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Several predetermined variables that reflect levels of bond and stock prices appear to predict
returns on common stocks of firms of various sizes, long-term bonds of various default risks. and
default-free bonds of various maturities. The returns on small-firm stocks and low-grade bonds are
more highly correlated in January than in the rest of the year with previous levels of asset prices.
especially prices of small-firm stocks. Seasonality is found in several conditional risk measures, but
such seasonality is unlikely to explain, and in some cases is opposite to. the seasonal found in
mean returns.

1. Introduction

A question of long-standing interest to both academics and practitioners is
whether returns on risky assets are predictable. We ask, more specifically,
whether there are ex ante observable variables that reliably predict ex post
‘risk premiums’, defined as rates of return in excess of the short-term interest
rate.

To find that expected risk premiums on many assets change predictably
with a few common variables would complement nicely much of modern
finance theory. Asset pricing theories often relate (conditional) expected risk
premiums to (conditional) covariances in models of the form

K
E("f) = Z BiiYe (1)
k=1
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where B,, is the covariance between the return on asset i and the k th factor of
common risk, and vy, is the ‘factor premium’ for this source of risk.' If the
B..’s are relatively constant over time. then changes in expected risk premiums
for all assets are driven primarily by changes in the K factor premiums. and K
is presumed to be much less than the number of assets. The theories them-
selves do not, however, specify which ex ante observable variables might proxy
for the factor premiums.

Previous evidence of ex ante variables that predict risk premiums is confined
primarily to specific types of assets and specific time periods. For example. a
number of researchers have found that excess returns on common stocks are
negatively correlated with measures of expected inflation during the post-1953
period, but this result does not generalize to other types of assets or to other
subperiods.? Indeed, Fama (1981) argues that the observed correlation is
spurious.

What we lack is evidence that one or several variables consistently predict
risk premiums on a wide array of assets over a long period of time. There have
been steps in that direction, however. Recently, Campbell (1984) finds that, in
the 1959-1978 period, several measures constructed from interest rates on
U.S. Government securities predict risk premiums on Treasury bills, 20-year
Government bonds, and the value-weighted portfolio of New York Stock
Exchange (NYSE) common stocks. In addition, some of the strongest and
most perplexing evidence that expected risk premiums change in a predictable
fashion is that, for more than fifty years, average returns on many stocks and
corporate bonds have been significantly higher in January than in other
months.

This study pursues the topic of changing expectations with two primary
objectives. A simple valuation model suggests that levels of asset prices might
be inversely related to expected future returns. Thus, our first objective is to
construct variables that might proxy roughly for levels of asset prices and to
investigate whether these variables predict risk premiums on a wide range of
assets. Our second objective, given the apparent seasonality in unconditional
expected returns on many assets, is to investigate whether seasonality is also
important in estimating expected returns conditional on asset price levels.

'Examples of such models include the Capital Asset Pricing Model of Sharpe (1964) and
Lintner (1965); the intertemporal models of Merton (1973), Long (1974), Cox, Ingersoll and Ross
(1985), Lucas (1978), and Breeden (1979); and the Arbitrage Pricing Theory of Ross (1976). That
changing conditional expectations can be important for testing theories of asset pricing is
discussed by Hansen and Singleton (1983) and Gibbons and Ferson (1985).

2See, for example, Bodie (1976), Jaffe and Mandelker (1976), Nelson (1976), and Fama and
Schwert (1977). The negative correlation is particularly strong when the measure of expected
inflation is simply the Treasury bill yield, as in the last study, but the phenomenon is evidently
confined to the post-1953 period. For example, a regression of excess returns for the value-weighted
NYSE on the one-month T-bill yield produces a coefficient of ~2.63 with a r-statistic of —3.22 in
the 1953-83 period, but the same regression in the 1926-52 period gives a coefficient of —1.09
with a ¢-statistic of —0.31.
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We construct three ex ante observable vanables - one from the bond
market and two from the stock market - and find that they predict ex post
risk premiums on common stocks of NYSE-listed firms of various sizes,
long-term bonds of various default risks, and U.S. Government bonds of
various maturities. The same variables also predict differences between returns
on assets of the same type, such as small stocks versus large stocks, low-grade
versus high-grade bonds, and long-term versus short-term bonds. The bond-
market variable is the spread between yields on low-grade corporate bonds
and one-month Treasury bills. The stock-market variables are (1) minus the
logarithm of the ratio of the real Standard and Poor’s Index to its previous
historical average and (2) minus the logarithm of share price, averaged across
NYSE firms in the quintile of smallest market value. The three variables are
related inversely to levels of asset prices, and, consistent with a simple
valuation model, the variables are positively correlated with future returns.’

We find that the ex ante variables, particularly the small-firm price variable,
receive a significantly larger coefficient in January than in other months when
predicting risk premiums on small-firm stocks and low-grade bonds. In
essence, January returns on small-firm stocks and low-grade bonds are highest
following years when asset prices are lowest. The regression relation using the
small-firm variable is strong enough in January, in the 1928-1978 period, to
explain nearly thirtv-two percent of the variance of the difference between
returns on stocks of small and large firms in that month.

The seasonality found both in unconditional mean returns and in the
estimated regressions for conditional mean returns might suggest a tendency
for increased risk around the turn of the year. We first investigate seasonality
in several covariance-based risk measures, estimated unconditionally as well as
conditional on the small-firm price variable. Based on the conditional esti-
mates, there is at best a weak positive January seasonal in the market beta of
the difference in returns between small and large firms. We also investigate
seasonality in the ‘PREM’ beta, which Chan, Chen and Hsieh (1985) claim
explains much of the firm-size effect. We find that the PREM beta for the
same small-versus-large-firm return difference is reliably lower in January than
in February through December. This result is somewhat unexpected, given
that most of the size effect occurs in January. A significant positive January
seasonal that we find in the observable ex ante default premiums of one-month
private-issuer securities (e.g., commercial paper) suggests an increased risk of
rare negative outcomes around the turn of the year. This last result could
indicate that January returns were high during the sample period, at least in
part, because rare negative outcomes, whose risk was perceived ex ante, were
unrealized ex post.

3Rozefl (1984), relying on different motivations. finds that an ex ante variable based on the
dividend yield of the market is correlated with future excess returns.
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The paper is organized as follows. Section 2 describes the ex ante variables,
and section 3 investigates their ability to predict risk premiums on common
stocks, long-term corporate bonds, and U.S. Government bonds of various
maturities. Section 4 addresses the issue of seasonality, and section 5 investi-
gates the behavior of one-step-ahead regression-based forecasts. Section 6
concludes the paper with some suggested directions for future research.

2. The ex ante variables

Our basic objective is to ask whether current levels of asset prices can
predict subsequent rates of return. An intuitive motivation for this investiga-
tion comes from a simple rational valuation model,

p=E(c)/d, (2)

where p is an asset’s price, E(c) is the expected future cash flow, and 4 is a
discount rate. Versions of (2) have motivated numerous studies of asset price
variability., For example, much of the ‘ variance-bounds’ literature asks whether
prices vary too much to be explained only by changes in expected cash flows,
given a constant discount rate [e.g., Leroy and Porter (1981), Shiller (1981),
Grossman and Shiller (1981)]. Chen, Roll and Ross (1983) use (2) to suggest
that the factors contributing to stock-price variability can be viewed either as
factors that change expected cash flows or as factors that change discount
rates.

The discount rate depends, at least in part, on expected holding period
returns for subsequent periods. In general, the discount rate will be an
increasing function of expected future returns.® If expected returns change
over time, then variation in the price can reflect variation in expected returns
(through the discount rate). Much of the variation in asset prices is likely to
arise from changes in expected cash flows. Kleidon (1983) models expected
cash flows and shows that they can explain most of the variation in stock
prices, holding the discount rate constant. Thus, prices themselves are, at best,
capable of providing the researcher with noisy measures of variation in

4In some cases, the discount rate will simply be an average of expected future returns, such as
when expected future returns are non-stochastic [e.g., Fama (1977)]. In more general models, (2)
would include covariances between expected returns and cash flows, such as the valuation
equation in Cox, Ingersoll and Ross (1985),

P = E{fxc(s)e_‘/“”’ds} ,
t

where the ‘discount’ rate d(s; t) depends on the expected return for time u, 8(u). through

d(s;t)='/:jB(u)du.
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expected returns. Nevertheless, whether this low signal-to-noise ratio destroys
any ability of prices to predict returns is an empirical question.

To investigate the general question raised above, we attempt to construct
variables that reflect levels of asset prices. Such an exercise is, by nature,
somewhat arbitrary. Asset pricing theories generally do not point to specific
variables as predictors. One could, in principle, use each asset’s own price to
predict that asset’s future returns.’ Our focus, suggested by models as in (1), is
on whether there exist common movements in expected returns or risk
premiums. Therefore. we construct three ex ante observable variables that are
inversely related to levels of bond and stock prices. Given the discussion
above, these variables should be positively associated with future returns if
expected returns change, holding other things constant.

The first vanable is the difference between yields on long-term under-BAA-
rated (low-grade) corporate bonds and short-term (approximately one-month)
U.S. Treasury bills.® The annual bond yield is divided by twelve, and the yield
spread is stated on a monthly basis.

This ex ante yield variable, which reflects the level of low-grade bond prices
(relative to promised payments), shares its motivation with another bond-
market variable proposed by Chen, Roll and Ross (1983). They examine the
correlation between stock returns and the contemporaneous (ex post) dif-
ference between returns on low-grade bonds and U.S. Government bonds.
Chen, Roll and Ross argue that changes in the relative prices of low-grade
bonds proxy for changes in expected risk premiums. We address the underly-
ing proposition that the Jevel of prices is related to the level of expected risk
premiums. Chen, Roll and Ross find that stock returns are positively cor-
related with the contemporaneous bond return spread, and their result is
consistent with an increase in expected risk premiums (low bond return
spread) accompanying a decrease in the stock price (low stock return). Such a
result is also consistent, however, with constant expected risk premiums. The
positive return correlation could also reflect a negative correlation between
expected cash flows on stocks and the probability of default on low-grade
bonds, where the risk premium (discount rate) is unchanged. The ex ante yield
variable allows a direct test of whether expected risk premiums change.

The second variable, from the stock market, is minus the logarithm of the
ratio of the real Standard and Poor’s Composite Index (the ‘S&P’) to its
previous long-run level. That is, we construct the variable —log(SP,_,/SP,_,),
where SP,_, is the level of the index at the end of month ¢ — 1, deflated by the

3In a cross-sectional study, Miller and Scholes (1982) propose the reciprocal of share price as a
proxy for expected returns.

$The below-BAA vyield series is obtained from Ibbotson (1979). To construct the Treasury bill
yield, we use the bill on the CRSP U.S. Government Securities File having the maturity closest to
thirty days. The monthly yield is computed as thirty times the daily yield to maturity. Prior to
1931, we use the coupon-paying bond with maturity closest to thirty days.
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Consumer Price Index, and SP,_, is the average of the year-end real index
over the 45 years prior to the year containing month ¢ — 1. Stating the variable
relative to a historical average essentially produces a ‘detrended’ series without
incorporating ex post information.

Using the S&P here provides an interesting complement to the variance
bounds studies mentioned earlier. Those studies essentially ask whether all of
the variation in the S&P could arise from changes in expected cash flows
(dividends)., whereas this study asks whether any of the variation in the S&P is
associated with changes in expected future returns (or discount rates).

The third variable is also from the stock market, but it attempts to capture
the most volatile segment - small firms. Chan, Chen and Hsieh (1983) report
that returns on small firms exhibit the greatest ex post sensitivity to overall
changes in expected risk premiums (as measured by the bond return spread
used by Chen, Roll and Ross). One simple hypothesis that is consistent with
their evidence is that small stocks’ own expected risk premiums are the most
volatile. That is, when expected risk premiums on all assets change, the
expected risk premiums on small stocks change the most, thereby producing
the highest ex post return sensitivity. This argument also suggests that the level
of small stock prices may provide a sensitive ex ante barometer of expected
future risk premiums.

The sample period for our regressions begins in 1928, and, unlike the S&P,
small-firm price data is not available for a long period prior to that time.
Therefore, instead of detrending a wealth index with prior data, as is done
above with the S&P, we construct a simpler measure: minus the natural
logarithm of share price, averaged equally across the quintile of firms with the
smallest market values on the NYSE. This variable exhibits no detectable
trend, but it captures the variation in small-stock prices. The first difference in
the series is essentially minus the capital gain return on an equally weighted
portfolio.

Fig. 1 plots the monthly values of the three ex ante variables described
above. (The two stock-price variables are rescaled in order to show all three
series on the same graph.) The three series behave similarly, which suggests
that one might view any of the three as proxying (inversely) for a general level
of stock and bond prices.” As the regressions that follow will demonstrate, all
three series appear to be positively associated with expected future risk
premiums.

The time series properties of the three ex ante variables are similar. The
first-order autocorrelations are close to 1.0: 0.965 for the yield variable, 0.989
for the S&P variable, and 0.988 for the small-firm variable. The decline in
higher-order autocorrelations is, for all three series, monotonic and nearly

Correlations between monthly levels range from 0.71 to 0.84; correlations between monthly
first differences range from 0.34 to 0.75.
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Fig. 1. Monthly time series of the vield variable (solid line), the S& P variable (long dashes), and
the small-firm price variable (short dashes). (The latter two are rescaled.)

geometric. For example, the lag 12 autocorrelations are 0.750, 0.854, and
0.823, and the lag 36 autocorrelations are 0.459, 0.651, and 0.488 (for the yield
variable, the S&P variable, and the small-firm variable, respectively). Thus,
the first-order autocorrelations are high, but the decay in autocorrelations is
suggestive of a stationary autoregressive process. [See Box and Jenkins (1970,
p.- 57).] A test for a unit root based on the von Neumann ratio gives p-values
of 0.01 for the yield variable, 0.32 for the S&P variable, and 0.24 for the
small-firm variable. In other words, for the yield variable we can reject the
unit-root hypothesis in favor of the alternative that the autocorrelation is less
than one, whereas a unit root cannot be rejected at conventional significance
levels for the two stock-price variables. As Dickey and Fuller (1981) note,
however, this test has low power against the alternative that the autocorrela-
tion is slightly less than unity (although, of the tests they examine, the von
Neumann ratio has the highest power against this alternative). Thus, the three
ex ante variables are highly autocorrelated, but it is difficult to make reliable
inferences about their stationarity.

If expected returns change over time, particularly expected returns in excess
of the riskless rate (risk premiums), then asset pricing theories suggest that
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Fig. 2. Monthly time series of the standard deviation of the S&P.

these changes can be associated in part with changes in risk. Specific measures
of risk vary across pricing models, but a simple measure is the variance of the
return on the market portfolio. Merton (1980) entertains a model in which the
expected risk premium on the market is proportional to market variance, and
he uses the variance of the S&P as a proxy for market variance. Fig. 2 plots
the monthly standard deviation of the S&P return, beginning January 1928,
where the monthly standard deviation is the within-month standard deviation
of daily returns.®

A comparison of figs. 1 and 2 suggests some positive association between
the ex ante variables and the S& P standard deviation. For example, standard
deviations were high and asset prices were low (the three ex ante variables
were high) in the early 1930’s and again toward the end of that decade.’

8As in Merton (1980), the monthly variance is the sum of squared differences in log prices,
where each squared difference is divided by the number of days between trades (to adjust for
holidays and weekends).

9Correlations between the standard deviation and the ex ante variables range from 0.41 to 0.63;
first differences are correlated from 0.04 (the yield variable) to 0.32.
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Leverage-related bankruptcy risks may also be inversely related to the level of
stock prices, especially if the levels of nominal debt vary slowly through time.
This study does not investigate the ability of specific risk measures to predict
returns.!® Qur basic objective. as motivated earlier. is to investigate whether
expected returns vary with levels of asset prices. Nevertheless, one might
reasonably argue that such variation in expected returns at least partially
reflects changes in risk.

3. Predicting risk premiums with the ex ante variables

3.1. Risk premiums on long-term bonds and common stocks

We first examine risk premiums on seven portfolios formed from four bond
and three stock categories that span a wide range of risk and return. The
portfolios are:

LTGOV =long-term U.S. Government bonds; returns are compiled by
Ibbotson and Sinquefield (1982) from the U.S. Government Bond
File at the Center for Research in Security Prices (CRSP) at the
University of Chicago;

LTCORP = high-grade long-term corporate bonds; returns are compiled by
Ibbotson and Sinquefield (1982) from data supplied by Salomon
Brothers (1946-1981) and Standard and Poor (1925-1945);

BAA = BAA-rated long-term corporate bonds; returns are compiled by
Ibbotson (1979);

UBAA = under-BAA-rated long-term corporate bonds; returns are com-
piled by Ibbotson (1979);

Q5 = common stocks making up the fifth quintile of firms ranked by

size on the New York Stock Exchange (NYSE), i.e., the quintile
containing the largest firms trading on the NYSE;!!

Q3 = common stocks making up the third quintile of size on the
NYSE;

Q! = common stocks making up the first quintile of size on the NYSE,
i.e., the quintile containing the smallest firms trading on the
NYSE.

10French, Schwert and Stambaugh (1985) investigate the ability of the S&P standard deviation
to predict stock returns.

liStock returns data are obtained from CRSP. To create quintiles, we rank in ascending order
all NYSE firms on their market value of common equity (the product of price per share and
number of shares outstanding) at the end of the previous year. Firms within a quintile are
weighted, for a given month ¢, by placing equal weights on each stock at the beginning of month
t - 1. The month ¢ weights are then the second-month weights in a two-month buy-and-hold
strategy. This reduces the bid-ask bias, as discussed by Blume and Stambaugh (1983).
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Data availability confines us to the period from January 1928 to November
1978.12

Table 1 presents summary statistics for the monthly risk premiums in the
overall period and in two approximately equal subperiods. Risk premiums are
computed for each portfolio as the difference between the monthly return on
the portfolio and the monthly return on the shortest-term Treasury bill with at
least one month to maturity, as compiled by Ibbotson and Sinquefield (1982)
from the CRSP U.S. Government Bond File. We list the assets by decreasing
grades for the bonds and then by decreasing firm size for the stocks. Both the
averages and the standard deviations of the risk premiums (columns 1 and 2)
tend to increase monotonically as one moves down the columns, although
there are several exceptions. The correlations between premiums on different
assets exhibit a similar property, in that as assets become farther apart on the
scale, correlations decline. For example, the Government bonds have their
highest correlation with the high-grade corporate bonds and then display
progressively lower correlations with the lower-grade bonds and the stocks.
The risk-premium autocorrelations are in general significantly larger than zero
only at lags one and nine, and they are more pronounced for the lower-grade
bonds and smaller stocks. The first-order autocorrelations could reflect non-
synchronous trading [Fisher (1966)], or they could be one indication that
expected premiums change over time.

We regress monthly risk premiums for each of the seven portfolios on the
previous month-end value of each of the three ex ante variables: the yield
variable ( y,gp4 — Vrg)- the S&P variable (—log SP/SP), and the small-firm
variable (— log Pj,). The regressions are estimated using weighted least squares,
where the weight used in each regression is the reciprocal of the within-month
standard deviation of the daily S&P (displayed earlier in fig. 2). An investiga-
tion of the residuals from the unweighted regressions reveals significant
heteroscedasticity, especially for the two lower-grade bond portfolios and the
stock portfolios. In those cases, the heteroscedasticity test of White (1980)
produces chi-square statistics well above conventional significance levels.

The S&P standard deviation provides a reasonably precise estimate of
within-month volatility, and it is used as a weight in all of the regressions
under the assumption that volatilities on these seven long-term asset portfolios
move together through time. In order to provide some empirical support for
this assumption, we compute month-by-month estimates of standard devi-
ations for each of the seven portfolios, where the estimate for a given month is
based on returns for that month, the previous six months, and the following
six months. For the two lower-grade bond portfolios and the three stock

12Most of our series begin in 1,/1926, but the regressions reported below use weighted least
squares, and the weights (the S&P standard deviation) begin in 1/1928. The low-grade bond
series (BAA and below BAA) end in 11 ,/1978.
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portfolios, the correlations between these ‘rolling’ standard deviations based
on monthly data and the within-month standard deviation of the daily S&P
range from 0.72 to 0.80. When, for those portfolios, White's test is applied to
the regressions weighted by the S& P standard deviation, the test statistics are
considerably lower than in the unweighted regressions and are often less than
conventional significance levels. For the long-term U.S. Government bonds
and the high-grade corporate bonds, the correlations between the rolling
standard deviations and the S&P standard deviation are 0.14 and 0.17, and
White’s test gives similar results in both the weighted and unweighted regres-
sions (homoscedasticity is rejected in the first subperiod but not in the
second). In the case of those two portfolios, however, the coefficient estimates
and standard errors are very similar for both the weighted and unweighted
regressions, so we simply report the weighted regressions for all seven
portfolios. We compute standard errors based on the heteroscedasticity-con-
sistent method of White (1980) in order to allow for any heteroscedasticity
remaining in the weighted regressions.!?

Table 2 reports for each regression the coefficient estimates, the ¢-statistics
(based on the heteroscedasticity-consistent standard errors), the adjusted
R-squared, and the first-order autocorrelation of the residuals. In the overall
period, the estimated coefficients on all three ex ante variables are positive for
all assets. The f-statistics on these coefficients range from 3.42 to 6.88 in the
bond regressions and from 1.16 to 2.27 in the stock regressions. A test of
whether the coefficients jointly equal zero across the seven portfolios gives
F-statistics between 8.17 and 11.4 with 7 and 2086 degrees of freedom, thereby
rejecting strongly equality to zero (these F-statistics are not adjusted for
heteroscedasticity). Thus, the evidence appears to support the hypothesis that
expected risk premiums change over time and that levels of asset prices
contain information about expected premiums, especially for the bond port-
folios.

The subperiod results, with a few exceptions, tend to confirm the results for
‘the overall period. The F-test of joint equality to zero gives p-values less than
0.01 in both subperiods for all three ex ante variables. As in the overall period,
the t-statistics are higher in the bond regressions. The s-statistics in the stock
regressions are, in both subperiods, typically less than conventional signifi-
cance levels, and the estimates themselves are sometimes negative in the
second subperiod.

The weak results for the stock portfolio regressions in table 2 are somewhat
misleading. As we show later in section 4, the predictive ability of these
ex ante variables is seasonal, particularly for the low-grade bonds and the
stocks of the medium-sized and small firms. When this seasonality is taken

3 Hsieh (1983) recommends using the adjusted standard errors even when homoscedasticity is
not rejected by White's test.
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Table 2
Regressions of monthly risk premiums on the ex ante variables.?
(Russer—Rpg)i=apg+a X, +u,.
X1 =(Vusga —Vrade-1 X =-log(SP, (/SP, 1 X, =(-loe Py, ,
Asset® a, a,  R¥/B(w)  a, a,  R/pu)y  a, a,  R/plu)
1/1928-11/1978
Bonds
LTGOV -0.0052 1.029 0.024 0.0017 0.0048 0.019 00136 0.0061 0.039
(-3.66)% (434) -0010 (2.40) (3.63) -0.004 (423) (414 -0.01R
LTCORP -0.0034 0.813 0.020 0.0021 0.0039 0016 0.0128 0.0034 0.040
(-273) (3.92) 0.109 (3.1%) (339 0.116 (4.62) (4.30) 0.102
BAA -0.0032 1.201 0.055 0.0050 0.0057 0.045 00175 00066 0.074
(—294) (5.7 0.107 (7.19) (5.37) 0.117 (6.89)  (6.01) 0.103
UBAA —0.0047 2189 0078 0.0100 00103 0.062 0.0305 00110 0.08%8
(-323) (6.20) 0.158 (6.92) (5.43) 0.159 (7.5L)  (6.87) 0.153
Stocks
Q5 0.0072 1297 0006 00159 0.0061 0005 00266 00059 0.006
23 22n 0.029 (7.09 (1.90) 0.033 (3.7%  (1.99 0.034
Q3 0.0120 1.118 0.002 00197 0.0056 0.002 0.037t 0.008 0.008
(G31) (1.49) 0106 (699 (1.38) 0108 (407) (226)  0.108
Q1 0.0164 1.436 0001 0.0266 0.0077 0.002 0.0598 0.0136 0014
(3.33)) (116 0.158 (544) (121 0159 (3.37) (223 0.158
1/1928-12/1952
Bonds
LTGOV ~ —0.0061 1089 0.097 00011 00041 0.011 0.0082 0.0037 0.062
(—341) (465 0058 (1.84 (1.87) 0.106 (5.23) (4.05) 0082
LTCORP -0.0022 0.586 0.040 0.0016 0.0012 -0001 00070 00028 0.053
(—1.33) (2.58) 0.144 (297) (0.78) 0.167 (5.57) (3.83) 0.137
BAA —-0.0027 1.084 0.044 0.0046 0.0057 0.010 0.0130 0.0044 0.041
(-147) (3.79) 0227 (621 (2.52) 0.238 (541 (3.37) 0.223
UBAA -0.0045 2.314 0.051 00112 0.0186 0.033 0.0273 0.0085 0.040
(-134) (437) 0165 (667 (3.30) 0160 (5.11) (345  0.158
Stocks
Q5 0.0162 0.194 -0.003 00178 0.0075 -0001 0.0215 0.0020 -0.002
247y (0.2 0.065 (7.24) (0.81) 0.068 (2.81) (0.54) 0.065
Q3 00129 1279 0.001 00217 0.0123 0000 0.0362 00076 0.005
(1.76) (115 0.102 (6.87) (1.10) 0.103 (3.44) (1.39) 0.102
Q! 0.0125 2583 0002 00306 0.0321 o006 0.0722 0.0216 0.020
(1.18) (.37 0.176 (5.40) (1.49) 0.177 (298) (2.06) 0.174
1/1953-11/1978
Bonds
LTGOV  -0.0059 1367 0.008 0.0037 0.0069 0.012 0.0255 0.0106 0.037
(-230) (1.62) -0018 (1.56) (2.49) ~-0018 (2.64) (2.76) —0.038
LTCORP -0.0049 1394 0.012 0.0040 00059 0.011 0.0257 00103 0.046
(-227) (1.98) 0.098 (1.78) (2.33) 0.105 (3.04) (3.09 0.088
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Table 2 (continued)

X,_1=(yyspa = yrede-r  Xo1=—log(SP,_/5P,_) X,_,=(-TogPyp,),_,

Asset® aq a,  RYB(u) ag a,  RY/py(u) g a,  RY/p(u)
BAA -0.0041 1568 0.029 0.0061 0.0070 0.029 0.0256 0.0097 0.069
(—-2.37) (2.93) 0045 (3.7 (3.58) 0.057 (405 (3.88) 0.036

UBAA -0.0023 1238 0.010 0.0053 0.0049 0.007 0.0279 0.0103 0.050
(—1.07) (1.79) 0.145 (2.3%) (1.86) 0.151 (4.16) (4.00) 0.128

Stocks

Q5 0.0064 1352 0.000 0.0098 -0.0006 —0.003 0.0240 0.0053 0.000
(1.44) (1.05) 0.000 (1.92) (-0.1D 0.007 (1.38) (0.78%) 0.008

Q3 0.0164 -0.654 -0.003 00127 -0.0022 —-0.003 00338 0.0074 0.001
(305) (-042) 0110 (217) (=031)  0.108 (1.66) (0.94)  0.109

Q1 0.0277 -2932 0.003 00120 -0.0088 -0.003 0.0356 0.0063 —0.001

(4.53) (—-161) 0.131 (1.50) (-0.9% 0.127 (1.34) (0.62) 0.132

#Regressions are estimated using weighted least squares. The weight used in each equation is
1/0sp, where agp is the within-month standard deviation of daily returns on the Standard and
Poor’s Composite Index. The ex ante variables are defined as follows: (Y, 5,4 — Yrg) = the
difference between yields on long-term under-BAA-rated corporate bonds and short-term (ap-
proximately one-month) U.S. Treasury bills; log(SP/SP) = natural logarithm of the ratio of the
real S&P Composite Index to its average value over the previous 45 years; — log Py, = minus the
natural logarithm of share price, averaged equally across the quintile of smallest market value on
the NYSE. ] '

PAsset categories are: LTGOV =long-term U.S. Government bond index constructed by
Ibbotson and Sinquefield (1982); LTCORP = long-term high-grade corporate bond index con-
structed by Ibbotson and Sinquefield (1982); BAA = BAA-rated corporate bond index con-
structed by Ibbotson (1979); UBAA = under-BAA-rated corporate bond index constructed by
Ibbotson (1979); Q5 = quintile of largest NYSE stocks; Q3 = middle quintile of NYSE stocks:
@I = quintile of smallest NYSE stocks.

“R? is the adjusted R-squared, and §,(u) is the first-order autocorrelation of the residuals (both
statistics are based on the weighted residuals).

4 Heteroscedasticity-consistent ¢-statistics in parentheses [White (1980)].

into account, the positive relation between the ex ante variables and ex post
- risk premiums becomes stronger.

The regressions reported in this study share a problem common to many
empirical studies in finance and economics. The independent variable, al-
though predetermined with respect to the dependent variable, is stochastic and
most likely correlated with past regression disturbances. This phenomenon
leads to finite-sample bias in the regression coefficients and the ¢-statistics, and
the bias can be non-trivial even in samples of several hundred observations if
the independent variable has both high autocorrelation and a high correlation
with the past regression disturbances. In this application, where the correlation
between the past regression disturbances and the independent variable is
probably negative, the slope coefficient is biased upwards. The bias in the
regressions reported in table 2 will be greatest when an asset’s own previous
price level is used to predict that asset’s return (e.g., when the below-BAA
return is regressed on the yield variable). When changes in the price-level
variable are not highly correlated with the dependent variable, then the bias is
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small (e.g., when the Government bonds are regressed on the small-firm
variable).!'* Given the investigation reported in Stambaugh (1986), most of the
t-statistics for the overall-period slope coefficients in table 2 still allow rejec-
tion of equality to zero at conventional significance levels, particularly in the
bond regressions. As noted, the weakest results occur in the stock regressions
but the results to be discussed later indicate that the predictive ability in those
regressions is strong in one month of the year (January). The latter result is
not significantly affected by the bias described here.

When the regressions reported here are estimated instead using the same
ex ante variables lagged several months, the results are very similar to those
reported, with the explanatory power dropping gradually as the lags increase.
We do not report the results of regressing risk premiums on two or more of the
ex ante variables simultaneously. The variables are sufficiently collinear so
that, in such regressions, no single variable produces reliably nonzero coeffi-
cients.

3.2. Term premiums on U.S. Government bonds

The previous section examines relatively long-lived assets whose future
nominal payoffs possess different amounts of uncertainty. Table 2 begins with
default-free Government bonds and then, roughly speaking, moves progres-
sively through the spectrum of payoff uncertainty. We turn next to default-free
instruments of different maturities. This section investigates whether the
variables that predict risk premiums in the previous section also predict risk
premiums, or ‘term premiums’, of U.S. Government bonds and notes with
various maturities. Following Fama (1984) a term premium is defined as the
difference between a bond’s return and the return on a one-month T-bill.

Our returns data consist of the file constructed by Fama (1984) from the
CRSP U.S. Government Bond File. The file contains monthly returns, begin-
ning in January 1953, on porifolios of notes and bonds (no bills) formed
according to the ten maturity classifications listed in table 3 (second column).
The first nine portfolios exclude ‘flower’ bonds with special estate tax features.
The tenth portfolio is the same Ibbotson-Sinquefield portfolio used in the
previous section. That portfolio contains the bond with maturity closest to
twenty years, but the highest-priced (relative to par) flower bond is chosen
when no ordinary bond of sufficient maturity exists.

We regress term premiums for each of the ten bond portfolios on the three
ex ante variables described earlier. The regressions are estimated by ordinary
least squares, and the t-statistics again reflect standard errors based on the

14g1ambaugh (1986) investigates the bias when the independent variable obeys a first-order
autoregressive process. He finds that the (absolute) bias increases with both the autocorrelation in
the independent variable and the correlation of the regression disturbance with the innovation in
the independent variable.
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heteroscedasticity-consistent adjustment of White (1980). Table 3 displays the
results. The coefficient estimates on all three variables are positive for all
maturity classifications. and most are reliably non-zero. An F-test of whether
the coefficients jointly equal zero gives p-values of 0.02 for the vield variable,
0.10 for the S&P varnable, and 0.02 for the small-firm variable. These results
support the hypothesis that expected term premiums change over time. al-
though the R-squared values are typically only one to two percent. Moreover,
the movements in expected term premiums are evidently associated with
movements in the expected risk premiums on the other assets examined
earlier. In other words, there appear to be common movements in expected
returns for assets across a wide range of characteristics, and these movements
are reflected, in part, by levels of asset prices.

The (unconditional) average premiums. also shown in table 3. are highest
for the third portfolio (12 to 18 months) and then decrease as maturities
lengthen. This pattern of average premiums in the post-1953 period is noted
by Fama (1986), but. as Fama concludes, the average premiums are not
reliably different across maturities. The variability of the longer-maturity bond
returns makes it difficult to reject many hypotheses about the shape of the
maturity structure of expected returns.

Both the intercept and slope coefficients in table 3 tend to vary monotoni-
cally with maturity, unlike the average premiums, but here it is also difficult to
reject equality of conditional expected premiums across portfolios, especially
when the alternative hypothesis is vague or unspecified. An F-test for equality
of the slopes and intercepts across the ten maturities gives a p-value of 0.06
for the yield-variable regressions, but the test gives much larger p-values for
the other two ex ante variables. Similarly, testing for equality of only the
slopes gives a p-value of 0.02 for the yield variable but larger p-values for the
other two variables.

Somewhat stronger evidence against the null hypothesis of equality of
conditional expected premiums emerges when equality of the slope coefficients
is tested against the alternative that the slope coefficients increase monotoni-
cally with maturity. If the ex ante variables proxy for a dimension of ex ante
risk, then this alternative hypothesis essentially equates longer maturity to
greater risk along that dimension. While one might argue that this is merely
the alternative suggested by the data, we contend that it is also the alternative
with the greatest a priori appeal. The simplest test suggested by this alternative
is to compare the endpoints, i.e., the first and tenth portfolios. The last row of
table 3 reports the results of regressing the difference in returns between the
tenth and first portfolios on the ex ante variables. The slope coefficients in all
three regressions are reliably positive.

Another approach to testing equality against this more specific alternative,
and one that uses all ten portfolios, is to specify the regression slope coeffi-
cients as a function of maturity. We model the coefficients as a linear function
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Fig. 3. Fitted regressions of term premiums (PREMIUM) on the small-firm price variable
(PRICEVAR) for each of ten maturity classifications (MATURITY).
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of maturity and then test whether the slope of that relation is non-zero. In the
case of the yield variable, for example, the slope coefficient in table 3 for
portfolio i (a,,) is specified as

a“=go+glm” i=1,....10. (3)

where m, is the maturity (in months) for portfolio i. For the first nine
portfolios we specify m, as the midpoint of the portfolio’s maturity range, and
for the tenth portfolio we set m;;= 240. The parameters g, and g, are
estimated in a system of seemingly unrelated ,regressions subject to the joint
(non-linear) restriction in (3).!* The asymptotic ¢-statistics for g, range from
1.69 (for the S&P variable) to 2.48 (for the yield variable). Again, we find at
least weak evidence to reject the hypothesis of coefficient equality in favor of
the alternative that the coefficients increase with maturity.

If the slope coefficients rise with maturity, then substituting sufficiently large
values of the ex ante variables into the estimated regressions produces an
upward sloping structure of conditional expected term premiums. Fig. 3 plots
the estimated regressions for all maturities in the case of the small-firm price
variable. The average value of the small-firm variable for the 1953-78 period is
—2.47, which, when substituted into the estimated regressions. gives the
humped pattern of average premiums noted by Fama (1984). During the same
period, the small-firm variable ranges from —3.28 to —1.09. and it reaches a
maximum of 0.22 in the earlier 1927-52 period. The higher values (which
correspond to lower actual stock prices) predict positively sloping term struc-
tures. For example, the 1927-52 average of —1.76 for the small-firm variable
implies such a structure, which presents an out-of-sample forecast to be
investigated. In the absence of a more complete model, however, such ex-
ercises must be viewed primarily as illustrating the general manner in which
conditional expected premiums might change. If the cases of negative and
downward sloping premiums are truly ex ante phenomena, then there are
almost surely additional factors at work.

4. Risk premium seasonality

Previous studies report evidence of a positive January seasonal in bond
returns [Schneeweiss and Woolridge (1979). Keim and Smirlock (1983)] and,
especially, in stock returns [Rozeff and Kinney (1976). Keim (1983)]. Table 4
reports average monthly risk premiums (with -statistics) separately in January
and in non-January months for the seven long-term assets analyzed in section
3.1. The averages are computed using weighted least squares to estimate a

5 The estimates were produced by an iterative procedure (PROC SYSNLIN) in the SAS
computer program.
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regression of risk premiums on two dummy variables. The weights used in
each regression are 1/05,, the reciprocal of the within-month standard devia-
tion of the S&P. The s-statistics are again based on the White (1980) adjusted
standard errors.

We find in table 4 the same January seasonality in risk premiums on many
assets. With the exception of the long-term government bonds and the largest
common stocks, mean risk premiums are significantly larger in January than in
non-January months.!$ Further, the difference in means is more pronounced
for lower-quality bonds and smaller stocks. The F-statistic in column 4 for
each period tests the hypothesis that monthly expected risk premiums are
equal in non-January months; we can reject equality only for the below-BAA
bonds, primarily due to the first subperiod.

That this seasonality has occurred consistently for more than fifty years
suggests that it relates to an ex ante phenomenon. In this section we report a
January seasonal in the estimated regression coefficients for our ex ante
variables.

4.1. Seasonality and the risk premium regressions

We regress risk premiums on the ex ante variables and estimate the
coefficients separately in January and in non-January months (again using
weighted least squares). Although the coefficients on all three ex ante variables
exhibit similar seasonality, the seasonal pattern is strongest for the coefficients
on the small-firm price variable. In the interest of brevity, we report only the
small-firm variable regressions for the remainder of the paper.

Table 5 reports the regression results for the overall period and for both
subperiods. In the overall period, the coefficients on the small-firm variable are
generally positive in January and in non-January months (the only negative
coefficient is the January coefficient for high-grade corporate bonds). and the
January coefficients are larger than the non-January coefficients (with the
exception of government and high-grade corporate bonds). The non-January
coefficients are significantly non-zero for the bond portfolios but not for the
stock portfolios (the t-statistics are 4.18 or more for the bonds but 1.56 or less
for the stocks). The January coefficients are significantly non-zero for the
lower-grade bonds (BAA and below-BAA) and all but the largest stocks. The
coefficients on the small-firm variable tend to increase with decreasing grade
for the bonds and with decreasing size for the stocks, but this pattern is more
pronounced for the January coefficients. As a result, the r-statistic of the
differences between the January and non-January coefficients, t(ay; - ay,),

18 The r-statistic (g, — a,) in the third column of each period's results tests the hypothesis that
the difference in means is zero. In the overall period, the t-statistics for LTCORP, BAA, UBAA,
Q3 and Q7 have p-values less than 0.05.
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Table 5

Regressions of monthly risk premiums on the small-firm price variable in January and in
non-January months.?

(Russer— Rpg) =agd; +ag (1 —d )+ ay,d, (~Tog Py, -y + a, (L —d;, {—Tog Py}, -y + 4,

b B2d a
Asset ay, ag, ay; a;,  tlag;—aq,) H{a,—a,) R g ()

1/1928-11,/1978

Bonds
LTGOV 0.0034  0.0147 0.0020 0.0065 -1.13 -0.98 0.038 -0.017
0.36)° (4.32) 0.47) (4.19)
LTCORP 0.0027 0.0136 -0.0016 0.0060 -1.33 -2.11 0.067 0.103
(0.35) 4.72) (-047) (4.59)
BAA 0.0274 0.0161 0.0076 0.0064 1.25 0.33 0.110  0.096
» (3.16) (6.38) (2.11) (5.74)
UBAA 0.0689 0.0259 0.0215 0.0097 3.13 221 0.148  0.149
(5.22) (6.67) 4.21) (6.26)
Stocks
Q5 0.0559 0.0236 0.0185 0.0047 1.24 1.25 0.006 0031
2.23) (3.23) (1.74) (1.51)
Q3 0.1049  0.0293  0.0304  0.0060 2.30 1.83 0.025 0.106
(3.32) 3.18) (2.38) (1.55)
Q! 0.2967  0.0327 0.0917  0.0066 3.81 312 0.133  0.173
(4.39) (2.11) (3.45) (1.08)
1/1928-12/1952
Bonds
LTGOoV 0.0040 0.0087 0.0016 0.0039 -—-093 -0.89 0.058  0.080
(0.85) (5.24) (0.68) (4.05)
LTCORP 0.0084 0.0067 0.0013 0.0028 0.33 -0.53 0.078  0.126
(1.70) (5.34) (0.48) (3.88)
BAA 0.0272 00112 0.0077 0.0038 1.80 0.99 0072 0220
3.17 (4.90) (2.05) (3.48)
UBBA 0.0733  0.0216 0.0223  0.0065 3.14 2.16 0.101 0.162
(4.67) (4.33) (3.22) 2.77)
Stocks
(o)) 0.0287 0.0206 0.0041 0.0017 0.29 0.19 -0.008 0.064
(1.06) (2.62) (0.33) (0.44)
Q3 0.0698 0.0319 0.0161 0.0062 0.98 0.58 0.009 0100
(1.89) (3.03) 0.97) (1.28)
Q! 0.2989  0.0445 0.0988 0.0113 2.78 2.19 0.121  0.188
(3.35) 2.17) (2.53) 1.27)
1/1953-11 /1978
Bonds
LTGOV  -—-0.0039 0.0284 -0.0007 00117 -093 -0.89 0.036 -0.032
(-0.12) (2.85) (-0.05) (2.95)
LTCORP -00108 0.0282 -0.0068 0.0115 -—1.28 -1.57 0.075 0.099

(—-037) (3.31) (—0.61) (3.42)
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Table 5 (continued)

Asset” ay; o, ay, a;,  tlag; —ag,) t(a;—ay) R* i (u)f
BAA 0.0293 0.0242 0.0083 0.0095 0.20 -0.12 0.106 0.033
(117 (3.88) (0.86) (3.81)
UBAA 0.0483 0.0244 0.0137 0.0094 0.92 0.45 0.116 0.119
(1.93) (3.68) (1.48) (3.66)
Stocks
Q5 0.1131 0.0157 0.0410 0.0020 1.35 1.41 0.006 —0.004
(1.62) (0.89) (1.53) (0.30)
Q3 0.2109 0.0148 0.0711 0.0007 2.58 2.46 0.037 0.100
(2.87) (0.73) (2.58) (0.09)
Q1 0.3382 0.0004 0.1066 —0.0055 2.83 2.48 0.139 0.145

(2.89) (0.02) (2.41) (-0.59

1Regressions are estimated using weighted least squares. The weights used in each equation are
1/0sp, where agp is the within-month standard deviation of daily returns on the Standard and
Poor’s Composite Index. The small-firm price variable, — log Py, is minus the natural logarithm
of share price, averaged equally across the quintile of smallest market value on the NYSE. The
dummy variable d,, is defined as 4, = L if month ¢ is a January; 4, =0 otherwise.

bAsset categories are: LTGOV =long-term U.S. Government bond index constructed by
Ibbotson and Sinquefield (1982); LTCORP = long-term high-grade corporate bond index con-
structed by Ibbotson and Sinquefield (1982); BAA4 = BAA-rated corporate bond index con-
structed by Ibbotson (1979); UBAA = under-BAA-rated corporate bond index constructed by
Ibbotson (1979); Q5 = quintile of largest NYSE stocks; Q3 = middle quintile of NYSE stocks.
Q1 = quintile of smallest NYSE stocks.

¢ Heteroscedasticity-consistent -statistics in parentheses [White (1980)].

¢R? is the adjusted R-squared based on the weighted residuals.

5, (u) is the first-order autocorrelation of the weighted residuals.

tends to increase as one moves down the column, and equality of the
coefficients is rejected for the lowest-grade bonds and the smallest stocks. The
effects discussed above are found in both subperiods.

4.2. Seasonality and differences in returns between assets of the same type

Much of the literature on seasonality in stock returns focuses on seasonality
in the so-called ‘size effect’, defined as the difference in common stock return
between the smallest and the largest firms [e.g., Keim (1983)]. The evidence in
table 4 suggests that a similar seasonal exists in the difference in returns
between low-quality bonds (e.g., UBAA) and high-quality bonds (e.g,
LTGOV). We regress differences in returns from the bond market (R, —
R, 76ov) and the stock market (R,; — Ry;) on the small-firm price variable.
Panel A of table 6 reports the results for the bond returns and panel B
contains the results for the stock returns.

The coefficients on the small-firm variable in the overall period are, for both
the bonds and the stocks, reliably positive in January (both r-statistics are
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approximately 3.5), but the non-January coefficients are not significantly
greater than zero. Further, the January coefficient is significantly larger than
the non-January coefficient in both regressions. The same results appear in
both subperiods, although the effects are weak for the bonds in the second
subperiod.

The regressions in table 6. particularly those in panel B. demonstrate that
the small-firm price variable and the January intercept dummy explain a
substantial portion of the variation in the return differences. For example,
these regressions explain 23% of the variation in the difference in monthly
stock returns between the smallest and largest firms over the 1928-78 period
and 27% in the 1953-78 subperiod. The explanatory power of the small-firm
price variable when the regressions are computed in January only is also quite
high. For example, the January R? for the stocks is 32% for the total period
and 36% for the early subperiod.

4.3. The prospect of seasonal risk

As the regressions reported above indicate, returns on all assets tend to be
highest when stock prices are low, but this tendency is concentrated in January
for many of the assets, especially stocks of small firms and low-grade bonds."If
low stock prices serve as a rough measure of increased risk of some sort, then
this seasonality in regression coefficients suggests that the risk accompanying a
given level of stock prices tends to be highest around the turn of the year.!”

Estimates of the traditional risk measure, beta, display some seasonality.
For example, using daily stock returns on firms in the lowest twentieth of all
NYSE and AMEX firms ranked by size, Rogalski and Tinic (1984) report
(unconditional) OLS beta estimates of 1.34 in January as compared to 1.01 in
the next highest months (February and December). To explain the seasonality
in average returns using the traditional asset pricing theory, however, such
relatively small changes in beta require an implausibly high market risk
premium. ‘

Examining unconditional betas may not be entirely appropriate, however,
given that most pricing models call for conditional moments rather than

7L ow prices might also indicate previous tax losses, thereby supporting the hypothesis that the
January returns reflect a rebound from tax-loss selling pressure. Roll (1983) finds that returns on
an equally-weighted stock index in the preceding year are negatively correlated with returns
surrounding the turn of the year, and he suggests a tax-loss seiling explanation for these results.
We do not attempt to rule out such an explanation. Rather, we simply suggest an alternative,
perhaps additional, source of the observed phenomenon. Reinganum (1983, p. 102) concludes that
‘potential tax-loss selling does not seem capable of explaining the entire anomalous return
behavior of small firms in January’. Chan (1985) finds that, cross-sectionally, returns in a given
year are negatively correlated with January returns two years hence, and he also concludes that tax
selling cannot be the sole explanation of the observed seasonality.

JFE--F
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unconditional moments. For example, conditional covariances between pre-
whitened series, rather than unconditional covariances, are generally the
relevant risk measures (8,,’s) in models as in (1).!* The ex ante variables used
here are candidates for prewhitening many return series to obtain deviations
from conditional means. For many assets, where the explanatory power of the
regressions is relatively low, the distinction between conditional and uncondi-
tional cross-sectional risk measures may be minor. For other assets, however,
where the explanatory power is higher, e.g., January returns on small-firm
stocks and low-grade bonds, the distinction may prove to be important.

We first examine the unconditional and conditional market betas of the
return difference between the small-firm portfolio (Q!) and the large-firm
portfolio (Q5). The conditional betas are computed by prewhitening this
return difference as well as the value-weighted NYSE return using the small-
firm price variable (i.e., using regressions as reported in tables 5 and 6). Betas
are estimated separately for January and for February through December. As
might be expected given the low explanatory power of the prewhitening
regressions in February through December, the February-December condi-
tional betas are not substantially different from the February-December
unconditional betas in either subperiod. In the first subperiod, the January
conditional beta estimates are not substantially different from the January
unconditional estimates. In the second subperiod, however, the January condi-
tional estimate is smaller than the unconditional estimate, 0.34 versus 0.71.
Further, unlike the unconditional estimates in that subperiod, the conditional
January beta is no longer significantly larger than its February-December
counterpart (the t-statistic for the difference is 1.58). These results suggest that
the distinction between conditional and unconditional market betas could be
important in January, but the fact that the conditional betas display even less
seasonality than the unconditional estimates offers little additional insight into
the seasonality in mean returns.

We next examine seasonality in both conditional and unconditional esti-
mates of a risk measure that Chan, Chen and Hsieh (1985) argue plays a key
role in explaining the average return difference between small and large firms.
The risk measure is obtained by regressing an asset’s return on the spread in
returns between low-grade corporate bonds and U.S. Government bonds
(‘PREM’). This ‘PREM beta’ is estimated in a multiple regression, and the
value-weighted NYSE return is used here as the other independent variable.
As in the case of the simple market betas above, the conditional estimates are
obtained by first prewhitening all return series using the small-firm price
variable.

18 Two exceptions, in which unconditional covariances are appropriate even if there exist ex ante
variables with predictive ability, are the models in Grossman and Shiller (1982) and Stambaugh
(1983).
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For the 1953-78 subperiod. which corresponds roughly to the period
examined by Chan, Chen and Hsieh, we compute PREM betas for the
difference in returns between the small-firm portfolio (Q/) and the large-firm
portfolio (Q5). In February through December, both the conditional and
unconditional PREM betas are positive and nearly identical. In January,
however, the estimated conditional PREM beta of the return difference is
significantly negative (= —2.12) and significantly less than the February-
December value (t = —2.48). The same seasonality appears in the uncondi-
tional estimates, but the January value is neither significantly negative (r=
—0.63) nor significantly less than the February-December value (= —1.02).
Thus, again it appears that the distinction between conditional and uncondi-
tional risk measures can be important in January.

A more striking outcome of the last exercise, however, is the negative
January seasonal in the PREM betas. In fact, when the equally-weighted
NYSE index is used instead of the value-weighted index, both the conditional
and unconditional January PREM betas are significantly negative (¢ = —3.01
and r= —2.24) and significantly less than the February—-December estimates
(t= —3.08 and = —2.35)." Given that the estimated PREM betas of large
firms exceed those of small firms in January, it becomes difficult to use these
estimated risk measures to explain the size effect in that month, which is when
most of the total size effect has occurred. It appears at least that seasonality in
the PREM betas, if present, does not correspond to the seasonality found in
the size effect.?

The results above indicate some seasonality in covariance-based risk mea-
sures, but, based on conditional estimates of those measures, the seasonality is
either weak (for the market beta) or opposite to the seasonal in mean returns
(for the PREM beta). An alternative approach is to investigate the presence of
seasonality in a less traditional risk measure — one not based on covariances.
We test for seasonality in the ex ante one-month default premiums on
private-issuer instruments examined by Fama (1986). Default premiums are
defined as returns in excess of identical-maturity T-bills. Average default
premiums on the private-issuer instruments are highest in January. For exam-
ple, the average default premium on A1-P1 commercial paper for the period

19The -statistics reported here and in the previous paragraph are obtained from regressions
that include observations for all twelve months but where the coefficients (including the intercepts)
are allowed to differ in January. In other words, the estimated residual variance used in computing
standard errors is based on data from all twelve months. When the r-statistics for the January
values are computed using only January data, the January values are not reliably negative.

20The seasonality found here in the standard regression-based PREM betas using the bond
return spread is not necessarily found in other versions of this type of risk measure. For example,
Nai-fu Chen informs us that this seasonality does not appear in estimates where the means used in
computing the January regression coefficients are based on twelve-month values rather than
January values (i.e., where the twelve-month means are subtracted from the January values and
the regression is then computed in January without an intercept).



384 D.B. Keim and R.F. Stambaugh. Predicting stock and bond returns

1/1967 to 2/1984 is 1.17% (annualized) over all months, but January’s
average (annualized) premium of 1.74% is the highest of all months. To test
more formally for seasonality, we estimate the time series regression

(RCP—RTB):=ao+a1djr+a2(RCP_RTB):—I+u1’ (4)

0359 0.695 0.640
(4.41) (3.84) (12.14)

R*=044,  p,(u)=-0.12,

where R, is the annualized percent return for one-month commercial paper,
R, is the annualized percent return on a one-month T-bill, and 4, =1 if
month ¢ is a January (zero otherwise). Results for all of the private-issuer
instruments are sufficiently similar so that results are reported for commercial
paper only. The t-statistic of 3.84 on the January dummy indicates that
investors in one-month instruments receive, other things equal, a significantly
larger default premium in January. Given the apparent liquidity of these
instruments, it is difficult to attribute these premiums to anything other than
the probability of default. This result suggests that, if these instruments are
priced rationally, the perceived ex ante risk of rare bad news (defaults) varies
seasonally.

In light of these findings, we may wish to reconsider the regression results
reported in tables 5 and 6. As argued previously, the results in those tables are
consistent with the hypothesis that conditional expected returns and risk are
higher (i) in January and (ii) in years when stock prices are low. However, if
the appropriate measure of risk includes the possibility of rare bad-news
outcomes, then the ex post sample results will tend to overstate the expected
returns whenever the bad-news whose risk was perceived was not realized
ex post. Thus, even though the expected returns might indeed vary in the
manner suggested by the regressions, one should probably be cautious in
viewing the total magnitudes as ex ante quantities. To iflustrate this possibility,
imagine that the probability of a firm’s announcing very bad news drops
following the turn of the year. For example, if the probability of bad news,
conditional on no announcement, takes a discrete drop at year end, then the
stock price takes a Jiscrete jump upward.?! This gives a large return to holding

2l We briefly describe here some evidence that at least weakly supports the hypothesis that the
probability of very bad news drops following the turn of the year, especially for small firms.
During the 1927-81 period, delistings of small firms (lowest quintile) were most frequent during
December (30 delistings) and least frequent in January (18 delistings), and delistings of small firms
were accompanied by average monthly returns of —19.2%. These delistings are those for which
there was no notice of delisting prior to the given month, as classified by CRSP. Roll (1983) also
observes that delistings occur more frequently near January 1. In addition, during the 1926-82
period, individual small-firm returns less than —50% were most frequent in December and returns
less than —40% were least frequent in January. (We exclude a firm’s return in the month of
delisting.)
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the stock over the turn of the vear. Moreover. this return will be largest in
years of greatest ex ante risk (or perhaps lowest stock prices).

5. Forecasting risk premiums with the small-firm price variable

The previous sections demonstrate that the small-firm price variable receives
positive and significant coefficients in regressions with a wide array of asset
returns. As a further check on the validity of these estimated regressions, this
section investigates the ability of the regressions to make out-of-sample
forecasts. Such an exercise, in addition to providing a somewhat more practi-
cal perspective, allows us to verify that the bias discussed earlier in section 3.1
does not significantly influence the reported regression results. An evaluation
of forecasting ability outside our sample period would permit an analysis of
only five or six years of data (when available). An alternative that allows for
comparisons over a much longer period is to use 1928 through 1952 as our
initial base period and to examine forecasts over the 1953-1978 period. We
compute ‘one-step-ahead’ forecasts. which are based on parameters estimated
using data for all periods up to but not including the forecast period.

Our objective is to compute one-step-ahead forecasts of risk premiums
based on regression parameters estimated with the small-firm price variable
and then to compare these with ‘naive’ forecasts of risk premiums based on
their historical means. Table 7 reports the percentage reduction in mean
square forecast errors obtained from comparisons of regression and naive
forecasts. As a rough measure of the statistical significance of the improve-
ment in forecasting ability, we report a t-statistic that tests whether, across
forecasts, the sum of the forecast errors is correlated with the difference
between the errors. This test is equivalent to a test of equality of mean square
forecast errors under the assumptions that the individual forecasts are unbi-
ased and the forecast errors are not autocorrelated [see, e.g., Granger and
Newbold (1977)].22

The results for the one-month-ahead forecasts are reported in table 7. Mean
square forecast errors are computed over all months as well as separately for
January and February-December in order to examine seasonal patterns in
forecasting ability. We define the percentage reduction in MSE for one-
month-ahead forecasts as 100 X (MSE, — MSE,)/MSE,, where MSE, is the
MSE of the one-month-ahead forecast based on the regression

(RASSET_RTB):zan jr+a0r(1—d/1)+ar' (5)

22 The r-statistic is ‘rough’ in the sense that, if the true forecasting ability of our regression
model is zero, then the variance of the forecast errors from the naive model is less than the
variance of our regression forecast errors. due to the extra noise that results from estimation of
additional parameters in the latter model. Thus, the expected value of the t-statistic reported here
is negative with no forecasting ability. Finding ¢-statistics equal to zero is actually mild evidence
of some predictive ability.
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Table 7

Performance of one-month-ahead forecasts based on the small-firm price variable (1953-1978).

Percentage reduction in mean square error®
(t-statistic in parentheses)

All
Asset? Jan. Feb.-Dec. months
Bonds
LTGOV -1.92 2.68 2.24
(—0.52)¢ (1.33) (1.20)
LTCORP -2.98 381 311
(-0.57) (2.09) (1.80)
BAA 11.50 219 3.53
(0.86) (1.09) (1.53)
UBAA 33.93 -4.19 0.64
(1.64) (-139 (0.18)
UBAA-LTGOV 28.15 ~-7.53 —-4.94
(1.29) (-2.55) (-1.46)
Stocks
Q5 10.84 -6.28 -3.73
(1.98) (=275 (-1.79)
Q3 16.76 —6.41 -2.02
(2.69) (—2.99) (—0.98)
Q! 41.85 -6.75 7.78
(2.69) (—-339 (2.28)
QI-Q5 40.54 -1.84 13.07
(1.86) (-1.39) (2.93)

®Asset categories are: LTGOV =long-term U.S. Government bond index constructed by
Ibbotson and Sinquefield (1982); LTCORP = long-term high-grade corporate bond index con-
structed by Ibbotson and Sinquefield (1982); BAA = BAA-rated corporate bond index con-
structed by Ibbotson (1979); UBAA = under-BAA-rated corporate bond index constructed by
Ibbotson (1979); Q5 = quintile of largest NYSE stocks; Q3 = middle quintile of NYSE stocks;
Q1 = quintile of smallest NYSE stocks.
®The upper value is 100 X (MSE, — MSE,)/MSE,, where MSE, is the mean square error of
one-step-ahead forecasts based on the regression
(Russer—Rrs), = ap;d;, + ay,(1- d/r) + iy,
and MSE, is based on the regression (estimated with WLS)
(Rysser—Ryg), = ag;d; + a,(1- dj:) + audﬂ( ~Tog PQI),_1
+a,(1-d,)(ZTog Pp,) ,_, + i
where Tog Py, is the natural logarithm of share price averaged equally across the quintile of the
smallest NYSE firms. 4, =1 if month ¢ is January; d;, =0 otherwise. The base period for both
sets of forecasts begins { /1928,
°The t-statistic tests whether, across forecasts, the sum of the forecast errors is correlated with
the difference between the errors. The true correlation is zero if both series produce unbiased
errors with the same variances. This test is equivalent to a test of equality of mean square forecast
errors; see, e.g., Granger and Newbold (1977).
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and MSE, is based on the regression (estimated with WLS)

(Rysser— Ryp), = ag;d;, + a,. (1~ d,)+ a:/djr(—log PQ/),_1

+a,,(1-d,)(~logPy,),_ +i,. (6)
where 4, is a January dummy. Thus our naive forecasting model, represented
by eq. (5), accounts for the seasonal variation in the (unconditional) mean of
past returns, while the model of eq. (6) also accounts for seasonal variation in
conditional mean returns given the level of small-firm prices. We report results
for our seven asset categories as well as for the return differences discussed in
section 4.2.

The results for the one-month-ahead forecasts show that, for the stocks and
for the lower-grade bonds, most of the improvement in forecasting ability
using eq. (6) arises from the January forecasts. Thus, these results support the
regression estimates reported in section 4. The improvement in January ranges
from an 11% reduction in MSE for large-firm stocks to 42% for small-firm
stocks. The s-statistics for the three stock portfolios indicate statistically
reliable reductions in MSE. In February-December, however, the naive
forecast for the lowest-grade bonds and all three stock portfolios outperforms
the forecast based on eq. (6). A similar pattern is observed for differences in
returns of similar assets: the improvements in January forecasting ability are
28% for UBAA minus LTGOV and 41% for Q! minus Q5. For the long-term
government and high-grade corporate bonds, on the other hand, forecasting
ability is not concentrated in January. Overall, the results suggest that the
forecasting model in eq. (6) possesses predictive ability for a wide array of
asset returns.

6. Implications for future research

The fundamental conclusion to be drawn from this study is that expected
risk premiums on many assets appear to change over time in a manner that is
at least partially described by variables that reflect levels of asset prices. This
paper’s results suggest several directions for future research.

If expected risk premiums or discount rates change, then one asset’s price
relative to others is determined in part by the covariance between unantic-
ipated returns on that asset and unanticipated changes in expected risk
premiums. Chen, Roll and Ross (1983), in a test of such a cross-sectional
pricing relation, propose a bond return spread (described earlier) as a proxy
for changes in expected risk premiums. This study’s evidence suggests that
such a variable is indeed likely to proxy for changes in expected risk premiums
on many assets. If relative bond prices, say as summarized by the yield spread



388 D.B. Keim and R.F. Stambaugh. Predicting stock and bond returns

used in this study, contain ex ante information about expected risk premiums,
as our evidence indicates, then a change in relative bond prices, or a return
difference, is likely to contain ex post information about changes in expected
premiums. By the same reasoning, our evidence that levels of stock prices also
contain information about expected risk premiums suggests that stock returns
also contain information about changes in expected premiums.

Section 4.3 discussed using the ex ante variables to obtain conditional risk
measures. In addition to conditional risk measures, conditional means them-
selves may allow more precise inferences about various hypotheses. For
example, the evidence on term premiums discussed in section 3.2 indicates that
the relation between conditional expected bond returns and time to maturity
varies through time. The difference in conditional expected return between
long-term and short-term bonds appears to vary inversely with asset price
levels. Conditional on sufficiently low asset prices, or perhaps sufficiently high
risk, the estimated regressions suggest that the term structure of expected
returns slopes upward. If true, such behavior could make unconditional
averages of term premiums less useful in making inferences about the shape of
the term structure.

One question that arises naturally in a study such as this is whether
additional ex ante variables have predictive ability. We have chosen to define
this study by restricting the number of ex ante variables and examining risk
premiums on a wide spectrum of assets, but the investigation could be
extended across a range of ex ante variables as well. A possible approach
would be to decompose our variables into several components. For example,
the single yield spread could be replaced by a number of yield spreads between
instruments of various default risks and maturities.

Finally, we conclude that seasonality must be a consideration of any study
dealing with changing expectations. Not only is seasonality present in average
risk premiums on many assets, conditioned on simply the month of the year,
but seasonality is found also in the regression coefficients on the ex ante
variables that appear to predict risk premiums.
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