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The City of Philadelphia recently redesigned districts for its council members based upon the 2010 census.
The districting process evinced considerable public interest and engagement because council districts from the
prior census had significant shortcomings. During the 2010 redistricting process, several public interest groups
came together to organize a districting contest. The organizers hoped to increase public engagement in the
districting process and to proactively offer several well-constructed examples of city council districts that min-
imize gerrymandering. We were active participants in the contest, developing methodologies for finding good
solutions to large integer programs that enabled us to win in one contest category and make presentations
before the city council in this and another category. This article describes the unfolding of various events sur-
rounding the districting process, the methodologies we developed, and the influence that the contest ultimately
had on the design of city council districts.
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Once every 10 years, new U.S. census numbers
trigger legislative redistricting at the national,

state, and local levels. Because this cycle occurs reg-
ularly, we decided to develop in advance an opti-
mization model using data from the 2000 census; this
model would let us produce districts as soon as the
new census numbers became available. It would also
allow us to demonstrate to Philadelphia’s city council
what good districts should look like.

Our goal was to improve on the existing,
poorly-designed districts through public engage-
ment. According to a study comparing districts in
cities throughout the country from 2002 to 2006
(Azavea 2006), although Philadelphia had only 10 dis-
tricts in the city, it had two of the most gerrymandered
city council districts in the United States. Districts 5

and 7 were no wider than a roadway in several places
(see Figure 1).

District 5 was designed to be predominantly poor
and minority, but included a dangling portion at the
bottom that included a piece of one of the wealth-
iest neighborhoods in the city. The addition of this
piece gave the incumbent both a population that
would vote for him and constituents from whom he
could raise a substantial amount of money. District 7
was held by the lone Hispanic council member; she
wanted a more compact district with a larger propor-
tion of Hispanics than the one she had inherited.

Our intention in developing our model was not
to consult as insiders, but to take advantage of the
increase in PC computing power and inexpensive
optimization software to develop a professional-grade
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Figure 1: This map of Philadelphia’s 10 city council districts prior to
the 2011 redistricting shows the extensive gerrymandering in Districts 5
and 7.

model that would demonstrate to a broad audience
what nongerrymandered districts would look like.
Optimizing voter districts involves building large
integer programs with publicly available data that
would allow us to experiment with and use research
ideas for sensitivity analysis of integer program-
ming (IP) solutions on a real problem.

Any good solution to the redistricting problem
must satisfy three conditions: contiguity, compact-
ness, and equal population. In a contiguous district, a
path connects every political subunit in the district to
every other subunit, staying within the district. Com-
pactness has several definitions based on the under-
lying notion that the political subunits do not sprawl
over a map, such as the salamander-shaped district
that led to the coining of the word gerrymander.
Equal population is usually taken to mean that all dis-
trict populations must lie within a given percentage
of a target value (with the target value equal to the
total population of a political unit, such as a state or
a city, divided by the number of required districts).

Redistricting models have taken three forms: exten-
sions of the facility location model (p-median model);
a set partitioning formulation, where columns cor-
respond to combinations of basic population units
that represent feasible districts, analogous to the
crew-scheduling models of airlines; and heuristic
approaches, such as tabu search and genetic algo-
rithms. Murphy et al. (2013) include a survey.
Hess et al. (1965) were the first to use operations
research (OR) techniques in this context. They com-
bined optimization with a heuristic to redistrict the
state of Delaware. Building on the facility-location lit-
erature, Garfinkel and Nemhauser (1970) developed
a model where they enumerated all possible assign-
ments of political units to districts that meet con-
straints on population and that are also contiguous.
They specified a compactness measure that takes the
ratio of the maximum distance between political units
in the district and the area of the district. They then
solved a set-partitioning problem to cover all pop-
ulation units with the requisite number of districts
and minimized the maximum value of their compact-
ness measure. However, they had difficulty solving
problems with 50 or more population units, given
the computers available then. Mehrotra et al. (1998)
developed a branch-and-price extension of the origi-
nal Garfinkel and Nemhauser model.

The major impediment to building a model to solve
the complete districting problem has been to find
a way to implement the contiguity condition. Hess
et al. (1965) rejected noncontiguous solutions gener-
ated by their heuristic. Mehrotra et al. (1998) stated
that imposing contiguity directly in the model would
entail an exponential number of constraints, which is
why they first generated the set of all possible con-
tiguous districts. Contiguity was also an important
issue considered by Bozkaya et al. (2003), who devel-
oped a tabu search approach in which all solution
changes in the search had to maintain contiguity.
More recently, Bozkaya et al. (2011) designed elec-
toral districts for the city of Edmonton in Canada
using their tabu-search approach, a remarkable state-
ment about the quality of the political leadership in
that city.

Two papers have used graphs to solve the problem
of combinatorial explosion when imposing contiguity
constraints. Williams (2002) applied the contiguity
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constraints to trees defined over primal-dual planar
graphs. Shirabe (2009) built on work by Zoltners and
Sinha (1983) to develop a simpler method that mea-
sures flows in a graph defined using the population
units as nodes. He required that two units with pos-
itive flow between them be in the same district and
that each district have a designated root node that
serves as an anchor node for the district.

Developing a Districting Model
We chose to base the first version of our model on
the facility location model. We formulated a model in
which each of the 155 neighborhoods in Philadelphia
could potentially be the center of one of the ten politi-
cal districts. The objective function was the sum of the
squared distances from each population unit (neigh-
borhood) in a district to the center of the district.
At our request, the geospatial software developer
Azavea (http://www.azavea.com) constructed a data
set containing the populations and centroids of the
155 Philadelphia neighborhoods. We were able to
establish contact with Azavea through a local political
activist, and used these data to begin our IP modeling.
As in Hess et al. (1965), the neighborhoods chosen as
the centers are the equivalent of warehouses, and the
neighborhoods assigned to a district are the service
territory. The ten districts are constrained to be within
a given percentage of 1/10th of the city’s total popu-
lation. The model details are in Appendices A and B.

We showed a map of our optimal districts to the
activist who introduced us to Azavea and who knew
the Philadelphia political and demographic land-
scape. He pointed out the obvious flaws in our solu-
tion. Philadelphia is a city of neighborhoods and its
residents have a strong neighborhood identity. Conse-
quently, a districting plan should consider neighbor-
hood sensitivities. He pointed out that districts should
not cross the Schuylkill River, which divides most of
the city from West Philadelphia, or certain sections of
Roosevelt Boulevard, a major road that goes from the
river through the northeast portion of the city (or the
crossings should be minimized to construct districts
with coherent identities). As is always the case, an
optimal solution is optimal in terms of the specified
objective, not necessarily in terms of the real-world
problem to be solved.

Our first response was to impose additional con-
straints that introduced these neighborhood barriers
into the model and to generate new solutions.
We were not able to impose Roosevelt Boulevard as a
barrier for its whole length and meet the population-
target constraints. We then retained Roosevelt
Boulevard as a barrier in the older, walking neigh-
borhoods and did not make it a barrier in the newer
car-oriented neighborhoods in the far northeast.
To improve our solutions, we obtained data on the
city’s roughly 1,800 census block groups, because this
population unit has finer granularity than the neigh-
borhoods, allowing us to produce more compact solu-
tions. However, using census block groups greatly
increased the size of the IP problem. To keep the
size of the model under control, we continued to use
neighborhoods for (potential) district centers.

The Contest
With our model working, the next step was to deter-
mine how to get publicity for our results and maybe
have a little influence on the districting decision.
We began to use our personal networks to connect
to local reporters and foundations. In early July 2011,
several organizations, including Azavea, local pub-
lic radio and television stations, the University of
Pennsylvania Center for Civic Engagement, and a
local newspaper, announced a contest with prizes
for constructing the best districts according to sev-
eral quantitative criteria. They held an organizational
meeting in late July and about 150 people showed up.
We realized that winning the contest could be our
vehicle for publicizing our results and advancing our
goal of challenging the city council to do a better job
than it had previously.

The good news was that we already had a working
model for demonstrating our capabilities and provid-
ing solutions, given that the contest deadline was lit-
tle more than a month away. The bad news was that
none of the contest’s quantitative criteria for judging
solutions (i.e., the contest organizers’ objective func-
tions) matched the objective function that we had
been using. Their criteria consisted of (1) the mini-
mum population spread for the solution, defined as
the maximum of the ten district populations minus
the minimum of the ten district populations; (2) the
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fewest splits between council districts of the 66 wards,
their proxy for neighborhoods; and (3) the most com-
pact districts as defined by the Schwartzberg measure,
which is the sum over the districts of the boundary
lengths of each district divided by the circumference
of the circle with the same area as the district.

Wards are political units for vote tallying. Each
political party elects one or more captains for each
ward. Because the wards were last changed in the
mid-1990s, they do not really match the neighborhood
definitions. However, they match the political geog-
raphy of the city and are a useful proxy for showing
the consequences of keeping neighborhoods together,
which is important in older cities in which neigh-
borhood identity is deeply ingrained in the residents.
The most fine-grained geographic unit used in the
contest was the ward division, a subunit of wards.
Each ward has between 10 and 50 divisions per ward,
leading to 1,687 geographic units that needed to be
assigned. For our optimization model, we retained
the original neighborhood centroids as potential dis-
trict centers and used wards and ward divisions as
appropriate for the population units to be assigned to
districts.

Our problem was the multiplicity of definitions of
compactness and a contest definition that did not
match ours. We had been using the sum of squared
distances from district centroids; their criterion was
to minimize the Schwartzberg measure. Minimizing
squared distance tends to minimize the maximum
distance across districts, the district diameter. Focus-
ing on boundary length tends to value smooth bound-
aries at the expense of the maximum distance across
districts. However, no best definition of compactness
exists. Young (1988) points out the flaws of the var-
ious criteria, showing that no easy answer exists on
what constitutes the best criterion for compactness.
The contest organizers chose a criterion that geogra-
phers like, whereas we started with one that opera-
tions researchers like, and we were forced to adapt to
their criterion with limited time.

A contest open to the general public requires geo-
graphic information system tools that a nonexpert can
use. Azavea had received a grant from the Alfred
P. Sloan Foundation to develop a Web-based tool
to allow contestants to form districts, using mouse
clicks, from geographic subunits (in this case ward

divisions) that define the territories for voting loca-
tions. The web access to its software for the contest
was through a website (http://fixphillydistricts.com)
that was still operational as we were writing this arti-
cle. Azavea also provided a spreadsheet with the pop-
ulations and geographical coordinates of the ward
divisions for those contestants, like us, who wanted
to improvise using their own methodologies.

One feature of Azavea’s Web software is that it
has a leaderboard where contestants can post their
trial solutions. The leaderboard provides the quanti-
tative metrics for posted solutions without actually
revealing what the solutions are. Given the interest
in local redistricting and the large talent pool in the
region, contestants were soon posting their solutions.
Several solutions that did not split any wards and
met the district-population and contiguity constraints
were posted very quickly. Well before the close of the
contest, one team (person) posted a solution in which
the deviation from the population target was zero,
a remarkable achievement given the contiguity con-
straints and the discrete size of the ward divisions.

The criterion of not splitting wards fit naturally
into our modeling approach. All we had to do was
solve our original model with the ward-level data,
instead of our trial data on neighborhoods, and
enforce the integrality of the assignments of wards to
districts. Moreover, Philadelphia has only 66 wards,
simplifying the computation of an optimal solution.
Using neighborhoods as centers and wards as the
population units, the model has 4,422 integer vari-
ables. Although the Shirabe (2009) formulation of the
contiguity constraints that we implemented does not
exponentially explode the model size, letting each
neighborhood be a centroid and working with ward
divisions, the model would have 261,640 integer vari-
ables, which was beyond the capabilities of our com-
puters. Therefore, in all cases, we first solved the
model without the contiguity constraints. We then
took the centroids from that solution and resolved the
problem with the centroids fixed and the contiguity
constraints imposed, reducing the number of contigu-
ity constraints by a factor of 66, the number of wards.
This gave us our first contest entry for the criterion of
zero ward splits.

One problem with solutions to optimization mod-
els is that they have a take-it-or-leave-it quality.
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The black-box optimizer gives an optimal solution to
the model and the user is supposed to take this to
be the optimal solution to the problem. In linear pro-
gramming, this problem can be alleviated by explor-
ing around the neighborhood of model parameters
using sensitivity analysis. However, solutions result-
ing from marginal changes in coefficients do not have
the same meaning in integer programs, because dra-
matic shifts in the optimal solution can result from
minor changes in parameters.

Given the multiple definitions of compactness, the
multiobjective nature of the real problem, and neigh-
borhood interests in being grouped or not grouped
with other neighborhoods, humans need some free-
dom to choose the final solution to implement.
Furthermore, if some choices that allowed consider-
ation of the legitimate self-interests of the politicians
who are redistricted were available, then an analytic
approach would be more palatable to politicians.
The degree to which politicians exercise self-interest
(and whether they exercise it at the expense of the
polity) is the important variable, not whether they are
self-interested per se.

We decided to implement a simple approach to
explore the solution space around the solutions ini-
tially generated using the integer program. We gen-
erated alternatives to the optimal solution with
metaheuristics by implementing an evolutionary
algorithm. Using this algorithm and multiple start-
ing points (four in all) created by varying the objec-
tive function in the integer program, we generated
116 legally valid solutions, none of which split the
wards. This meant that not only were we in a position
to offer solutions that met one of the contest objec-
tives (no ward splitting), we were also in a position to
present solutions that were reasonably good at meet-
ing compactness and population-size criteria or, alter-
natively, were more coherent in their demographics.

In parallel with breeding multiple solutions having
zero ward splits, we worked on developing a compact
solution using the Schwartzberg measure. We had
two choices: we could formulate a new optimization
model with this specific objective, or we could take a
solution that minimized our original objective, which
is the weighted squared distance (WSD) of popula-
tion units from district centroids, and use heuristics
to improve it relative to the Schwartzberg measure.

An optimization model for the Schwartzberg mea-
sure would involve an indicator variable for each
edge between two districts. This would entail a very
large model because it requires a decision variable
for each pair of adjacent ward divisions in the set
of 1,687 ward divisions. Furthermore, the objective is
nonlinear because the measure is a ratio that involves
calculating the perimeter of a circle having the dis-
trict’s area. Although we wanted to try to formulate
the optimization model, Azavea could not provide
a file with the lengths of the boundaries between
each pair of ward divisions. Therefore, we resorted to
using heuristics, starting from one of our solutions.

We first solved the integer program using ward
divisions for the building blocks of the districts
and the neighborhoods as the centers. Again, this
was a two-step procedure of solving for the centers
without the contiguity constraints, and then solving
for the districts after fixing the centers. Then we
manually applied some simple heuristics, using the
contest-provided graphics tools to move from the
center-of-gravity solution to our best solution using
the Schwartzberg measure.

The rules of thumb that we used are as follows:
Having straight boundaries is more important than
having the ward divisions as close as possible to the
district centers. Diagonals tend to generate shorter
total boundary lengths. When a boundary between
two districts touches the boundary of a third district,
generating a solution such that the boundary between
the first two is perpendicular to the boundary of the
third shortens the boundary length.

We needed several revisits to the trial solution to
come up with the plan that we finally submitted.
We kept observing more opportunities to apply these
rules and improve the solution by letting the solution
sit overnight and then looking for more improve-
ments. As we were working, we watched the leader-
board to see how other contestants were doing with
the compactness metric. With the early passes using
the heuristics, we came up with a solution that
was better than all others that had been posted.
We chose a strategy of posting on the leaderboard
our second-best solution to set up that solution as
the target to beat but not fully reveal our hand.
Our second-best solution put us sufficiently far ahead
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that other contestants stopped posting improved solu-
tions. We thought that unless some lurkers were not
posting their solutions, we had the winning entry in
that category.

After we generated our solutions, we had to put
together our results for submission. As in all projects
with deadlines, we had plenty to do at the last
minute. We were generating more solutions for the
no-ward-splits category until the very end (the evolu-
tionary algorithm was slow in finding new solutions).
We also continued to test for improvements in our
compactness solution. In the final hours, we were
writing commentaries on our solutions and were in
constant communication with each other while work-
ing from our homes. We could not get together face-
to-face because we were in the middle of Hurricane
Irene, hoping we would not lose power. One of our
motivations for constantly staying in touch was to
ensure that everyone on the team had power and
could continue on the project.

Our Results
The contest rules allowed only one submission per
team or individual. We chose to be recognized as
a team because we had worked so closely together
and decided on our compactness solution because
it was unique in that category. Submitting only one
of our solutions without ward splits did not carry
the full import of what we had accomplished in
that part of the contest. However, we did write
up and make public all of our results. Our results
and testimony before the city council on both the
compactness and solutions without ward splits are
available at http://opim.wharton.upenn.edu/~sok/
phillydistricts.

Because the city council did not initially schedule
any hearings on redistricting other than one hearing
very early in the process, the local civic groups and
media started demanding that it hold more hear-
ings. Eventually, it scheduled two additional hearings.
At the first hearing, we presented our testimony on
the plans that did not split wards. We showed two
solutions, one that minimized population deviation
and one that came closest to creating neighborhood
coherence.

Figure 2: This plan minimizes population deviation 4= 213355 with zero
ward splits.

The plan that minimizes population deviation
(see Figure 2) is clearly ungainly because the result-
ing districts are not compact and look as if they
are gerrymandered, although the solution is purely
analytic. The plan we highlighted in the testimony
(see Figure 3) is the most neighborhood-friendly one
we found, based on judgments from colleagues with
deep knowledge of Philadelphia.

Using the Schwartzberg measure as implemented
in the contest (the contest software used the inverse
of the original measure with boundary length as the
denominator), this plan has a value of 0.6263 versus
the 0.7513 for our submitted plan in the compactness
category. In addition to having a good Schwartzberg
measure for compactness, the plan also succeeds by
having low distances from one end of a district
to another. The shorter distances allow city council
members to deal with a smaller geographic spread
than the current city council map does. This plan pro-
vides the most appropriately shaped districts possi-
ble without splitting wards. The equipopulation score
is 5,804, roughly double the equipopulation score for
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Figure 3: This plan maintains neighborhood coherence and keeps the
wards intact.

our solution that minimizes population deviation, but
falls within the permitted five percent deviation from
the target population for each district, as stipulated
by the contest rules. (The Philadelphia courts have
accepted a ten percent limit, but the conventional wis-
dom is that anything worse than five percent is legally
at risk.) Nevertheless, the boundaries do not look very
good: natural barriers, such as rivers and highways,
are crossed and some districts have wide disparities
in income and other demographic characteristics.

We decided to look at the trade-off between com-
pactness using our original definition and the maxi-
mum population deviation (see Figure 4).

We include this chart to illustrate that defining good
districts has meaningful trade-offs. The metric pop-
ulation WSD is the sum of the WSDs between the
wards and their district centers. Population spread is
the population difference between the districts with
the largest and smallest populations. A clear trade-off
exists between these two measures. The actual shape
of the curve in Figure 4 is not really a logistic curve.
The smallest population spread that was feasible
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Figure 4: This trade-off curve between population WSD and population
spread shows the trade-off between the tolerance for equal population and
compactness.

without splitting the wards was roughly 2,300. In the
testimony, we offered to generate, at no cost, large
numbers of plans for any definitions of neighbor-
hoods that the city council chose. Needless to say, our
offer was not accepted.

Figure 5 depicts our winning plan for compactness.
Our compactness score was several percentage points
above the score of the next-best solution in the
leaderboard, which shows the power of a good
starting solution, reasonable heuristics, and the will-
ingness to revisit trial solutions to garner further
improvement. Although our plan is extremely com-
pact, it is not a good redistricting plan as it currently
stands, because it shows the weakness of rely-
ing solely on quantitative measures to rate plans.
It splits too many neighborhoods, showing the weak-
ness of the Schwartzberg measure of compactness
when confronted by Philadelphia’s oddly-shaped
ward divisions.

We quote what we said about this plan at the sec-
ond city council hearing, at which the contest results
were presented:

“Let me give a few examples of the problems that
result from using this compactness measure. The dis-
trict furthest out in the far Northeast stretches south-
west, north of Roosevelt Boulevard in our solution to
avoid zigzags, instead of cutting across the northeast
tip of the city in a relatively straight line. The north–
south slicing of Center City and South Philadelphia
splits coherent neighborhoods. Not using Roosevelt
Boulevard as a boundary combines disparate neigh-
borhoods in Districts 1, 2, 3, and 8. Note that the 8th
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Figure 5: Our winning plan for compactness has a high compactness
score, but does not respect neighborhood identities.

ward is divided into three pieces. Two other wards are
split three ways as well. Nevertheless, starting from
this solution and adding coherence by putting together
neighborhoods would produce a plan that keeps the
districts reasonably “compact.” (Murphy 2011)

We then repeated our offer to generate (for free)
multiple plans keeping wards intact, which again was
not accepted.

Because we could not advocate this plan, we
offered a second one in the testimony to show how
one could better respect neighborhoods by shifting
the boundaries in the two districts at the southern end
of the city. Shifting the upper part of the boundary of
the lower right district to the left to a river and the
lower portion to the main street north–south street
(Figure 6) reduced the income spread in the affected
districts on the left by a substantial amount.

What The City Council Did
The city council recognized that the districts had to
be improved and constructed a plan that fixed the
most egregious aspects of Districts 5 and 7. The map

Figure 6: This map shows that districts can be adjusted to better match
neighborhoods in the southern part of the city.

it finally chose (see Figure 7) is based on the proposal
of two members of the city council.

Although no documented evidence exists that the
members of the city council committee designing the
districts used anything from the contest, the contest
and pressure from public interest groups probably
influenced their design to be more compact. Although
the map looks much better than the previous districts,
the boundaries, nevertheless, were clearly adjusted
to help the incumbents. For example, the incumbent
in District 5 extended his district further south to
enhance his fundraising opportunities.

District 5 has a tail on the right to include the coun-
cilperson’s home, while retaining enough of North
Philadelphia, the city’s poorest section, to give the
incumbent an easy victory. A key feature of the
new districts is that the middle-class and profes-
sional neighborhoods have been distributed among
different districts to lessen their clout, but provide
fundraising opportunities for the incumbents. In a
few districts, this means the incumbent could be at
risk in several years, given the rate of expansion of
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Figure 7: The city council selected this map.

the neighborhoods that are populated by middle-class
professionals.

Conclusions
We won the contest in the compactness category
and generated more (fully valid) solutions that keep
wards intact than all other contestants combined,
while acting simply as citizens. We most likely helped
a councilwoman get a better district with one of our
genetic algorithm-generated solutions and made clear
the power of OR to a large audience. On the technical
front, we developed an aggregation approach for pro-
ducing much larger districting plans than in the past
and used those solutions to generate multiple good
solutions. Furthermore, we got excited and had a lot
of fun with our zero-budget project.

The lessons learned in this project are in two
areas—using analytical methods to solve real prob-
lems and understanding the deeper issues in design-
ing districts. The key to our success was to not confine
ourselves to the OR canon and to do whatever it
took to reach our goal. This meant that we did not

treat solving a standard optimization as the end point.
Instead, when we could not get the data in a form
we needed, we used the optimization to find a good
starting point for using heuristics that we developed
as we played with alternative maps. Next, we recog-
nized that we did not have to choose between clas-
sical optimization and genetic algorithms but should
use both, classical optimization to start us off and
genetic algorithms to explore around the optimization
solution. That is, we adapted our methods to solve
the problem.

Being clever is not enough. Once one goes beyond
the canon, one should then assess what else to add.
Our project raises at least two questions: First, given
all the alternative objective functions in Young (1988),
can one of them be used as a proxy that evaluates the
relative merits of districting plans? More generally,
when do proxy objective functions give meaningful
solutions? We investigated the relationship between
compactness measures and peoples’ perceptions of
the goodness of districts in Chou et al. (2013).
The next question is more general in IP. To what ex-
tent can genetic algorithms provide multiple solutions
around the solution to an integer program and pro-
vide a principled approach to sensitivity analysis of
integer solutions? We have begun work on that.

We found that treating the districting problem as a
straightforward optimization problem is not entirely
satisfactory. We learned from this exercise that gerry-
mandering is like pornography—you know it when
you see it. However, defining what constitutes well-
designed districts is hard, because good districts have
so many dimensions, and different population groups
and politicians have different definitions of good.
To fix obsessively on one measurable criterion, such
as minimizing population differences, or on one of the
definitions of compactness is a mistake.

The problem is that redistricting is a game with
multiple players who have distinct interests. It is now
common knowledge that political parties use redis-
tricting for advantage, with each party using redis-
tricting to increase the numbers of its members in
elected office. Jockeying between parties was not the
issue in Philadelphia because the city is dominated
by one party. Redistricting here is about enhancing or
diminishing the power of individual members of the
city council. Elected officials play against each other
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to both make their districts safe for reelection and
to capture enough wealthy residents so that they can
raise the funds that buy influence over other elected
officials. Civic-minded groups want a fair outcome
that gives citizens a voice in government.

Essentially, we played a part in the game on the
side of public interest groups that were pushing
for improved districts; we also garnered recognition
for OR technologies. The city council’s redistrict-
ing committee originally wanted to keep the long
tails extending into the northeast part of the city to
dilute to power of an aggressive ward leader. How-
ever, the added hearings, citizen involvement, and
less-gerrymandered alternatives presented through
the contest gave the councilwoman in District 7 the
opportunity to eliminate the tails. An activist who
supports her in her district came to us and asked for
advice; we gave him all the maps we generated, say-
ing he could use them as alternatives.

Rather than an optimization, a process is needed to
balance the interests of the players, recognizing that
politicians have legitimate interests, while focusing
on the ideal of representative democracy. A first step
in the process should be to define legitimate objec-
tives, even if they are surrogates for the real objective,
and agreed-upon constraints. The second step is to
develop a multiplicity of solutions to form the basis
of the discussions. (This is essential for participation
by the general public, which does not have direct
access to districting data and tools.) The basic ground
rules for good districts, such as making every effort
to keep wards or neighborhoods intact, should be
established and have public agreement well before
the redistricting process begins. Analytic techniques
are useful for generating good starting solutions. With
reasonable constraints on the redistricting plans, such
as honoring neighborhoods or political subdivisions,
using analytic methods to generate a large but not
overwhelming number of choices quickly and easily
is possible.

Next, the process of developing the new dis-
tricts should involve all interested people, and the
redistricting choices should be constrained to focus
on principled, broadly acceptable plans. Creative
use of computational methods can, as we demon-
strated, present all stakeholders with a substantial
pool of such plans. Ultimately, the final districting

will and should be done by people who have a stake
in and understand the nuances of the neighborhoods
and the city.

Although measures of compactness can point out
serious gerrymandering, the best safeguard against
egregiously gerrymandered districts is an open dis-
cussion of plans, placing those plans on the Web
for citizens and public interest groups to comment.
Citizens should be able to add plans and comment on
existing proposals. Refinements of those plans, along
with commentaries explaining why the refinements
were made, should be posted periodically, again pro-
viding for open dialogue and modifications by citi-
zens. A small set of final plans should be posted with
a comment period before the final vote.

A process that demonstrates intent to be fair is just
as important as the final redistricting, because some
neighborhoods and interest groups will almost cer-
tainly not receive all the gains they seek.

Appendix A. The Integer Programming
Formulation and Heuristic Solution Procedure for
the Districting Problem
Assume that a geographical zone to be districted (e.g., a city
or a state) consists of a set I of mutually exclusive, collec-
tively exhaustive population units, with Pi representing the
population in unit i. We assume that the district centers are
to be selected from a set J of candidate centers. The sets I
and J can be the same population units, but do not have
to be. Let d4i1 j5 represent the distance from i to j , mea-
sured according to some suitable metric, such as squared
Euclidean distance from i to j . Each of the K districts needs
to contain a population between POPLOW and POPHIGH.
Decision variable X4i1 j5 is 1 if population unit i is assigned
to the district center at j (and 0 otherwise). Decision variable
Y 4j5 is 1 if the district center at j is selected to be a center
for a district (and 0 otherwise). The standard p-median (or
facility location) approach to the districting problem (DP)
follows.

Problem DP:

Minimize
∑

i

∑

j

d4i1 j5X4i1 j5

s.t.
∑

j

X4i1 j5= 1 for all i ∈ I1 (A1)

POPLOW ≤
∑

i

PiX4i1 j5≤ POPHIGH

for all j ∈ J 1 (A2)

X4i1 j5≤ Y 4j5 for all i ∈ I and j ∈ J 1 (A3)
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∑

j

Y 4j5=K1 (A4)

X4i1 j51Y 4j5 are binary decision variables1 (A5)

Set of contiguity constraints0 (A6)

Note that constraints (A1)–(A5) alone represent the stan-
dard p-median model; solving DP without constraint (A6)
can result in districts that are not entirely contiguous. How-
ever, given the nature of the objective function coefficient
d4i1 j5, we expect the solution of DP to be almost con-
tiguous. We discuss the exact implementation of the con-
tiguity constraints after we present our heuristic solution
procedure.

In our solution procedure, we considered three sets of
candidate centers J :
J1 = set of 1,687 ward divisions;
J2 = set of 66 wards, with each ward containing a number

of ward divisions (subsets) from set J1; and
J3 = set of 155 neighborhoods.

Sets J1, J2, and J3 represent varying levels of population
aggregation in the city and the populations of the elements
of sets J1, J2, and J3 add up to a population of about 1.5 mil-
lion, the population of Philadelphia. Moreover, if districting
is to be accomplished at the ward level with set I in DP
the same as set J2, we have a small integer program that
can be solved to optimality using available solvers, such as
CPLEX/GAMS. We therefore consider the solution of the
1,687 population unit (ward division) problem in the three-
step heuristic procedure stated next (i.e., I = J1 and J = J1).
Because the heuristic procedure works by first aggregating
and then disaggregating population units, we refer to our
heuristic procedure as the data-aggregation-dis-aggregation
heuristic or the DADA heuristic.

DADA Heuristic:
Step 1. Solve problem DP with set I = J1 and set J = J3,

the set of neighborhoods, using only constraints (A1)–(A5),
to obtain a set J34K5 of K candidate centers. Set J34K5 is a
subset of set J3. Note that the districting solution obtained
in this step may not be contiguous.

Step 2. Identify a subset J14K5 of J1, where the elements
of J1 are closest to any element of J34K5 obtained in Step 1
using squared distance. Fix the members of J14K5 as the cen-
ters for Step 3. (Because J14K5 need not be the optimal set
of district centers, procedure DADA is only a heuristic.)

Step 3. Solve DP with I = J1 and J = J14K5 and all con-
straints (1)–(6) that include the contiguity constraints.

Because �J14K5� = K and the centers for the districts are
now fixed, we can add the preprocessing step X4i1 i5 = 1 if
i is a member of J14K5. Once DP is solved in Step 3 with
the contiguity constraints, we obtain a contiguous district
solution that satisfies the population bounds POPLOW and
POPHIGH. However, this is still a heuristic solution because
centers are fixed in Step 2. The objective of the genetic algo-
rithm described in Appendix B is to improve the solution
from Step 3 by performing a local search.

The intuition behind the contiguity constraints is that
each center belongs to a different district and can serve as
a root node for a subtree of population units that are in
the same district. The constraints enforce a flow from each
population unit in a district to the root node in that district
through contiguous population units in the same district.
By requiring the outflow from a population unit that is not
a root node to be one unit greater than the inflow, the con-
straints ensure that the only node with a net inflow is the
root node, which enforces contiguity in the district. Shirabe
(2009, p. 1059) provides details.

Let k = 11 0 0 0 1K and let variable z4i11 i21 k5 represent the
total flow from node (population unit) i1 to node i2 when
both i1 and i2 are assigned to district k. Let A be the set of
pairs of population units that are adjacent: A = 84i11 i25 � i1
and i2 in set I and adjacent}. Note that if the ordered pair
(i11 i2) is a member of A, (i21 i1) is also a member of A. Let M
be a large number chosen to be an upper bound on the
number of population units to be contained within any one
district (a classic big M).

To prevent flows between two districts, the following
constraint permits an inflow to node i1 only if node i is
assigned to district k.

∑

4i1 i15∈A

z4i1 i11 k5≤MX4i1k5

for all k ∈K and i y J14K5 (A7)

The next constraint forces a net outflow of one from every
node that is not a root node if both nodes are in k.

∑

4i11 i5∈A

z4i11 i1 k5−
∑

4i1 i15∈A

z4i1 i11 k5=X4i1 k5

for all k ∈K and i y J14K50 (A8)

Note that the outflow
∑

4i11 i5∈A
z4i11 i1 k5= 0 when i1 is not in

District k. Thus, the combination of Equations (A7) and (A8)
ensures that i and i1 are both in District k when flows are
positive. The last constraint caps the flow out of district
centers to avoid unbounded solutions by imposing a bound
on the maximal flow collected by each district’s root node
from all other nodes that belong to the same district.

∑

4i1 i15∈A

z4i1 i11 k5≤M − 1

for all k ∈K and i ∈ J14K50 (A9)

Appendix B. The Evolutionary Algorithm
Our evolutionary algorithm (EA) was written in MATLAB
and centers around the script main.m as the main program.
The algorithm does not use recombination (crossover); it
relies principally on a special form of mutation, described
later, to introduce variance. We eschewed recombination
because of time constraints and because it tends to pro-
duce noncontiguous solutions. Perhaps with much longer-
running explorations, recombination would prove useful.
We note that although genetic algorithms ordinarily use
some form of recombination, historically the evolutionary
programming (EP) community has not. Our algorithm is
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best classified as a form of EP, within the umbrella class
of EAs.

At the outset, we attempted to evolve contiguous solu-
tions, but were unsuccessful because we were working
under a tight time constraint. Consequently, as we describe
next, we obtained four contiguous solutions as starters and
evolved new contiguous solutions from them.

The main.m program first initializes the run and then
calls another procedure to run the main loop of the algo-
rithm. We now describe these two aspects separately.

Initialization
In main.m, entry of data leads to instantiation of the follow-
ing variables:

wardPops: An array (or table) that maps ward number
(1–66) to its population value in the 2010 census.

wardCoords: An array that maps the ward number to
both X- and Y -coordinate values. The resulting point is the
geographic center of the ward.

wardAdjacent: A 66 × 66 adjacency matrix, a symmetric
table of 1s and 0s, with 1 indicating that the wards of the
corresponding row and column are immediately adjacent.
With 1s on the diagonal, wards were treated as immediately
adjacent to themselves.

distanceMatrix: Using the X- and Y -coordinate data for
the wards, we generated an interward distance data file
offline that was loaded during program initialization into
this array.

The program then operates with these four basic sources
of data, plus the following parameter initializations.

numDistricts: The number of districts to be designed
(set to 10).

targetPop: The total population divided by the number
of districts (numDistricts).

slackAllowed: Set to 0.025. We used this to constrain the
district populations in a solution so that they were individ-
ually all within 2.5 percent of the target population.

theMutationRateHigh, theMutationRateLow: Set to 0.15
and 0.01, respectively. Innovatively, or at least unconven-
tionally, we used both mutation rates during each run, as
we explain later. This served to reduce the time used to
explore the parameter space and tune the algorithm.

lambda: Set to 3. We used 2 ∗ lambda as the number
of mutated solutions each member of the population pro-
duces in each generation. Therefore, in each generation,
each member of the current population spawns six daugh-
ter solutions by mutation.

numGenerations: Set to 2,000. We halted each run after
2,000 generations; we arrived at 2,000 using a modest tuning
effort.

thePop: The population. We entered the initial popula-
tion for each series of runs at start up. We used four dif-
ferent initial populations, each consisting of 50 contiguous
solutions to the problem. Each of these initial populations
was generated from one of four distinct single-contiguous
solutions, each of which was produced by other team mem-
bers using the integer program. In each case, from a single

starting solution, we generated 50 new contiguous solutions
using the mutation procedures used in the main evolution
loop. Here, we simply ran the procedure on the original
and any found contiguous solutions until we obtained the
required number of solutions. As it happened, none of the
solutions in the four populations were feasible with respect
to population deviation.

Main Loop
The main loop of the algorithm is essentially simple.
For each generation (i.e., 2,000 times), the algorithm per-
forms the following three actions.

1. Produces 2∗lambda daughters for each member of the
current population using what we call neighborhood muta-
tion (i.e., only wards with neighbors assigned to another
district are mutated), with the permitted mutation values
limited to the current value (assigned district) of the ward
and the neighboring values. In addition, each solution pro-
duces lambda daughters using the high mutation rate and
lambda daughters using the low mutation rate.

2. Assesses the fitness of each member of the augmented
population. The objective function value is the maximum
within-district distance between wards for a given dis-
trict assignment (solution). We seek to minimize this. Solu-
tions that are noncontiguous are heavily penalized to ensure
that they do not appear in the next generation. Solu-
tions that violate the population-size constraint are penal-
ized less severely, but in proportion to the size of the
violation. Therefore, fitness is the objective function value
plus any penalties, and we seek to minimize it.

3. Selects the next-generation population by culling the
best popSize solutions from the augmented population.
We scored the solutions on fitness, as described previously,
by computing the maximum within-district distance of a
solution, plus penalties for violations of contiguity and pop-
ulation size constraints. We then ranked the solutions in the
population and produced the next generation by taking the
best popSize of these solutions. This use of ranking selec-
tion, along with not having recombination, is typical of EP
algorithms.

Control
A control procedure (called go.m) directs the main pro-
gram and its main loop. It basically sets the number of
runs (each run consisting of 2,000 generations for a single
starting population), sets which starting population will be
used (we had four in all), and collects across all the runs
and each generation any feasible new solution encountered.
We found 116 of these.
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