 1�+��c− k�v�k�� (EC14)

We start by proving monotonicity of the optimal thresholds for contract classes with respect to the
contract demand intensities. Suppose that a demand intensity for contract class m is changed from ��

m

to �̂�
m ≥ ��

m. Define by T ���
m� and T ��̂�

m� the respective dynamic programming operators in (EC14) and
by v�k���

m� and v�k� �̂�
m� the corresponding solutions to the Markov decision process (MDP) optimality

equation (EC13), so that v�k���
m�= T ���

m�v�k��
�
m�, v�k� �̂

�
m�= T ��̂�

m�v�k� �̂
�
m�, k= 0� � � � � c. We will show

that
v�k+ 1� �̂�

m�− v�k� �̂�
m�≤ v�k+ 1���

m�− v�k���
m� (EC15)

for every k = 0� � � � � c − 1, which, according to (9) would imply that the optimal threshold under
demand intensity ��

m is at least as big as the one under �̂�
m.

To establish (EC15), we proceed as follows. First, we define the sequence of approximations for the
optimal discounted profit function vn�k� �̂

�
m�, n= 0�1� � � � � where v0�k� �̂

�
m�≡ v�k���

m�, and vn�k� �̂
�
m�=

T ��̂�
m�vn−1�k� �̂

�
m� for n ≥ 1. Given the contracting nature of T ��̂�

m�, v�k� �̂
�
m� = limn→� vn�k� �̂

�
m�. Thus,
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(EC15) will be proven if we show that

vn+1�k+ 1� �̂�
m�− vn+1�k� �̂

�
m�≤ vn�k+ 1� �̂�

m�− vn�k� �̂
�
m�� n≥ 0� (EC16)

Note that vn is the analog of the arbitrary concave, decreasing, function, f , that was the argument
of T in the proof of Theorem 1. Here, our initial approximation uses a value function, v0�k� �̂

�
m� ≡

v�k���
m�, so in this proof we use the name v0, rather than f or fn.

We conduct the proof of (EC16) by induction.
For n= 1 we have

v1�k+ 1� �̂�
m�− v1�k� �̂

�
m� = T ��̂�

m�v�k+ 1���
m�− T ��̂�

m�v�k��
�
m�

= T ���
m�v�k+ 1���

m�− T ���
m�v�k��

�
m�+ �T ��̂�

m�v�k+ 1���
m�− T ���

m�v�k+ 1���
m��

− �T ��̂�
m�v�k��

�
m�− T ���

m�v�k��
�
m��

= v�k+ 1���
m�− v�k���

m�+ ��̂�
m −��

m��H
�
m �v�k+ 1���

m��− v�k+ 1���
m�

−H�
m �v�k��

�
m��+ v�k���

m��� (EC17)

Now we focus on the last expression in (EC17). For k+ 1= c, we obtain

H�
m �v�k+ 1���

m��− v�k+ 1���
m�−H�

m �v�k��
�
m��+ v�k���

m�

=−max�0�v�k+ 1���
m�− v�k���

m�+*m�≤ 0� (EC18)

For k+ 1< c we have

H�
m �v�k+ 1���

m��−H�
m �v�k��

�
m��− v�k+ 1���

m�+ v�k���
m�

=max�0�v�k+ 2���
m�− v�k+ 1���

m�+*m�−max�0�v�k+ 1���
m�− v�k���

m�+*m�≤ 0� (EC19)

given the concavity of v�k���
m�. Thus, for any k= 0� � � � � c− 1, v1�k+ 1� �̂�

m�−v1�k� �̂
�
m�≤ v�k+ 1���

m�−
v�k���

m�.
To proceed with the induction, we need the following two intermediate results:

Lemma 3. For any k= 0� � � � � c− 1,

H�
i �vK�k+ 1� �̂�

m��−H�
i �vK�k� �̂

�
m��≤H�

i �vK−1�k+ 1� �̂�
m��−H�

i �vK−1�k� �̂
�
m��� (EC20)

Proof. For k= c− 1� consider the difference

�H�
i �vK�k+ 1� �̂�

m��−H�
i �vK�k� �̂

�
m���− �H�

i �vK−1�k+ 1� �̂�
m��−H�

i �vK−1�k� �̂
�
m���

= �vK�k+ 1� �̂�
m�− vK�k� �̂

�
m��− �vK−1�k+ 1� �̂�

m�− vK−1�k� �̂
�
m��

−max�0�vK�k+ 1� �̂�
m�− vK�k� �̂

�
m�+*i�+max�0�vK−1�k+ 1� �̂�

m�− vK−1�k� �̂
�
m�+*i�� (EC21)

The induction assumption vK�k+ 1� �̂�
m�−vK�k� �̂

�
m�≤ vK−1�k+ 1� �̂�

m�−vK−1�k� �̂
�
m� implies that there

are three possible cases to consider in (EC21). First, if vK�k + 1� �̂�
m�+ *i ≥ vK�k� �̂

�
m�, then vK−1�k +

1� �̂�
m�+*i ≥ vK−1�k� �̂

�
m� as well, and

�H�
i �vK�k+ 1� �̂�

m��−H�
i �vK�k� �̂

�
m���− �H�

i �vK−1�k+ 1� �̂�
m��−H�

i �vK−1�k� �̂
�
m���= 0� (EC22)

Second, if vK�k+ 1� �̂�
m�+*i ≤ vK�k� �̂

�
m� and vK−1�k+ 1� �̂�

m�+*i ≥ vK−1�k� �̂
�
m�, then

�H�
i �vK�k+ 1� �̂�

m��−H�
i �vK�k� �̂

�
m���− �H�

i �vK−1�k+ 1� �̂�
m��−H�

i �vK−1�k� �̂
�
m���

= vK�k+ 1� �̂�
m�− vK�k� �̂

�
m�+*i ≤ 0� (EC23)

Finally, if vK�k+ 1� �̂�
m�+*i ≤ vK�k� �̂

�
m� and vK−1�k+ 1� �̂�

m�+*i ≤ vK−1�k� �̂
�
m�, we obtain

�H�
i �vK�k+ 1� �̂�

m��−H�
i �vK�k� �̂

�
m���− �H�

i �vK−1�k+ 1� �̂�
m��−H�

i �vK−1�k� �̂
�
m���

= �vK�k+ 1� �̂�
m�− vK�k� �̂

�
m��− �vK−1�k+ 1� �̂�

m�− vK−1�k� �̂
�
m��≤ 0� (EC24)
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For k < c− 1, the right-hand side of (EC21) contains an extra term

max�0�vK�k+ 2� �̂�
m�− vK�k+ 1� �̂�

m�+*i�−max�0�vK−1�k+ 2� �̂�
m�− vK−1�k+ 1� �̂�

m�+*i��

which is clearly nonpositive due to induction assumption. �

Lemma 4.

H�
j �vK�k+ 1� �̂�

m��−H�
j �vK�k� �̂

�
m��≤H�

j �vK−1�k+ 1� �̂�
m��−H�

j �vK−1�k� �̂
�
m�� (EC25)

for any k= 0� � � � � c− 1.

Proof. For k= c− 1, we have

�H�
j �vK�k+ 1� �̂�

m��−H�
j �vK�k� �̂

�
m���− �H�

j �vK−1�k+ 1� �̂�
m��−H�

j �vK−1�k� �̂
�
m���

= (
vK�k+ 1� �̂�

m�− vK�k� �̂
�
m�−max

l
�pjl�vK�k+ 1� �̂�

m�− vK�k� �̂
�
m�+wl��

)

− (
vK−1�k+ 1� �̂�

m�− vK−1�k� �̂
�
m�−max

l
�pjl�vK−1�k+ 1� �̂�

m�− vK−1�k� �̂
�
m�+wl��

)≤ 0� (EC26)

where the final inequality follows from the induction assumption and the result of Lemma 2(b).
For k < c− 1,

�H�
j �vK�k+ 1� �̂�

m��−H�
j �vK�k� �̂

�
m���− �H�

j �vK−1�k+ 1� �̂�
m��−H�

j �vK−1�k� �̂
�
m���

= �vK�k+ 1� �̂�
m�− vK�k� �̂

�
m��− �vK−1�k+ 1� �̂�

m�+ vK−1�k� �̂
�
m��

+max
l

�pjl�vK�k+ 2� �̂�
m�− vK�k+ 1� �̂�

m�+wl��−max
l

�pjl�vK−1�k+ 2� �̂�
m�− vK−1�k+ 1� �̂�

m�+wl��

−max
l

�pjl�vK�k+ 1� �̂�
m�− vK�k� �̂

�
m�+wl��+max

l
�pjl�vK−1�k+ 1� �̂�

m�− vK−1�k� �̂
�
m�+wl��

≤ �vK�k+ 1� �̂�
m�− vK�k� �̂

�
m��− �vK−1�k+ 1� �̂�

m�− vK−1�k� �̂
�
m��

−max
l

�pjl�vK�k+1��̂�
m�−vK�k��̂

�
m�+wl��+max

l
�pjl�vK−1�k+1��̂�

m�−vK−1�k��̂
�
m�+wl��≤0� (EC27)

where the first inequality follows from the induction assumption and Lemma 2(c) and the second is
the same as (EC26). �

Now we proceed with the induction step. Assume that (EC16) is valid for all n≤K. Then,

vK+1�k+ 1� �̂�
m�− vK+1�k� �̂

�
m�

= T ��̂�
m�vK�k+ 1� �̂�

m�− T ��̂�
m�vK�k� �̂

�
m�

=
N∑
i=1

�̃�
i �H

�
i �vK�k+ 1� �̂�

m��−H�
i �vK�k� �̂

�
m���+

M∑
j=1

��
j �H�

j �vK�k+ 1� �̂�
m��−H�

j �vK�k� �̂
�
m���

+�k�vK�k� �̂
�
m�− vK�k− 1� �̂�

m��+��c− �k+ 1���vK�k+ 1� �̂�
m�− vK�k� �̂

�
m��� (EC28)

where we denote �̃�
i = ��

i , i =m, �̃�
m = �̂�

m. Then using (EC28), (EC20), and (EC25), we obtain

vK+1�k+ 1� �̂�
m�− vK+1�k� �̂

�
m�

≤
N∑
i=1

�̃�
i �H

�
i �vK−1�k+ 1� �̂�

m��−H�
i �vK−1�k� �̂

�
m���

+
M∑
j=1

��
j �H�

j �vK−1�k+ 1� �̂�
m��−H�

j �vK−1�k� �̂
�
m���

+�k�vK−1�k� �̂
�
m�− vK−1�k− 1� �̂�

m��+��c− �k+ 1���vK−1�k+ 1� �̂�
m�− vK−1�k� �̂

�
m��

= T ��̂�
m�vK−1�k+ 1� �̂�

m�− T ��̂�
m�vK−1�k� �̂

�
m�

= vK�k+ 1� �̂�
m�− vK�k� �̂

�
m�� (EC29)
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which completes the induction argument. Thus, the optimal thresholds for the contract classes are
nonincreasing functions of contract demand intensities.
The proof of the monotonicity of contract thresholds with respect to walk-in demand intensities is

analogous to the proof for contract demand intensities outlined above. The only difference lies in the
proof of the first induction step, which we present below.
Suppose that a demand intensity for walk-in class s is changed from ��

s to �̂�
s ≥ ��

s . As before,
we define by T ���

s � and T ��̂�
s � the dynamic programming operators in (EC14) and by v�k���

s � and
v�k� �̂�

s � the corresponding solutions to the MDP optimality equations. We also define the sequence
of approximations for the optimal discounted profit function vn�k� �̂

�
s �, n ≥ 0, such that vn�k� �̂

�
s � =

T ��̂�
s �vn−1�k� �̂

�
s �, n≥ 1, v0�k� �̂

�
s �= v�k���

s �. For the first induction step, we obtain

v1�k+ 1� �̂�
s �− v1�k� �̂

�
s � = v�k+ 1���

s �− v�k���
s �+ ��̂�

s −��
s ��H�

s �v�k+ 1���
s ��

−H�
s �v�k���

s ��− v�k+ 1���
s �+ v�k���

s ��� (EC30)

For k+ 1= c, we have

�H�
s �v�k+ 1���

s ��−H�
s �v�k���

s ���− �v�k+ 1���
s �− v�k���

s ��

=−max
l

�pjl�v�k+ 1���
s �− v�k���

s �+wl��≤ 0� (EC31)

because maxl�pjl�v�k+ 1���
s �− v�k���

s �+wl��≥ 0. Similarly, for k+ 1< c, we have

�H�
s �v�k+ 1���

s ��−H�
s �v�k���

s ���− �v�k+ 1���
s �− v�k���

s ��

=max
l

�pjl�v�k+ 2���
s �− v�k+ 1���

s �+wl��−max
l

�pjl�v�k+ 1���
s �− v�k���

s �+wl��≤ 0� (EC32)

Thus, v1�k+ 1� �̂�
s �− v1�k� �̂

�
s �≤ v�k+ 1���

s �− v�k���
s �.

To obtain the monotonicity result with respect to changes in the rental rate �, we note that the
induction result summarized in (EC29) can be reversed, i.e., using the same arguments, we can show
that vK�k+ 1�− vK�k�≥ vK−1�k+ 1�− vK−1�k� implies that vK+1�k+ 1�− vK+1�k�≥ vK�k+ 1�− vK�k�. (For
simplicity, we have omitted the second argument in the profit functions here.) In particular, the results
of Lemmas 3 and 4 will also be reversed. Replacing � by ��>�, we define operators T � ��� and T ���
and optimal profit functions v�k� ��� and v�k���. We then define a sequence of approximations for the
optimal discounted profit function vn�k� ���, n≥ 0 as vn�k� ���= T � ���vn−1�k� ���, n≥ 1, v0�k� ���= v�k���.
Then,

v1�k+ 1� ���− v1�k� ��� = v�k+ 1���− v�k���+ � ��−����k+ 1��v�k���− v�k+ 1����

− k�v�k− 1���− v�k������ (EC33)

Rearranging terms in the last expression on the right-hand side of (EC33), we obtain

�k+ 1��v�k���− v�k+ 1����− k�v�k− 1���− v�k����

= k�2v�k���− v�k− 1���− v�k+ 1����+ v�k���− v�k+ 1���≥ 0� (EC34)

because v�k� in nonincreasing and concave. Thus, v1�k+1� ���−v1�k� ���≥ v0�k+1� ���−v0�k� ���, imply-
ing the monotonicity result in question.
We now focus on the effects of changes in contract fees and penalties on the optimal thresholds.

First, we note that, without loss of generality, we can focus on a single penalty-adjusted fee, *i = ri+#i.
For example, the accrual of penalty, #i, when a customer is lost and revenue, ri, when a customer
is accepted is equivalent to “losing” #i at every class i arrival and “gaining” *i = ri + #i only on
acceptance.
Next, we show that an increase in the penalty-adjusted fee for class i leads to more stringent control

of admissions for other contract customers. As before, we denote by T �*i� and T � �*i� the operators in
(EC14) for the penalty-adjusted fees *i and �*i and by v�k�*i� and v�k� �*i� the corresponding solutions
to the MDP optimality equations. Below we will show that v�k+1� �*i�−v�k� �*i�≤ v�k+1�*i�−v�k�*i�
for all k = 0� � � � � c− 1, which, in turn, will imply that the optimal thresholds for all contract classes
other than i will either decrease or remain the same when class i fee increases.
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We define the sequence of approximations for the optimal discounted profit function vn�k� �*i�, n≥ 0,
as vn�k� �*i�= T � �*i�vn−1�k� �*i�, n≥ 1, v0�k� �*i�= v�k�*i�. Then using an induction argument that is an
analogous to that in (EC29) we prove the result. In this case, the induction step is the same for all
n= 1�2� � � � � and here we show only v1�k+ 1� �*i�− v1�k� �*i�≤ v0�k+ 1� �*i�− v0�k� �*i�:

�v1�k+ 1� �*i�− v1�k� �*i��− �v�k+ 1�*i�− v�k�*i��

= ���
i ��max�0�v�k+ 2�*i�− v�k+ 1�*i�+ �*i�−max�0�v�k+ 1�*i�− v�k�*i�+ �*i��≤ 0� (EC35)

where the inequality follows from the concavity of v�k�.
Finally, it is intuitive that the acceptance threshold for class i customers would not decrease with

an increase of *i. That is, given that all other problem parameters are fixed, the acceptance of class i
customer paying *i while in state k implies the acceptance of the same customer if he or she pays
�*i > *i.
Formally, we employ the same type of inductive argument used above to show that vn�k+ 1� �*i�−

vn�k� �*i�+ �*i ≥ v�k+ 1�*i�− v�k�*i�+*i for all n≥ 1 and all 0≤ k≤ c− 1. Beginning with v0�k� �*i�≡
v�k�*i�, we have for 0≤ k≤ c− 2

v1�k+ 1� �*i�− v1�k� �*i�+ �*i = T � �*i�v�k+ 1�*i�− T � �*i�v�k�*i�+ �*i

= v�k+1�*i�−v�k�*i�+*i+� �*i−*i�+��
i �max�v�k+2�*i�+ �*i�v�k+1�*i��

−max�v�k+ 2�*i�+*i�v�k+ 1�*i��−max�v�k+ 1�*i�+ �*i�v�k�*i��

+max�v�k+ 1�*i�+*i�v�k�*i���

Noting that 0≤max�A+ -�B�−max�A�B�≤ - for - > 0, this further reduces to

v1�k+ 1� �*i�− v1�k� �*i�+ �*i ≥ v�k+ 1�*i�− v�k�*i�+*i +��
i �0− � �*i −*i��+ � �*i −*i�

≥ v�k+ 1�*i�− v�k�*i�+*i�

The same result for k= c− 1 is established in a similar fashion.
Now we assume, by induction, that vn�k+ 1� �*i�− vn�k� �*i�+ �*i ≥ v�k+ 1�*i�− v�k�*i�+ *i for all

n≤K and all 0≤ k≤ c− 1. Then, by definition, we have

vK+1�k+ 1� �*i�− vK+1�k� �*i�+ �*i

= T � �*i�vK�k+ 1� �*i�− T � �*i�vK�k� �*i�+ �*i

=
N∑
l=1

��
l �H

�
l � �*i��vK�k+ 1� �*i��−H�

l � �*i��vK�k� �*i���+
M∑
j=1

��
l �H�

j �vK�k+ 1� �*i��−H�
j �vK�k� �*i���

+�k�vK�k� �*i�− vK�k− 1� �*i��+��c− �k+ 1���vK�k+ 1� �*i�− vK�k� �*i��+ �*i� (EC36)

Here the argument to the operator, H�
l , serves to distinguish between operators that use different

type i penalty-adjusted fees.
Next, we bound the differences of the operators, H�

l � �*i��·� and H�
j �·� in terms of their analogs for

systems with type i penalty-adjusted revenue, *i. In the deriving the bounds, we consider only cases
in which 0≤ k≤ c− 2, because proofs for the boundary case k= c− 1 are similar.

For l = i, we have

H�
l � �*i��vK�k+ 1� �*i��−H�

l � �*i��vK�k� �*i��

= vK�k+ 1� �*i�− vK�k� �*i�+max�vK�k+ 2� �*i�− vK�k+ 1� �*i�+*l�0�

−max�vK�k+ 1� �*i�− vK�k� �*i�+*l�0�

≥ v�k+ 1�*i�− v�k�*i�+*i − �*i +max�v�k+ 2�*i�− v�k+ 1�*i�+*i − �*i +*l�0�

−max�v�k+ 1�*i�− v�k�*i�+*i − �*i +*l�0�

≥ v�k+ 1�*i�− v�k�*i�+max�v�k+ 2�*i�− v�k+ 1�*i�+*l�0�

−max�v�k+ 1�*i�− v�k�*i�+*l�0�+ �*i − �*i�

=H�
l � �*i��vK�k+ 1� �*i��−H�

l � �*i��vK�k� �*i��+ �*i − �*i�� (EC37)
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Here, the first inequality follows from the induction assumption and the fact that A−max�A+*l�0�
is a nondecreasing function of A. The second inequality follows from the concavity of v�k� and the
fact that, for A≥ B, max�A+ .�0�−max�B+ .�0� is increasing in ..

Similarly, for l= i, we can directly obtain

H�
i � �*i��vK�k+ 1� �*i��−H�

i � �*i��vK�k� �*i��

≥ v�k+ 1�*i�− v�k�*i�+*i − �*i +max�v�k+ 2�*i�− v�k+ 1�*i�+*i�0�

−max�v�k+ 1�*i�− v�k�*i�+*i�0�

=H�
i � �*i��vK�k+ 1� �*i��−H�

i � �*i��vK�k� �*i��+ �*i − �*i�� (EC38)

For H�
j we have

H�
j �vK�k+ 1� �*i��−H�

j �vK�k� �*i��

= vK�k+ 1� �*i�− vK�k� �*i�+ gj�vK�k+ 1� �*i�− vK�k+ 2� �*i��− gj�vK�k� �*i�− vK�k+ 1� �*i��

≥ v�k+ 1�*i�− v�k�*i�+*i − �*i + gj�v�k+ 1�*i�− v�k+ 2�*i�+ �*i −*i�

− gj�v�k�*i�− v�k+ 1�*i�+ �*i −*i�� (EC39)

where the inequality follows from the induction assumption and the fact that gj�A� and hj�A� are
nonincreasing functions of A (see Lemma 2).
To complete the derivation of the bound, we need to demonstrate the convexity of gj�A�, which we

do as follows. Letting l∗ = lj �/A+ �1−/�B�, we have

gj�/A+ �1−/�B� = pjl∗�−/A− �1−/�B+wl∗�

= /pjl∗�−A+wl∗�+ �1−/�pjl∗�−B+wl∗�≤ /gj�A�+ �1−/�gj�B��

Then from (EC39) and the convexity of gj�A�, we have

H�
l �vK�k+ 1� �*i��−H�

l �vK�k� �*i��

≥ v�k+ 1�*i�− v�k�*i�+ �*i − �*i�+ gl�v�k+ 1�*i�− v�k+ 2�*i��− gl�v�k�*i�− v�k+ 1�*i��

=H�
l �vK�k+ 1�*i��−H�

l �vK�k�*i��+ �*i − �*i�� (EC40)

Finally, combining (EC36), (EC37), (EC38), and (EC40), we obtain

vK+1�k+ 1� �*i�− vK+1�k� �*i�+ �*i

≥
N∑
l=1

��
l �H

�
l �*i��v�k+ 1�*i��−H�

l �*i��v�k�*i��+ �*i − �*i��

+
M∑
j=1

��
j �H�

j �v�k+ 1�*i��−H�
j �vK�k�*i��+ �*i − �*i��+�k�vK�k� �*i�− vK�k− 1� �*i��

+��c− �k+ 1���vK�k+ 1� �*i�− vK�k� �*i��+ �*i

≥
N∑
l=1

��
l �H

�
l �*i��v�k+ 1�*i��−H�

l �*i��v�k�*i��+ �*i − �*i��

+
M∑
j=1

��
j �H�

j �v�k+ 1�*i��−H�
j �vK�k�*i��+ �*i − �*i��+�k�v�k�*i�− v�k− 1�*i�+ �*i − �*i��

+��c− �k+ 1���v�k+ 1�*i�− v�k�*i�+ �*i − �*i��+ �*i� (EC41)

Here the second inequality follows from the induction assumption. Collecting terms and defining
�=∑N

l=1 �
�
l +∑M

j=1 �
�
j , we see that the right-hand side of (EC41) equals

T �*i�v�k+ 1�*i�− T �*i�v�k�*i�+ ��+�c−���*i − �*i�+ �*i

= v�k+ 1�*i�− v�k�*i�+0*i + �1−0� �*i ≥ v�k+ 1�*i�− v�k�*i�+*i�

where 0<0= �+��c− 1� < 1. This completes the proof.
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Part (b)—From (7) we recall that

lj �v�k+ 1�− v�k��= argmax
l

�pjl�v�k+ 1�− v�k�+wl��

denotes the index of the optimal fee for class j walk-in customers for a given state of the system, k.
In Part (a) of the theorem, we have shown that v�k + 1� − v�k� is a nonincreasing function of the
contract and walk-in demand intensities as well as of the contract penalty-adjusted rental fees, and
a non-decreasing function of the service rate �. Combining this with the result of Lemma 2(a), we
obtain the required monotonicity result.

EC.5. Proof of Theorem 3
The statement on the ordering of the optimal contract thresholds follows directly from the defini-
tion (9). The “walk-in” result is obtained by contraction, as follows. Suppose, by contradiction, that
for walk-in classes j1 and j2, w∗�j1� k� <w∗�j2� k� for some k, and define

l1 = argmax
l

�pj1l�v�k+ 1�− v�k�+wl��� l2 = argmax
l

�pj2l�v�k+ 1�− v�k�+wl��� (EC42)

so that wl1
=w∗�j1� k� <w∗�j2� k�=wl2

. Then,

pj1l1�v�k+ 1�− v�k�+wl1
� ≥ pj1l2�v�k+ 1�− v�k�+wl2

��

pj2l2�v�k+ 1�− v�k�+wl2
� ≥ pj2l1�v�k+ 1�− v�k�+wl1

��
(EC43)

and, because pjl1 > pjl2 for j = j1� j2,

wl1
pj2l1 −wl2

pj2l2
pj2l1 − pj2l2

≤ v�k�− v�k+ 1�≤ wl1
pj1l1 −wl2

pj1l2
pj1l1 − pj1l2

� (EC44)

or, equivalently,
pj1l2
pj2l2

≤ pj1l1
pj2l1

� (EC45)

a contradiction. Hence, w∗�j1� k�≥w∗�j2� k� for all k.

EC.6. Proof of Lemma 1(b)

B�/c� c�= �/c�c/c!∑c
k=0�/c�

k/k! =
e−/c�/c�c

c!P�X/c ≤ c�
� (EC46)

where X/c is a Poisson random variable with parameter /c. Feller (1968) provides a bound for the
factorial expression in the denominator of (EC46):

c! ≥√
2#c

(
c

e

)c

e1/�12c+1�� (EC47)

Also, using Chernoff bound on the Poisson probability (Ross 1996)

P�X/c ≤ c�≥ 1− �/e1−/�c� (EC48)

valid for /< 1, we get the statement of the lemma.

EC.7. Proof of Theorem 4
Part (a)—Define

fi�A�=A�+∑
n=i

��
n �A−max�A�*n��+

M∑
j=1

��
j �A− �wj�A��p̄j �A�� (EC49)
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Then A=G�
i �A� is equivalent to fi�A�= 0, and we can show that fi�A� is strictly increasing in A. The

first term of (EC49) is strictly increasing in A, and the second is nondecreasing in A. To see that the
third is nondecreasing as well, note that, it follows from Lemma 2(b) that, for A<B,

�A− �wj�A��p̄j �A�=−gj�A�≤−gj�B�= �B− �wj�B��p̄j �B��

Using this fact, we can then demonstrate the desired properties of G�
i �A�.

First, there exists a solution to A = G�
i �A�. For A = 0, we have fi�A� < 0, and for A =

max�maxn�*n��wL�, we have fi�A� > 0. Together with the strictly increasing nature of fi�·�, this implies
that A=G�

i �A� has a unique solution, which we call A∗
i .

Second, the fact that fi�A� is strictly increasing in A also implies that fi�A� < 0 for all A<A∗
i , and

fi�A� > 0 for all A>A∗
i . Algebraic manipulation shows that this is equivalent, A<G�

i �A� for A<A∗
i ,

and A>G�
i �A� for A>A∗

i .
For *i ≥A∗

i we therefore have *i ≥G�
i �*i�, or

*i ≥
∑

n=i �
�
n max�*i�*n�+

∑M
j=1 �

�
j �wj�*i�p̄j �*i�∑

n=i �
�
n +∑M

j=1 �
�
j p̄j �*i�+�

� (EC50)

Finally, we show that any *i that satisfies (EC50) is large enough for class i to be preferred. To
do so, we consider the class of functions Fi defined on a set k = 0� � � � � c, such that for every f ∈ Fi,
f �k+1�−f �k�≤ f �k�−f �k−1�, k= 1� � � � � c−1, and f �k�−f �k+1�≤ *i, k= 0� � � � � c−1. We will show
that Fi is closed under the operator T defined in (4). That is, for every f ∈ Fi, Tf also belongs to Fi.
This will imply that the optimal profit function v�k� also belongs to Fi, so that v�k+ 1�− v�k�≥−*i,
for ∀k= 0� � � � � c− 1 and k∗i = c.
The fact that concavity of f is preserved under the action of T was proved in Theorem 1. Thus, we

only need to show that Tf �k�− Tf �k+ 1�≤ *i for k= c− 1. For any contract class n, we have

H�
n �f �c− 1��−H�

n �f �c��=max�f �c− 1�− f �c��*n�≤max�*i�*n� (EC51)

Further, using the result of Lemma 2(b), we obtain:

H�
j �f �c− 1��−H�

j �f �c�� = f �c− 1�− f �c�+max
l

�pjl�f �c�− f �c− 1�+wl��

≤ �1− p̄j �*i��*i + �wj�*i�p̄j �*i�� (EC52)

Finally,

��c− 1�f �c− 2�+�f �c− 1�−�cf �c− 1�=��c− 1��f �c− 2�− f �c− 1��≤��c− 1�*�
i � (EC53)

Recall that the N contract classes are labelled so that *1 ≥ *2 · · · ≥ *N . Then combining (EC51),
(EC52), and (EC53), we obtain

Tf �c− 1�− Tf �c� ≤
i−1∑
n=1

��
n *n +

N∑
n=i

��
n *i +

M∑
j=1

��
j ��1− p̄j �*i��*i + �wj�*i�p̄j �*i��+��c− 1�*i

≤ *i +
i−1∑
n=1

��
n *n +

M∑
j=1

��
j �wj�*i�p̄j �*i�−*i

( i−1∑
n=1

��
n +

M∑
j=1

��
j p̄j �*i�+�

)

≤ *i� (EC54)

where the last inequality follows from the theorem’s assumption, (25).
Part (b)—The proof follows that of Part (a). We use the same argument to establish the existence of

the unique solution to A=G� �A�, A∗, as well as the other required properties of G� �A�.
We then demonstrate that

r̂j ≥Gj�r̂j �=
∑N

i=1 �
�
i max�r̂j �*i�+

∑M
m=1 �

�
m �wm�r̂j �p̄m�r̂j �∑N

i=1 �
�
i +∑M

m=1 �
�
m p̄m�r̂j �+�

(EC55)

is sufficient for class j to be preferred.
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Here we consider a class of functions Fj defined on a set k = 0� � � � � c, such that for every f ∈ Fj ,
f �k+ 1�− f �k�≤ f �k�− f �k− 1�, k= 1� � � � � c− 1, and f �k�− f �k+ 1�≤ r̂j , k= 0� � � � � c− 1. Then, for a
contract class i, we obtain

H�
i �f �c− 1��−H�

i �f �c��=max�f �c− 1�− f �c��*i�≤max�*i� r̂j �� (EC56)

For a walk-in class m, we have

H�
m �f �c− 1��−H�

m �f �c�� = f �c− 1�− f �c�+max
l

�pml�f �c�− f �c− 1�+wl��

≤ �1− p̄m�r̂j ��r̂j + �wm�r̂j �p̄m�r̂j �� (EC57)

and the analog to (EC53) is

��c− 1�f �c− 2�+�f �c− 1�−�cf �c− 1�≤��c− 1�r̂j � (EC58)

Then inequalities that are analogs to those leading to (EC54) imply that Tf �c− 1�− Tf �c�≤ r̂j .

EC.8. Proof of Theorem 5
Part (a)—Similar to the proof of Theorem 1, we look at a class �F of nonincreasing submodular functions
defined on S̃. Consider a function f ∈ �F . The MDP transformation operator �T can be defined as

�T f �k�� k� �=
N∑
i=1

��
i H

�
i �f �k�� k� ��+

M∑
j=1

��
j H�

j �f �k�� k� ��+H�k�� k� �� (EC59)

where

H�k�� k� �=��k�f �k� − 1� k� �+�� k� f �k�� k� − 1�+ ����c− k��+�� �c− k� ��v�k�� k� ��

Below we will show that H�
i �f �k�� k� ��, H�

j �f �k�� k� ��, and H�k�� k� � all belong to �F .
We start with H�k�� k� �. For any �k�� k� �� �k� + 1� k� � ∈ S̃,

H�k�+1�k� �−H�k��k� � = ��k��f �k��k� �−f �k�−1�k� ��+�� k� �f �k�+1�k� −1�−f �k��k� −1��

+����c−k�−1�+�� �c−k� ���f �k�+1�k� �−f �k��k� ��≤0� (EC60)

Thus H�k�� k� � is nonincreasing in k� . Similarly, H�k�� k� � is nonincreasing in k� :

H�k�� k� + 1�−H�k�� k� � = ��k��f �k� − 1� k� + 1�− f �k� − 1� k� ��

+�� k� �f �k�� k� �− f �k�� k� − 1��

+ ����c− k��+�� �c− k� − 1���f �k�� k� + 1�− f �k�� k� ��≤ 0� (EC61)

Finally, for submodularity we have

�H�k� + 1� k� + 1�−H�k�� k� + 1��− �H�k� + 1� k� �+H�k�� k� ��

=��k���f �k�� k� + 1�− f �k� − 1� k� + 1��− �f �k�� k� �− f �k� − 1� k� ���

+�� k� ��f �k� + 1� k� �− f �k�� k� ��− �f �k� + 1� k� − 1�− f �k�� k� − 1���

+ ����c− k� − 1�+�� �c− k� − 1��× ��f �k� + 1� k� + 1�

− f �k�� k� + 1��− �f �k� + 1� k� �− f �k�� k� ���≤ 0� (EC62)

Next, we consider H�
i �f �k�� k� �� for any i= 1� � � � �N . For increases in k� , we have two cases. Given

k� + k� = c− 1,

H�
i �f �k� + 1� k� ��−H�

i �f �k�� k� ��= f �k� + 1� k� �−max�f �k� + 1� k� �+*i� f �k�� k� ��≤ 0� (EC63)
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where *i = ri +#i. If k� + k� < c− 1 then

H�
i �f �k� + 1� k� ��−H�

i �f �k�� k� �� = max�f �k� + 2� k� �+*i� f �k� + 1� k� ��

−max�f �k� + 1� k� �+*i� f �k�� k� ��� (EC64)

The case of f �k�+2� k� �−f �k�+1� k� � <−*i reduces to (EC63), and for f �k�+2� k� �−f �k�+1� k� �≥
−*i we have

H�
i �f �k� + 1� k� ��−H�

i �f �k�� k� �� = f �k� + 2� k� �+*i −max�f �k� + 1� k� �+*i� f �k�� k� ��

≤ f �k� + 2� k� �− f �k� + 1� k� �≤ 0� (EC65)

The cases are the same for increases in k� . For k� + k� = c− 1,

H�
i �f �k�� k� + 1��−H�

i �f �k�� k� �� = f �k�� k� + 1�−max�f �k� + 1� k� �+*i� f �k�� k� ��

≤ f �k�� k� + 1�− f �k�� k� �≤ 0� (EC66)

and, for k� + k� < c− 1,

H�
i �f �k�� k� + 1��−H�

i �f �k�� k� �� = max�f �k�� k� + 2�+*i� f �k�� k� + 1��

−max�f �k� + 1� k� �+*i� f �k�� k� ��≤ 0� (EC67)

no matter which of f �k�� k� + 2�+*i or f �k�� k� + 1� is greater in the first maximization operator.
Now we turn to the proof of submodularity of H�

i �f �k�� k� ��. As before, we first look at the bound-
ary case of k� + k� = c− 2:

H�
i �f �k� + 1� k� + 1��+H�

i �f �k�� k� ��−H�
i �f �k� + 1� k� ��−H�

i �f �k�� k� + 1��

= �f �k� + 1� k� + 1�−max�f �k� + 2� k� �+*i� f �k� + 1� k� ���

+ �max�f �k� + 1� k� �+*i� f �k�� k� ��−max�f �k� + 1� k� + 1�+*i� f �k�� k� + 1���� (EC68)

Because f �k�� k� � is nonincreasing in k� , the first difference must be less than or equal to zero.
Similarly, the fact that f �k�� k� � is nonincreasing in both k� and k� implies that the second is as well.
For states with k� + k� < c− 2, we have

H�
i �f �k� + 1� k� + 1��+H�

i �f �k�� k� ��−H�
i �f �k� + 1� k� ��−H�

i �f �k�� k� + 1��

=max�f �k� + 2� k� + 1�+*i� f �k� + 1� k� + 1��+max�f �k� + 1� k� �+*i� f �k�� k� ��

−max�f �k� + 2� k� �+*i� f �k� + 1� k� ��−max�f �k� + 1� k� + 1�+*i� f �k�� k� + 1��� (EC69)

Note that in the case of f �k� + 2� k� + 1� + *i ≤ f �k� + 1� k� + 1� (EC69) reduces to (EC68). On
the other hand, f �k� + 2� k� + 1�+ *i > f �k� + 1� k� + 1� implies, due to submodularity of f , that
f �k� + 2� k� �+*i > f �k� + 1� k� �. Then, (EC69) becomes

H�
i �f �k� + 1� k� + 1��+H�

i �f �k�� k� ��−H�
i �f �k� + 1� k� ��−H�

i �f �k�� k� + 1��

= �f �k� + 2� k� + 1�− f �k� + 2� k� ��− �max�f �k� + 1� k� + 1�+*i� f �k�� k� + 1��

−max�f �k� + 1� k� �+*i� f �k�� k� ���� (EC70)

Again, the fact that f �k�� k� � is nonincreasing in both arguments implies that each of the two differ-
ences is less than or equal to zero.
Now, consider H�

j �f �k�� k� �� for any j = 1� � � � �M . First, we show that H�
j �f �k�� k� �� is nonincreas-

ing in k� . For k� + k� = c− 1, we have

H�
j �f �k� + 1� k� ��−H�

j �f �k�� k� �� = f �k� + 1� k� �− f �k�� k� �

−max
l

�pjl�f �k�� k� + 1�− f �k�� k� �+wl��≤ 0� (EC71)
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because both expressions on the right-hand side are nonpositive. For k� + k� < c− 1, we have

H�
j �f �k� + 1� k� ��−H�

j �f �k�� k� ��

= �f �k� + 1� k� �− f �k�� k� ��+
(
max

l
�pjl�f �k� + 1� k� + 1�− f �k� + 1� k� �+wl��

−max
l

�pjl�f �k�� k� + 1�− f �k�� k� �+wl��
)
≤ 0 (EC72)

because, once again, the fact that f �k�� k� � in nonincreasing in both arguments implies that both
differences on the right-hand side are nonpositive. The result for the second difference follows, in
particular, from Lemma 2(c).
Similarly, we show that H�

j �f �k�� k� �� is nonincreasing in k� . For k� +k� = c−1, the monotonicity
of f �k�� k� � with respect to k� implies

H�
j �f �k��k� +1��−H�

j �f �k��k� �� = f �k��k� +1�−f �k��k� �−max
l

�pjl�f �k��k� +1�−f �k��k� �+wl��

≤ 0� (EC73)

For k� + k� < c− 1, we let

pjl∗ = argmax
l

�pjl�f �k�� k� + 2�+wl�+ �1− pjl�f �k�� k� + 1���

Then

H�
j �f �k�� k� + 1�� = max

l
�pjl�f �k�� k� + 2�+wl�+ �1− pjl�f �k�� k� + 1��

= pjl∗�f �k�� k� + 2�+wl∗�+ �1− pjl∗�f �k�� k� + 1�

≤ pjl∗�f �k�� k� + 1�+wl∗�+ �1− pjl∗�f �k�� k� �

≤ max
l

�pjl�f �k�� k� + 1�+wl�+ �1− pjl�f �k�� k� ��

= H�
j �f �k�� k� ��� (EC74)

where the first inequality is implied by the fact that f �k�� k� � is nonincreasing in k� .
Now we demonstrate the submodularity of H�

j �f �k�� k� ��. For k� + k� = c− 2,

H�
j �f �k� + 1� k� + 1��+H�

j �f �k�� k� ��−H�
j �f �k� + 1� k� ��−H�

j �f �k�� k� + 1��

= f �k� + 1� k� + 1�+ f �k�� k� �− f �k� + 1� k� �− f �k�� k� + 1�

+max
l

�pjl�f �k�� k� + 1�− f �k�� k� �+wl��−max
l

�pjl�f �k� + 1� k� + 1�− f �k� + 1� k� �+wl��

−max
l

�pjl�f �k�� k� + 2�− f �k�� k� + 1�+wl��

≤ �f �k� + 1� k� + 1�− f �k� + 1� k� �−max
l

�pjl�f �k� + 1� k� + 1�− f �k� + 1� k� �+wl���

− �f �k�� k� + 1�− f �k�� k� �−max
l

�pjl�f �k�� k� + 1�− f �k�� k� �+wl���≤ 0� (EC75)

Here the first inequality follows from the fact that pjL = 0, so that

max
l

�pjl�f �k�� k� + 2�− f �k�� k� + 1�+wl��≥ 0�

The second inequality follows from the submodularity of f �k�� k� � and Lemma 2(b). Finally, for
k� + k� < c− 2, we have

H�
j �f �k� + 1� k� + 1��+H�

j �f �k�� k� ��−H�
j �f �k� + 1� k� ��−H�

j �f �k�� k� + 1��

= f �k� + 1� k� + 1�+ f �k�� k� �− f �k� + 1� k� �− f �k�� k� + 1�

+max
l

�pjl�f �k�+1�k� +2�−f �k�+1�k� +1�+wl��−max
l

�pjl�f �k�+1�k� +1�−f �k�+1�k� �+wl��

−max
l

�pjl�f �k�� k� + 2�− f �k�� k� + 1�+wl��+max
l

�pjl�f �k�� k� + 1�− f �k�� k� �+wl��

≤ f �k� + 1� k� + 1�− f �k� + 1� k� �−max
l

�pjl�f �k� + 1� k� + 1�− f �k� + 1� k� �+wl��

− �f �k�� k� + 1�− f �k�� k� �−max
l

�pjl�f �k�� k� + 1�− f �k�� k� �+wl���≤ 0� (EC76)
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Here, the first inequality is implied by the fact that

max
l

�pjl�f �k� + 1� k� + 2�− f �k� + 1� k� + 1�+wl��≤max
l

�pjl�f �k�� k� + 2�− f �k�� k� + 1�+wl���

which in turn follows from the submodularity of f �k�� k� � and Lemma 2(b). The second inequality
follows from the submodularity of f �k�� k� � and Lemma 2(c).
Part (b)—The fact that the class of submodular functions is closed under the action �T implies that

the optimal profit function v�k�� k� � is also submodular (Porteus 1982). Then, defining

k∗i �k��=


c−k�� if v�k��c−k��−v�k��c−k�−1�≥−*i�

min�k� �v�k�+1�k� �−v�k��k� �<−*i�� if v�k��c−k��−v�k��c−k�−1�<−*i�
(EC77)

for i= 1� � � � �N and k� = 0� � � � � c−1, we observe that H�
i �v�k�� k� ��= v�k�+1� k� �+ri for k� < k∗i �k��,

and H�
i �v�k�� k� ��= v�k�� k� �−#i for k� ≥ k∗i �k��. Thus, class i contract customers are admitted into

service if and only if k� < k∗i �k��.
Part (c)—For given state of the rental system �k�� k� �, the optimal fee to charge for a walk-in service

of class j customer corresponds to a price index that is analogous to (7):

lj �k�� k� �= argmax
l

�pjl�v�k�� k� + 1�− v�k�� k� �+wl��� (EC78)

From Lemma 2(a), we know that these indices form a monotone sequence: lj �k� + 1� k� �≥ lj �k�� k� �,
so that w∗�j� k� + 1� k� �=wlj �k�� k� � ≥wlj �k�� k� � =w∗�j� k�� k� �, for �k�� k� �, �k� + 1� k� � ∈ S̃.
Now, suppose that there exists a state �k�� k� � and an index j such that lj �k�� k� � < ej . From the

optimality of lj �k�� k� �, we have

pj� lj �k�� k� ��v�k�� k� + 1�− v�k�� k� �+wlj �k�� k� ��≥ pj� ej �v�k�� k� + 1�− v�k�� k� �+wej
�� (EC79)

so that
v�k�� k� + 1�− v�k�� k� �≥

wej
pj� ej −wlj �k�� k� �pj� lj �k�� k� �

pj� lj �k�� k� � − pj� ej
> 0� (EC80)

a contradiction with the monotonicity results in Part (a). Thus, lj �k�� k� �≥ ej for all �k�� k� � ∈ S̃ and j .
Part (d)—The statement on the ordering of the optimal contract thresholds follows from the

definition (EC77). The walk-in result is obtained as follows. Suppose that for some �k�� k� � ∈ S̃,
w∗�j1� k�� k� � <w∗�j2� k�� k� �. Define

l1 = argmax
l

�pj1l�v�k�� k� + 1�− v�k�� k� �+wl���

l2 = argmax
l

�pj2l�v�k�� k� + 1�− v�k�� k� �+wl���
(EC81)

so that w∗�j1� k�� k� � = wl1
, w∗�j2� k�� k� � = wl2

. Then, the same argument used to prove Theorem 3
holds here as well.

EC.9. Proof of Theorem 6
The proof follows along the lines of that of Theorem 4. Arguments for the uniqueness of the solutions,
as well as the inequalities *i ≥ �G�

i �*i� and r̂j ≥ �G� �r̂j � are direct analogues. Here we concentrate on
sufficient conditions for preferred customer classes.
Part (a)—We consider a class of functions Fi defined on S̃, such that for every f ∈ Fi,

f �k� + 1� k� + 1�− f �k�� k� + 1�≤ f �k� + 1� k� �− f �k�� k� �� (EC82)

and
f �k�� k� �− f �k� + 1� k� �≤ *i (EC83)

for �k�� k� �� �k� + 1� k� �� �k�� k� + 1�� �k� + 1� k� + 1� ∈ S̃. Below we will show that, given (35) holds,
Fi is closed under �T defined in (EC59). That is, for every f ∈ Fi, �T f also belongs to Fi. This will imply
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that the optimal profit function v�k�� k� � also belongs to Fi, so that v�k� + 1� k� �− v�k�� k� � ≥ −*i,
and k∗i �k��+ k� = c.
The fact that the submodularity of f is preserved under the action of �T was proved in Theorem 5.

Thus, we only need to show that �T f �k�� k� �− �T f �k� +1� k� �≤ *i for all �k�� k� � such that k� +k� =
c − 1. If the property holds in the “border” states, then submodularity implies that it will hold in
states with k� + k� < c− 1 as well.
Therefore, k� + k� = c− 1 and for any contract class n, we have

H�
n �f �k�� k� ��−H�

n �f �k� + 1� k� �� = max�f �k�� k� �− f �k� + 1� k� ��*n�

≤ max�*i�*n� (EC84)

by (EC83). Similarly,

H�
j �f �k��k� ��−H�

j �f �k�+1�k� �� = f �k��k� �−f �k�+1�k� �+max
l

�pjl�f �k��k� +1�−f �k��k� �+wl��

≤ *i+wej
pj�ej � (EC85)

Finally, we have

H�k�� k� �−H�k� + 1� k� �

=��k�f �k� − 1� k� �+�� k� f �k�� k� − 1�+ ���� +�� �c−��k� −�� k� �f �k�� k� �

−���k�+1�f �k��k� �−�� k� f �k�+1�k� −1�−����+�� �c−���k�+1�−�� k� �f �k�+1�k� �

=��k��f �k� − 1� k� �− f �k�� k� ��+�� k� �f �k�� k� − 1�− f �k� + 1� k� − 1��

+ ���� +�� �c−���k� + 1�−�� k� ��f �k�� k� �− f �k� + 1� k� ��

≤ ��� +�� �c*i −��*i� (EC86)

Combining (EC84), (EC85), and (EC86), we obtain

Tf �k�� k� �− Tf �k� + 1� k� � ≤
i−1∑
n=1

��
n *n +

N∑
n=i

��
n *i +

M∑
j=1

��
j *i +

M∑
j=1

��
j wej

pj� ej + ��� +�� �c*i −��*i

≤ *i +
i−1∑
n=1

��
n *n +

M∑
j=1

��
j wej

pj� ej −*i

( i−1∑
n=1

��
n +��

)

≤ *i� (EC87)

where the last inequality follows from (35).
Part (b)—As in Part (a), we consider a class of functions Fj defined on the set S̃, such that for every

f ∈ Fj , (EC82) and
f �k�� k� �− f �k�� k� + 1�≤ r̂j (EC88)

hold for �k�� k� �� �k� +1� k� �� �k�� k� +1�� �k� +1� k� +1� ∈ S̃. Then, for a contract class i and bound-
ary states �k�� k� � such that k� + k� = c− 1 we have

H�
i �f �k��k� ��−H�

i �f �k��k� +1�� = max�0�f �k�+1�k� �−f �k��k� �+*i�+f �k��k� �−f �k��k� +1�

≤ *i+ r̂j � (EC89)

For walk-in class n, we have

H�
n �f �k��k� ��−H�

n �f �k��k� +1�� = f �k��k� �−f �k��k� +1�+max
l

�pnl�f �k��k� +1�−f �k��k� �+wl��

≤ �1− p̄n�r̂j ��r̂j+ �wn�r̂j �p̄n�r̂j �� (EC90)

where we have used the result of Lemma 2(b). As in (EC86), we also have

H�k�� k� �−H�k�� k� + 1�≤ ��� +�� �cr̂j −�� r̂j � (EC91)
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Then, together (EC89), (EC90), and (EC91) imply

Tf �k�� k� �− Tf �k�� k� + 1� ≤
N∑
i=1

��
i *i+

N∑
i=1

��
i r̂j+

M∑
n=1

��
n r̂j+

M∑
n=1

��
n ��wn�r̂j �− r̂j �p̄n�r̂j �+���+�� �c−�� r̂j

≤ r̂j +
N∑
i=1

��
i *i +

M∑
n=1

��
n �wn�r̂j �p̄n�r̂j �− r̂j

( M∑
n=1

��
n p̄n�r̂j �+��

)

≤ r̂j � (EC92)

where the last inequality follows from (36).

EC.10. Numerical Study of Systems with More Than One Contract
and Walk-in Class

In this numerical study we consider a system with N = 2 contract and M = 2 walk-in classes. The
purpose of the study is to see how the observations made in §6, which were based on single contract
and single walk-in class, carry over to a setting with multiple classes.

EC.10.1. Setup
We construct the test suite as follows. The rental capacity and service rate are fixed at c = 10 and
�= 1, respectively, and as before we vary �= �� +�� so that the arrival rates cover a wide range of
offered loads: 5= �/�c�� ∈ 60�1�0�5�1�0�1�5�2�07. For each of the two contract and walk-in classes, we
then evenly split arrivals: ��

1 = ��
2 = 0�5�� and ��

1 = ��
2 = 0�5�� . The walk-in price parameters are set

at wmin = 1, wmax = 4, L= 10, just as in Table 1 in §6.
In two sets of numerical experiments, shown in Tables EC.1 and EC.2 below, we then systematically

vary the difference between the penalty-adjusted fees for the two contract classes, as well as the
difference between the price sensitivities of the two walk-in classes. Specifically, in Table EC.1 we set
• *= 3 and let *1 = *− 8 and *2 = *+ 8 for 8 ∈ 60�0�5�1�57, and
• 9= 1 and let 91 = 9−: and 92 = 9+: for : ∈ 60�0�5�0�97.

Similarly, in Table EC.2 we set
• *= 3 and let *1 = *− 8 and *2 = *+ 8 for 8 ∈ 60�0�5�1�57, and
• 9= 3 and let 91 = 9−: and 92 = 9+: for : ∈ 60�0�5�0�97.
Thus, the walk-in customers in Table EC.1 are, one the whole less price sensitive—both in absolute

terms and relative to contract customers—than those in Table EC.2. Within each table, the examples
with 8= 0 and := 0 conform to systems with one class of contract customer and one class of walk-in,
and as 8 (and :) increases, the price sensitivities of the two contract (and the two walk-in) classes
diverge.
For each cell in the tables we fix the values of 5= ��� +�� �/�c��, 8, and :, and we vary the ratio

��/��� +�� � across 9 test cases, 60�1� � � � �0�97, just as in Table 1. The values in the cells represent the
average and the maximum (in parentheses) percentage shortfall in the performance of the myopic
heuristic, as compared to the optimal profit management policy.

EC.10.2. Results
We begin by recalling that the first column of each table has 8= := 0 and corresponds to a setting
with a single contract and a single walk-in class. Thus, the performance-gap values in the first column
of Table EC.1 coincide with the values for *= 3 in Table 1.

Table EC.1 Average (Maximum) Percentage Profit Shortfall of the Myopic Policy as Compared to the Optimal Policy: Examples with �= 1

�= 0 �= 1�0 �= 1�5

� �= 0 �= 0�5 �= 0�9 �= 0 �= 0�5 �= 0�9 �= 0 �= 0�5 �= 0�9

0.1 0�0 (0.0) 0�0 (0.0) 0�0 (0.0) 0�0 (0.0) 0�0 (0.0) 0�0 (0.0) 0�0 (0.0) 0�0 (0.0) 0�0 (0.0)
0.5 0�09 (0.11) 0�04 (0.05) 0�13 (0.15) 0�09 (0.12) 0�04 (0.05) 0�12 (0.15) 0�09 (0.12) 0�04 (0.05) 0�13 (0.15)
1.0 3�1 (3.9) 2�0 (2.5) 3�5 (5.1) 3�1 (3.9) 2�0 (2.5) 3�5 (5.1) 4�2 (4.5) 3�2 (4.3) 5�0 (5.2)
1.5 7�4 (10.7) 5�7 (8.0) 7�6 (12.6) 7�6 (10.7) 5�9 (8.0) 8�1 (12.6) 12�2 (13.7) 10�7 (13.4) 13�4 (13.9)
2.0 10�5 (16.9) 8�5 (13.6) 10�0 (17.8) 11�4 (17.0) 9�5 (13.6) 11�6 (18.0) 19�3 (21.3) 17�7 (20.9) 20�1 (21.2)
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Table EC.2 Average (Maximum) Percentage Profit Shortfall of the Myopic Policy as Compared to the Optimal Policy: Examples with �= 3

�= 0 �= 1�0 �= 1�5

� �= 0 �= 0�5 �= 0�9 �= 0 �= 0�5 �= 0�9 �= 0 �= 0�5 �= 0�9

0.1 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)
0.5 0.4 (0.5) 0.6 (0.9) 0.1 (0.2) 0.4 (0.5) 0.6 (0.9) 0.1 (0.2) 0.4 (0.5) 0.6 (0.9) 0.1 (0.2)
1.0 8.1 (10.5) 8.3 (10.8) 5.6 (6.9) 8.1 (10.5) 8.3 (10.8) 5.6 (6.9) 9.0 (10.5) 9.2 (10.8) 6.5 (7.1)
1.5 16.3 (22.0) 6.4 (22.3) 13.0 (17.1) 16.4 (22.0) 16.5 (22.3) 13.1 (17.1) 20.0 (22.1) 20.1 (22.5) 16.8 (17.8)
2.0 21.2 (30.0) 21.3 (30.2) 17.8 (24.8) 21.8 (30.0) 22.0 (30.2) 18.4 (24.8) 28.1 (30.4) 28.2 (30.7) 24.9 (26.0)

Next, we note that, though more complex than before, the tables’ results are largely consistent with
those for the case of a single contract and a single walk-in class: The myopic policy remains effective
when the overall demand load is not too high. In addition, we make the following two observations
concerning the more complex behavior of the tables’ multi-class examples.
First, when the aggregate penalty-adjusted contract fee is * = 3, the performance of the myopic

policy appears to decrease as the heterogeneity of the two contract classes, 8, increases. This effect
can be readily explained: as 8 increases, both *1 = *− 8 and *2 = *+ 8 rapidly move outside of the
interval �wmin�wmax� in which contract fees are “similar” to walk-in fees and the myopic performs
well.
This behavior is consistent with the performance declines shown in Figure 6. A similar pattern in

the “multiple classes” case is demonstrated in the more detailed set of examples whose results are
reported in Figure EC.1, below. The figure’s results are for a system with ��

1 = ��
2 = ��

1 = ��
2 = 2�5,

�= 1, c= 10, and 91 = 92 = 1.
Second, heterogeneity among walk-in customers appears to have a mixed effect on the perfor-

mance of myopic policies. For 9= 1, the relative performance gap decreases slightly for := 0�5 and
then increases for := 0�9. In contrast, for 9= 3, the effect is reversed: The relative performance gap
increases slightly for := 0�5 and then decreases for := 0�9.
Figure 7 helps to understand this phenomenon. When 9 is either very large or very small, then a

myopic policy is optimal. In the former case, customers are very price sensitive, and it is optimal to
(myopically) maintain a fixed, low price, and in the latter customers are price insensitive, and it pays
to myopically maintain a high price. For intermediate levels of price sensitivity dynamic policies are
valuable and for myopic policies they are “dangerous.”
When walk-in heterogeneity is large, then both walk-in classes are price (in)sensitive enough that

both fall out of the above “danger zone” in the middle of Figure 7’s graph, and the performance
of the myopic policy is good. This is likely to be the case for 9 = 3 in Table EC.2. If, however, the
heterogeneity pushes one of the 9’s into that danger zone, while pushing the other one out of the zone,
then the impact on myopic performance is hard to predict. This is the case for 9= 1 in Table EC.2.
Figure EC.2 provides a two-class analog to Figure 7. In the figure, we set ��

1 = ��
2 = ��

1 = ��
2 = 2�5,

�= 1, c = 10, and *1 −*2 = 3. Then each curve represents the results for a different system, one with

Figure EC.1 Percentage Performance Shortfall for the Myopic Policy as a Function of the Penalty-Adjusted Fee for Contract Class 2, �2
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Figure EC.2 Percentage Performance Shortfall for the Myopic Policy as a Function of the Price Sensitivity of Walk-in Class 2, �2
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91 = 4, and the other with 91 = 10. In both cases we systematically vary 92 and record the myopic
policy’s percentage shortfall from optimality.
Note that both curves display peaks at 92 = 3. In both cases, the myopic policy remains the same

for all 92 ≥ 3.
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