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Workers can have diverse capabilities that change
through time. In many settings, such as call centers
and manufacturing, on-the-job learning is an impor-
tant element of operational performance. Learning
can take a number of forms, including decreases in
the time required to complete tasks and improve-
ments in quality. Employee turnover can similarly
affect organizational performance. Workers who turn
over (quit) or are terminated may be replaced by new
hires who differ in both ability and experience. Dif-
ferent policies for hiring, monitoring, and retaining
employees will influence the long-run performance of
a firm.

Often there can be uncertainty regarding employee
capabilities. Significant random variations in task
times or quality—driven by task-by-task variability—
can make it difficult for an employer to infer a
given employee’s efficiency or quality, particularly for
new employees who have little or no previous track
record.

Uncertainty, together with these many sources of
variation—across employee capabilities, across tasks,
and over time—makes decisions regarding the reten-
tion of workers complex. The longer a worker is
retained, the better the inference an employer can

make regarding his or her capabilities. On-the-job
learning, which can lead to quality improvements in
incumbent employees, also favors employee reten-
tion. However, the opportunity cost of retaining a
poor performer can be great, particularly if there is
wide variation in quality across the population of
potential hires.

In this paper, we develop and analyze a model
that integrates all of these factors. In our model, an
employer (referred to as “she”) seeks to hire and
retain a fixed number of employees from an infinite,
heterogeneous population of potential hires. Each
employee (referred to as “he”) repeatedly performs
the same task, whose cost the employer wishes to
minimize or, equivalently, whose quality is to be max-
imized. Each hire moves down a learning curve, but
elements of the curve’s parameters are unknown to
the employer. The employer takes a Bayesian view of
employees’ types. By repeatedly observing the task
performance of a given worker, she can make increas-
ingly better judgments concerning his quality. After
each such task, the employee decides whether or not
he wants to continue working. Given that the worker
decides to stay, the employer can decide whether to
retain him or to replace him with a new hire. Each of
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these decisions has a cost for the employer. A quitting
cost is incurred when a worker quits, a switching cost
is incurred when a worker is terminated, and a train-
ing cost is incurred for each newly hired employee.

We formulate this problem as an infinite-horizon,
discounted problem in which, at any time, the em-
ployer uses a single worker, and we show that the
problem can be modeled as a multiarmed bandit
problem with switching costs and an infinite number
of arms. We then apply well-known results, devel-
oped by Bergemann and Välimäki (2001), to char-
acterize the optimal hiring and retention policy and
find that a Gittens-index policy is optimal. Further-
more, the optimal policy exhibits a “no-recall” prop-
erty that is useful from an application perspective.
(Farias and Madan 2011 analyze no-recall policies
for finite-armed bandits.) These Gittins-index results
extend to more complex settings, including contexts
with multiple employees and environments with mul-
tiple, heterogeneous pools of potential employees.

For specific common forms of the learning-curve
function, we delineate a simple stopping boundary
and then use the boundary to develop approxima-
tions to the Gittins index that are straightforward to
calculate and implement. These approximations are
then the basis of numerical examples.

Our numerical results provide insights into the
nature and performance of the optimal policy. They
show how the stopping boundary reflects a trade-
off between two types of learning: the performance
improvement that is linked to an employee’s on-the-
job experience, and the statistical learning that allows
the employer to make better judgments concerning a
worker’s ability. They demonstrate that the value of
active monitoring and screening of employees can be
substantial. They reveal that the early stages of work-
ers’ tenures are the most important for the effective-
ness of the optimal policy and, in turn, suggest sim-
pler hiring policies that have the potential to perform
well, within a few percent of optimality.

Sensitivity analysis with respect to model param-
eters provides further insights. In addition to direct
gains that accrue from steeper learning curves, invest-
ments in employee learning can provide an important
secondary benefit: the optimality of lower termina-
tion rates. Reductions in the variability of task perfor-
mance can improve the sensitivity of screening proce-
dures and similarly reduce optimal termination rates.
The ability to terminate employees should motivate
managers to consider a broader spectrum of potential
hires.

1. Literature Review
There is a vast empirical literature on learning-curve
phenomena (Yelle 1979), as well as papers devoted

to effective managerial control of factors that affect
or depend on learning (Dada and Srikanth 1990,
Wiersma 2007). Much of it is segmented into the
individual (e.g., Nembhard and Uzumeri 2000a,
Nembhard 2001) and organizational levels (e.g.,
Bailey 1989, Lapré et al. 2000, Pisano et al. 2001).
Nembhard and Uzumeri (2000b) provide a unified
study that considers both. Our analysis focuses on the
individual level.

The literature that explicitly addresses both worker
heterogeneity and learning is much smaller. Most
closely related to our work is Nagypál (2007), which
models both learning about match quality (between
workers and a firm) and learning by doing. That
paper’s aims and results differ significantly from ours.
Its model and analysis enable the use of statistical
methods to discriminate between the two forms of
learning in empirical employment records. We focus
on model-based, and normative insights into the
nature of effective retention/termination decisions.

A few recent papers in operations-related fields
also address dimensions of heterogeneity in learning
and employee retention. Shafer et al. (2001) provide
empirical evidence of the heterogeneity of learning
curves across individuals who assemble car radios.
Pisano et al. (2001) document heterogeneity across
hospital units that perform cardiac surgery. Mazzola
and McCardle (1996, 1997) develop models to esti-
mate uncertain learning curves and to control pro-
duction run lengths, given that a firm faces this
uncertainty. None of these papers consider uncer-
tainty regarding learning curves across individuals or
groups, however. Neither do they address employee
turnover or employee retention decisions.

Shafer et al. (2001) consider individual learning
curves and show that, by not considering learning-
parameter variations across workers, one may sig-
nificantly underestimate overall productivity, given
workers who operate independently. Nembhard and
Osothsilp (2002) show how task complexity affects
the distribution of individual learning and forgetting
parameters. Gans et al. (2010) show that the service
times of call center agents reflect on-the-job learning,
as well as agent heterogeneity.

There also exists a rich literature that addresses
labor quality and selection. The literature on secretary
problems develops a normative approach to the initial
screening and hiring of employees who come from a
heterogeneous pool (Freeman 1983). Similarly, there is
work on multiarmed bandit problems that addresses
matching problems in labor markets: typically, prob-
lems in which employees choose firms (Jovanovic
1979, Sundaram 2005).

In our context, this work can be reinterpreted
as addressing firms choosing employees, and we
use results concerning infinite-armed bandits with
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switching costs (but no learning) to characterize
optimal hiring and retention policies (Banks and
Sundaram 1992, Bergemann and Välimäki 2001,
Sundaram 2005). The most closely related work on
(finite-armed) bandit models with switching costs can
be found in Weitzman (1979), Banks and Sundaram
(1994), Asawa and Teneketzis (1996), Jun (2004), and
Niño-Mora (2008).

The managerial implications of learning have re-
ceived less attention. Nembhard (2001) is the first to
propose a method that assigns workers to tasks based
on learning rates of individuals, considers forgetting
as well as learning, and offers heuristics for managers.
Our work differs in that we derive optimal policies
and our numerical experiments use somewhat differ-
ent learning curves.

Pinker and Shumsky (2000), Gans and Zhou (2002),
and Whitt (2006) study learning with respect to
the operations management/human resource man-
agement (OM/HRM) interface. Their work does not
take into account worker heterogeneity. Gans et al.
(2003) and Akşin et al. (2007) are recent surveys
that include discussion of learning and HRM in the
call center industry. Gaimon (1997) and Carillo and
Gaimon (2000) study the importance of learning when
new technologies are introduced. Gaimon et al. (2011)
use mathematical models and empirical data to assess
learning before doing, which can be modeled as train-
ing costs in our analysis, and learning by doing,
which is modeled by learning curves. Goldberg and
Touw (2003) consider statistical inference of learning
curve parameters in a managerial context.

2. The Hiring and Retention Problem
with One Employee

In this section, we define the problem of an employer
who requires the services of a single worker and who,
at each discrete period of time, decides whether to
retain the current employee or to terminate him and
hire someone else from an infinite pool of workers.
The assumption that there exists an infinite pool of
potential hires is appropriate in so-called employers’
markets, in which the potential workforce is suffi-
ciently large that workers who quit need not be con-
sidered again. Section 4 explores the employment of
multiple hires, as well as the presence of several het-
erogeneous pools of workers.

At each time t = 011121 0 0 0 , the employer requires
the service of a single employee, i, drawn from an
infinite pool of potential workers, St ; S0 represents
the initial pool from which the employer can draw.
If employee i quits at time t, then he is removed
from the pool of potential hires and St+1 = St\8i9.
We let �4t5 = i ∈ St denote the employer’s choice of
employee i at time t and define � = 8�4051�4151 0 0 09

to be a hiring and retention policy that specifies which
workers the employer engages over time.

The performance of potential workers is uncertain
and evolving over time. If worker i ∈St is employed
at time t, then his performance is defined by the fol-
lowing relation:

Zi1 t = g4Èi1ni1 t1 �i1 t51 (1)

where Èi ∈ ì is a vector of parameters that reflects
worker i’s ability; ni1 t = 011121 0 0 0 reflects his experi-
ence to date; �i1 t is a noise term with support E; and
g4 · 5 is a deterministic function of its arguments. We
denote the realization of Zi1t by zi1t . For Èi = 4ai1 bi5,
Yelle (1979) describes the following commonly used
form:

Zi1 t = exp4ai + bi ln4ni1 t + 15+ �i1 t51

ni1 t = 011121 0 0 0 0 (2)

Here, ai is a parameter that determines a base level of
performance and bi < 0 describes the rate of learning.
If Zi1 t were task time, then ai and bi would be scaled
in the logarithm of the time unit.

The structural results concerning optimal policies,
in §3, require only the general functional form (1),
together with some technical assumptions. Further-
more, the function g4 · 5 is quite general and, in addi-
tion to learning, might reflect the effect of other
factors such as fatigue. Although our analysis does
hinge on a single measure of performance, the repre-
sentation of an outcome, Zi1 t , can be generalized to
explicitly represent multiple dimensions (such as rev-
enue, cost, quality) that are aggregated into a single
score by using a functional. Section 5, in which we
develop methods for explicitly calculating the stop-
ping boundaries necessary to implement optimal poli-
cies, assumes a more specific form of Zi1 t , such as that
given by (2).

At the end of a given period, after his performance,
the current employee notifies the employer of his
intention to continue working or to leave. So, we asso-
ciate with each worker a sequence of Bernoulli leav-
ing decisions, Li = 4Li101Li111Li121 0 0 05, indexed only
by experience, such that worker i leaves or quits at
the end of period t, after his 4ni1 t +15st performance, if
and only if Li10 = Li11 = · · · = Li1ni1 t−1 = 0 and Li1ni1 t

= 1.
We denote the realization of Li and Li1ni1 t

by li and
li1ni t

, respectively. In this paper, we alternatively use
�(E) or �E to denote the indicator function of the event
E and, for any hiring policy � and for each worker
i ∈S0, we let

åi4�5=

�
∑

t=0

�4�4t5= i5 (3)
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be i’s working lifetime: the number of periods he is
employed. In turn, we define worker i’s quitting prob-
ability, qi1n, to be

qi1n =�4Li1n = 1 �åi4�5≥ n+ 151 (4)

and call 1 − qi1n worker i’s continuation probability.
For t ≥ 0, let Hi1 t = 84z�4s51 s1 l�4s51n�4s51 s

52 �4s5 = i1
s ≤ t9 (Hi10 = �) denote worker i’s employment history
up to time t. The quitting probability of an employee
with experience ni1 t , qi1ni1 t , may depend on Hi1 t and
on his ability Èi, but it is assumed to be independent
of the employer’s hiring policy, �:

�4Li1n=1 �åi4�5≥n+15=�4Li1n=1 �åi4�
′5≥n+15

for all � 6=� ′ and all i1n0

This independence assumption is restrictive, and
it is not difficult to imagine how employee turnover
decisions may be influenced by the employer’s reten-
tion (and compensation) policies. For example, by
paying better performers more, the employer could
provide an incentive for employee turnover patterns
to change in a manner that is favorable to her. The
inclusion of these types of incentives and responses
extends the analysis of the employer’s hiring and
retention problem from the realm of single-decision-
maker optimization problems to that of stochastic
games and is beyond the focus of our current work.
Nevertheless, the strategic interaction of employer
and employees is both interesting and important, and
we will briefly return to this issue in the numerical
results of §6.

The employer does not know each employee’s Èi

or li in advance. Rather, she believes that there exists
a random vector, ä, that reflects the distribution of
abilities in the population of potential workers, and a
random set of leaving decisions, L. The distributions
for ä and L can be estimated using historical data
and statistical techniques.

Each time the employer hires a new worker, she
views that worker’s äi and Li as independent and
identically distributed (iid) samples from the popula-
tion distributions. At time t = 0, all potential work-
ers, i ∈ S0, have the same history, Hi10 = �; the same
prior distribution for äi, �i10 ≡ �̂; and no prior experi-
ence so that ni1 t ≡ 0. Thus, at time t = 0, the employer
is indifferent among her choices. At any time t > 0,
each worker, i, has cumulative experience ni1 t , and the
employer uses i’s employment history, Hi1 t , to update
her beliefs concerning the distribution of the param-
eter äi. We denote the posterior distribution that
describes the employer’s uncertainty concerning äi at
time t as �i1 t4X5=�4äi ∈X �Hi1 t5, where X ⊆ì is any
Borel set. For äi ∼ �i1 t we let Zi1 t ≡ Z4�i1 t1ni1 t5, and
for 8äi = Èi9 we assume that worker i’s performance

8Z4�i1 t1ni1 t5 � Èi9 has density �ni1 t 4z � Èi5. If worker i is
employed at time t, then his experience, ni1 t , increases
deterministically by one, and ni1 t+1 = ni1 t + 1. More-
over, the employer updates her belief concerning i’s
ability distribution according to Bayes’ rule. If P4ì5
is the set of all probability measures, �, on ì, then the
Bayes operator �2 P4ì5×�→P4ì5 is defined as

�4�i1 t1 z54X5=

∫

X
�ni1 t 4z � È5 d�i1 t

∫

ì
�ni1 t 4z � È5 d�i1 t

= �i1 t+14X5 (5)

for each Borel subset X ⊆ ì. Thus, for any given
observation, z, the Bayes operator maps the prior dis-
tribution, �i1 t , to its posterior distribution, �i1 t+1.

Within each period, t, the employer incurs a task-
related cost that is driven by the selected employee’s
performance, c4zi1 t5. We assume that c4z5 is con-
tinuous and nondecreasing in z, which reflects an
efficiency-based measure of employee performance.
Because the employer does not know employees’ true
abilities, in each period she uses her belief concerning
the distribution of the current employee’s ability, �i1 t ,
to estimate his expected task-related cost:

Ɛ6c4Z4�i1t1ni1t557 =

∫

ì

(

∫

E
c4g4È1ni1t1x55

·�ni1t 4g4È1ni1t1x5 �È5dx

)

d�i1t0 (6)

The employer also incurs costs that are specific to
the hiring and retention policy she is implementing.
If, at the start of a period, the employer hires a new
employee, she incurs an initial hiring (or training)
cost, ch. If, at the end of a period, the employee quits,
the employer bears a quitting cost, cq , that includes
potential separation costs and the cost of recruiting a
replacement. If the employee does not quit, then the
employer may decide to terminate him and switch to
a different worker, in which case she bears a switch-
ing cost, cs . Training, switching and quitting costs are
assumed to be nonnegative. To properly account for
switching and quitting costs, we introduce for each
worker i and each time t a switching indicator, ui1 t ,
such that if policy � employs worker i over several,
disjoint, time periods, then the indicator ui1 t switches
between 0 and 1, and it equals 1 at every time t such
that worker i was not employed at t−1. Formally, we
set ui10 = 1 for all i ∈S0 and for t ≥ 1 we let

ui1 t =

{

0 if �4t − 15= i1

1 if �4t − 15 6= i0

When 8i ∈S02 ui1 t = 09 6= 8i ∈S02 ui1 t+1 = 09, the work-
ers employed at time t − 1 and at time t differ, and
the employer needs to incur the switching or quitting
cost for the worker that was employed at time t − 1.
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For any time � ≥ 0 and any state of prior distribu-
tions, experiences and switching indicators, (Í1n1u5=

84�i1 �1ni1 �1ui1 �52 i ∈ S09, the infinite-horizon total
expected discounted cost of any hiring and retention
policy, �, from time � onward is

C�
�4Í1n1u5

= Ɛ

[

�
∑

t=�

�t
{

ch�4n�4t51 t = 05+ c4Z4��4t51 t1n�4t51 t55

+ csu�4t51 t�4�4t − 15 ∈St ∩ t > 05

+ cqu�4t51 t�4�4t − 15 6∈St ∩ t > 05
}

]

1 (7)

where the discount factor is � ∈ 60115. We note that
in each period, t, the employer bears four possible
sources of cost. The first, ch�4n�4t51 t = 05, is the hir-
ing and training cost for a new worker, and it is
incurred only once, at the beginning of employee
�4t5’s tenure. The second, c4Z4��4t51 t1n�4t51 t55, reflects
employee �4t5’s task-related costs. The third, csu�4t51 t ·

�4�4t−15 ∈St ∩t > 05, is the cost of switching to a dif-
ferent worker at time t, should the previous employee
be terminated. The fourth source of cost, cqu�4t51 t ·

�4�4t − 15 6∈ St ∩ t > 05, reflects the cost of switching
to a different worker at time t, should the previous
employee quit. When t = 0, no switching or quitting
costs should be incurred, and we account for this by
including the requirement t > 0 in the indicator func-
tions in Equation (7). By observing that �4�4t − 15 ∈

St ∩ t > 05 + �4�4t − 15 6∈ St ∩ t > 05 = �4t > 05, we
rewrite (7) as

C�
�4Í1n1u5

= −cs�4� = 05+ Ɛ

[

�
∑

t=�

�t
{

ch�4n�4t51 t = 05

+ c4Z4��4t51 t1n�4t51 t55+ csu�4t51 t

+ 4cq − cs5u�4t51 t�4�4t − 15 6∈St ∩ t > 05
}

]

0 (8)

In this new formulation, the switching cost, cs , is
incurred any time the worker employed at time t is
different from that employed at time t−1. The differ-
ence, cq − cs , then adjusts the value of the switching
cost if the worker employed at t − 1 has quit. The
quantity, −cs�4� = 05, outside the expectation com-
pensates for the switching cost incurred for the first
worker ever employed because ui10 = 1 for all i ∈S0.

We let ç denote the set of nonanticipating hiring
policies, and we assume that the employer seeks a
policy �∗ ∈ç that minimizes the expected discounted
value of future employment costs:

�∗
∈ arg min

�∈ç

C0
�4Í1n1u50 (9)

For the problem to be analytically tractable, we
assume that the parameter space ì is a Borel sub-
set of �d, and we require that the single-period,
task-related costs are uniformly bounded; that is,
c4g4È1n1x55 ∈ 6Kinf1Ksup7 for each triple 4È1n1x5 ∈ì×

�×E (see, e.g., Sundaram 2005).

3. Structure of the Optimal Policy
The hiring and retention problem can be formulated
as a Bayesian bandit problem with an infinite number
of arms. Two elements of the problem complicate the
analysis, however. First, when an employee quits, the
arm associated with him becomes unavailable. Sec-
ond, when the employer switches from one employee
to another, she incurs the switching costs, cs , that can-
not be attributed to a single employee. In characteriz-
ing the optimal hiring and retention policy, we must
address both of these difficulties.

3.1. Transformation to Problem with No Quitting
The fact that employees quit can be compensated
for by transforming the problem with quitting to
one in which workers are always available. Rather
than quitting, they become unproductive, and their
cost exceeds that of any productive worker. To do
so, we assume that each employee, i ∈ S0, becomes
unproductive at time t, after his 4ni1 t + 15st perfor-
mance with probability equal to qi1ni1 t in (4). When
employee i becomes unproductive at time t, his abil-
ity distribution changes from �i1 t to �i1 t+1 = �K , where
K ∈ 4Ksup +ch +max8cq1 cs91�5 and c4Z4�K1n55=K for
every n. Once employee i has become unproductive,
he will never be able to go back to the productive
state. The choice Ksup + ch + max8cq1 cs9 < K implies
that the cost of an unproductive worker exceeds the
cost of any possible realization of any productive
worker, plus the largest cost of hiring a new worker.
We then define the stopping time

åi = inf8ni1 t ≥ 12 c4Z4�i1 t1ni1 t55=K9 (10)

as the time at which employee i becomes unproduc-
tive. Because an unproductive worker cannot go back
to the productive state, we set qi1 k = 0 for all k > n
when åi = n, and we modify the Bayes operator (5)
as follows:

�4�i1t1z54X5=















�K if �i1t =�K1
∫

X
�ni1t 4z �È5d�i1t

∫

ì
�ni1t 4z �È5d�i1t

otherwise.
(11)

Call the original problem in (9), in which employ-
ees quit, Problem 1, and call the modified problem,
in which they become unproductive, Problem 2. The
following lemma confirms the fact that the problem
with workers who become unproductive is analogous
to that of those who quit.
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Lemma 1. (i) In Problem 2, any policy that employs
unproductive workers is never optimal.

(ii) A policy is optimal for Problem 1 if and only if it is
optimal for Problem 2.

Proofs of these claims and of the others below are
found in the appendix.

Lemma 1 tells us that, for each policy � ∈ ç,
employee i’s working lifetime åi4�5 in (3) and the
time at which employee i becomes unproductive (10)
are closely related. In fact, if employee i quits before
he is terminated, then 1 + åi4�5 = åi. Otherwise,
1 +åi4�5 <åi.

Lemma 2. If Ɛ6åi7 <�, then any policy for Problem 1
uses an infinite number of workers, almost surely (a.s.).

Thus, if each employee’s expected lifetime is finite,
then the employer will end up hiring an infinite
stream of employees in Problem 1. Similarly, an
employer who avoids using employees who have
become unproductive in Problem 2 will also use an
infinite number of employees if Ɛ6åi7 <�.

3.2. Transformation to Problem with
Retirement Option

We derive the optimal policy for Problem 2 by solv-
ing a family of stopping problems in which, at each
period, n, the employer chooses between employing a
single worker, i ∈ S0, or terminating all employment
and paying a so-called retirement cost, m. Given that
we are considering an optimal stopping problem for a
single employee, we drop the employee index, i, and
the time index, t, from subscripts.

This approach, called the retirement-option problem,
was introduced by Whittle (1980) for bandit prob-
lems with a finite number of arms and extended by
Banks and Sundaram (1992) and Sundaram (2005)
to study infinite-armed bandit models. In our con-
text, the employer’s problem is an infinite-horizon,
discounted Markov decision process with uniformly
bounded costs, a fact that implies that there exists
an optimal hiring and retention policy that is sta-
tionary and deterministic (Bertsekas and Shreve 1978,
Proposition 9.8).1 The optimal value function for
the retirement-option approach satisfies the following
Bellman equation:

V 4�1n1u1m5= min8m1HV 4�1n1u1m591 (12)

where

HV 4�1n1u1m5

= csu+ ch�4n= 05+ Ɛ6c4Z4�1n557

+�41 − qn5Ɛ6V 4�4�1Z4�1n551n+ 1101m57

+�qn6cq − cs +V 4�K1n+ 1101m570 (13)

1 A policy is stationary if, at any time t, the action it prescribes
depends only on the current state. A policy is deterministic if the
action it prescribes is never randomized.

In words, at any decision time, the employer has
the choice of retiring at cost m or continuing the
employment of the worker currently on trial. The
expected discounted cost of continuing, HV 4�1n1
u1m5, can be interpreted by looking at whether the
employee is productive (� 6= �K) or not (� = �K). If the
employee is productive, then with probability 1 − qn,
he remains productive and �4�1Z4�1n55 is given by
the bottom equation of (11) for each Z4�1n5 = z,
after dropping the i1 t subscripts. With probability qn,
he becomes unproductive and his ability distribution
changes to �K . If the employee is already unproduc-
tive at n, then qn = 0, and the modified definition of
the Bayes operator (11) gives us �4�K1Z4�K1n55= �K .
Here, we restrict our attention to values of m such
that m≤ K/41 − �5, so that retiring is attractive when
� = �K . Then, (13) becomes

HV 4�1n1u1m5

= csu+ ch�4n= 05+ Ɛ6c4Z4�1n557

+�41 − qn5Ɛ6V 4�4�1Z4�1n551n+ 1101m57

+�qn6cq − cs +m70 (14)

If � 6= �K and the employee is productive at n, the
last addend represents the cost difference paid for an
employee who has quit, cq − cs , plus the retirement
cost for the employer, m. The quantity HV 4�1n1u1m5
hence represents the cost of employing a worker with
ability distribution, �, experience, n, and switching
indicator, u, for at least one period, followed by an
optimal termination decision that depends on the
retirement payment, m.

The stopping time

å̃4�1n1u1m5

= inf8r ≥ 12 HV 4�r1n+ r1ur1m5 >m9 (15)

is the time at which the employer chooses to retire,
and 8�r9r≥1 and 8ur9r≥1 represent the evolution of the
ability distribution and the switching indicator after
period n. For r = 0, we set �0 ≡ � and u0 ≡ u.

Let Qn = 8�2 å> n1 å̃4�1n1u1m5=å−n9 be the set
of sample paths for which a productive worker with
ability distribution, �, experience, n, and switching
indicator, u, quits before he is terminated. Note that
if a worker is already unproductive at n and � = �K ,
then å≤ n, and therefore Qn = �. Then, we can write
the expected discounted cost of continuing (14) as

HV 4�1n1u1m5

= Ɛ

[

csu+ ch�4n= 05+
å̃4�1n1u1m5−1

∑

r=0

�rc4Z4�r1n+ r55

+�å̃4�1n1u1m584cq − cs5�Qn
+m9

]

3 (16)
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this last representation and its properties will be cru-
cial in the proofs of many of our results.

Given the availability of the value function (12),
we are interested in the value of m for which the
employer is indifferent between continuing to employ
the current hire or retiring, at cost m. We denote that
value by the index

M4�1n1u5= sup8m ∈�2 V 4�1n1u1m5=m90 (17)

This index is well defined because the value function
(12) is concave and nondecreasing in m, a fact that is
stated and proved in the appendix. It is a direct ana-
logue of the definition of the Gittins index proposed
by Whittle (1980) for problems without learning or
switching costs. Asawa and Teneketzis (1996) propose
a corresponding index for problems with switching
costs.

3.3. Optimal Policy
When the employer switches from one employee to
another, she incurs a switching cost, a fact that can
make the characterization of optimal policies diffi-
cult. In particular, when the set of available hires is
finite, an employer that switches away from and then
returns to an employee, i, at a later period pays a
switching cost that she would not have incurred had
she continued to employ i over contiguous periods
(Banks and Sundaram 1994).

A number of researchers have sought to character-
ize optimal policies for such bandit problems with
switching costs. For problems with a finite number
of arms, Asawa and Teneketzis (1996) define two
indices, a traditional Gittins index analogous to (17),
along with a corresponding “switching cost index,”
and they show that these indices can be used to
describe necessary, though not sufficient, conditions
under which an optimal policy will switch arms.
Niño-Mora (2008) shows how to efficiently calculate
Asawa and Teneketzis’s (1996) indices. As a part of
his analysis, Niño-Mora (2008) shows that (for finite
arms), if it is not optimal at t to use an arm that was
used at t − 1, then it would also not be optimal to
use that arm at t had the arm not been used at t − 1.
In the context of problems with infinite sets of arms,
Bergemann and Välimäki (2001) independently make
a similar observation. Bergemann and Välimäki (2001)
further note that, in problems with an infinite set of
a priori identical, “untried” arms once it is optimal to
switch away from an arm, i, to use another that has
not been tried, it will never pay to switch back to i,
since there will always remain another untried arm
that will be preferable to i.

Bergemann and Välimäki (2001) use the “forward
induction” formulation of Gittins (1979) to prove
these results for infinite-armed Bayesian bandits that
do not evolve with experience and without switching

costs, and they then sketch an argument for extending
the results to problems with switching costs. For arms
without switching costs that evolve, the proof in the
appendix is based on the retirement option formula-
tion in Whittle (1980) and follows the line of reason-
ing in Sundaram (2005, Appendix A). We then apply
the argument sketched in Bergemann and Välimäki
(2001) to explicitly prove the extension to problems
with switching costs. The following proposition sum-
marizes the main results.

Proposition 1 (Follows Sundaram 2005 and
Bergemann and Välimäki 2001). Let �i10 = �̂, ni10 = 0,
and ui10 = 1 for all i ∈ S0, and let m̂ = M4�̂10115 be the
index of a worker who has not yet been tried.

(i) A policy �∗ is optimal if and only if

�∗4t5∈

{

i∈S02 Mi4�i1t1ni1t1ui1t5 = inf
j∈S0

Mj4�j1t1nj1t1uj1t5

}

1

a.s. for all t=011121000 .

(ii) At any time, t, at most one worker, i, has Gittins
index Mi4�i1 t1ni1 t1ui1 t5 < m̂.

(iii) Let ti = inf8t2 �∗4t5 = i9 be the first time worker i
is employed. Under the optimal policy �∗ in (i):

(a) Worker i is employed continuously for åi4�
∗5

periods: �∗4t5= i for all ti ≤ t < ti +åi4�
∗5.

(b) It is never optimal to employ worker i from time
ti +åi4�

∗5 on: �∗4t5 6= i for all t ≥ ti +åi4�
∗5.

(iv) If Ɛ6å17 <�, then m̂− cs = inf�∈çC0
�4Í, n, u).

Given the structure of the optimal policy in part (i)
of Proposition 1, we can justifiably call (17) a Gittins
index. Moreover, when the optimal policy is imple-
mented, part (ii) implies that there is often just one
Gittins-index-minimal employee. Part (iii) shows that
it is never optimal to employ a worker who was pre-
viously replaced. For an employer seeking to retain
a single employee, the hiring and retention problem,
therefore, decomposes into a sequence of iid optimal
stopping problems: hire an employee from the pool
and retain him until he turns over or his Gittins index
rises above m̂, whichever comes first. In turn, the opti-
mal policy yields a discounted renewal reward pro-
cess, with expected value described in part (iv).

Part (iv) of Proposition 1 directly links the expected
total discounted cost of the optimal policy to the
Gittins index, a result that does not generally hold in
bandit problems with finite numbers of arms. In §5,
we use the result to estimate the expected discounted
value of a Gittins-index policy.

4. Extensions: Multiple Parallel
Workers and Different Pools

Sections 2 and 3 consider the problem of employ-
ing a single worker. We now consider two extensions.
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Section 4.1 considers the problem in which distinct
(infinite) pools of heterogeneous workers are avail-
able. Section 4.2 considers an employer who wishes
to retain multiple employees who work in paral-
lel. In both cases, the optimality of an index rule is
retained.

4.1. Heterogeneous Populations
When the employer faces a finite number of het-
erogeneous populations, her optimal hiring and
retention policy is the same as the one proposed in
Proposition 1, part (i). For example, consider two infi-
nite pools S�

0 and S�
0 , for which the untried work-

ers have common prior distributions �̂ and �̂, with
�̂ 6= �̂. Let M4�̂10115 and M4�̂10115 be the indices
of the untried workers in each pool. If M4�̂10115 6=

M4�̂10115, then workers belonging to the pool with
larger index are never employed by an optimal pol-
icy. Otherwise, if M4�̂10115 = M4�̂10115, then the
employer is indifferent between the two populations.

4.2. Hiring and Retention of Multiple Workers
Assume now that �i10 = �̂, ni10 = 0, and ui10 = 1 for
all i ∈S0, and consider the hiring and retention prob-
lem in which the employer wishes to retain a fixed
number, D, of people working in parallel.

One can partition the infinite pool of potential
employees, S0, into D separate, countably infinite
pools, S1101 0 0 0 1SD10, of identical workers with com-
mon prior distribution, �̂, no experience, and common
switching indicator equal to 1. When employee i in
pool d quits at time t, he is removed from that pool so
that Sd1 t+1 = Sd1 t\8i9. Then, the infinite-horizon total
expected discounted cost is

C01D
� 4Í1n1u5

= Ɛ

[

�
∑

t=0

�t
D
∑

d=1

(

ch�4n�d4t51 t
= 05+ c4Z4��d4t51 t

1n�d4t51 t
1 55

+u�d4t51 t
�4t > 05

{

cs�4�d4t − 15 ∈Sd1 t5

+ cq�4�d4t − 15 6∈Sd1 t5
})

]

1 (18)

where �d4t5 ∈ Sd1 t identifies the index of the worker
who is employed from pool d at time t, ��d4t51 t

his abil-
ity distribution, n�d4t51 t

his experience, and u�d4t51 t
his

switching indicator value. By interchanging the sums
in (18), one obtains C01D

� 4Í1n1u5 =
∑D

d=1 C
01d
� 4Í1n1u5,

where C01d
� 4Í1n1u5 is the dth position’s expected dis-

counted cost, as defined in (7). Thus, the D posi-
tions’ costs are separable so that the total expected
discounted cost is minimized when a Gittins-index-
minimal worker is employed in each pool.

At any time, t, at which the employer seeks to hire
a new worker for any of the D positions, she can
employ any untried worker who belongs to the pool

of potential employees, St . This result, which follows
directly from Bergemann and Välimäki (2001), cru-
cially depends on the assumption that all workers
have the same experience and ability distribution at
time t = 0, so that the artificial splitting of potential
hires into D pools is possible.

We note that our analysis of multiple employees
also hinges on the independence of the outcomes of
various employees’ tasks. In many settings, task out-
comes may be correlated across workers, however,
and the optimality of an allocation index is no longer
valid, as for other bandit problems with correlated
arms. One potentially promising avenue for address-
ing such correlations in future work is the knowledge
gradient approach (Frazier et al. 2009).

5. Implementing the Optimal Policy
This section shows how analytic properties of the
hiring and retention problem can be combined with
dynamic programming to enable the computation
of the relevant Gittins indices when performance
has certain structural properties. As shown in the
appendix, for any given �, n, and u, the value func-
tion, V 4�1n1u1m5, is concave and nondecreasing in m.
Therefore, given �, n, and u, a simple search scheme,
such as a bisection, can be used to find the largest fixed
point, M4�1n1u5, that defines the Gittins index.

Because our set of iid stopping problems allows
us to focus on a single employee, we drop the
indices i and t as subscripts and let Zn = g4È1n1 �n5.
To calculate solution values, we explicitly define the
functional form of the 4n + 15st performance for a
worker, Zn. We assume that g4 · 5 is invertible and that

g−14Zn5=A+h4n5+ �n1 n= 011121 0 0 0 (19)

is a linear model where A determines an unknown
base level that may vary across workers, h4n5 is a
known learning function, and �n is normally dis-
tributed noise with mean 0 and known variance �2.

Because A is unknown, the mean of the noise can
be assumed to be zero without loss of generality. We
assume that the potential hire’s base level of per-
formance, A, has initial prior distribution, �̂, that is
normally distributed with mean �̂ and variance �̂2,
N4�̂1 �̂25. The form in (19) implies another structural
property that will be useful for computing the Gittins
indices of workers. The random variables g−14Zn5 −

h4n5 are normally distributed with unknown mean A
and variance �2 + �̂2. By standard Bayesian analy-
sis, �, the posterior distribution of A after observing
n tasks, zn = 4z01 z21 0 0 0 1 zn−15, is normal with

Ɛ6A � zn7=
�̂4�2/�̂25+

∑n−1
k=04g

−14zk5−h4k55

n+�2/�̂2
and

Var6A � zn7=
�̂2�2

�2 +n�̂2
0

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 



Arlotto, Chick, and Gans: Hiring and Retention Policies for Workers Who Learn
118 Management Science 60(1), pp. 110–129, © 2014 INFORMS

Define p̂ = �2/�̂2, and let p = p̂ + n, where n is the
number of samples observed for the single-worker
problem. Set yp = �̂p̂+

∑n−1
k=04g

−14zk5− h4k55 and wp =

yp/p. The posterior distribution, �, of A given zn
is thus N4wp1�

2/p5. We can therefore describe 4�1n5
by 4wp1 p5.

These assumptions are sufficient to guarantee that
both the Bellman equation (12) and the Gittins
index (17) are monotone in the posterior mean
of A, wp.

Proposition 2. For any given p1 u, and m, the value
function V 4wp1 p1u1m5 is nondecreasing in wp. For any
given p and u, the Gittins index M4wp1 p1u5 is nonde-
creasing in wp.

The monotonicity of the Gittins index with respect
to wp allows us to concisely describe the optimal pol-
icy. For each p = p̂ + n, there is a simple “stopping”
boundary, �4p5, such that it is optimal to retain the
employee (continue) if wp < �4p5 and to terminate the
employee (stop) if wp > �4p5.

Arlotto et al. (2010) provide more detail for how
to use the above results to approximate V and the
stopping boundary, �, when (19) applies; the func-
tions g and h are known and finite for finite val-
ues of their arguments; the noise, �n, has zero mean
and known sampling variance, �2; and the prior dis-
tribution for A is N4wp̂1�

2/p̂5, so that Proposition 2
applies. In summary, we use the common technique
of approximating the evolution of the posterior dis-
tribution as samples are observed, a Gaussian pro-
cess, with the evolution of the posterior distribution
of a related trinomial process on a grid. We construct
the necessary grid of points in the 4w1p5 coordinate
system, estimate the terminal conditions (the period
at which the dynamic programming backward recur-
sion starts, typically a large number of periods in
the future) using Monte Carlo simulation, perform a
backward recursion using a trinomial tree approxima-
tion on the grid of points to approximate both V and
the optimal stopping boundary for a given value of
m, and then search for the value of m that identifies
the Gittins index. This process also identifies the opti-
mal stopping boundary that determines the optimal
solution to the hiring and retention problem.

The numerical results in §6 correspond to a learning
function that sets g4z5= ez and h4n5= b ln4n+15. This
corresponds to (2) with a common learning parameter
bi = b and

ln4Zn5=A+ b ln4n+ 15+ �n1 n= 011121 0 0 0 1 (20)

where �n ∼ N401�25. Here, (20) is consistent with
empirical studies of various industries. For example,
Brown et al. (2005), Shen (2003), and Shen and Brown
(2006) provide evidence that handle times for call-
centers are frequently lognormally distributed.

The above approach can be used to numerically
evaluate other forms of h4 · 5, and we have also
tested h4n5 = b ln41 + n/4n + �155 and h4n5 = b ln41 +

min8n1 �295. Although the details of the stopping
boundaries can change with the functional form,
the qualitative conclusions we reach from numerical
tests with these functions are analogous to what we
describe in §6. Similarly, we can define a as a com-
mon, known parameter and g−14Zn5 = a + Bh4n5 +

�n to model pools of workers with a common base
level of quality and heterogeneous rate of learning.
Although the theoretical results described in §3 hold
for even more complex settings, such as those with
heterogeneous and unknown A and B, the numeri-
cal approach here becomes more difficult. In partic-
ular, stopping boundaries become multidimensional,
and monotonicity results, such as those described in
Proposition 2, may not hold.

6. Numerical Examples and the
Value of Screening

In this section, we use the methods described in §5
to calculate Gittins indices, as well as associated opti-
mal stopping boundaries, for several examples. We
also use discrete-event simulation to estimate rates of
termination and voluntary turnover. We compare the
performance of the optimal Gittins-index policy with
that of other easily implementable policies, and we
demonstrate that an active hiring and retention pol-
icy reduces costs and improves the pool of workers
who are employed. We perform a sensitivity analysis
with respect to the key parameters of our model, and
we conclude that increases in employee learning rates
reduce costs, improve the pool of employed workers,
and lower termination rates. Moreover, we observe
that managers favor pools of potential workers with
a broader set of abilities.

6.1. Balancing Uncertainty and Learning Effects
The first example is loosely motivated by a call cen-
ter. Each Zn represents the average duration (in min-
utes) of the calls that an agent handles after n days
of experience. We use the log-linear learning curve
model (20). The distribution of the base-level perfor-
mance parameter, A, has mean �̂= 0090 and standard
deviation �̂ = 0040, and the sampling standard devi-
ation in the daily average of the service times is � =

0080. This implies an expected service time of untried
agents of Ɛ6Z07= 3067. The annual discount rate is 10%,
so the one-period discount rate is � = 009996 (based
on a year of 250 days), and the cost function is lin-
ear, c4z5 = cz, with unit cost c = 1. The training cost
is ch = 30, which corresponds to the expected cost of
employing untried workers for approximately 10 days
(two weeks). Termination and quitting costs are set
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Figure 1 Stopping Boundaries for Posterior Mean of A (Left) and for Ɛ6Zn7 (Right)
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equal to 0. (See Theorem 1 in §6.3.2.) Learning is deter-
ministic with rate b = ln�/ ln 250, where � ∈ 40117 rep-
resents the amount of learning accrued in the first year
of tenure so that Ɛ6Z2497 = �Ɛ6Z07. Choosing � = 0050,
we obtain b = −001255.

For lack of real-world data concerning turnover
behavior, and to focus our numerical results on the
effects of learning, we assume that the quitting prob-
ability qn is constant over time. We let qn = 0001 for
all n, so (in the absence of termination) workers turn
over, on average, every 100 days.

Figure 1 displays the stopping boundary associated
with the Gittins index for untried employees who, in
this example, have m̂ = 5149107. The left panel plots
the stopping boundary with respect to the posterior
mean of A, and the solid line in the right panel plots
the analogous stopping boundary with respect to the
posterior mean of Zn. From Proposition 2, we know
that an employee whose posterior means fall below
these stopping boundaries has a Gittins index below
m̂ and should be retained, and one whose posterior
means fall above the stopping boundary should be
replaced by a new hire.

In the left panel, we see that the stopping boundary
with respect to the posterior mean of A has an inter-
esting shape. The initial jump from the prior mean,
�̂= 0090, up to 1.27 is attributed to the elimination of
the training cost, ch, which is incurred only on day 0.
Afterward, the stopping boundary has a “cupped”
shape for the first few periods of an employee’s
tenure. The dip reflects the effect of statistical learn-
ing on the part of the employer. As more samples
are collected, uncertainty about the “true” quality of
the worker decreases, and the employer can screen
workers on the basis of a more informative prior
distribution. The subsequent climb reflects the gains
the employee enjoys as on-the-job experience makes

even relatively poor-quality workers attractive candi-
dates for retention. In its rightmost reaches, the curve
appears to increase to an asymptote involving a con-
stant minus h4n5 (a phenomenon that was observed
for other learning functions we tested).

The right panel shows the stopping boundary with
respect to Ɛ6Zn7. Here, the stopping boundary is uni-
modal, with a peak on day 1 due to the elimination
of the day 0 training cost, followed by a monotone
decrease that is initially steep and that later flat-
tens out. Unlike the left panel, the right panel does
not explicitly display a “dip” that reflects the prob-
lem’s two conflicting forces, between the employer’s
statistical learning and the employees’ learning by
doing. Instead, after day 1, we find a monotoni-
cally decreasing stopping boundary that requires a
worker’s expected performance to keep improving
over time. The dashed line in both panels plots the
prior mean, �̂ (left), and the expected call times, Ɛ6Zn7
(right), for an “average” employee with base-level ser-
vice time A = �̂. The vertical distance between the
two curves is a measure of how much better or worse
a “marginally retained” employee is in comparison
wih an “average” employee. The presence of train-
ing costs induces managers to retain workers who are
worse than average.

The simulation results in Table 1 describe how the
optimal policy affects employee retention. The results
are based on 50,000 trials of the single-worker opti-
mal stopping problem, and they show the fraction of
workers who are terminated or quit within various
time windows.

The policy terminates 39.82% of the employees:
1.96% of workers are terminated on day 1, 28.30%
are terminated during periods 2–10, and 9.57% there-
after. Hence, much of the termination occurs early on.
Of course, termination rates vary significantly with
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Table 1 Optimal Policy and Employee Retention

Day 1 Days 2–10 Days 11–20 Total

Terminated workers 0.0196 (0.0006) 0.2830 (0.0020) 0.0557 (0.0010) 0.3982 (0.0022)
Workers who quit 0.0102 (0.0005) 0.0692 (0.0011) 0.0539 (0.0010) 0.6018 (0.0022)

Note. Standard errors for the mean in parentheses.

training costs. In §6.3 we present a sensitivity analysis
that addresses this relationship.

6.2. How the Optimal Policy Compares with
Simpler Policies

This section compares the optimal policy with four
families of alternative hiring policies. In the first fam-
ily, workers are never terminated, and they serve
until they naturally turn over. In the second, workers
are monitored for a limited screening period, dur-
ing which they can be terminated after each day of
performance. If retained at the end of the screen-
ing period, they are never terminated. In Table 2 we
report results for this type of policy when the screen-
ing period is 5, 10, or 20 days long. The third family
considers Gittins-index policies in which workers are
screened and termination can occur every 5, 10, or
20 days of performance. (Note that the optimal pol-
icy described in this paper is a Gittins-index policy
in which screening takes place each day.) Finally, the
fourth family considers policies with a trial period
of a given length (1, 5, 10, or 20 days) within which
workers are not terminated. At the end of the trial
period, the employer decides whether to retain or ter-
minate the worker, and, if he is retained, he is not
terminated until he turns over. In all cases, we use
optimal retain/terminate thresholds, given the details
of the particular policy.

Table 2 reports infinite-horizon total expected dis-
counted costs, termination rates, long-run average
service rates, and the expected discounted number

Table 2 Comparison with Other Hiring Policies

Total expected Fraction of Long-run average Expected discounted number
Policy discounted cost terminated workers service rate of monitored periods

Optimal policy 5,494.1 (12.3) — 0.3948 (0.0005) 0.6417 (0.0138) — 2,333 (6.6)
Never screen 6,066.3 (15.4) 10041% 0.0000 (0.0000) 0.5364 (0.0149) −16041% 0 (0.0)
Screen 1–5 5,618.3 (12.4) 2026% 0.3540 (0.0006) 0.6179 (0.0140) −3071% 149 (21.3)
Screen 1–10 5,539.8 (11.9) 0083% 0.3764 (0.0006) 0.6315 (0.0140) −1059% 288 (39.9)
Screen 1–20 5,505.3 (11.7) 0020% 0.3960 (0.0005) 0.6405 (0.0137) −0019% 525 (67.5)
Gittins every 5 5,528.9 (11.9) 0063% 0.3690 (0.0005) 0.6341 (0.0134) −1018% 445 (4.9)
Gittins every 10 5,569.3 (11.5) 1037% 0.3282 (0.0005) 0.6218 (0.0136) −3010% 212 (4.2)
Gittins every 20 5,672.2 (12.4) 3024% 0.2623 (0.0005) 0.6015 (0.0130) −6027% 97 (3.5)
One-shot at 1 5,896.0 (14.4) 7032% 0.2432 (0.0005) 0.5739 (0.0153) −10057% 24 (3.4)
One-shot at 5 5,639.6 (12.7) 2065% 0.3228 (0.0006) 0.6108 (0.0139) −4081% 23 (3.1)
One-shot at 10 5,644.4 (12.2) 2073% 0.3234 (0.0006) 0.6146 (0.0137) −4023% 21 (2.7)
One-shot at 20 5,696.1 (12.3) 3068% 0.2669 (0.0005) 0.6004 (0.0131) −6043% 18 (2.2)

Note. Standard errors for the mean in parentheses.

of monitored periods for each policy. The results
reported are obtained by simulating 1,000 trials with
enough workers to cover 50,000 time periods within
each trial. We also report analogous simulation results
for the optimal policy and note that, because it is
estimated via simulation rather than backward recur-
sion, the Gittins index for this example varies slightly
(within one standard error) from that reported in §6.1.

The results in the second column of Table 2 show
that the optimal policy we examined leads to a
substantial reduction in cost. For instance, the policy
that does not screen employees has a total expected
discounted cost that is 10.41% higher than that of the
optimal Gittins-index policy. We already know from
Table 1 that most termination in the optimal policy
occurs relatively early in employees’ tenure. It is not
surprising, then, that the policy that screens workers
in each of the first 20 days performs nearly as well as
the optimal one. Interestingly, the Gittins-index pol-
icy that screens workers every five days also per-
forms close to optimally. Thus, screening needs not
to occur every period for a policy to be effective. The
results for “one-shot” at 5 and 10 periods also sug-
gest that simple, one-shot retention decisions have the
potential to perform well, with average discounted
costs within a few percent of the optimal Gittins-index
policy.

For any hiring policy, �, its long-run average ser-
vice rate is

�4�5−1
= lim

T→�

1
T

T
∑

t=1

1
Ɛ6Z�4t51t7

1
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the long-run average number of calls that an agent
handles per minute each day. Its numerical values
are reported in fourth column of Table 2, and they
suggest that the optimal Gittins-index policy leads
to an overall improvement of employee performance.
Moreover, the quantity �4�5−1 can then be used to
obtain a rough estimate of the number of agents
needed for a given call volume. For instance, if we
compare the optimal Gittins-index policy with the
“never screen” policy, we see that the former requires,
on average, 16.41% fewer workers to maintain the
same level of capacity. To more clearly understand
this, consider the hypothetical scenario in which a call
center has an average load of 53.64 calls per minute.
With the optimal policy, this requires employing
53.64/0.6417 = 83.59 workers—long-run average—
to have a “fully loaded” system. With the never
screen policy, the same fully loaded system requires
53.64/0.5364 = 100 workers, and the optimal policy
employs 16.41% fewer workers.

The rightmost column of Table 2 counts the ex-
pected discounted number of periods in which the
employer monitors the performance of its employees.
Naturally, the optimal Gittins-index policy in which
monitoring occurs every day is the most expensive
along this dimension. Interestingly, the “screen 1–20”
and “Gittins every 5” policies perform well with
respect to costs and require approximately one-fourth
of the monitoring effort on the part of the employer.
Thus, to the extent that monitoring is an expensive
activity, the nature of effective policies may change.
While the explicit representation and optimization of
monitoring is beyond the scope of the current paper,
it certainly merits future work.

6.3. Sensitivity Analysis
This section examines how the optimal policy de-
pends on key parameters: employees’ learning rates;

Figure 2 Stopping Boundaries for Different Learning Rates
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switching and quitting costs; employer uncertainty
regarding employee performance; task-by-task vari-
ability; and training costs. The Gittins indices, turn-
over, and termination rates reported in this section are
computed as in §6.1.

6.3.1. Learning Rates. Section 6.1 studies a pool
of workers whose performance improves by 50% over
the first 250-day year (b = −001255). Here, we compare
this performance with that of fast-learning work-
ers who improve by 75% in the first one year (b =

−002511), as well as that of slow-learning workers
who improve only by 25% in the same amount of time
(b = −000521). All other parameters are as in §6.1.

Figure 2 plots the stopping boundary with respect
to the posterior mean of A (left) and with respect
to Ɛ6Zn7 (right) in these new settings. In the left
panel, we notice that the “cupped” shape of the stop-
ping boundary in the early stages of employment
is more prominent for the slow learners, and the
set of their allowable posterior means is smaller. On
the other hand, the fast-learning workers immedi-
ately benefit from a tangible performance improve-
ment in their first few days so that the “cupped” part
of the stopping boundary disappears. The contribu-
tion of this experience-based learning is so high that
the screening policy retains workers with a broader
set of posterior means. With a faster learning rate,
every employee is faster for each level of experience,
and one expects the stopping boundary with respect
to Ɛ6Zn7 to decline. This is indeed the case, and, in
the right panel of Figure 2, we see that the stop-
ping boundary for fast-learning workers is the bot-
tom one. A similar argument explains why the stop-
ping boundary for slow learners is the top one in the
right panel. To more clearly understand the effect of
changes in employees’ learning, we also look at the
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Table 3 Simulation Results with Different Learning Rates

Fraction of terminated workers
Gittins Long-run average

b index Day 1 Days 2–10 Days 11–20 Total service rate

−0.2511 3190506 0.0102 (0.0004) 0.1834 (0.0017) 0.0275 (0.0007) 0.2366 (0.0019) 1.0253 (0.0286)
−0.1255 5149107 0.0196 (0.0006) 0.2830 (0.0020) 0.0557 (0.0010) 0.3982 (0.0022) 0.6417 (0.0138)
−0.0521 6176201 0.0334 (0.0008) 0.3167 (0.0021) 0.0822 (0.0012) 0.4885 (0.0022) 0.4972 (0.0089)

Note. Standard errors for the mean in parentheses.

values of the Gittins index, at the fraction of termi-
nated workers, and at the long-run average service
rate for these three b’s. Table 3 shows that the optimal
retention policy for pools of fast learners generates
the smallest infinite-horizon expected discounted cost,
the lowest fraction of terminated workers, and the
largest service rate. Conversely, slow learners are the
most expensive, have the highest termination rates,
and have the lowest long-run average service rates.

The results of Table 3 suggest a potentially impor-
tant, positive sequence of managerial implications.
Improvements in on-the-job learning rates make
employees with relatively poor initial abilities more
attractive compared with untried employees, and it
is optimal for the employer to retain them. As a
consequence, optimal termination rates decline. Thus,
improvements in on-the-job learning rates may allow
the employer to enjoy a secondary benefit of being
able to retain a wider array of employees. More-
over, there is evidence from the management litera-
ture that lower rates of termination may make a com-
pany a more desirable place to work and improve
its pool of potential hires (Huselid 1995). Such an
employee response to changes in the employment
policy is of potential interest. As noted in the intro-
duction, explicit treatment of the phenomenon would
extend our analysis into the realm of stochastic games,
however.

Remark 1. Empirical evidence in the learning liter-
ature shows that slower learners can produce higher
value in the long run (see, e.g., March 1991, Uzumeri
and Nembhard 1998). In our model, this effect could
be investigated by segmenting slow learners and fast
learners in two different populations. If the prior
ability distribution in each population were known,
then the optimal policy would be as in §4.1, and
only workers belonging to the population with better
index would be employed. If the prior ability distri-
butions were unknown, however, one would need to
construct a hierarchical model that goes beyond the
scopes of the current paper.

6.3.2. Switching and Quitting Costs. One would
expect that changes in switching and quitting costs
would similarly affect the optimal policy. However,
the theorem below shows that when the quitting

probabilities are constant—so that qi1n = q for all n
and for all i ∈S0—this is not the case.

To state the theorem we need to keep track of how
the training, quitting, and switching costs affect the
Gittins index. To that end, we modify our notation
to account for these differences, letting M4�1n1u1 ch1
cs1 cq5 be the Gittins index (17) and ̂m4ch1 cs1 cq5 =

M4�̂10111 ch1 cs1 cq5.

Theorem 1. Assume that �i10 = �̂, ni10 = 0, and
ui10 = 1 for all i ∈ S0. Then, if the quitting probabili-
ties are constant, i.e., qi1n = q for all i ∈ S0 and all n,
Mi4�i1 t1ni1 t1ui1 t1 ch1 cs1 cq5 < m̂4ch1 cs1 cq5 if and only
if Mi4�i1 t1ni1 t1ui1 t1 ch + cs10105 < m̂4ch + cs10105, for
all t ≥ 0.

Thus, if the hazard rate for quitting is constant for
all employees at all times, then changes in switching
and quitting costs do not affect the relative ordering of
workers’ Gittins indices. Of course, the values of the
Gittins indices change, as do the (analogous) expected
discounted costs of the problem. However, because
the relative orderings do not change, changes in the
switching and quitting costs do not affect the optimal
policy; therefore, we do not report a sensitivity anal-
ysis with respect to cs or cq .

When the quitting probabilities are not constant,
the specifics of the optimal policy can change with cs
and cq . Nevertheless, the overall structure of the opti-
mal policy does not change. Proposition 1 holds for
any quitting behavior qi1n, as in (4).

6.3.3. Variance of the Base-Level Performance,
Variance of Samples, and Training Costs. A sensitiv-
ity analysis for the prior distribution of abilities, the
sampling variance, and training costs yields intuitive
results for which we provide a brief overview:

• The Gittins index reflects an option value inher-
ent in the ability to change arms and favors arms with
more diffuse prior distributions. A sensitivity analy-
sis for the variance of the prior distribution of abil-
ities agrees with the general idea: for a given �̂, an
increase in the variance, �̂2, of ability across workers
allows the employer to screen more strictly, thereby
increasing termination rates, retaining relatively more
capable employees, and lowering total costs.

• A sensitivity analysis with respect to the sam-
pling variance, �2, indicates that lower values of �
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result in a smaller fraction of employees who are ter-
minated. Thus, reductions in within-period variability
improve the selectivity and effectiveness of screening
procedures, allowing the employer to reduce termi-
nation rates obtained using the optimal policy.

• When training costs are absent, the screening
process is very selective, terminating more than half
of employees on day 1 and more than 85% of employ-
ees overall. When training costs are present, however,
termination rates decrease as training costs increase.

For additional details concerning these results, con-
tact the authors.

7. Conclusions
This paper studies how statistical and on-the-job
learning together determine the nature of optimal hir-
ing and retention decisions. Statistical learning arises
when workers are heterogeneous and the employer
does not know their true quality. On-the-job learning
occurs as experience affects workers’ performance.

The literature related to this problem comes from
various areas, such as labor economics, statistical
decision theory, learning-curve theory, and service
operations, among others. Our analysis integrates
aspects from all of these streams to incorporate train-
ing, switching, and quitting dynamics, and it applies
results from infinite-armed Bayesian bandit prob-
lems to characterize the optimal hiring and retention
policies.

Our numerical results show that active screen-
ing of employees can significantly improve expected
costs and long-run average employee performance.
Because most termination takes place early in
employees’ tenures, relatively simple finite-horizon
and one-shot policies also have the potential to per-
form well. Our sensitivity analysis shows that, as
is common in bandit problems, the ability to termi-
nate employees should motivate managers to con-
sider a broader spectrum of potential hires. More-
over, both reductions in within-task variability and
improvements in employee learning provide the addi-
tional benefit of lowering termination rates.
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Appendix. Mathematical Results
Proofs of mathematical claims are presented in the order of
their appearance in the main paper. When other technical

results are needed, they are stated with a full proof or suit-
able reference in the location that they are needed.

To simplify the exposition, we introduce the follow-
ing shorthand. For any given initial state, (Í1n1u), let
Mi ≡ M4�i101ni101ui105 denote the initial value of worker
i’s index, å̃i4m5 ≡ å̃4�i101ni101ui101m5 be the stopping
time (15), HVi4m5 ≡ HV 4�i101ni101ui101m5 be i’s expected
continuation cost (16), and Ci1 t ≡ csui1 t + ch�4ni1 t = 05 +

c4Z4�i1 t1ni1 t55+ 4cq − cs5�4��4t−151 t = �K ∩ t > 05 be worker i’s
one-period cost for being employed at time t.

Proof of Lemma 1
For (i), let � be a hiring and retention policy for Prob-
lem 2 that employs unproductive workers. Then, let T =

inf8t2 n�4t51 t ≥ å�4t59 be the first time that such a worker is
employed. The one-period cost at time T for employing the
unproductive worker �4T 5 is �TK. Construct a new policy
�T such that �T 4t5=�4t5 for t < T , and �T 4t5=�4t+15 for
t ≥ T . For any initial state (Í1n1u), we have that

C0
�4Í1n1u5= −cs + Ɛ

[T−1
∑

t=0

�tC�4t51 t +�TK +

�
∑

t=T+1

�tC�4t51 t

]

1

C0
�T 4Í1n1u5= −cs + Ɛ

[T−1
∑

t=0

�tC�4t51 t +

�
∑

t=T+1

�t−1C�4t51 t

]

1

and

C0
�T 4Í1n1u5−C0

�4Í1n1u5

= Ɛ

[

41 −�5

(

�
∑

t=T+1

�t−1C�4t51 t

)

−�TK

]

< Ɛ

[

41 −�5

(

�
∑

t=T+1

�t−1K

)

−�TK

]

= Ɛ

[

41 −�5
�TK

1 −�
−�TK

]

= 00

Thus, the infinite-horizon total expected discounted cost
of �T is strictly smaller than that of �, and � cannot be
optimal.

For (ii) we begin with the if part.
If: Let �∗ be optimal for Problem 2. Then by part (i)

of the lemma, policy �∗ employs no unproductive worker;
therefore, �∗ is feasible for Problem 1. For any initial
state (Í1n1u) and for any policy � feasible for Problem 1,
we let C0

�114Í1n1u5 and C0
�124Í1n1u5, respectively, be the

infinite-horizon total expected discounted cost of policy �
in Problems 1 and 2, and we observe that C0

�114Í1n1u5 =

C0
�124Í1n1u5. Because �∗ is optimal for Problem 2 and

feasible for Problem 1, we obtain that C0
�∗114Í1n1u5 =

C0
�∗124Í1n1u5 ≤ C0

�124Í1n1u5 = C0
�114Í1n1u5 for all � feasi-

ble for Problem 1. Hence, �∗ is also optimal for Problem 1.
Only if: Let �∗ be optimal for Problem 1. Then, any pol-

icy, �, that is feasible for Problem 1 is feasible for Prob-
lem 2, and C0

�114Í1n1u5 = C0
�124Í1n1u5. By part (i) of the

lemma, we know that any policy � that is feasible for Prob-
lem 2 but not for Problem 1 cannot be optimal. Then, by
optimality and feasibility, we obtain that C0

�∗124Í1n1u5 =

C0
�∗114Í1n1u5 ≤ C0

�114Í1n1u5 = C0
�124Í1n1u5, and policy �∗

is also optimal for Problem 2. �
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Proof of Lemma 2
Suppose that � ∈ ç is a policy for Problem 1 and that
Ɛ6åi7 < � for all i ∈ S0. No policy for Problem 1 can use
an employee after he has quit. Thus, the random variable
åi4�5 in (3) satisfies 0 ≤ åi4�5 ≤ åi on every sample path,
for all i ∈ S0. Suppose, by contradiction, that policy � ∈ ç
only employs �<� workers with some positive probability
� > 0. Because � ∈ç, we have

�

( �
∑

i=1

åi4�5≥ �

)

≥ � (21)

for all � ∈�. Given that 0 ≤åi4�5≤åi and that the åi’s are
iid, Markov’s inequality implies that �4

∑�
i=1 åi4�5 ≥ �5 ≤

�4
∑�

i=1 åi ≥ �5≤ �Ɛ6å17/� . Picking any � > �Ɛ6å17/� would
contradict (21) from which we conclude that � 6∈ç. Hence,
each policy for Problem 1 employs an infinite number of
workers with probability 1. �

Properties of the Value Function and of the
Gittins Index

Lemma 3. For each �, n, and u, V 4�1n1u1m5 is concave,
nondecreasing, and Lipschitz continuous in m, with Lipschitz
constant equal to 1.

Proof. We proceed by means of the value iteration algo-
rithm (see, e.g., Bertsekas and Shreve 1978, §9.5, Defini-
tion 9.10, and Proposition 9.14). Let v04�1n1u1m5 = 0 for
all m ∈ �, and note that v0 is trivially nondecreasing, con-
cave, and Lipschitz-1 continuous in m for each �1n, and u.
Assume that vk−14�1n1u1m5 is nondecreasing, concave, and
Lipschitz-1 continuous in m for each �1n, and u. Let

vk4�1n1u1m5

= min
{

m1csu+ ch�4n= 05+ Ɛ6c4Z4�1n557

+�41 − qn5Ɛ6v
k−14�4�1Z4�1n551n+ 1101m57

+�qn6cq − cs + vk−14�K1n+ 1101m57
}

1

and note that csu + ch�4n = 05 + Ɛ6c4Z4�1n557 is constant
with respect to m, and �41 − qn5Ɛ6v

k−14�4�1Z4�1n551n +

1101m57 is nondecreasing, concave, and Lipschitz-�41 − qn5
continuous in m by the induction assumption and the fact
that these properties are preserved when taking expecta-
tions. The induction assumption also yields that �qn6cq −

cs + vk−14�K1n + 1101m57 is nondecreasing, concave, and
Lipschitz-�qn continuous in m. Monotonicity and concav-
ity are preserved under minimization, so we have that
vk4�1n1u1m5 is nondecreasing and concave in m.

To obtain that vk4�1n1u1m5 is also Lipschitz-1 contin-
uous in m, the argument is similar, but a little more
care is required. Given two Lipschitz functions h1h′ with
Lipschitz constants c11 c2, respectively, min8h1h′9 is Lips-
chitz with constant c3 = max8c11 c29. In our context, the
left minimand is Lipschitz-1 continuous, and the right
minimand is Lipschitz-� continuous, with � < 1, so that
vk4�1n1u1m5 is also Lipschitz-1 continuous in m. To con-
clude our argument, we let k → � so vk4�1n1u1m5 →

V 4�1n1u1m5. �

Lemma 4. (i) HV 4�1n1u1m5 < m if and only if
M4�1n1u5 <m.

(ii) HV 4�1n1u1m5 >m if and only if m<M4�1n1u5.
(iii) HV 4�1n1u1m5=m if and only if m=M4�1n1u5.

Proof. We prove each of the three statements in
turn.

(i) If M4�1n1u5 < m, then V 4�1n1u1m5 < m. In turn,
V 4�1n1u1m5 < m implies it is optimal not to retire so
HV 4�1n1u1m5 = V 4�1n1u1m5 < m. If HV 4�1n1u1m5 < m,
we have that HV 4�1n1u1m5 = V 4�1n1u1m5 < m. Then the
fact that M4�1n1u5 < m follows by the definition of the
Gittins index (17), M4�1n1u5, and the fact that the Bellman
Equation (12), V 4�1n1u1m5, is concave and nondecreasing
in m with V 4�1n1u1m5≤m for all m.

(ii) It follows directly from the proof of (i) by reversing
the inequalities.

(iii) It follows combining claims (i) and (ii). �

Lemma 5. For each � and n, M4�1n105≤M4�1n115.

Proof. Because cs ≥ 0, it is immediate to see that
V 4n1�101m5 ≤ V 4n1�111m5 for each m. Then, given the
monotonicity property of the value function V 4�1n1u1m5
in m for each given n1�, and u (Lemma 3), we have that
M4�1n105 = sup8m2 V 4n1�101m5 = m9 ≤ sup8m2 V 4n1�1
11m5=m9=M4n1�115. �

Proof of Proposition 1, Part (i)
To prove Proposition 1, part (i), we first prove, in Lemma 6,
the optimality of an index policy in the case that cs = 0.
The lemma is an analogue of Theorem 1 in Bergemann and
Välimäki (2001) and Theorem 4.2 in Sundaram (2005). Its
proof follows along the lines argued in Sundaram (2005).

Lemma 6. If conditions of Proposition 1 hold and cs = 0, then
a policy �∗ is optimal if and only if

�∗4t5 ∈

{

i ∈S02 Mi4�i1 t1ni1 t1ui1 t5= inf
j∈S0

Mj4�j1 t1nj1 t1uj1 t5

}

1

a.s. for all t = 011121 0 0 0 0

Proof. Given the initial state 4Í1n1u5 such that �i10 ≡ �̂,
ni10 ≡ 0, and ui10 ≡ 1 for all i ∈S0, we have that all workers
have index M4�̂10115 ≡ m̂. Thus, at any time t there are at
most t workers that have been employed, so that there are
at most t indices with value different than m̂. Hence, for
each t = 011121 0 0 0, the infimum in Lemma 6 is attained, and
the index policy described in Lemma 6 is well defined.

Because cs = 0, the optimality equation (12) and the
expected discounted cost of continuing (13) are constant
with respect to u, i.e., V 4�1n101m5 = V 4�1n111m5 and
HV 4�1n101m5=HV 4�1n111m5 for all �1n1m. We also have
M4�1n105=M4�1n115, and the value of the Gittins index of
a given worker is independent from that of other workers.

To prove Lemma 6, we now introduce some additional
notation. We let �4j5 be the hiring and retention policy
that begins by employing worker j and continues accord-
ing to the index rule. We also let �4i1 j5 be the policy that
first employs worker i (with ability distribution �i10, experi-
ence ni10, and switching indicator ui10) as long as his Gittins
index does not exceed its original value, M4�i101ni101ui105.
Policy �4i1 j5 then employs worker j for at least one period,
until j’s index exceeds the original value of worker i’s
index, M4�i101ni101ui105. After employing worker i and j as
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described, policy �4i1 j5 continues according to the index
rule.

Lemmas 7–9 study the cost of the employment policies
�4i1 j51�4j1 i51�4i5, and �4j5. The lemmas hold for any ini-
tial state, 4Í1n1u5, such that there are infinitely many work-
ers, i, with �i10 = �̂, ni10 = 0, and ui10 = 1.

Lemma 7. IfMi =Mj , thenC0
�4i1 j54Í1n1u5=C0

�4j1 i54Í1n1u5.

Proof. By construction, the infinite-horizon expected dis-
counted cost of policy �4i1 j5 is

C0
�4i1 j54Í1n1u5

= Ɛ

[å̃i4Mi5−1
∑

t=0

�tCi1 t +

å̃i4Mi5+å̃j 4Mi5−1
∑

t=å̃i4Mi5

�tCj1 t

+

�
∑

t=å̃i4Mi5+å̃j 4Mi5

�tC�4t51 t

]

=HVi4Mi5+ Ɛ6�å̃i4Mi578−Mi +HVj4Mi5− Ɛ6�å̃j 4Mi57Mi9

+C
å̃i4Mi5+å̃j 4Mi5

�4i1 j5 4Í′1n′1u′51 (22)

where C
å̃i4Mi5+å̃j 4Mi5

�4i1 j5 4Í′1n′1u′5 is the expected discounted
(to t = 0) continuation cost of policy �4i1 j5 after having
employed worker i for å̃i4Mi5 periods and worker j for
å̃j4Mi5 periods. Because only workers i and j have been
employed, the new state, 4Í′1n′1u′5, differs from 4Í1n1u5
only in its ith and jth coordinates. Similarly,

C0
�4j1i54Í1n1u5

=HVj4Mj5+ Ɛ6�å̃j 4Mj 57
{

−Mj +HVi4Mj5− Ɛ6�å̃i4Mj 57Mj

}

+C
å̃j 4Mj 5+å̃i4Mj 5

�4j1 i5 4Í′1n′1u′50

Because Mi = Mj , we have that, at time å̃i4Mi5 +

å̃j4Mi5, the continuation costs C
å̃i4Mi5+å̃j 4Mi5

�4i1 j5 4Í′1n′1u′5 and

C
å̃j 4Mj 5+å̃i4Mj 5

�4j1 i5 4Í′1n′1u′5 are equal. Moreover, we can use
Lemma 4 to obtain that HVj4Mi5 = Mi = HVi4Mi5 and
HVi4Mj5=Mj =HVj4Mj5 so that

C0
�4i1j54Í1n1u5−C0

�4j1i54Í1n1u5

=Mi−Ɛ6�å̃i4Mi57Ɛ6�å̃j 4Mi57Mi−Mi+Ɛ6�å̃j 4Mi57Ɛ6�å̃i4Mi57Mi

=00 �

Lemma 8. If Mi = infkMk and Mi <Mj , then C0
�4i1j54Í1n1u5

<C0
�4j54Í1n1u5.

Proof. Policy �4j5 employs worker j for the first period
and then continues according to the index rule. After his
first performance, worker j is retained as long as he is index
minimal. When worker j is terminated, Lemma 7 shows
us that we can choose policy �4j5 to employ worker i and
continue with the index rule. Thus,

C0
�4j54Í1n1u5

=HVj4Mi5+Ɛ6�å̃j 4Mi57
{

−Mi+HVi4Mi5−Ɛ6�å̃i4Mi57Mi

}

+C
å̃j 4Mi5+å̃i4Mi5

�4j5 4Í′1n′1u′51

where C
å̃j 4Mi5+å̃i4Mi5

�4j5 4Í′1n′1u′5 is the expected discounted
continuation cost of policy �4j5 after having employed
worker j for å̃j4Mi5 periods and worker i for å̃i4Mi5 peri-
ods. The new state, 4Í′1n′1u′5, differs from 4Í1n1u5 only in
its jth and ith coordinates.

We now recall the representation (22) for the
expected cost of policy �4i1 j5, and we observe that the

expected continuation costs C
å̃i4Mi5+å̃j 4Mi5

�4i1 j5 4Í′1n′1u′5 and

C
å̃j 4Mi5+å̃i4Mi5

�4j5 4Í′1n′1u′5 are equal. From Lemma 4, we
know that HVi4Mi5 = Mi. Because Mi <Mj , we also have
Mi <HVj4Mi5. Then,

C0
�4i1 j54Í1n1u5−C0

�4j54Í1n1u5

= 6Mi −HVj4Mi5741 − Ɛ6�å̃i4Mi575 < 00 �

Lemma 9. If Mi = infkMk and Mi <Mj , then C0
�4i54Í1n1u5

< C0
�4j54Í1n1u5.

Proof. Because Mi = infkMk and Mi < Mj , Lemma 8
shows us that policy �4i1 j5 strictly improves policy �4j5.
We now argue that �4i1 j5 can be improved by employ-
ing a Gittins-index-minimal worker any time that is not
prescribed. The first worker that is employed by pol-
icy �4i1 j5, i, is Gittins-index minimal. At his termination,
the state of the system changes from the initial 4Í1n1u5
to 4Í′1n′1u′5, which differs only in the ith coordinate.
After the employment of worker i, policy �4i1 j5 prescribes
the employment of worker j . Its continuation value then
equals that of policy �4j5 when starting in state 4Í′1n′1u′5.
Lemma 8 then shows us that if j is not Gittins-index mini-
mal at 4Í′1n′1u′5, then it is strictly better to use the policy
�4l1 j5, where worker l is such that Ml = infkMk and Ml <
Mj . Iterating on this reasoning, we obtain that policy �4i5,
the index policy, is strictly better than any index policy that
begins with a worker that is not index minimal. �

We are now ready to complete the proof of Lemma 6.
If: Let � be any employment policy and consider the

policy �T such that �T 4t5 = �4t5 for all 0 ≤ t < T and
�T 4t5 = �∗4t5 for T ≤ t, where �∗ denotes the index rule.
At any time T , the system is in state 4Í′1n′1u′5, which is
different from the initial 4Í1n1u5 in at most T coordinates.
Thus, there are infinitely many workers whose state has
never changed, and whose index equals m̂, so that pol-
icy �T is well defined. Because the problem is discounted
4� < 15 and the one-period costs are uniformly bounded,
we can pick any � > 0 and choose T so that C0

�T 4Í1n1u5−

C0
�4Í1n1u5 < �. Then, according to Lemma 9, we might

improve policy �T by employing a Gittins-index-minimal
worker at time T −1. Thus, C0

�T−1 4Í1n1u5≤C0
�T 4Í1n1u5 and

also C0
�T−1 4Í1n1u5−C0

�4Í1n1u5 < �. Iterating back to T = 1,
we have that C0

�0 4Í1n1u5−C0
�4Í1n1u5 < �, where �0 is the

index policy �∗. Because � is arbitrary, we then have that
C0
�0 4Í1n1u5 ≤ C0

�4Í1n1u5. Because the choice of policy �
was also arbitrary, we can choose � to be any optimal pol-
icy so that C0

�4Í1n1u5≤C0
�0 4Í1n1u5≤C0

�4Í1n1u5. Thus, the
index policy �0 is optimal too.

Only if: Let � be an optimal policy and assume that �
is not an index policy. Let T be the first time at which �
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does not employ a Gittins-index-minimal worker, and con-
struct the policy �̂ such that �̂4t5 = �4t5 for all 0 ≤ t ≤ T
and �̂4t5 = �∗4t5 for all T < t, where, as usual, �∗ denotes
the index policy. Because both � and �∗ are optimal, pol-
icy �̂ is optimal too. However, by Lemma 9 we can strictly
improve on policy �̂ by selecting an index-minimal worker
at time T , and by doing so we obtain that policies �̂ and �
cannot be optimal, a contradiction. �

Having proved the optimality of a Gittins-index policy
when cs = 0, we now prove Proposition 1, part (i), which
allows cs > 0. The proof’s argument follows the sketch of
Theorem 2 provided in Bergemann and Välimäki (2001).

Proof of Proposition 1, Part (i). Let C0
�4Í1n1u1 ch1 cs5

be the cost function (8) that makes explicit the dependence
on the training cost, ch, and on the switching cost, cs . We
know from Lemma 6 that C0

�4Í1n1u1 ch105 is minimized if
and only if � is an index policy. Similarly, the same hap-
pens for C0

�4Í1n1u1 cs + ch105 because we are just imposing
a different training cost, cs + ch. For all policy � ∈ ç, we
then have that

C0
�∗ 4Í1n1u1 cs + ch105 ≤ C0

�4Í1n1u1 cs + ch105

≤ cs +C0
�4Í1n1u1 ch1 cs50 (23)

The first inequality holds by the optimality of policy �∗.
The second inequality holds because the switching cost, cs ,
is incurred every time the workers employed in two subse-
quent periods differ (not only at the first employment of a
new worker). The second inequality is met with equality for
all policies � that never recall previously employed workers.

If: We now show that if � is the index policy in Propo-
sition 1, part (i), then cs + C0

�4Í1n1u5 achieves the lower
bound (23). At time t = 0, all workers have the same index,
m̂, and the employer chooses a worker, i, at random from
the pool. Worker i is then employed for å̃i4m̂5 periods, and
his index Mi4�i1 å̃i4m̂51ni1 å̃i4m̂5105 > m̂. Because worker i is not
index minimal at time å̃i4m̂5, another worker, j , is employed.
This causes a transition of the state of worker i, from
4�i1 å̃i4m̂51ni1 å̃i4m̂5105 to 4�i1 å̃i4m̂5+11ni1 å̃i4m̂5+1115, with �i1 å̃i4m̂5 =

�i1 å̃i4m̂5+1, and ni1 å̃i4m̂5 = ni1 å̃i4m̂5+1. By Lemma 5 we know that
M4n1�105 ≤ M4n1�115 for each �1n. Because worker i in
state 4�i1 å̃i4m̂51ni1 å̃i4m̂5105 has index exceeding m̂, the same
happens to worker i when in state 4�i1 å̃i4m̂5+11ni1 å̃i4m̂5+1115.

Repeating this argument for all employed workers, we
see that the transition of u from 0 to 1 only increases the
indices of workers whose indices are greater than m̂ and,
in turn, does not change the dynamics of the index policy,
which then agrees with the index policy, �∗, used to achieve
C0
�∗ 4Í1n1u1 cs + ch105.
Only if: Assume that � is an optimal policy for

C0
�4Í1n1u1 ch1 cs5. From the if part of the proof, we know

that an optimal � satisfies

C0
�∗ 4Í1n1u1 cs + ch105= cs +C0

�4Í1n1u1 ch1 cs53

i.e., it achieves the lower bound (23). Then � is also an
optimal policy for C0

�∗ 4Í1n1u5, and Lemma 6 shows us that
� must be an index policy. �

Proof of Proposition 1, Part (ii)
This result is an analogue of Corollary 1 in Bergemann and
Välimäki (2001).

At t = 0, no worker has ever been employed and all the
workers have Gittins index m̂. Then, the sampling process
starts with a random selection of worker i from the station-
ary pool of candidates. Worker i is employed at all times, t,
such that Mi4�i1 t1ni1 t1ui1 t5= infj8Mj4�j1 t1nj1 t1uj1 t59≤ m̂. As
soon as i is discarded, Mi4�i1 t1ni1 t1ui1 t5 > m̂ and the sam-
pling process starts again. �

Proof of Proposition 1, Part (iii)
The result follows immediately from Lemma 1 and Propo-
sition 1, part (i). �

Proof of Proposition 1, Part (iv)
This result is an analogue of (2) in Bergemann and Välimäki
(2001).

Consider the retirement-option problem described in §3.
By Lemma 4(iii), we obtain m̂ = HV 4�̂10111 m̂5, and we
note that HV 4�̂10111 m̂5 is the total expected discounted
cost of employing a productive worker, i, with ability dis-
tribution �i10 = �̂, experience ni10 = 0, and switching indica-
tor ui10 = 1 for at least one period followed by an optimal
termination decision that depends on the retirement pay-
ment m̂. Recall now the definition of the optimal stopping
time å̃4�1n1u1m5 in (15) and the stopping-time representa-
tion for HV 4�1n1u1m5 in (16). Thus,

HV 4�̂10111 m̂5 = Ɛ

[

cs + ch +

å̃4�̂10111 m̂5−1
∑

r=0

�rc4Z4�r1 r55

+�å̃4�̂10111 m̂564cq − cs5�Q0
+ m̂7

]

0

Because m̂=HV 4�̂10111 m̂5, we obtain

41 − Ɛ6�å̃4�̂10111m̂575m̂ = Ɛ

[

cs + ch +

å̃4�̂10111 m̂5−1
∑

r=0

�rc4Z4�r1 r55

+�å̃4�̂10111 m̂54cq − cs5�Q0

]

0 (24)

At time t = 0 all workers i ∈ S0 have ability distribu-
tion �i10 = �̂, experience ni10 = 0, and switching indicator
ui10 = 1. Lemma 6 shows us that worker i can be optimally
retained at time t if and only if his Gittins index is minimal,
i.e., Mi4�i1 t1ni1 t1ui1 t5 ≤ m̂. Worker i stops being employed
at time å̃i4�̂10111 m̂5, either because he is terminated or he
quits. Because all workers i ∈S0 are identical, the sequence
8å̃i ≡ å̃i4�̂10111 m̂51 i = 112131 0 0 09 is iid. Set å̃0 ≡ 0, recall
that åi is the time at which worker i becomes unproduc-
tive, and let Qi10 = 8�2 å̃i4�̂10111 m̂5=åi9 be the set of sam-
ple paths for which worker i quits before he is terminated.
Then,

inf
�∈ç

C0
�4Í1n1u5

=−cs +Ɛ

[

�
∑

k=1

�
∑k−1

i=0 å̃i

å̃k−1
∑

r=0

�r
{

4cs +ch5�4r=05+c4Z4�r1r55
}

+�å̃k 4cq −cs5�Qk10

]
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=−cs +
�
∑

k=1

Ɛ6�
∑k−1

i=0 å̃i 7Ɛ

[å̃k−1
∑

r=0

�r 84cs +ch5�4r=05+c4Z4�r1r559

+�å̃k 4cq −cs5�Qk10

]

=−cs +m̂41−Ɛ6�å̃1 75
�
∑

k=1

Ɛ6�
∑k−1

j=0 å̃j 7=−cs +m̂1 (25)

where (25) follows from (24), and
∑�

k=1 Ɛ6�
∑k−1

j=0 å̃j 7 = 1 +

Ɛ6�å̃1 7+ Ɛ6�å̃1 72 + · · · = 41 − Ɛ6�å̃1 75−1. �

Proof of Proposition 2
We first prove the following lemma that uses the notion of a
likelihood-ratio (lr) order (Shaked and Shanthikumar 2007,
§1.C). Suppose that X is a random variable with probability
density function (pdf) fX and that Y is a random variable
with pdf fY . We write X ≤lr Y (X is stochastically smaller
than Y in the likelihood ratio sense) if fY 4z5/fX4z5 increases
in z over the union of the supports of X and Y .

Lemma 10. Let g2 �3 → � be such that for A ∼ �,
�4�1z546−�1 a75 = �4A ≤ a � Z = z5 is nondecreasing in z for
any given �. If, for any a≤ a′, �n4z � a′5/�n4z � a5 is nondecreas-
ing in z, then V 4�1n1u1m5 ≤ V 4�′1n1u1m5 for any � ≤lr �

′,
and for each given n1u1m.

The monotonicity of the Bayes operator ensures that the
Bayesian update implies that larger observations lead to
stochastically larger posterior distributions in some sense.
Note also that for several well-known families of dis-
tributions, the likelihood-ratio comparison can be simply
checked by comparing distribution parameters. Müller and
Stoyan (2002, Table 1.1) propose such comparison criteria
for several continuous and discrete distributions.

Proof of Lemma 10. To show monotonicity of the
value function (12) with respect to the likelihood-ratio
order, we proceed by means of the value iteration algo-
rithm (see, e.g., Bertsekas and Shreve 1978, §9.5, Defini-
tion 9.10, and Proposition 9.14). We fix n, u, and m, and
we let v04�1n1u1m5= 0 for all distributions �. Trivially,
we have that v0 is lr-nondecreasing in �. We then assume
that vk−14�1n1u1m5 ≤ vk−14�′1n1u1m5 for � ≤lr �

′, and we
write

vk4�1n1u1m5

= min
{

m1 csu+ ch�4n= 05+ Ɛ6c4Z4�1n557

+�41 − qn5Ɛ6v
k−14�4�1Z4�1n551n+ 1101m57

+�qn6cq − cs + vk−14�K1n+ 1101m57
}

0 (26)

In Equation (26), we first notice that the quantity csu +

ch�4n = 05 + �qn6cq − cs + vk−14�K1n + 1101m57 is indepen-
dent, and hence constant, with respect to � and �′.

Because �n4z � a′5/�n4z � a5 is nondecreasing in z for any
a ≤ a′, the definition of the likelihood-ratio order yields
that Z4a1n5 ≤lr Z4a

′1n5. From Shaked and Shanthikumar
(2007, Theorem 1.C.17) and the fact that � ≤lr �

′, we obtain
that Z4�1n5≤lr Z4�

′1n5. We now also have that Ɛ6Z4�1n57≤
Ɛ6Z4�′1n57 because the likelihood-ratio order 4≤lr5 implies
the usual stochastic order 4≤st5 (Shaked and Shanthikumar
2007, Theorem 1.C.1).

Finally, by noting that Z4�1n5≤lr Z4�
′1n5, we obtain that

�4�1Z4�1n55≤lr �4�1Z4�
′1n55≤lr �4�

′1Z4�′1n550

The first ordering holds because �4�1z5 is nondecreas-
ing in z (Shaked and Shanthikumar 2007, Theorem 1.C.8).
The second ordering holds because � ≤lr �′ (Shaked and
Shanthikumar 2007, Example 1.C.58). Then, the induc-
tion assumption and the monotonicity property of the
expected value yield that Ɛ6vk−14�4�1Z4�1n551n+1101m57≤
Ɛ6vk−14�4�′1Z4�′1n551n+1101m57. Thus, the right minimand
in (26) is lr-nondecreasing in �. The first minimand, m,
is constant with respect to �, so that vk4�1n1u1m5 ≤

vk4�′1n1u1m5, provided that � ≤lr �
′. Repeated application

of the value iteration algorithm then yields V 4�1n1u1m5 ≤

V 4�′1n1u1m5, for any � ≤lr �
′, as desired. �

Proof of Proposition 2. The posterior distribution of
A has distribution N4wp1�

2/p5. The normal distribution
has the monotone likelihood-ratio property required by
Lemma 10 (see, e.g., Müller and Stoyan 2002, Table 1.1).
An application of that lemma proves the desired monotonic-
ity for V .

For the Gittins index we have the following. Given � ∼

N4wp1�
2/p5 and �′ ∼ N4w′

p1�
2/p5 with wp ≤ w′

p, we have
that � ≤lr �

′, so V 4�1n1u1m5 ≤ V 4�′1n1u1m5 for any n1u,
and m. Then,

M4�1n1u5 = sup8m2 V 4�1n1u1m5=m9

≤ sup8m2 V 4�′1n1u1m5=m9=M4�′1n1u50 �

Proof of Theorem 1
For each given �, n, u, and m, recall the definition of the
stopping time å̃4�1n1u1m5 in (15). Also, recall that åi is
the time at which i becomes unproductive, and let Qi10 =

8�2 å̃i4�̂10111 m̂5=åi9 be the set of sample paths for which
worker i with state 4�̂10115 quits before he is terminated.
At time t = 0 all workers i ∈ S0 have �i10 = �̂, ni10 = 0,
and ui10 = 1. From the proof of Proposition 1, part (iv), we
know that the sequence 8å̃i4�̂10111 m̂51 i = 112131 0 0 09 is iid.
The 8åi1 i = 112131 0 0 09 are also iid, so that the Qi10’s are
iid too.

Because qi1n = q for all i ∈ S0 and all n, the proof of this
result hinges on showing that

Ɛ

[å̃4�̂10111m̂5−1
∑

r=0

�r+1q

]

= Ɛ6�å̃4�̂10111m̂5�Q0
71 (27)

which would imply that

Ɛ

[å̃4�̂10111m̂5−1
∑

r=0

�rc4Z4�r1 r55+�å̃4�̂10111m̂54cq − cs5�Q0

]

= Ɛ

[å̃4�̂10111m̂5−1
∑

r=0

�r 8c4Z4�r1 r55+�q4cq − cs59

]

0 (28)

This would give an alternative representation for
C0
�∗ 4Í1n1u5. Under the optimal employment policy,

C0
�∗ 4Í1n1u5 = −cs + Ɛ

[

�
∑

k=1

�
∑k−1

i=0 å̃i

å̃k−1
∑

r=0

�r
{

4cs + ch5�4r = 05

+ c4Z4�r1 r55
}

+�å̃k 4cq − cs5�Qi10

]
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where the å̃k ≡ å̃k4�̂10111 m̂5 for all k, å̃0 ≡ 0. Then, (28)
allows us to write C0

�∗ 4Í1n1u5 as

C0
�∗ 4Í1n1u5

= −cs + Ɛ

[

�
∑

k=1

�
∑k−1

i=0 å̃i

å̃k−1
∑

r=0

�r
{

4cs + ch5�4r = 05

+ c4Z4�r1 r55+�q4cq − cs5
}

]

= −cs + inf
�∈ç

{

Ɛ

[

�
∑

t=0

�t
{

4cs + ch5�4n�4t51 t = 05

+ c4Z4��4t51 t1n�4t51 t55+�q4cq − cs5
}

]}

0 (29)

The quantity �q4cq − cs5 is a shifting constant that does
not affect the minimization problem, so we have

C0
�∗ 4Í1n1u5

=−cs + inf
�∈ç

{

Ɛ

[

�
∑

t=0

�t84cs +ch5�4n�4t51t =05

+c4Z4��4t51t1n�4t51t559

]}

+
�q4cq −cs5

1−�
0 (30)

The solution to the minimization problem on the right-
hand side is the same as the solution to that mini-
mization problem if the training cost is cs + ch, and the
switching and quitting costs are set equal to 0. As a conse-
quence, Mi4ni1 t1 �i1 t1ui1 t1 ch1 cs1 cq5 < m̂4ch1 cs1 cq5 if and only
if Mi4ni1 t1 �i1 t1ui1 t1 ch + cs10105 < m̂4ch + cs10105 for all t ≥ 0.
To complete our argument, we then need to prove (27). The
left-hand side satisfies

Ɛ

[å̃4�̂10111m̂5−1
∑

r=0

�r+1q

]

=

�
∑

r=1

�rq�4å̃4�̂10111 m̂5≥ r51 (31)

and that the right-hand side satisfies

Ɛ6�å̃4�̂10111m̂5�Q0
7 = Ɛ6�å̃4�̂10111m̂5�4å̃4�̂10111 m̂5=å57

=

�
∑

r=1

�r �4å= r1 å̃4�̂10111 m̂5= r50 (32)

By using the shorthand å̃ ≡ å̃4�̂10111 m̂5, recalling that
å̃

d
= 1 + å4�∗5, and using the definition for the quitting

probability, q, in (4), we have

q�4å̃≥ r5 = �4Lr−1 = 1 �å4�∗5≥ r − 15�4å̃≥ r5

= �4Lr−1 = 1 � å̃≥ r5�4å̃≥ r5

= �4Lr−1 = 11 å̃≥ r51

where the last equality follows from the definition of
conditional probability. Recall from (10) that �4Lr−1 = 11
å̃ ≥ r5 = �4å = r1 å̃ ≥ r5, and because å = r implies å̃≤ r ,
we also have �4å = r1 å̃ ≥ r5 = �4å = r1 å̃ = r5, which
in turn implies that q�4å̃ ≥ r5 = �4å = r1 å̃ = r5, just as
needed in (31) and (32) to complete the proof of (27). �
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