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Supplements for the article:

Joint Stocking and Sourcing Policies for a Single—Depot, Single—Base, Two—Echelon Environments

with Repairable Parts: The Role of Flexibility

Appendix A: Formulation of the availability constraint

Proposition 1: For any stocking solution (S, S,) and base sourcing fraction, r; , the expected number

of backorders at the depot is,
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Proof:

By Palm’s Theorem, R, is distributed as Poisson with mean equal to A xry * Ly, i.e P(R, =n) =
e MToLo x (’1*”;1—*'“))11 Let BO(S) be the expected number of backorders at a location when its target
stocking level is S, BO(S) = Yn=s+1(n — S) * P(R = n) (when appropriate we suppress the location

subscript). The expected number of backorders at a location for any S is:
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The incremental reduction in expected backorders is equal to,
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When the central depot inventory is 0 then the expected number of backorders equals the number of

systems in repair, BOy(0) = Axry* Ly =A* (1 —ry) x Ly and
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Proposition 2: For any stocking solution (S;, S,) and base sourcing fraction, r;, the expected number

of backorders at the base is, BO1(Sy,S1) =Axry*xLi+Ax (A1 —r)*TT+Ax (1 —1ry) *x Ly —
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Proof:

The expected delay for replenishment orders at the depot is defined as Backorder delay time=BODT =

Bi‘)(s") The "effective” lead time at the base is ELT; = ry x Ly + 1o * TT + ry * BODT
To

It follows then that, BO,(S,,0) = A+ ELT,, where B0,(S,,0) refers to S; = 0. The expected
backorders at the base can be computed as, BO; (So,S;) = BO;(S,,0) + X1 ' 6(n) = A+ ELT, +
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After placing in the previous equation BODT, ELT; and ry = 1 — r;we find BO;(S;, S,) to be:
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Appendix B: Derivatives of BO,by the decision variables

Proposition 3: For any stocking solution (S;,S,), the partial derivative of expected backorders at the

base, with respect to r; is,
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We differentiate BO,by r; and get,
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Let us open up the following expressions:
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Let us define A = A+ (Ly — Lo — TT) + A % Ly * e~ A*Lox(1-70) 3o
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We notice that some of the expressions cancel, place probabilities instead of their corresponding

expressions and re-order the equation which results in:
A=2=2%(Ly = (TT + Lo * P(Ry > So — 1))

Now we place A and B0, (S,, 0) into the derivative to get a more compact expression:
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After placing (B3) and (B4) in the derivative, ordering and placing probabilities instead of their

corresponding expressions we receive:
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Placing A leads to the final expression, oy
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Proposition 4: B0, is convex and decreasing with S .
Proof:

Since the stock values are integers use forward differences equations as an approximation of the

W%H(x) and if h is fixed (non-zero) then the approximation of the

derivatives. f'(x) = }lll‘r(l)
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. In our case h is simply 1 and we

shall show the first and second differences of the base backorders by S;. Note that
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Proposition 5: BO, is convex and decreasing with S,.

Proof:
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We formulate the second derivative.
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Appendix C: Proof of Theorem 2

Case 1: Both the repair lead time and the repair cost are higher at the base then at the central depot, i.e.
L > Lo+ TT and ¢; = cy.

Proof for Case 1:

0B01(S,S1,71)

From Proposition 3 we know that p
1

> 0 so we are achieving a minimal value of backorders

by setting r; = 0 (for any given values of S,, S;). When r; = 0 the repair costs are also minimized

since we are repairing everything at the cheaper depot.

Case 2: Repair lead time is again smaller at the central depot but the repair cost is higher there, i.e. L, >
Lo+ TT and ¢; < c.

Proof for Case 2:

B0 (S,S1,11)

From Proposition 3 we know that oy
1

> 0. So if we didn't have to consider c¢; < ¢, the lower

repair costs at the base we would have chosen r; = 0. Let us define a relative value of @ = A * Cl%" <

0 and the objective function can be written as ming s, , A * %" +ax*r; + (S, +S,). Thus for a small

increase in ry, say to r; + Ar; we decrease the objective by Ar; * @ and “indirectly" we increase
(S;+Sy). (S;+S,) increase since by increasing r; we increase the effective lead time and the
backorders. We have to increase (S; +S,) to decrease the backorders to satisfy the availability
constraint (see Propositions 4 and 5). The maximal reduction of the repair cost if we increase r; from 0
to 1is a. When a — 0, the change in the objective function value is very small and the optimal solution
will be attained when r; — 0. When ¢ - —oo then r; —» 1 and we have to increase (S; + S,). So we

have to conduct a tradeoff analysis to find r;.



Case 3: Both the repair lead time and the repair cost are lower at the base than at the central depot, i.e.
L1 <Ly+TTand c¢; < cg.

Proof for Case 3:

dB01(Sy,S1,1m1)

Assume that L; < TT then from Proposition 3 we know that < 0 always and it is optimal

1
tosetr; = 1and S, = 0. This follows because with r; = 1 there are no repairs sourced from the depot
hence no value in putting inventory at the depot to reduce its delay time. Then we find the optimal value

of S, for the single site (base) problem. For a given Sy, S;, when TT <L, < Ly + TT then by

dB04(Sy,S1,71)

Proposition 3, may be positive or negative dependent upon the value of S, and r; (but not

S1). However, for any fixed level of S, + S; the shortest effective lead time and respectively minimal
number of backorders is when r; = 1 and S, = 0 and this is the dominant case. Since for r; = 1 the
repair costs are the lowest, this is the optimal solution. So, for this case the optimal solutionis: r; = 1

and S, = 0.

Case 4: Repair lead time is shorter at the base, but the repair cost there is higher,i.e. L; <Ly +TT
and ¢; > cy.

Proof for Case 4:

This case is the opposite of Case 2. We know by Case 3 that it is beneficial from an availability
standpoint to repair everything at the base. But the base repair cost is higher there so there is a tradeoff
that may dictate satisfying the availability constraint by increasing the stock level, and sometimes it
may be better to increase the fraction of repairs at the depot (i.e., to repair more at the more expensive
place, the depot). Let us use the definition of Case 2 so the objective is ming g . 4 * %" +axr +

€1=Co

(5;+Sp) and @ = A % > > 0. Thus for a small decrease in r;, say to r; — Ar; we decrease the

objective by Ar; = @ and we increase (S; + S,) through increasing the effective lead time and the
backorders. Thus, we have to increase (S; + S,) to satisfy the availability constraint (see Propositions

4 and 5).



The maximal reduction of the repair cost if we reduce r; from 1 to 0 is . When a — 0, the change in
the objective function value is very small and the optimal solution will be attained when r; = 1.
When a — oo then r; — 0 and we have to increase (S, + S,). So for the general case we have to

conduct a tradeoff analysis to find the optimal r;.
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Appendix D: Test data based on aerospace and defense program

(So,S1, 1) marks the algorithm's solution assuming a single LRU system and S, = 0.

Part p A Ly TT L, o [ Optimal (So,81,71) Objective
# policy cost

1 102058.5 29.6 025 | 002 | 040 | 153088 20962.4 Central (0,10,0) 1473146.9
2 84406.0 24.5 0.14 0.02 | 0.18 | 20560.2 21786.2 Central (0,5,0) 926098.5
3 13014.4 21.3 0.13 002 | 015 | 1921.2 1588.8 Mixed 0,4,1) 85858.8
4 39089.8 211 0.19 002 | 026 | 11068.9 16422.8 Central (0,6,0) 468004.9
5 4959.3 18.6 024 | 002 | 033 | 8995 459.2 Mixed (0,6,0.1) 45636.5
6 25204.3 18.0 0.18 002 | 013 | 32144 2990.4 Base 0,3,1) 129488.4
7 177458.8 15.4 0.18 0.02 | 021 | 54885.1 76533.5 Central (0,4,0) 1557689.1
8 12666.8 15.4 024 | 002 | 028 | 42257 4926.3 Central (0,5,0) 128419.8
9 71589.3 13.8 0.21 002 | 020 | 14532.6 8933.2 Base 0,4,1) 409212.7
10 18946.0 12,5 0.19 0.02 | 0.30 | 7909.2 7625.4 Mixed 0,3,0) 155508.5
11 42740.8 11.8 0.43 002 | 057 | 19383 2562.1 Central 0,7,0) 322086.4
12 24057.0 11.4 0.18 002 | 020 | 4615.6 6342.7 Central (0,3,0) 124658.3
13 6997.2 10.4 0.28 002 | 022 | 31924 33315 Mixed (0,3,0.52) 55040.9
14 25530.6 10.4 0.23 0.02 | 021 | 108375 10621.6 Base 0,31) 187296.8
15 110046.5 10.3 015 | 002 | 0.25 | 46585.5 38144.0 Mixed (0,2,0.26) 677531.0
16 25138.714 10.3 0.18 002 | 025 | 6585.3 9710.7 Central (0,3,0) 143072.7
17 8278.3 10.0 0.19 002 | 019 | 34735 5170.6 Mixed (0,3,0) 59527.3
18 81316.2 9.9 0.21 0.02 | 0.19 | 20303.4 12505.0 Base 0,21) 286343.1
19 20271.0 9.9 0.18 002 | 0.14 | 44975 3710.9 Base 0,2,1) 772174
20 274744 95 0.19 002 | 012 | 10790.3 8174.9 Base 0,1,1) 105294.7
21 4640.9 9.4 0.18 0.02 | 027 | 2160.3 1509.0 Mixed 0,3,1) 28057.2
22 4773.2 9.2 0.13 0.02 | 023 | 2159.7 1660.3 Mixed (0,2,0.78) 25854.2
23 9495.0 8.6 020 | 002 | 022 | 2550.2 2985.0 Central (0,2,0) 40906.0
24 16617.8 8.0 025 | 002 | 019 | 26108 3871.1 Mixed (0,2,0.34) 57593.9
25 5966.1 8.0 0.17 002 | 013 | 24412 3415.9 Mixed (0,1,0.63) 30328.4
26 7109.0 75 0.22 002 | 0.19 | 26188 2973.2 Mixed 0,2,0) 40906.0
27 125335.5 71 0.19 002 | 032 | 433151 44677.2 Central (0,2,0) 557912.3
28 120781.8 7.0 015 | 0.02 | 0.24 | 34494.6 17985.7 Mixed 0,2,1) 367835.2
29 14276.9 6.6 0.38 0.02 | 054 | 5980.8 81975 Central 0,30 82092.4
30 76191.7 5.2 0.11 0.02 | 0.16 | 3883.8 2357.8 Mixed 011) 88567.9
31 70079.3 5.1 0.12 002 | 013 | 214912 21847.1 Mixed (0,1,0) 180052.1
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