Review of Economic Studies (2013) 80, 1338-1383 doi: 10.1093/restud/rdt011
© The Author 2013. Published by Oxford University Press on behalf of The Review of Economic Studies Limited.
Advance access publication 23 February 2013

R&D and Productivity:
Estimating Endogenous
Productivity

ULRICH DORASZELSKI

University of Pennsylvania
and
JORDI JAUMANDREU

Boston University

First version received December 2011; final version accepted January 2013 (Eds.)

We develop a model of endogenous productivity change to examine the impact of the investment
in knowledge on the productivity of firms. Our dynamic investment model extends the tradition of the
knowledge capital model of m) that has remained a cornerstone of the productivity literature.
Rather than constructing a stock of knowledge capital from a firm’s observed R&D expenditures, we
consider productivity to be unobservable to the econometrician. Our approach accounts for uncertainty,
non-linearity, and heterogeneity across firms in the link between R&D and productivity. We also derive
a novel estimator for production functions in this setting. Using an unbalanced panel of more than 1800
Spanish manufacturing firms in nine industries during the 1990s, we provide evidence of non-linearities
as well as economically significant uncertainties in the R&D process. R&D expenditures play a key role in
determining the differences in productivity across firms and the evolution of firm-level productivity over
time.
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1. INTRODUCTION

A firm invests in R&D and related activities to develop and introduce product and process
innovations. These investments in knowledge enhance the productivity of the firm and change
its competitive position relative to that of other firms.

Our goal in this article is to assess the role of R&D in determining the differences in
productivity across firms and the evolution of firm-level productivity over time. To achieve
this goal, we develop a model of endogenous productivity change resulting from investment in
knowledge. We also derive an estimator for production functions in this setting. In addition
to the parameters of the production function, our estimator recovers the law of motion for
productivity. With these tools in hand we study the link between R&D and productivity in Spanish
manufacturing firms during the 1990s.
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Our starting point is a dynamic model of a firm that invests in R&D in order to improve
its productivity over time in addition to carrying out a series of investments in physical capital.
Both investment decisions depend on the current productivity and the capital stock of the firm as
do the subsequent decisions on static inputs such as labour and materials. Productivity follows
a Markov process that can be shifted by R&D expenditures. The evolution of productivity is
thus subject to random shocks. These innovations to productivity capture the factors that have a
persistent influence on productivity such as absorption of techniques, modification of processes,
uncertainties related to investments in physical capital, and gains and losses due to changes in
labour composition and management abilities. For a firm that engages in R&D, the productivity
innovations additionally capture the uncertainties inherent in the R&D process such as chance in
discovery, degree of applicability, and success in implementation.

Our model of endogenous productivity change is not the first attempt to account for investment
in knowledge. In a very influential paper, m ) proposed to augment a standard
production function with “a measure of the current state of technical knowledge, determined in
part by current and past research and development expenditures” (p. 95). In practice, a firm’s
observed R&D expenditures are used to construct a proxy for the state of knowledge. This
knowledge capital model has remained a cornerstone of the productivity literature for more than
25 years and has been applied in hundreds of studies on firm-level productivity (see the surveys
by [Mairesse and Sassenod (1991). [Griliched (1993, 200d). and[Hall ez az] ©010)).

In a departure from the previous literature we do not attempt to construct a stock of knowledge
capital from the available history of R&D expenditures and with it control for the impact of R&D
on productivity. Instead, we consider productivity to be unobservable to the econometrician
and in this way relax the assumptions on the R&D process in a natural fashion. Building on
[Hall and Hayashi’s (1989) and [Klettd's (1996) extension of the knowledge capital model, we
recognize that the outcome of the R&D process is likely to be subject to a high degree of
uncertainty. Once discovered, an idea has to be developed and applied, and there are the technical
and commercial uncertainties linked to its practical implementation. We further recognize, again
building on [Hall and Hayashi (1989) and [Klettd (1996), that current and past investments in
knowledge are likely to interact with each other. Since there is little reason to believe that features
such as complementarities and economies of scale in the accumulation of knowledge or the
obsolescence of previously acquired knowledge can be adequately captured by simple functional
forms, we deviate from|ﬂal]_an_d_1:|_a¥a.shi dl_%_g) and|Klettd dl&%) by modelling the interactions
between current and past investments in knowledge in a flexible fashion.

To retrieve productivity at the level of the firm, we have to estimate the parameters of the
production function. However, if a firm adjusts to a change in its productivity by expanding or
contracting its production depending on whether the change is favourable or not, then unobserved

roductivity and input usage are correlated and biased estimates result (Marschak and Andrewd,
). Recent advances in the structural estimation of production functions, starting with the

dynamic investment model of [Qlley and Paked (1996) (OP), tackle this endogeneity problem
The insight of OP is that if observed investment is a monotone function of unobserved
productivity, then this function can be inverted to back out—and thus control for—productivity.
This line of research has been extended by[Levinsohn and Petrin (2003) (LP) andm
Cood) (ACF).

Instead of relying on the firm’s dynamic programming problem as OP do, we use the fact that
static inputs are decided on with current productivity known and therefore contain information
about it. As first shown by LP, the input demands resulting from short-run profit maximization are

1. SeelGriliches and Mairessd m) andm M) for reviews of this and other problems that arise

in the estimation of production functions.

€102 ‘02 JequisnoN uo Arugieluenlfsuuad Jo A1sieniun e /B1o'seulnolpioixopnisal//:dny woiy papeojumoq


http://restud.oxfordjournals.org/
http://restud.oxfordjournals.org/

1340 REVIEW OF ECONOMIC STUDIES

invertible functions of unobserved productivity. We use this insight to control for productivity and
obtain consistent estimates of the parameters of the production function. In addition, we recognize
that, given a parametric specification of the production function, the functional form of the inverse
input demand functions is known. As pointed out by[Marschak and Andrewd (1944), the structural
assumptions imply parameter restrictions between the production function and the inverse input
demand functions. Hence, we do not have to rely on non-parametric methods to estimate these
functions. Because our parametric inversion fully exploits the parameter restrictions between
the production function and the inverse input demand functions, it yields a particularly simple
estimator for production functions.

We apply our estimator to an unbalanced panel of more than 1800 Spanish manufacturing firms
during the 1990s. Our data are of notably high quality and combines information on production
with information on firms’ R&D activities in nine industries. This broad coverage of industries
is uncommon and allows us to examine the link between R&D and productivity in a variety of
settings that differ greatly in the importance of R&D. At the same time, it allows us to put to the
test our model of endogenous productivity change and the estimator we develop for it.

Somewhat unusually we have firm-level wage and price dataP The fact that the wage and
prices vary across firms is at variance with the often-made assumption in the literature following
OPthat all firms face the same wage and prices and that these variables can therefore be replaced by
a dummy. Instead, as LP point out, the wage and prices must be accounted for in the inverse input
demand functions used to recover unobserved productivity. While the non-parametric methods
in OP, LP, and ACF extend to our model of endogenous productivity change, non-parametrically
estimating the inverse input demand functions becomes more demanding on the data as the number
of their arguments increases. Our parametric inversion circumvents this “curse of dimensionality”
in non-parametric estimation and is much less demanding on the data.

Our estimates of the law of motion for productivity attest to important non-linearities and
uncertainties in the R&D process. The impact of current R&D on future productivity depends
crucially on current productivity. Non-linearities often take the form of complementarities
between current R&D and current productivity. Furthermore, the R&D process must be treated
as inherently uncertain. We estimate that, depending on the industry, between 25% and 75% of
the variance in productivity is explained by innovations that cannot be predicted when decisions
on R&D expenditures are made. Moreover, the return to R&D is often twice that of the return to
investment in physical capital. Our estimates therefore suggest that the uncertainties inherent in
the R&D process are economically significant and matter for firms’ investment decisions.

Capturing the uncertainties in the R&D process also paves the way for heterogeneity across
firms. Because we allow the shocks to productivity to accumulate over time, even firms with
the same time path of R&D expenditures may not have the same productivity. This gives us the
ability to assess the role of R&D in determining the differences in productivity across firms and
the evolution of firm-level productivity over time.

Despite the uncertainties in the R&D process, we show that the expected productivity of
firms that perform R&D is systematically more favourable in the sense that their distribution
of expected productivity tends to stochastically dominate the distribution of firms that do not
perform R&D. Assuming that the productivity process is exogenous (as in most of the literature
following OP) amounts to averaging over firms with distinct innovative activities and hence
blurs important differences in the impact of the investment in knowledge on the productivity of

2. There are other data sets such as the Colombian Annual Manufacturers Survey W, ﬂ!) and the
Longitudinal Business Database at the U.S. Census Bureau that contain separate information about prices and quantities,

at least for a subset of industries nghmund&Lmnd, m; |Eoster et all, ).
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ﬁrmsﬁ In addition, we estimate that firms that perform R&D contribute between 65% and 90% of
productivity growth in the industries with intermediate or high innovative activity. Investments
in R&D and related activities are thus a primary source of productivity growth.

Our model allows us to recover the entire distribution of the elasticity of output with respect
to R&D expenditures—a measure of the return to R&D—as well as that of the elasticity of output
with respect to already attained productivity—a measure of the degree of persistence in the
productivity process. On average we obtain higher elasticities with respect to R&D expenditures
than in the knowledge capital model and lower elasticities with respect to already attained
productivity. Since old knowledge is hard to keep but new knowledge is easy to add, productivity
is considerably more fluid than what the knowledge capital literature suggests.

The remainder of this article is organized as follows. SectionPllays out a dynamic investment
model with endogenous productivity change. SectionBldescribes the data and SectionEldevelops
our empirical strategy. Sections Bl and [@] discuss our results and Section[Zlconcludes.

2. AMODEL FOR INVESTMENT IN KNOWLEDGE

A firm carries out two types of investments, one in physical capital and another in knowledge
through R&D expenditures. Investment decisions are made in a discrete time setting with the goal
of maximizing the expected net present value of future cash flows. Capital is the only dynamic
(or “fixed”) input among the conventional factors of production and accumulates according to
Kjr =(1—08)Kj;—1 +1j;—1, where Kj; is the stock of capital of firm j in period ¢ and § is the rate
of depreciation. This law of motion implies that investment /;;_1 chosen in period # — 1 becomes
productive in period ¢.

The productivity of firmj in period # is wj,;. While the firm knows its productivity when it makes
its decisions, we follow OP and often refer to wj; as “unobserved productivity” since it is not
observed by the econometrician. Productivity is correlated over time and perhaps also correlated
across firms. Because our goal is to assess the role of R&D in determining the differences in
productivity across firms and the evolution of firm-level productivity over time, we have to
endogenize the productivity process. To this end, we assume that productivity is governed by
a controlled first-order Markov process with transition probabilities P(wj|wjr—1,7j;—1), Where
rjt—1 is the log of R&D expendituresﬂ

Adopting the convention that lower case letters and upper case letters denote logs and levels,
respectively, the firm has the Cobb—Douglas production function

Vit =Bo~+ Bit + Bikjr + Biljt + Bmmjs + wjr +eje, (D

where yj; is the output of firm j in period ¢, [;; is labour, and mj; is materials. We allow for a
secular trend ¢ in the production function that we model as either a linear time trend or dummies
(see Section L2 for details). In contrast to productivity wj;, the mean zero random shock ej; is
uncorrelated over time and across firms. The firm does not know the value of ¢j; when it makes
its decisions at time 7.

The Bellman equation for the firm’s dynamic programming problem is

. 1 .
V(sjr) =maxI1(sj) — Ci(ijr) — Cr(rjr) + TpE[V(sz+1)|Sjt, ijt. it ()

Lt Tt 1

3. Subsequent research on extending the two-stage procedures in OP, LP, and ACF to an endogenous productivity
process echoes this conclusion (m, M).

4. The literature following OP typically assumes an exogenous Markov process with transition probabilities
P(wj|wji—1).
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where sj; = (¢, kjr, wjr, wjr, pymje» djr) s the vector of state variables. Besides the trend ¢, the stock
of capital kj;, and productivity wj, the vector of state variables comprises other variables that are
correlated over time, namely the wage wj; and the price of materials pyj; that the firm faces, and
the demand shifter dj;. The discount rate is p. Per-period profits are given by the indirect profit
function I1(-) and the cost of investment in physical capital and knowledge by the cost functions
Ci(-) and C,(-), respectively. In the simplest case C;(-) and C,(-) just transform logs into levels,
but they may also capture indivisibilities in investment projects or adjustment costs; their exact
forms are irrelevant for our purposesﬁ In practice, investment opportunities and the price of
equipment goods are likely to vary and the cost of investment in knowledge depends greatly on
the nature of the undertaken project (Adda and Coopei, 2003, p. 188). To capture variation in
the cost of investment in physical capital and knowledge across firms and time, a cost shifter
xjr can be added to Cj(-) and Cy(-) (and thus becomes part of sj;). The dynamic programming
problem gives rise to two policy functions i(sj;) and r(sj;) for the investments in physical capital
and knowledge, respectively.

The firm anticipates the effect of R&D on productivity in period + when making the decision
about investment in knowledge in period ¢ — 1. The Markovian assumption implies

wjr =E [wjt|wji—1.rji—1 |+ & = g(@ji—1, rj—1) +&jr. (3)

That is, actual productivity wj in period t can be decomposed into expected productivity
g(wjr—1,rjr—1) and a random shock &j;. While the conditional expectation function g(-) depends
on already attained productivity wj,—1 and R&D expenditures rj,_1, & does not: by construction
&j; is mean independent (although not necessarily fully independent) of wj,—; and rj;—;. This
productivity innovation represents the uncertainties that are naturally linked to productivity plus
the uncertainties inherent in the R&D process such as chance in discovery, degree of applicability,
and success in implementation. It is important to stress the timing of decisions in this context:
when the decision about investment in knowledge is made in period 7 — 1, the firm is only able
to anticipate the expected effect of R&D on productivity in period ¢ as given by g(wjr—1,j:—1)
while its actual effect also depends on the realization of the productivity innovation &, that occurs
after the investment has been completely carried out. The conditional expectation function g(-)
is not observed by the econometrician and must be estimated non-parametrically along with the
parameters of the production function.

As noted by LP, the firm’s dynamic programming problem—and the policy functions for
the investments in physical capital and knowledge it gives rise to—can easily become very
complicated. ) incorporates R&D expenditures into the dynamic investment model
of OP. To prove that the policy function for investment in physical capital can be used to non-
parametrically recover unobserved productivity, [Buettnel ) has to restrict the transition
probabilities P(wjs|wj;—1,7j;—1) of the Markov process that governs the evolution of productivity
to be of the form P(wj|vj;), where ¥y =¥ (wj;—1,rj,—1) is an index that orders the probability
distributions for wj;. The restriction to an index excludes the possibility that current productivity
and R&D expenditures affect future productivity in qualitatively different ways.

To free up the relationship between current productivity, R&D expenditures, and future
productivity, we base our empirical strategy on the firm’s decisions on static (or “variable”) inputs
that are subsumed in the indirect profit function I1(-). Specifically, we follow LP and assume that
labour /;; and materials m;; are chosen to maximize short-run proﬁtsﬁ This gives rise to two input

5. One can, e.g. combine the cost functions C;(-) and C,(-) into a more general cost function Cj,-(-).
6. LP invoke this assumption to establish in their Equation (9) a sufficient condition for the invertibility of the
intermediate input: on p. 320 just below Equation (1) LP assume that labour is “freely variable,” on p. 322 just above

€102 ‘02 JequisnoN uo Arugieluenlfsuuad Jo A1sieniun e /B1o'seulnolpioixopnisal//:dny woiy papeojumoq


http://restud.oxfordjournals.org/
http://restud.oxfordjournals.org/

DORASZELSKI & JAUMANDREU ESTIMATING ENDOGENOUS PRODUCTIVITY 1343

demand functions I(sj;) and m(sj;) that allow us to parametrically recover unobserved productivity
and control for it in estimating the parameters of the production function in Equation () and the
law of motion for productivity in Equation (3). Before detailing our empirical strategy in Section[d]
we describe the data at hand.

3. DATA

Our data come from the Encuesta Sobre Estrategias Empresariales (ESEE) survey, a firm-level
survey of Spanish manufacturing sponsored by the Ministry of Industry. The unit surveyed is the
firm, not the plant or the establishment. At the beginning of this survey in 1990, 5% of firms with
up to 200 workers were sampled randomly by industry and size strata. All firms with more than
200 workers were asked to participate, and 70% of these large firms chose to respond. Some firms
vanish from the sample, due to either exit (shutdown by death or abandonment of activity) or
attrition. The two reasons can be distinguished, and attrition remained within acceptable limits.
To preserve representativeness, samples of newly created firms were added to the initial sample
every year. Details on industry and variable definitions can be found in Appendix A.

Our sample covers a total of 1870 firms when restricted to firms with at least two years of
data. Columns (1) and (2) of Table [[] show the number of observations and firms by industry.
Samples sizes are moderate. Columns (3) and (4) show entry and exit. Newly created firms are a
large share of the total number of firms, ranging from 15% to one-third in the different industries.
In each industry there is a significant proportion of exiting firms (from 5% to above 10% in a
few cases). Firms tend to remain in the sample for short periods, ranging from a minimum of two
years to a maximum of 10 years between 1990 and 1999.

The 1990s were a period of rapid output growth, coupled with stagnant or at best slightly
increasing employment and intense investment in physical capital, as can be seen from
Columns (5)—(8) of Table [[l Consistent with this rapid growth, firms on average report that
their markets are slightly more often expanding than contracting; hence, demand tends to shift
out over time.

The growth of prices, averaged from the growth of prices as reported individually by each
firm, is moderate. The growth of the price of output in Column (9) ranges from 0.7% to 2.2%.
The growth of the wage and the price of materials ranges from 4.4% to 6.0% and, respectively,
from 2.5% to 3.9%.

Our empirical strategy treats labour as a static input. This is appropriate because Spain greatly
enhanced the possibilities for hiring and firing temporary workers during the 1980s and, by the
beginning of the 1990s, had one the highest shares of temporary workers in Europe m
Iﬁ). In our sample the share of temporary workers ranges from 14% to 33% across industries.
Rapid expansions and contractions of temporary workers are common: the difference between
the maximum and the minimum share of temporary workers within a firm ranges on average from
12% to 20% across industries. In addition, we measure labour as hours worked (see Appendix A
for details). At this margin at least firms enjoy a high degree of flexibility in determining the
demand for labour: within a firm the difference between the maximum and the minimum hours
worked ranges on average from 29% to 41%. These sizeable adjustments in hours worked are
due to changes in hours worked per workerl[] changes in the number of temporary workers, and
changes in the number of permanent workers.

i

Equation (6) they assume that the intermediate input is also “freely variable,” and they invoke short-run profit maximization
at the start of the proof on p. 339.

7. The difference between the maximum and the minimum hours worked per worker within a firm ranges on
average from 4% to 13% across industries.
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The R&D intensity of Spanish manufacturing firms is low by European standards, but R&D
became increasingly important during the 1990s (see, e.g. [European Commissior, |2£)Q_1|)ﬁ The
manufacturing sector consists partly of multinational companies with production facilities in
Spain and very large R&D expenditures and partly of small and medium-sized companies that
invested heavily in R&D in a struggle to increase their competitiveness in a growing and already
very open economyﬂ’ i

Columns (10)—(13) of Table [ reveal that the nine industries differ markedly in terms of
firms’ R&D activities. Chemical products (3), agricultural and industrial machinery (4), and
transport equipment (6) exhibit high innovative activity. The share of firms that perform R&D
during at least one year in the sample period is about two-thirds, with slightly more than 40%
of stable performers that engage in R&D in all years (Column (11)) and slightly more than
20% of occasional performers that engage in R&D in some (but not all) years (Column (12)).
The average R&D intensity among performers ranges from 2.2% to 2.7% (Column (13)). The
standard deviation of R&D intensity is substantial and shows that firms engage in R&D to various
degrees and quite possibly with many different specific innovative activities. Metals and metal
products (1), non-metallic minerals (2), food, drink and tobacco (7), and textile, leather, and shoes
(8) are in an intermediate position. The share of firms that perform R&D is below one half and
there are fewer stable than occasional performers. The average R&D intensity is between 1.0%
and 1.5% with a much lower value of 0.7% in industry 7. Finally, timber and furniture (9) and
paper and printing products (10) exhibit low innovative activity. The share of firms that perform
R&D is around one quarter and the average R&D intensity is 1.4%.

4. EMPIRICAL STRATEGY

Our estimator builds on the insight of LP that the demands for static inputs such as labour and
materials can be used to recover unobserved productivity. Static inputs are chosen with current
productivity known and therefore contain information about it. Importantly, the demands for
static inputs are the solution to the firm’s short-run profit maximization problem. We are thus
able to back out productivity without making assumptions on the firm’s dynamic programming
problem. Our estimator differs from LP by recognizing that, given a parametric specification of
the production function, the functional form of the input demand functions (and their inverses)
is known. Exploiting the parameter restrictions between the production function and the inverse
input demand functions allows us to parameterically recover unobserved productivity.

To allow the firm to have some market power, e.g. because products are differentiated, we
assume that the firm faces a downward sloping demand function that depends on the price of
output pj; and the demand shifter dj;. Profit maximization requires that the firm sets the price

that equates marginal cost to marginal revenue Pj (1 — ), where 7(-) is the absolute value

1
NWje-djr)

8. R&D intensities for manufacturing firms are 2.1% in France, 2.6% in Germany, and 2.2% in the UK as compared
t0 0.6% in Spain (European Commissiod. 2004).

9. At most a small fraction of the firms that engaged in R&D received subsidies that typically covered between
20% and 50% of R&D expenditures. The impact of subsidies is mostly limited to the amount that they add to the project,
without crowding out private funds (seeW,@). This suggests that R&D expenditures irrespective of their
origin are the relevant variable for explaining productivity.

10. While some R&D expenditures were tax deductible during the 1990s, the schedule was not overly generous

and most firms simply ignored it. A large reform that introduced some real stimulus took place towards the end of our
sample period in 1999.
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of the elasticity of demand[T] Given the Cobb-Douglas production function in Equation (), the
assumption that labour and materials are static inputs implies that the labour demand function is

1
l(Sjt)Zm Bo+ (1 —Bm)In B+ B In By + 1+ Brt + Bickje + wjr — (1 — Br)(Wjt —pjie)
1
— Bulpmgje—pi)+In(1—-————) ), 4
B (pth sz)+ 1‘1( H(sz,djt)) 4

where u=InFE [exp(ejt)], (wjr —pjr) is the real wage, and (ppgj: — pjr) is the real price of materials.
Solving Equation @) for wj; we obtain the inverse labour demand function

hi(t, kje, Lt pje, Wit pMje dje) = M — Brt — Brekje + (1= Br — Bm)lje + (1 = B )(Wjt — pje)
1
+ B (e — -)—ln<l——>, (5)
Bm(p (jt — Djt T)(Pjt,djt)

where A;=—80— (1 — Bm)InB; — B In B, — 1 combines constants. These derivations generalize
beyond the Cobb—Douglas production function in Equation (): maintaining the Hicks-neutrality
of productivity, the inverse labour demand function can be characterized in closed form for a
CES or a generalized linear production function, although not for a translog production function.

To obtain our estimation equation, we proceed in two steps. We first substitute the law of motion
for the controlled Markov process in Equation @) into the production function in Equation (.
Then we use the inverse labour demand function /;(-) in Equation @) to substitute for wjt—1 to
obtain

Yjr = Bo+ Brt + Bikjs + Bilje + Bmmjs +8(hyje—1, rjs—1) +&je +ejs.» (6)

where hyj;_1 is shorthand for Ayt —1,kjr—1,Li—1,Pjr—1,Wjr—1,Pmjr—1 ,dj,,l) In Section ] we
also provide estimates using the inverse materials demand function #,,(-), although these have
problems.

We base estimation on the moment restrictions

E [A(th)(%-jt +ejt)] =0,

where A(-) is a vector of functions (to be specified in Section K.2)) of the exogenous variables
th Because &j; is the innovation to productivity in period ¢, its value is not known to the firm

11. More generally the elasticity of the residual demand that a firm faces depends additionally on its rivals’ prices.
One may be able to replace rivals’ prices by an aggregate price index or dummies, although this substantially increases
the number of parameters to be estimated.

12. Our model nests a restricted version of the dynamic panel model of [Blundell and Bond M). Leaving aside
the fixed effects in their specification, we obtain their estimation Equation (2.2) by switching from a gross-output to
a value-added production function with 8,, =0, restricting the law of motion in Equation (@) to an exogenous AR(1)
process with g(wj;—1) = pwj;—1, and using the marginal productivity condition for profit maximization to substitute yj; 1
for —Ing;—pu+1lii—1 +Wjr—1 —pjr—1)—1In (1 - m) in Equation (B). Hence, the differences between their and
our approach lie in the generality of the productivity process and the strategy of estimation.

13. These moments in &j;+ej; correspond to the “second-stage moments” in OP, LP, and ACF. The literature
following OP also uses “first-stage moments” in ej that are obtained by using /;(-) to substitute for wj in the
production function in Equation (. Estimating this marginal productivity condition for profit maximization together with
Equation (@ may increase efficiency. Parameters of interest may, however, cancel. In the special case of a value-added
production function with B,, =0 and perfect competition in the product market with n(-) = oo, the estimation equation is
Yjr =M1+ +Wjr —pj) +ejr, where A1 =—Inf; — . combines constants.
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when it makes its decisions at time ¢ — 1. Hence, all lagged variables appearing in Equation (6)) are
uncorrelated with &;;. Moreover, kj;, whose value is determined in period ¢ — 1 by ij; 1 =i(sj;—1),
is uncorrelated with &j; by virtue of our timing assumptions. Only /;; and mj; are correlated with
& (since &j is part of wj; and ljy =I(sj;) and m;; =m(s;;) are functions of wj;) and as endogenous
variables must be instrumented for.

In considering instruments, it is important to remember that because Equation (6) models
the law of motion for productivity it has an advantage over Equation (I): instruments have
to be uncorrelated with the innovation to productivity &j; but not necessarily with the level
of productivity wj,;. For example, while ;| is uncorrelated with §;, in Equation @, lii—1 is
correlated with wj; in Equation () as long as productivity is correlated over time. Modelling the
law of motion in this way mitigates the endogeneity problem in estimating production functions.

Our instrumenting strategy is grounded in a simultaneous-equations perspective. Equa-
tions (@), @), @), and @ define a simultaneous-equations model. To simplify the exposition,
we restrict the production function in Equation (@) to Yjt = Biljt +wjt +ejs, the law of motion in
Equation (@) to an exogenous Markov process wjr = g(wjr—1)+&j, and assume perfect competition
in the product market with 1(-) = oo to obtain the simultaneous-equations model

Vit = Biljt + 8 +(1 = BDljs—1+Wjr—1 —pjr—1)) +&j +€jt, @)

1
lir= 7 (=218 +(1=BDlir—1 +Wjr—1 —Pjt—1)) — Wjt —pj) +&jr ), (8)

where A;=—Inp;—u combines constants. The endogenous variables are y;; and [;;. While
Equation (8)) is in reduced form, Equation (7)) is structural. To derive its reduced form, we substitute
Equation (8)) into Equation () to obtain

Yjr= —Biri+ g+ (1= BDli—1 +Wji—1 —pji—1)) — Biwji —pj) +&ji) +ejr. (9)

1
l—m(

The exogenous variables zj; on the right-hand side of the reduced-form Equations (&) and @) are
the constant, (wj: —pjr), ljr—1, and (Wj;—1 —pjr—1).

Apotential concern s that the current real wage (wj — pjr) and, by analogy, the currentreal price
of materials (pagjr — pjr) may be endogenous in the sense of being correlated with the innovation
to productivity &;;. Underlying OP, LP, and ACF is the reasoning that a change in productivity
that is not anticipated by the firm is not correlated with its past decisions. This implies that lagged
values are less susceptible to endogeneity than current values. In what follows we therefore
restrict ourselves to the lagged real wage (wj;—1 —pj—1) and the lagged real price of materials
(PMjtr—1 —Pjr—1) for instruments.

An important conclusion from viewing our model as a simultaneous-equations model is that
the model is identified even in the simplest case of an exogenous AR(1) process with g(wj;—1)=
pwj;—1 in Equation @: we have three exogenous variables, namely the constant, ljt—1, and
(Wjt—1—Dji—1), to estimate the three parameters Ao=pA;, B, and p. Note that identification
relies on the parameter restrictions between the production function and the inverse labour demand
function.

Another conclusion is that Equation @) does not suffice to estimate the parameters of the
model absent price variation. Without variation in the real wage we are left with the constant
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and [;; 1 as exogenous variables. Clearly, we cannot hope to estimate three parameters with two
exogenous variables[[

Our empirical application is more elaborate than this example. First, we allow for imperfect
competition, where the firm sets the current price of output pj; in light of the level of productivity
wjr. As &j is part of wj;, pj; is endogenous. Imperfect competition is therefore an additional
reason for not relying on the current real wage (wj; —pj;) and the current real price of materials
(pmjr —pjr) for instruments. In our empirical application we thus rely on the lagged price of output
Ppji—1 (as it separately enters our estimation Equation (@) through Ay, _), the lagged real wage
(Wjr—1 —pjr—1), and the lagged real price of materials (ppgjr—1 — pjr—1) for instruments; the tests for
overidentifying restrictions in Section[3.I]lindicate that the variation in Pjt—1> Wjr—1—pjr—1), and
(PMjr—1 —Pjr—1) is exogenous with respect to §j; and therefore useful in estimating Equation @.

Second, we allow the law of motion for productivity in Equation (@) to depend on lagged
R&D expenditures rj;—1. While rj;_1 is correlated with wj;—1 (as rj—1 =r(sj;—1) by virtue of
the policy function) and wj; (as productivity is correlated over time), our timing assumptions
ensure that rj;_1 is uncorrelated with &, in Equation (@). Relying on rj;_; for instruments allows
us to estimate the impact of R&D on productivity. The policy function implies that rj; | varies
with the lagged state variables sj; 1, including the lagged nominal wage wj; 1 and the lagged
nominal price of materials ppsj;—1. Moreover, if a cost shifter xj; is added to the cost functions
Ci(-) and C,() in Equation @) to capture variation in investment opportunities, the price of
equipment goods, and the nature of the undertaken project, then 7j,_1 also varies with xj;_1. All
these variables are therefore a source of exogenous variation in R&D expenditures.

After more formally discussing identification in Section [.1] we provide further details on
our instrumenting strategy in Section [£2] In Section 3] we then turn to the advantages and
disadvantages of our parametric inversion.

4.1. Identification

Our estimation Equation (@) is a semiparametric, so-called partially linear, model with the
additional restriction that the inverse labour demand function #;(-) is of known form. In more
formally discussing identification, we ask if we can separate the parametric from the non-
parametric parts of the model. The importance of this question has been highlighted by ACF
in their critique of OP and LP.

The fundamental condition for identification in a partially linear model is that the variables in
the parametric part of the model are not perfectly predictable (in the least squares sense) by the
variables in the non-parametric part m, ). In other words, there cannot be a functional
%onship between the variables in the parametric and non-parametric parts (see M,

).

To see how the known form of /;(-) aids identification, suppose to the contrary that A;(-) is
of unknown form. In this case, the composition of /;(-) and g(-) is another function of unknown
form. The fundamental identification condition is violated if /;(-) is of unknown form because

14. It may be possible to derive other estimation equations that allow us to estimate the parameters of the model
absent price variation. Assume we observe revenue (p+yj;) and the wage bill (w+/;;) and consider the system of equations

(P+}’jr):)\l+(w+ljr)+€jts (10)
P+yi)=r2+Biw+li)+p(1—B)wW+li—1)+Ej +ejr, (11)

where Aj=—Ing;—pu and Ap =—p(InB;+pn)—(1—p)(Biw—p) combine constants. In a Monte Carlo study we first
estimated Equation (I0) by OLS to obtain A| and then recovered §; from A, using the definition y=InE [exp(e;)].
Finally, taking f; as given, we estimated Equation (IT) by OLS to obtain A, and p.
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is perfectly predictable from the variables in the non-parametric part. To see this, recall that Kj; =
(1 —8)Kj;—1+exp(i(sjr—1)) by the law of motion and the policy function for investment in physical
capital. The central question is whether kj; 1 and sj; 1 =(t — 1, kjs—1, @jr—1, Wjr—1,Pmjt—1,djt—1)
can be inferred from (¢t —1,kj;—1,Li—1,Pjr—1,Wjr—1,PMjr—1,djr—1,7jr—1), the arguments of the
composition of /;(-) and g(-). The answer is affirmative because wj; 1 is by construction a function
of all arguments of /;;(-). Hence, there is a collinearity problem similar to the one that ACF ascertain
for the estimator in LP

Our approach differs from LP in that it exploits the known form of the inverse labour demand
function /;(-). In this case, the central question becomes whether kj;—| and sj; can be inferred
from A1, the value of /() as opposed to its arguments, and rj—1. This is not the case: while
hyjr—1 is identical to wj 1, we cannot infer the remaining state variables from hy;; 1 and rj; .
In particular, even if rj,_1 =r(sj;—1) happened to be invertible for, say, kj,_; we are still short
of wjr—1, pmji—1, and dj; '9 Since kj; in the parametric part is not perfectly predictable from
hyjr—1 and rj;_ in the non-parametric part, the model is identified. Note that this argument rests
on either the wage, the price of materials, or the demand shifter being a state variable in the firm’s
dynamic programming problem.

4.2.  Estimation

Define the residual of our estimation Equation (@) as a function of the parameters 6 to be
estimated as

Vie(0)=yjt — (Bo+ Bit + Bikje + Biljt + Bmmjs + g(hyjr—1., rje—1)) -

The GMM problem is

/

N 1
min N]ZA(Z””’(H) Wy NJZA(ZJ')”J‘G) : (12)

where A(+) is a L x Tj matrix of functions of the exogenous variables z; and v;(-) is a Tj x 1
vector with L being the number of instruments, 7; the number of observations of firm j, and N
the number of firms. We use the two-step GMM estimator of m ). We first obtain

R -1
a consistent estimate 6 of 6 with weighting matrix Wy = (1%, ZjA(zj)A(zj)’ ) . This first step
is the NL2SLS estimator of m (@). In the second step we then compute the optimal
~ ~ s -1
estimate with weighting matrix Wy = (%V ZjA(zj)vj(B)vj(G) A(zj)/) .

Markov process: We allow for a different function when the firm adopts the corner solution
of zero R&D expenditures and when it chooses positive R&D expenditures and specify

g(hljz—lJ’jtfl) as

1(Rji—1=0)(g00+ 801 (hgj—1 — A)) + L(Rj—1 > 0) (810 +&11 (Agjt—1 — A1 Tj—1)) - (13)

15. The fundamental identification condition is, however, satisfied if a cost shifter x; is added to C;(-) and C,(-):
while i(-) depends on xj;, xj; cannot be inferred from the arguments of the composition of /;(-) and g(-). Alternatively,
one may follow OP, LP, and ACF and invoke “first-stage moments” in ej;.

16. In our application we have a substantial fraction of observations with zero R&D expenditures (between 43%
and 83% depending on the industry, see Column (10) of Table[I) that cannot possibly be inverted for the stock of capital.
More generally, we suspect that R&D projects may often be lumpy and involve substantial and possibly non-convex
adjustment costs that negate invertibility.
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Since the constants ggp and gio cannot be separately estimated from the constant By in
Equation (@), we estimate the combined constant Ag=8g+goo and include the dummy for
performers 1(Rj;— > 0) to measure g19— g00-

Series approximation: We model an unknown function g(-) of one variable u by a univariate
polynomial of degree three. We model an unknown function ¢(-) of two variables u and v by a
complete set of polynomials of degree three. We specify the absolute value of the elasticity of
demand as 1 +exp(q(pj;—1.dj;—1)) inorder to impose the theoretical restriction n(pj;—1,dj;—1) > 1.

Secular trend: After experimentation we omit the trend ¢ in industries 4 and 9, where we tend to
have less data. We model it by a linear time trend in industries 2, 3, 6, 8, and 10 and by dummies
in industries 1 and 7, where we tend to have more data.

Parameters: Our baseline specification with time trend has 27 parameters: constant, time trend,
three production function coefficients, thirteen coefficients in the series approximation of g(-),
and nine coefficients in the series approximation of 7(-).

Instruments: The literature on optimal instruments shows that setting

;i (6o)

A(Zj)=E[ 29

zj}, (14)

where 6 is the true value of #, minimizes the variance of the GMM estimator (m, @;
[Newesl, 1199d,[1993). For general non-linear models the conditional expectation in Equation (I4)
is difficult or perhaps even impossible to compute. Substituting a non-parametric estimate of it
into the GMM problem is feasible but cumbersome [

Fortunately, however, our model affords a more direct approach because our estimation
Equation (@) is linear in the endogenous variables and the reduced-form equations are available
in closed form. Returning for simplicity to the example in Equations @)-@), the conditional
expectation of the derivative of v;(6) with respect to B, say, is

1
T1Cg (=ri+8 i+ = Bplir—1 +Wjr—1 —pjt—1)) — (Wit —pji))

g +(1—Bljr—1+Wjr—1—pjr—1))
dwjr—1 .

lir—1

Because we approximate the conditional expectation function g(-) by a univariate polynomial, this
expression is a linear combination of the constant, (wj; —pj;), and the complete set of polynomials
in lj; 1 and (wj,—1 —pj—1). Using the constant, (wj; —pj;), and the complete set of polynomials
inlj; 1 and (wj_1 —pj;—1) as instruments therefore achieves the same variance as using optimal
instruments (l&uﬁﬁ, , p- 206).

In our empirical application we similarly use polynomials in the exogenous variables as
instruments. This strategy is widely employed in the literature, e.g. in[Wooldridgd’s (2009) GMM
version of the two-stage procedures of OP, LP, and ACF and in the sieve estimation procedure of
[Ai and Chen dZDQj, ); see also the discussion on p. 862 ofw (@). The exogenous
variables we rely on are the constant, #, kj;, kjr—1, Ljr—1, Mjr—1, pjr—1, Wjr—1 —Pjr—1)> (PMjt—1 —

17. Equation (Id) presumes Q(z)=E [v,-(&o)vj(éo)’|zj]=ozlr.‘ Instead of non-parametrically estimating 2(z;)
along with A(zj)) we use the two-step GMM estimator of ) to account for heteroskedasticity and
autocorrelation of unknown form.
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Pjt—1)s djt—1, Tjr—1, and 1(Rj;—1 >0)=1—1(R;;—; =0). We omit p;; because we consider an
imperfectly competitive setting and dj; because it is highly correlated with dj; ;. Finally, we omit
(wjr —pjr) and (pupj: —pje) to guard against potential endogeneity concerns.

In light of Equation ([3) spanning the optimal instruments requires a complete set of
polynomials in the arguments of h;(-) interacted with 1(Rj;—1=0) and a complete set of
polynomials in the arguments of /;(-) and rj;| interacted with 1(Rj_| >0). To arrive at a
number of overidentifying restrictions that is reasonable for the data at hand, we select after
experimentation the most important terms for predicting the derivative in Equation (I4).

For industries 4, 9, and 10 we use a basic set of 69 instruments: the constant, ¢, kjr, mj;—1,
1(Rj;—1>0) (5 instruments); a complete set of polynomials in pj; 1 and dj; 1 (9 instruments); a
complete set of polynomials in kj; 1, Lis—1, Wjr—1 —pjr—1), and (ppgjr—1 — pjr—1) (34 instruments);
a univariate polynomial in 7j;_1 (3 instruments); and all interactions of degree less than three of
rj—1 With kjr—1, lir—1, Wjr—1 —pje—1), (PMjt—1 —Pjt—1), Pjr—1, and dj;—1 (18 instruments).

In the remaining industries, where we tend to have more data, we use additional instruments:
in industries 2, 3, and 6 we add the interactions of 1(Rj; 1 >0) with kj; 1, li; 1, mjr—1, (Wjr—1 —
Pjr—1)» and (pagjr—1 —pjr—1) (5 instruments); in industry 7 we add the interactions of —1 with
kit—1, lit—1, Wjr—1 —pjr—1), and (pygjr—1 — pjr—1) (4 instruments); and in industries 1 and 8 we do
both.

Implementation: Gauss code for our estimator along with instructions for obtaining the data are
available as supplementary data. To reduce the complexity of the GMM problem in Equation (I2),
we “concentrate out” the constant and the thirteen coefficients in the series approximation of
g(-) that enter it linearly (Wooldridgd, 201, p. 435). To guard against local minima we have
extensively searched over the remaining parameters, often using preliminary estimates to narrow
down the range of these parameters.

Productivity estimates: Once the model is estimated, we can recover actual productivity fy;
and expected productivity g(-) up to a constant. We estimate the productivity innovation &j; up
to a constant as the difference between hy;; and g(-). Taken together, g(-) and &j; characterize the
controlled Markov process for product1v1ty We can also estimate the random shocks ej;. In the
remainder of this article we let hljt, 20), f;‘ﬂ, and e, ej; denote these estimates.

4.3.  Parametric vs. non-parametric inversion

We differ from the literature following OP by recognizing that the parametric specification of the
production function in combination with the assumption that labour and materials are static inputs
implies a known form for the inverse labour demand function #;(-). We can thus parametrically
recover unobserved productivity and control for it in estimating the parameters of the production
function in Equation () and the law of motion for productivity in Equation ().

A seeming drawback of our parametric approach is that it requires firm-level wage and price
data. However, the same is true for a non-parametric approach: the demand for labour is a
function of the wage and prices whether one inverts it parametrically or non-parametrically (see
the discussion on p. 323 of LP); by spelling out the demand for labour in Equation @) our
parametric approach just makes the role of the wage and prices explicit.

In the absence of firm-level wage and price data, one may be able to replace the wage and prices
in the firm’s short-run profit maximization problem by dummies (as in LP and ACF) or aggregate
wage and price indices. This may be justified if firms can be assumed to operate in identical
environments because inputs and output are homogenous or symmetrically differentiated. One
may then also have to confront an issue raised by [Bond and Séderbond (2009). They argue that,
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absent any variation in the wage and prices, it may be hard to estimate the coefficients on static
inputs in a Cobb—Douglas production function.

Making full use of the structural assumptions by parametrically recovering unobserved
productivity aids identification (Section[.T]). Moreover, we have but a single equation to estimate,
and only the conditional expectation function g(-) is unknown and must be estimated non-
parametrically (Section2). This yields a particularly simple estimator for production functions.
In contrast, the previous literature either relies on a two-stage procedure (OP, LP, and ACF) or
jointly estimates a system of equations (Wooldridgd, [2009). The fact that only the conditional
expectation function g(-) is unknown and must be estimated non-parametrically means that our
estimator can be applied even when the available data is insufficient to non-parametrically estimate
an inverse labour demand function 4;(-) with more than just a few arguments.

Our parametric approach rests on the assumption that the demands for static inputs are the
solution to the firm’s short-run profit maximization problem. This assumption may or may not
be valid in a given application. However, as detailed in ACF, the non-parametric approach also
relies on specific assumptions that may or may not be valid in a given application.

The non-parametric approach in OP, LP, and ACF extends to our model of endogenous
productivity change The advantage is that it can accommodate situations where the assumption
of short-run profit maximization is violated. There are at least two difficulties, however. First,
if input choices have dynamic implications say because of adjustment costs, then lagged input
choices are typically state variables that must be accounted for in non-parametrically recovering
unobserved productivity. Second, to the extent that the non-parametric approach relies on inverting
decisions that have dynamic implications (as in OP and parts of ACF), it requires the researcher
to first prove invertibility from the firm’s dynamic programming problem, and the discussion
of m M) in Section [2] suggests that this can be difficult especially if the productivity
process is endogenized. We thus view our parametric approach as complementing the existing
literature for situations where one can be reasonably confident in the assumption of short-run
profit-maximization.

5. PRODUCTION FUNCTION ESTIMATES AND COMPARISON TO KNOWLEDGE
CAPITAL MODEL

We first present our estimates of the production function and the Markov process that governs the
evolution of productivity. We next show that the link between R&D and productivity is subject
to a high degree of non-linearity and uncertainty. Then we provide a more detailed comparison
of our model of endogenous productivity change and the knowledge capital model.

5.1.  Production function estimates

Table [2] summarizes different production function estimates. Columns (1)—(3) report OLS
estimates for the coefficients of the Cobb-Douglas production function in Equation (). The
coefficients are reasonable and returns to scale, as given by B + B;+ B, are close to constant.

Columns (4)—(6) of TableRlreport GMM estimates for our leading specification in Equation (&).
Compared to the OLS estimates, the changes go in the direction expected from theory and match
the results in OP and LP. The labour coefficients decrease considerably in eight industries while
the capital coefficients increase somewhat in six industries. The materials coefficients show no
particular pattern.

18. Essentially all one has to do is replace wj; = g(wj—1)+&j: by wjs =g(wji—1,7j1—1)+&js; everything else remains
the same (see D Laackel BOI0)
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To assess the validity of our estimates we subject them to a battery of specification tests and
robustness checks[

Overidentifying restrictions: We first test for overidentifying restrictions or validity of the
moment conditions P At a 5% level the validity of the moment conditions cannot be rejected in
any industry, see Columns (7) and (8) of Table 2l

The lagged wage and the lagged price of materials play a key role in the estimation. To more
explicitly validate them as instruments we compute the difference in the value of the objective
function for our leading specification to its value when the subset of moments involving either
the lagged wage or the lagged price of materials are excluded Bl The exogeneity assumption on
the lagged wage is rejected in industry 8 at a 5% level while that on the lagged price of materials
cannot be rejected in any industry.

We similarly assess the validity of lagged labour, lagged materials, and current and lagged
capital as instruments. While the exogeneity assumption on lagged labour cannot be rejected in
any industry at a 5% level, that on lagged materials is rejected in industry 8. Finally, the exogeneity
assumption on current and lagged capital is rejected at a 5% level in industries 2 and 10. Viewing
all these tests in conjunction, however, we feel that there is little ground for concern regarding
the validity of the moment conditions that we are using.

Imperfect competition: We test for perfect competition in the product market with n(-)=o00
by removing the function in the price of output pj; and the demand shifter dj; from /;(-) in
Equation (EI) The data reject perfect competition at a 5% level in seven industries and in all
industries at a 10% level. Our estimates of the average elasticity of demand are around 2.

Parameter restrictions: The coefficients S, 8;, and §,, appear both in the production function
in Equation () and in the inverse labour demand function in Equation @). We test the implied
restrictions on the parameters of our estimation Equation (@). As Columns (9) and (10) of
Table [2] show, we reject at a 5% level that the coefficients in the production function equal
their counterparts in the inverse labour demand function in industries 1 and 7.

19. We follow LP and ACF and do not account for sample selection by modelling a firm’s exit decision because
the institutional realities in Spain render it unlikely that a firm is able to exit the industry immediately after receiving an
adverse shock to productivity (see, e. g.W,M). Moreover, regressing a dummy for exiting in the subsequent
period on a dummy for engaging in R&D in the current period, time dummies, product submarket dummies, an index of
market dynamism, a dummy for large firms with more than 200 workers, and a dummy for firms older than five years
shows that being engaged in R&D is associated with a reduced probability of exit in many industries. This may be because
innovative activities often imply large sunk cost that make a firm more reluctant to exit the industry or at least to exit it
immediately, thus further mitigating the potential for sample selection.

20. The value of the GMM objective function for the optimal estimator, scaled by N, has a limiting x? distribution
with L — P degrees of freedom, where L is the number of instruments and P the number of parameters to be estimated.

21. To use the same weighting matrix for both specifications, we delete the rows and columns corresponding to the
excluded moments from the weighting matrix of the optimal estimator.

22. As a further check we have replaced the lagged firm-specific wage as an instrument by the lagged average
earnings per hour of work in the manufacturing sector from the Encuesta de Salarios, an employee survey conducted
by the Instituto Nacional de Estadistica. Compared to Columns (4)—(6) of Table 2] the standard errors tend to increase
as expected from an instrument that does not vary across firms. The most visible changes are in the labour coefficient,
which increases in industries 1, 3, 9, and 10 and decreases in industries 4, 6, and 8. The capital coefficient decreases in
industries 3 and 9 and increases in industries 4, 6, 7, and 8. The materials coefficient remains essentially the same in all
industries. The absence of systematic changes confirms that the variation in wj,—; is exogenous with respect to &;, and
therefore useful in estimating Equation (@).

23. We test whether the model satisfies one or more restrictions by using the weighting matrix for the optimal
estimator to compute the restricted estimator. The difference of the GMM objective functions, scaled by N, has a limiting
x?2 distribution with degrees of freedom equal to the number of restrictions. Similarly, we test whether one or more
restrictions can be relaxed by using the weighting matrix for the optimal estimator to compute the unrestricted estimator.
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There are many possible reasons. First, the functional form of the production function in
Equation (I) may be inappropriate. However, the Cobb—Douglas production function is a first-
order differential approximation to a general production function [1989, Sections 5.1
and 5.5) Second, the functional form of the inverse labour demand function in Equation (@)
may be inappropriate if the labour decision has dynamic consequences. In measuring labour
we combine the hours worked by permanent workers with the hours worked by temporary
workers. A concern may be that these types of workers differ in their productivity and the degree
of flexibility that firms have in adjusting them. We return to this concern below. Third, the
literature following OP rests on the assumption that unobserved productivity can be recovered
from observed decisions without error. To this end, it rules out measurement error by way of the
so-called scalar unobservable assumption (Ackerberg er all, 2007, Section 2.3) Our estimator
is similarly vulnerable to measurement error. Indeed, as we show in Appendix B, imperfectly
observable wages and prices may drive a wedge between the coefficients in the production
function and their counterparts in the inverse labour demand function. In our view, measurement
error is a plausible explanation for rejecting the parameter restrictions, especially because the
existing literature has emphasized the importance of measurement error in practice (see, e.g.
p- 326 of LP).

The parameter restrictions test is just one of many specification tests that we conduct. While in
industries 1 and 7 there is a statistical tension between B, B, and B, in the production function
and in the inverse labour demand function, there is evidence that the scope of the problem is
limited. First, if in industries 1 and 7 we test one coefficient at a time, then we reject at a 5% level
that that coefficient in the production function equals its counterpart in the inverse labour demand
function in one of six cases. This suggests that the gap for any individual coefficient tends to be
small. Second, we no longer reject the parameter restrictions in industries 1 and 7 at a 5% level
if we simply use more instruments. This suggests that the instruments we select for our leading
specification do not fully account for all the non-linearities in the estimation Equation (@) so that
a pattern remains in the residuals. Third, our conclusions regarding the link between productivity
and R&D remain unchanged if we drop the parameter restrictions to consistently estimate the
parameters of the production function and recover productivity in case wages and prices are
imperfectly observable (see Appendix B for details).

Alternative inversion: Our model allows us to alternatively use labour or materials to recover
productivity. The inverse materials demand function is

hm (2, kjr, mje, pje, Wit DMt » dje) = A — Brt — Bickje + (1 — B — Bm)mjs + Bi(wjr — pjr)

1
+(1—BD(pmjr —pjr) —In (1 n(pjt,djz)> ,
where A, =—Bo— (1 —B;)In By, — B1In B; — i combines constants.

Columns (1)—(3) of TableBlreport GMM estimates of the production function coefficients and
Columns (4)—(6) specification tests when we use the inverse materials demand function 4,,(-)
instead of the inverse labour demand function /;(-). The estimates using materials have problems.
We reject the validity of the moment conditions in four industries at a 5% level. We further reject

24. This implies that the marginal productivity underlying the demand for labour in Equation @ is a zero-order
approximation. The usefulness of these approximations is limited by the fact that they hold for an arbitrary but fixed
vector of inputs whereas in practice firms differ widely in the inputs they use.

25. The literature has just begun to relax this assumption by combining different inversions while allowing each of
them to be subject to error m, M).
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the parameter restrictions in four industries. Finally, the capital coefficient in industry 9 and the
materials coefficient in industry 8 are implausibly small.

To compare the overall goodness of fit we apply the [Rivers and Vuong (2002) test for model
selection among non-nested modelsE9 As can be seen from Column (7) of Table @] at a 5%
level the data do not favour one inversion over another in seven industries. In the remaining two
industries labour is favoured over materials.

Following LP we test whether the capital coefficient is the same when we use materials instead
of labour to recover productivity. We cannot reject the equality of the capital coefficient in five
industries at a 5% level, see Column (8) of Table Bl Moreover, the estimates using materials are
especially problematic in three of the four industries where we reject.

To the extent that different inversions perform differently there is a gap between the model
and the data-generating process. While pinpointing the exact source of this gap is difficult, our
findings are consistent with materials being more prone to measurement error than labour due
to inventories and, in particular, subcontracting and outsourcing. Over 40% of firms contract for
parts and pieces with outside providers and, among these firms, outsourcing on average amounts
to over 20% of the value of materials. A firm outsources to gain access to either cheaper or better
parts and pieces than it can produce inhouse dAm_ms_a_nd_Hﬂpm_ad 2004 |Hd41ma_n_e_La_L| 2004
[Grossman and Rossi-Hansbergd, 2008). Treating materials as a single input into the production
process therefore introduces an additional unobservable in the form of the prices and productivities
of subcontracted parts and pieces and those produced inhouse into the first-order conditions for
static inputs. This additional unobservable may act like measurement error and cause us to reject
the parameter restrictions test by driving a wedge between the coefficients in the production
function and their counterparts in the materials labour demand function (see again Appendix B).

Comparing the labour and materials coefficients finally reveals an interesting pattern that the
literature following OP may have overlooked. The labour coefficient tends to be higher and the
materials coefficient lower when we use materials instead of labour to recover productivity. What
appears to be reasonably well estimated is the sum of the labour and materials coefficients: we
cannot reject the equality of the sum in five industries at a 5% level, see Column (9) of Table 3
This hints at collinearity. Its likely origin are the powers of the lagged input (/;; 1 or mj;_1) that
appear in the non-parametric part (g(hyj;—1, rjr—1) or g(hpgjs—1,rjr—1)) of the estimation equation.
It may be difficult to separate the impact of the lagged input on the non-parametric part from its
impact on the production function.

Permanent and temporary workers: In measuring labour we combine the hours worked by
permanent workers with the hours worked by temporary workers. The productivity of permanent
workers may, however, differ from that of temporary workers and firms may incur a substantial

26. Consider models 1 and 2 and define ,; = vj(é,l) and A,j =A,(zj), where én are the estimates for model n, A,,(+)
is a matrix of functions of the exogenous variables z;, and W,y is the first-step weighting matrix. Then the difference
between the GMM objective functions, scaled by /N, has an asymptotic normal distribution with zero mean and variance

’
1 N 1 o 1 N
0‘2:4|: (NZAUI)U) WlN (NZAUUI_[UUA,U) W]N (NZAUU]]')
J J J
’
1 . 1 R 1 N
+ (N ZAZJ"Z/’) Way (N ZAZivzjVéjA'zj) Way (N ZAZ/'VZ/')
J J J
/
1 N 1 A 1 N
-2 (N ZAUVI/) Win (N ZAljvljvéjA/Zj) Won (N ZAzjvzj):|.
J J J
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cost for hiring and firing permanent workers. In Appendix C we extend our model from Section[]
in two ways. First, we replace the production function in Equation () by

Vit = Bo+ Brt + Bikje + Bialpjs + By (1 — a)lgjs + Brumje +wjs + ey, (15)

where Ipj; and l7j; are the log of permanent and temporary labour, respectively, and o parameterizes
productivity differences between permanent and temporary workers 1 Second, we introduce
adjustment costs Cp, (Lpj;, Lpjr—1) into the Bellman Equation @. To be able to retain our approach
to estimation, we restrict ourselves to convex adjustment costs d@gmandﬂﬂlid, m)QAI) As
we show in Appendix C, the first-order conditions for permanent and temporary labour can be
combined into an aggregate labour demand function

1
I(sz)‘f'Cljt:W Bo+ (1= Bm)In B+ BmIn B + 1w+ Brt + Brkijs + wije
- — Pm

1

— (1= Bm)Wjs +c2jr — c1jr —pjt) — Bm(Pumje — pjr) +1n I_W ,  (16)
where
cljr=oln(1—S75)+ (1 —a)InSTj, 17
1—=S7iH) A
cop=In | 1+ (wn,f]vtv)Pj,Jt , (18)
1+(—WP]‘[ )STil

STyt is the share of temporary (as opposed to permanent) workers in our data, Aj is the gap between
the wage of permanent workers Wpj; and their shadow wage as defined in Equation (C2)), and
<WT+P’P“) is the wage premium of temporary workers.
J

Comparing Equation (I6) to Equation @) shows that allowing for productivity differences
and adjustment costs amounts to correcting the labour and wage variables /j; and wj; in our data
by cyj: and cpj;. The difficulty in implementing this correction is that our data lacks some of the
constituent parts of the corrections cyj; and cyjy.

. . . Wrj—Wp; .
First, we estimate the wage premium of temporary workers (%) by regressing the

log of the wage wj; on the share of temporary workers S7j;, the share of white (as opposed
to blue) collar workers, and the shares of engineers and technicians (as opposed to unskilled
Workers)@ In addition to these descriptors of the work force, we include time dummies, region
dummies, product submarket dummies, and an array of other firm characteristics, namely an index
of technological sophistication, an index of market dynamism, a dummy for the identification of

27. While we assume that the elasticity of substitution between permanent and temporary labour is unity,
hgumgahma_an_d_A]gnsg;Bgnﬂgd ) assume that is infinite. We leave it to future research to estimate the elasticity
of substitution rather than assume it.

28. Allowing for non-convex adjustment costs requires structurally estimating the parameters of a dynamic model
as in[Aguirregabiria and Alonso-Borregd 2009).

29. Except for the share of temporary workers, we have these measures in the year a firm enters the sample and
then every four years. In what follows we assume that the work force is unchanging in the interim. We further assume that
the joint distribution (e.g. temporary white collar engineers) is the product of the marginal distributions that we observe.
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ownership and control, and a third-order polynomial in age. We take the dummies and other firm
characteristics to be exogenous to the firm, at least in the short run. The estimated coefficient 7
on Stj; is the wage premium of temporary workers (WTJ",V—:VP") As Column (1) of Table @ shows,
P is negative and significant, in line with our expectation that temporary workers earn less than
permanent workers. The wage regression fits the data well (Column (2)).

Second, because the first-order conditions for permanent and temporary labour presume
an interior solution, we exclude observations with S7j; =0 and thus L7j; =0 from the analysis
(compare Columns (3) and (4) of Table @ to Columns (1) and (2) of Table ). To estimate & and
Aj; we note that the first-order conditions imply

WrjeStje (1—05)
= (14+Aj). (19)
Wpir(1—STjr) « "

Hence, if E(Aj;)=0 for a given firm, then using the definition of ¥ and appealing to the analogy
principle we obtain the firm-specific estimate

I—q; P N
( ” ) ( VT)T.E

1—-S7i’
J =1 Tjt

where Tj is the number of observations for firm j, and
~ _ U4y St
A it —
/ 1-§
1— 11— Tjt
< % )

These estimates, while not consistent for the small values of T} in our data, ensure that our model
is consistent with the share of temporary workers FJ Column (5) of Table@lshows that the average
of the implied firm-specific estimate @ ranges from 0.66 to 0.88 across industries. While @ varies
across the firms within an industry, it seems clear that the productivity of permanent workers
differs from that of temporary workers.

With the corrections cyj; and cp;; in hand, we recover productivity from the aggregate labour
demand function in Equation (I6). We again exclude observations with Stjr =0 and thus L, =0
from the analysis because the aggregate labour demand function presumes an interior solution
for permanent and temporary workers. The production function estimates in Column (6)—(8)
of Table ] are broadly comparable to those in Columns (4)—(6) of Table @l The most visible
changes are as expected in the labour coefficient, which increases in industries 1, 2, 3, 6, and 7
and decreases in industries 4, 8, 9, and 10. The capital coefficient decreases in industries 1, 2, 3,
4, and 6 and increases in industries 7, 8, and 10. The materials coefficient increases slightly in
industries 2, 4, and 8 and remains essentially the same in the remaining industries. The absence
of systematic changes suggests that combining the hours worked of permanent and temporary
workers in our leading specification does not distort the estimates in a major way. Note, however,
that at a 5% level we reject the validity of the moment conditions in industry 7 and that we have
been unable to obtain second-step GMM estimates in industry 9 (Columns (9) and (10)).

Our conclusions regarding the link between R&D and productivity are similarly robust
(compare the average difference in expected productivity between performers and non-performers
in Column (10) of Tablelto Column (1) of Table[fl). We return to productivity levels and growth
below.

—1.

30. Decomposing the right-hand side of Equation (I9) into firm and time fixed effects to estimate o and Aj; yields
similar results.
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5.2.  Non-linearity and uncertainty

A key contribution of this article is to endogenize the productivity process. We assess the role of
R&D by comparing the controlled Markov process in Equation (@) with an exogenous Markov
process (as in OP, LP, and ACF). To this end, we test whether R&D can be excluded from the
conditional expectation function g(-) so that goo = g10 and go1 (hyjr—1 — A =g11(Rgjr—1 — A1, Fje—1)
in Equation (I3). As Columns (1) and (2) of TableBlshow, in all industries the exogenous Markov
process is clearly rejected.

We next ask if the evolution of productivity depends on the amount of R&D expenditures in
addition to whether or not a firm engages in R&D. The data reject the restriction gy (hy—1 —
AlsTj—1) =811 (hgjr—1 —A;) in all industries at a 5% level.

Finally we ask if further lags of R&D expenditures matter. The impact of rj;_1 on wj; in
Equation @) may be moderated by rj,_>. Or it may be that R&D expenditures take more than
one period to come to fruition, although the available evidence points to rather short gestation
periods (see pp. 82-84 of [Pakes and Schankermar (1984) and the references therein). For the
four industries with the largest number of observations we replace gi1(hy;—1—As,7j;—1) in
Equation (I3) by g11(hyjr—1 — Ay, rjr—1,1rjr—2), where we set rjy_ =0 if R;;_» =0. We reject our
leading specification at a 5% level in industry 3 but not in industries 1, 7, and 8. In industry
3 (chemical products) investments in knowledge may be especially cumulative in that many
research projects continue—and directly build on—previous ones. This may also create an
incentive for firms “to keep R&D going”, and indeed industry 3 has the largest share of stable
performers (see again Column (11) of Table [[). Overall, however, we feel that our leading
specification is a reasonable first pass at endogenizing the productivity process.

Non-linearity: As a step toward exploring the link between R&D and productivity, we test
whether the conditional expectation function g(-) is separable in already attained productivity
wjr—1 and R&D expenditures rj,—1 so that g1y (hyj;—1 — A rje—1) =811 (hjr—1 — A1)+ &112(rjr—1)
in Equation (I3). Columns (3) and (4) of Table Blindicate that this restriction is rejected in eight
industries at a 5% level and in all industries at a 10% level. Hence, the R&D process can hardly
be considered separable. From the economic point of view this stresses that the impact of current
R&D on future productivity depends crucially on current productivity, and that current and past
investments in knowledge interact in a complex fashion.

To illustrate the nature of these interactions, we compute the percentage of observations
where azgli;)i’fgl’?:i’_ *11) = % azéga(;)f ;54’:1) is significantly positive (negative) at a 5% level so that
productivity and (the level of) R&D expenditures are, at least locally, complements (substitutes)
in the accumulation of productivity. While in industry 8 productivity and R&D expenditures are
substitutes for a substantial fraction of observations, there is evidence of complementarities in
industries 1,2, 3,4, 6,9, and 10. Current productivity thus tends to reinforce the impact of current

R&D on future productivity.

Uncertainty: Turning from non-linearity to uncertainty, Column (5) of TableAltells us the ratio
of the variance of the random shock ej; to the variance of unobserved productivity wj;. Despite
differences among industries, the variances are quite similar in magnitude. This suggests that
unobserved productivity is at least as important in explaining the data as the host of other factors
that are embedded in the random shock.

Column (6) of Table[Q] gives the ratio of the variance of the productivity innovation &jr to the
variance of actual productivity wj;. The ratio shows that the unpredictable component accounts
for a large part of productivity, between 25% and 75%. Interestingly enough, a high degree of
uncertainty in the R&D process seems to be characteristic for both some of the most and some of
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the least R&D intensive industries. We come back to the economic significance of the uncertainties
inherent in the R&D process in Section [6.4]

5.3.  Comparison to knowledge capital model

The knowledge capital model of [Griliched (@) has remained a cornerstone of the productivity
literature. It augments a standard production function with a measure of the current state of
technical knowledge yielding

Vit = Bo~+ Brt + Bikje + Biljs + Bmmjr +ecjs +ejt, (20)

where cj; is the stock of knowledge capital of firm j in period ¢ and ¢ is the elasticity of output
with respect to this stock.

While the knowledge capital model has been used in hundreds of studies on firm-level
productivity, the underlying empirical strategy has changed little over the years (see the surveys
by [Mairesse and Sassenou (1991), IGriliched (1994, [2000), and [Hall et al] (201d)). Almost all
studies use a simple perpetual inventory or declining balance methodology to construct the stock
of knowledge capital from the firm’s observed R&D expenditures as Cjy =(1—-8)Cj—1 +Rj;—1,
where § is a single constant rate of depreciation. This assumes linear and certain accumulation of
knowledge from period to period in proportion to R&D expenditures as well as linear and certain
depreciation.

From a practical point of view, there are at least two problems. First, estimating the rate
of depreciation § using distributed lag models is notoriously difficult, even in case of physical
capital (Pakes and Schankermarl, [1984; [Pakes and Griliched, [1984; Nadiri and Pruchd, [199).
Because our own attempts at estimating § together with the parameters in Equation @0) have
largely failed, we follow [Hall and Mairessd (1999) and assume a rate of depreciation of 0.15
(see also p. 16 of M M) Second, the available history of R&D expenditures is
often not very long and there rarely is information on the initial stock of knowledge capital.
We again follow [Hall and Mairessd (1999) and estimate the initial condition from the date
of birth of the firm by extrapolating its average R&D expenditures during the time that it is
observed.

We test this basic—albeit most widely used—form of the knowledge capital model against
our dynamic investment model Pl The non-nested test very clearly rejects the knowledge capital
model in its basic form, see Columns (7) and (8) of Table ]

Replacing ecj; by wj; in Equation @0) shows that the basic knowledge capital model can
be understood as a special case of our model in which the stochastic process that governs
productivity has degenerated to a deterministic process with a particular functional form for
g(-). Given that we have already shown that non-linearity and uncertainty play a large role in
the link between R&D and productivity, it is therefore not surprising that the data favour our
model.

There are few attempts to relax the linearity and certainty assumptions of the basic knowledge
capital model. M(@) allows for a random shock to the constructed stock of knowledge
capital. Being entirely transitory, however, this shock is absorbed by the error term of the
production function and hence does not capture the uncertainties inherent in the R&D process (p.
100).

31. For firms without a positive stock of knowledge capital we drop the term ecj; from Equation @0) and specify
a different constant.
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IH_a_LLa.u_d_Ha;Las_hj d_]_%ﬂ) and m @) allow for non-linearities in the form of

complementarities and uncertainties in the accumulation of knowledge. To prevent the stock
of knowledge capital from vanishing if a firm does not engage in R&D in a single year the

law of motion is Cjr = Cj(':—l(l +Rjt_1)1*”e%51". Because of the random shock &j it is no longer
possible to construct the stock of knowledge capital from the firm’s observed R&D expenditures,
contrary to the standard approach in the knowledge capital literature. To be able to proceed without

constructing the stock of knowledge capital [Hall and Hayashi (1989) and [Klettd (1996) develop

variance-components and pseudo-difference approaches to estimation.
We recast their law of motion in our setting by taking logs and letting wj; =¢cjs to write

wjt =0 wj;—1 +&(1 —o)In(1+exp(rj—1))+§jr

and hence wj = g(wjr—1,7j—1)+&j, a special case of our controlled first-order Markov process
with a particular functional form for g(-). The non-nested test rejects this first generalization of
the knowledge capital model in seven industries at a 5% level and in all industries at a 10% level,
see Columns (9) and (10) of Table B3

Aside from the additional flexibility from non-parametrically estimating the conditional

expectation function g(-), our setting differs from [Hall and Hayashi (1989) and [Klettd (1996) in

that it allows us to infer a firm’s unobserved productivity from its observed decisions. In contrast,

neither|Hal1_a.n_d_Ha;Lashj (]]_‘28_9) norKlettd d_l_%%) canrecover a firm’s stock of knowledge capital

or assess its productivity even after the model has been estimated.

Our second generalization builds on |Griliches and Mairessd (1998) and combines the
knowledge capital model with the literature following OP (see pp. 190-194 and also pp. 276-278
of] (@) and pp. 57-58 of m%. It endogenizes productivity by modelling
it as ecj; +wjr, where Cjy=(1—8)Cjr—1+Rj;—1 is constructed from the firm’s observed R&D
expenditures (as in the knowledge capital literature) and wj; follows an exogenous Markov process
(as in OP, LP, and ACF). Hence, Equation @0) becomes

Yjt = Bo~+ Bt + Bikjt + Biljt + Bmmjs +£cjr + wjr + ey

This model has two Markov processes, one for the deterministic component of productivity (ec;r)
and one for the stochastic component (a)j,) Because the sum of two Markov processes is not
necessarily a Markov process, it is not nested in our dynamic investment model with just one
Markov process. In this sense our model is more parsimonious. The non-nested test nevertheless
rejects this second generalization of the knowledge capital model in two industries at a 5% level
and in six industries at a 10% level, see Column (11) and (12) of Table 3

In sum, our dynamic investment model can be viewed either as a generalization of the basic
knowledge capital model or as a practical alternative to generalizations of the knowledge capital
model. The unspecified form of the law of motion and the random nature of accumulation
are important advantages of our setting. Moreover, by treating productivity as unobserved
and inferring it from a firm’s observed decisions, we circumvent the initial condition problem

32. We obtain very similar results if we start with alaw of motion of the form Cj; =(1—8)Cj—1 +Rj;—1 + él Cir—1&ji =
Cj:71(1—5+" R

CJT: + %Ej,) so that the effect of the rate of investment in knowledge & : has an unpredictable component
= —

Jt

%ij Taking logs and letting wj, = &cj;, this law of motion can be written as wj ~wj—1 +¢& (% —8)+&.

33. Allowing for a random shock in the law of motion for the stock of knowledge capital as inlﬁa aaa EEEEEE]
(@) andm (@) leads to a model with two non-degenerate Markov processes that is beyond the scope of this
article. A difficulty arises because the first-order conditions for static inputs cannot identify ec;; separately from wj;.
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in the basic knowledge capital model along with the practical problem of estimating a rate
of depreciation for the stock of knowledge capital. Relative to the estimation approaches in
[Hall and Hayashi (1989) and [Klettd (1996), inferring a firm’s unobserved productivity from
its observed decisions gives us the ability to assess the role of R&D in determining the
differences in productivity across firms and the evolution of firm-level productivity over
time.

6. R&D AND PRODUCTIVITY

To assess the role of R&D in determining the differences in productivity across firms and the
evolution of firm-level productivity over time, we examine five aspects of the link between R&D
and productivity in more detail: productivity levels and growth, the return to R&D, the persistence
in productivity, and the rate of return.

6.1.  Productivity levels

To describe differences in expected productivity g(wj—1,7j;—1) between firms that perform
R&D and firms that do not, we employ kernels to estimate the distribution functions for the
subsamples of observations with and without R&D. To be able to interpret these and other
descriptive measures in the remainder of the article as representative aggregates, we replicate
the subsample of small firms ——14 times before pooling it with the subsample of large
firmsFq P4 Figure M shows the dlstrlbutlon functions for performers (solid line) and non-performers
(dashed line) for each industry. In most industries the distribution function for performers is
to the right of the distribution function for non-performers. This strongly suggests stochastic
dominance. In contrast, the distribution functions cross in industries 2 and 4 that exhibit medium
and high innovative activity as well as in industries 9 and 10 that exhibit low innovative
activity.

Mean: Before more formally comparing the distributions themselves, we compute the difference
in means as

80—381 :N_TOZ Z 1(Rjt—1 =001 (je—1)
NTIZ > R 1>0)[(810 goo>+811(\1ﬂ 1711 ]

where NTy and NT are the size of the subsamples of observations without and with R&D,
respectively. Then the test statistic

8081
\/Var (201 (yji—1)) /(NTo = 1)+ Var @11 (hyje—1, 1)) /(NT1 = 1)

follows a ¢ distribution with min(NTy,NT1)—1 degrees of freedom. To account for the survey
design we conduct separate tests for the subsamples of small and large firms.

34. Because replicating the subsample of small firms distorts variances in the pooled sample, we have been careful
to use replication only if we compute averages. Whenever we compute variances we do so either separately for small and
large firms or we pool small and large firms but without first replicating the small firms.
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FIGURE 1

Distribution of expected productivity

Column (1) of Table [0l reports the difference in means g; —g (rather than gy—g; to aid
intuition). The difference in means is positive for firms of all sizes in all industries that exhibit
medium or high innovative activity, with the striking exception of industry 4P The differences
are sizable, typically between 3% and 5%. They are often larger for the smaller firms. In the two
industries that exhibit low innovative activity, however, the difference in means is negative for
small firms. Nevertheless, as can be seen from Columns (2) and (3), at a 5% level the test rejects the
hypothesis that the mean of expected productivity is higher for performers than non-performers
solely in industry 4.

35. Apossible explanation for the abnormal result in industry 4 is the considerable heterogeneity in activities across
the firms within an industry that arises due the level of aggregation we use.
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Continued

Distribution: To compare the distribution themselves, we apply a Kolmogorov—Smirnov test
(see[Barrett and Donald (2003) and[Delgado ez all (2002) for similar applications). Since this test
requires that the observations in each sample are independent, we consider as the variable of
interest the average of expected productivity for each firm. For occasional performers we average
only over the years with R&D (and discard the years without R&D).

Let Gn,(-) and Fp,(-) be the empirical distribution functions of performers and non-
performers, respectively, with N1 and Ny being the number of performers and non-performers.
We apply a two-sided test of the hypothesis Gy, (g) —Fn,(g)=0 for all g, i.e. the distributions
Gy, (+) and Fy,(-) of expected productivity are equal, and a one-sided test of the hypothesis
Gpn,(8)—Fp,(g) <0 for all g, i.e. the distribution Gy (-) of expected productivity of performers
stochastically dominates the distribution Fy,(-) of expected productivity of non-performers. The
test statistics are

NoNq _ _ 2 NoNi — _
st= [ 0T Gy, (@) —F , 2= [ 2L max{Gy, (3)—F ,
No+ Vi mgax{l N (@) —Fny (3} No T N; mgax{ M (@) —Fny (@)}

respectively, and the probability values can be computed using the limiting distributions P(S' >
)=—23"%2 (=1 exp(—2k%c?) and P(S? > ¢) =exp(—2c?).

Because the tests tend to be inconclusive when the number of firms is small, we limit them to
cases in which we have at least 20 performers and 20 non-performers. As can be seen from
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TABLE 6
Productivity levels

Kolmogorov—Smirnov tests®

Mean with Distributions Distribution with
Diff. of R&D is greater are equal R&D dominates
Industry Size means ¢ pval. S p val. S p val.

@) (@) 3 “ 5 Q) O]

—

. Metals and metal products <200 0.051 —4.992 1.000 1.720  0.005  0.388 0.740
>200 0.038  —2.920 0.998

2. Non-metallic minerals <200 0.030 —1.320 0.905 1.167 0.131 0.938 0.172
>200 0.025 —1.313 0.904

3. Chemical products <200 0.033 —4.531 1.000 1.440 0.032 0.351 0.782
>200 0.028 —2.003 0.975

4. Agric. and ind. machinery <200 —0.023 1.807 0.036 0.988 0.283  0.988 0.142
>200 —0.077 3.644 0.000

6. Transport equipment <200 0.073 —6.377 1.000 1.770 ~ 0.004  0.000 1.000
>200 0.038 —4.126 1.000

7. Food, drink, and tobacco <200 0.034 —-3.476 1.000 1.708  0.006  0.198 0.925
>200 0.028 —3.073 0.999 0.610 0.850 0.227 0.902

8. Textile, leather, and shoes <200 0.044 —2.543 0.994 3.173  0.000  0.335 0.799
>200 0.022 —1.552 0.939 0.511  0.957 0.426 0.696

9. Timber and furniture <200 —0.020 0.724 0.237

>200 0.014 —0.610 0.721
10. Paper and printing products <200 —0.013 0.590 0.279 0.930 0.353  0.709 0.366
>200 0.028 —1.400 0.917

2 Applied to a firm’s average expected productivity when each sample has more than 20 firms.

Columns (4)—(7) of Table [al we reject equality of the distributions for performers and non-
performers in five of ten cases at a 5% level. We cannot reject stochastic dominance anywhere at

a 5% level F4F1

Omitting R&D expenditures: To illustrate the consequences of omitting R&D expenditures
from the Markov process of unobserved productivity, we have added the so-obtained distribution
functions to Figure[l(dotted line). Comparing them to the distribution functions for the controlled
Markov process in our leading specification reveals that the exogenous process amounts to
averaging over firms with distinct innovative activities and hence blurs important differences
in the impact of the investment in knowledge on the productivity of firms.

Redoing the above tests for the exogenous Markov process yields striking results: we no longer
reject equality of the distributions of expected productivity of performers and non-performers in
three of the five cases where we rejected for a controlled Markov process. Figure Plshows at the
example of industry 6 that the distribution functions for performers (solid line) and non-performers
(dashed line) are virtually indistinguishable if an exogenous Markov process is assumed. This
once more makes apparent that omitting R&D expenditures substantially distorts the retrieved

36. Treating occasional performers as non-performers by averaging only over the years without R&D (and
discarding the years with R&D), we reject equality of the distributions in three cases at a 5% level and in five cases
at a 10% level. We cannot reject stochastic dominance anywhere at a 5% level.

37. m M) relax the independence assumption inm m) and their test for stochastic
dominance can be applied directly to the expected productivity of each firm in each period (rather than an average thereof).
The test statistic is the same as inm ), but the critical value has to be computed by a subsampling
method. Applying this alternative test to the 12 cases in which we have at least 80 observations with R&D and 80
observations without R&D, we cannot reject stochastic dominance anywhere at a 5% level.
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FIGURE 2

Distribution of expected productivity. Exogenous Markov process

productivities and cautions against the popular approach of first estimating productivity from
a model with an exogenous Markov process and then regressing estimated productivity on its
determinants such as R&D expenditures or export market participation.

6.2. Return to R&D and persistence in productivity

How hard must a firm work to maintain and advance its productivity? Since a change in the
conditional expectation function g(-) can be interpreted as the expected percentage change in total

0g(wjr—1,7jt—1)

factor productivity, T
i

is the elasticity of output with respect to R&D expenditures or a

measure of the return to R&D P Similarly, W

jt—1

is the elasticity of output with respect to
9g(wjr—1,rj—1)
dwjr—1
or a measure of inertia. It tells us the fraction of past productivity that is carried forward into
current productivity. Note that the elasticities of output with respect to R&D expenditures and
already attained productivity vary from firm to firm with already attained productivity and R&D
expenditures. Our model thus allows us to recover the distribution of these elasticities and to
describe the heterogeneity across firms.

already attained productivity. is the degree of persistence in the productivity process

38. If we consider a ceteris paribus increase in R&D expenditures that changes wj, to @, then ®;; — wj; approximates
the effect of this change in productivity on output in percentage terms, i.e. (Y —Y;;)/ Y =exp(&j; — wjs) — 1 = &jr — wjr.
That is, the change in wj; shifts the production function and hence measures the change in total factor productivity. Also
g(+) and &j; can be interpreted in percentage terms and decompose the change in total factor productivity.
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Return to R&D: Columns (1)—(4) of Table [ present the quartiles of the distribution of
the elasticity with respect to R&D expenditures along with a weighted average computed as

%Zz Zjﬂjt%, where the weights wj; =Y/ ZJ- Yj; are given by the share of output
of a firm. There is a considerable amount of variation across industries and the firms within an
industry. The returns to R&D at the first, second, and third quartile range between —0.036 and
0.009, —0.012 and 0.022, and 0.000 and 0.051, respectively. Their average is close to 0.015,
varying from —0.006 to 0.046 across industries.

Negative returns to R&D are legitimate and meaningful in our setting, although some of them
may be an artefact of the non-parametric estimation of g(-) at the boundaries of the support. A
negative return at the margin is consistent with an overall positive impact of R&D expenditures on
output. A firm may invest in R&D to the point of driving returns below zero for a number of reasons
including indivisibilities and strategic considerations such as a loss of an early-mover advantage.
This type of effect is excluded by the functional form restrictions of the knowledge capital
model, in particular the assumption that the stock of knowledge capital depreciates at a constant
rate. More generally, it is plausible that investments in knowledge take place in response to
existing knowledge becoming obsolete or vice versa that investments render existing knowledge
obsolete. Our model captures this interplay between adding “new” knowledge and keeping “old”
knowledge.

Degree of persistence: The degree of persistence can be computed separately for performers
using the conditional expectation function g (-) that depends both on already attained productivity
and R&D expenditures and for non-performers using go(-) that depends solely on already attained
productivity. Columns (5)—(10) of Table [7] summarize the distributions for performers and non-
performers.

Again there is a considerable amount of variation across industries and the firms within
an industry. Nevertheless, non-performers tend to enjoy a higher degree of persistence than
performers in industries 1, 2, 3, 4, 7, and 8. An intuitive explanation for this finding is that
non-performers learn from performers, but by the time this happens the transferred knowledge is
already entrenched in the industry and therefore more persistent. Put differently, common practice
may be “stickier” than best practice.

The degree of persistence for performers is negatively related to the degree of uncertainty in
the productivity process as measured by the ratio of the variance of the productivity innovation
&j to the variance of actual productivity wj. That is, productivity is less persistent in an industry
where a large part of its variance is due to random shocks that represent the uncertainties inherent
in the R&D process. Figure @lillustrates this relationship between persistence and uncertainty at
the level of the industry.

Comparison to knowledge capital model: To facilitate the comparison with the existin
literature, we have estimated the knowledge capital model as given in Equation @Q)
Column (11) of Table [llpresents the estimate of the elasticity of output with respect to the stock
of knowledge capital from the knowledge capital model. In addition to the gross-output version
in Equation @0Q) we have also estimated a value-added version of the knowledge capital model
(Column (13)). In contrast to our model, the knowledge capital model yields one number—an
average elasticity—per industry. The elasticity of output with respect to the stock of knowledge

39. To improve the estimates we impose the widely accepted constraint of constant returns to scale in the
conventional inputs.
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FIGURE 3
Persistence and uncertainty

capital tends to be small and rarely significant in the gross-output version but becomes larger in
the value-added version

To convert the elasticity with respect to the stock of knowledge capital into an elasticity with
respect to R&D expenditures that is comparable to our model, we multiply the formerby R 1 /Cj;.
Columns (12) and (14) of Table[Qlshow a weighted average of the so-obtained elasticities, where
the weights pj; =Y/ j Yjr are given by the share of output of a firm. The elasticities with respect
to R&D expenditures from our model are higher than the highest elasticities from the knowledge
capital model in five industries and lower but very close in two more industries. In addition,
the elasticities obtained with our model have a non-normal, fairly spread out distribution. This
sharply contrasts with the fact that the dispersion of elasticities in the knowledge capital model
is purely driven by the distribution of the ratio Rj;_1/Cj; (since, recall, the knowledge capital
model yields just an average of the elasticity with respect to the stock of knowledge capital).

Turning to persistence in productivity, note that the degree of persistence is 1 —0.15=0.85
by assumption in the knowledge capital model. In contrast, the degree of persistence in our
model is much lower, in line with previous evidence from patent renewal decisions (see, e.g.
[Pakes and Schankerman, (1934 [Schankerman and Paked, [198d).

In sum, it appears that old knowledge is hard to keep but new knowledge is easy to add.
Productivity is therefore considerably more fluid than what the knowledge capital literature
suggests. As a consequence, a firm’s position in the productivity distribution is considerably less
stable than what the knowledge capital literature suggests, especially because a firm is repeatedly

40. m M) and M) estimate comparable elasticities ranging from 0.04 to 0.10.
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subjected to shocks that may make it hard for it to “break away” from its rivals and remain at or
near the top of the productivity distribution.

6.3.  Productivity growth

We explore productivity growth from the point of view of what a firm expects when it makes its
decisions in period ¢ — 1. Because wj,_1 is known to the firm at the time it decides on rj;_1, the
expectation of productivity growth including the trend is

Bi+E )t — wj—1 wj—1, 111 | = Br +8(@ji—1 . Tj—1) — @jr—1. (21)

We estimate the average of the expectation of productivity growth as B\, +
7320 2 e [@Chyji—1 1j—1) — @(hyje—2. 7jr )], where the weights 1 =Yj,_2/Y"; Yjs—» are given
by the share of output of a firm two periods ago and we assume E [uﬁéﬁ_l lwjr—2, rj,_z] :0
Columns (1)—(3) of Table Bl report this average for the entire sample and for the subsamples of
observations with and without R&D.

As can be seen in Column (1) of Table B productivity growth is highest in some of the
industries with high innovative activity (above 1.5% in industries 3 and 4 and around 2.5% in
industry 6) followed by some of the industries with intermediate innovative activity (above 1.5%
in industry 1).

Productivity growth is higher for performers than for non-performers in five industries,
sometimes considerably so (Columns (2) and (3)). Taken together these industries account for
over half of manufacturing output (see Appendix A for details). The decomposition into the
contributions of observations with and without R&D to productivity growth shows that firms that
perform R&D contribute between 65% and 85% of productivity growth in industries 3, 4, and 6
with high innovative activity and between 70% and 90% in industries 1 and 2 with intermediate
innovative activity. This is all the more remarkable since in these industries between 20% and
45% of firms engage in R&D. While these firms manufacture between 45% and 75% of output,
their contribution to productivity growth exceeds their share of output by an average 15%. That
is, firms that engage in R&D tend not only to be larger than those that do not but also to grow
even larger over time. Investments in R&D and related activities are thus a primary source of
productivity growth.

6.4. Rate of return

We finally compute an alternative—and perhaps more intuitive—measure of the return to R&D.
The growth in expected productivity in Equation ZI) can be decomposed as

Bi+g(wjt—1.7jt—1)— wjt—1 = [ Br + g(@jt—1.7jt—1) — g(wjr—1. D) |+ [8(@ji—1.1) —wj—1], (22)

where r denotes a negligible amount of R&D expenditures The first term in brackets reflects
the change in expected productivity that is attributable to R&D expenditures rj; 1, the second

41. This assumption is plausible because the value of &;_; is not known to the firm when it makes the decisions
that determine Yj;_» and thus p;.

42. Recall from Equation {I3) that we allow the conditional expectation function g(-) to be different when the firm
adopts the corner solution of zero R&D expenditures and when it chooses positive R&D expenditures. To avoid this
discontinuity, we take g(wj;—1,r) to be a weighted average of go(wj;—1) and g(wj;—1,r), where r is the 2.5th percentile
of the industry’s R&D expenditures.
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the change that takes place in the absence of investment in knowledge. That is, the second term
in brackets is attributable to depreciation of already attained productivity and, consequently, is
expected to be negative. The net effect of R&D is thus the sum of its gross effect (first term in
brackets) and the impact of depreciation (second term).

Consider the change in expected productivity that is attributable to R&D expenditures.
Multiplying B+ g(wjr—1,¥jr—1) — g(wjr—1,r) in Equation @2) by a measure of expected value
added, say Vj, gives the rent that the firm can expect from this investment at the time it makes its
decisions. Dividing it further by R&D expenditures Rj;_| gives an estimate of the gross rate of
return, or dollars obtained by spending one dollar on R&D[*] Note that we compute the gross rate
of return on R&D using value added instead of gross output both to make it comparable to the
existing literature (e.g. |N_a_¢id, llM; |er1j_QhQs_angLRng], hﬂﬂ; |Grj1j_c_h_e§, |201Xi) and because
value added is closer to profits than gross output. We similarly compute the net rate of return to
R&D and the compensation for depreciation from the growth decomposition in Equation (22)) by
multiplying and dividing through by V;; and R;; .

Columns (4)—(6) of Table [flsummarize the gross rate of return to R&D and its decomposition
into the net rate and the compensation for depreciation. We report weighted averages where the
weights wj; =Rj 2/ ZjRjt—Z are given by the share of R&D expenditures of a firm two periods
ago. The gross rate of return to R&D far exceeds the net rate, thus indicating that a large part
of firms” R&D expenditures is devoted to maintaining already attained productivity rather than
to advancing it. The net rates of return to R&D are around 40% and differ across industries,
ranging from very modest values near 10% to 65%H Interestingly enough, the net rate of return
to R&D is higher in an industry where a large part of the variance in productivity is due to random
shocks, as can be seen in Figure ] This suggests that the net rate of return to R&D includes a
compensation for the uncertainties inherent in the R&D process.

As a point of comparison we report the net rate of return on investment in physical capital in
Column (7) of Table[8l We first compute the gross rate of return as By Vit/Kj: and then subtract
the rate of depreciation of physical capital from it to obtain the net rate of return [ Column )
reports the ratio of the net rates of return to R&D and investment in physical capital. Returns to
R&D are clearly higher than returns to investment in physical capital. The net rate of return to
R&D is often twice that of the net rate of return to investment in physical capital.

Recall that in our model the productivity innovation &j; may be thought of as the realization
of the uncertainties that are naturally linked to productivity plus the uncertainties inherent in
the R&D process such as chance in discovery and success in implementation. The question
therefore is whether an investment in knowledge indeed injects further uncertainties into the
productivity process that would be absent if the firm did not engage in R&D. As before we
measure the degree of uncertainty by the ratio of the variance of the productivity innovation
&j; to the variance of actual productivity wj;. Regressing an estimate of the log of the ratio

43. The average rate that we compute is close to the marginal rate of return to R&D. To see this,

26 L 0Ri1) L (R—Ry—1). If R0, then g(@ji—1.rj—1)—

linearly approximate g(wj—1,InR)=>~ g(wj—1,InRj—1)+ T R

9g(wjr—1,rj—1)

e In practice, we use firm-specific averages of value added
i

8(wjr—1,r)=g(wjr—1,InRj—1) — g(wjr—1,InR) =~
and investment in knowledge.

44. As pointed out by an anonymous referee, reported R&D expenditures may be the tip of the iceberg in terms
of the resources a firm devotes to maintaining and advancing its productivity. Because we divide the various terms in
Equation @2) by Rj;—1, rates of return may be inflated by underreporting.

45. The rate of depreciation that is assumed in computing the stock of physical capital is around 0.1 but differs
across industries and groups of firms within industries. We report a weighted average where the weights i =Vj;/ Z_/ Vit
are given by are given by the share of value added of a firm. In practice, we use firm-specific averages of value added
and the stock of physical capital.
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FIGURE 4
Return to R&D and uncertainty

EJ% /Var(wjy) on a constant, a dummy for large firms with more than 200 workers, a dummy
for investment in knowledge, and a dummy for investment in physical capital shows a positive
impact of investment in knowledge on the degree of uncertainty in all industries (see Column (9)
of TableISI)E Whereas investment in knowledge substantially increases the degree of uncertainty
in the productivity process, investment in physical capital leaves it unchanged (Column (10)).

In sum, investment in knowledge is systematically more uncertain than investment in physical
capital. The net rate of return includes a compensation for the uncertainties inherent in the R&D
process. Moreover, the large gap between the net rates of return to R&D and investment in
physical capital suggests that the uncertainties inherent in the R&D process are economically
significant and matter for firms’ investment decisions.

Comparison to knowledge capital model: To facilitate the comparison with the existing
literature, we have used the value-added version of the knowledge capital model in Equation Q)
to estimate the rate of return to R&D by regressing the first-difference of the log of value added
on the first-differences of the logs of conventional inputs and the ratio Rj;1/Vj;—1 of R&D
expenditures to value added ] The estimated coefficient of this ratio can be interpreted as the
gross rate of return to R&DFY We obtain the net rate of return to R&D by subtracting the rate

46. We estimate Var(wj,) separately for firms that do not engage in R&D, firms that engage in R&D and have R&D
expenditures below the median and those that have R&D expenditures above the median.

47. To improve the estimates we impose the widely accepted constraint of constant returns to scale in the
conventional inputs.

48. Recall that ¢ is the elasticity of value added with respect to knowledge capital. Since e Acj; = % ‘C,’:’:
Ji—=

and Rj;—1 approximates ACj; (by the law of motion for knowledge capital), the estimated coefficient is 3% Since

ACjtﬁ
v AC;

9C Vi
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of depreciation of knowledge capital. As can be seen from Column (11) of Table[8] the net rates
in the knowledge capital model are around 80%. While they are imprecisely estimated, they are
higher than the net rates in our model with the exception of industry 9.

The knowledge capital literature has had limited success in estimating the rate of return to
R&D. ) contends that “[e]arly studies of this topic were happy to get the sign of
the R&D variable ‘right’ and to show that it matters, that it is a ‘significant’ variable, contributing
to productivity growth” (p. 51). Estimates of the rate of return to R&D tended to be high, often
implausibly high: “our current quantitative understanding of this whole process remains seriously
flawed ... [T]he size of the effects we have estimated may be seriously off, perhaps by an order
of magnitude” m, @, p. 83). Our estimates, by contrast, are more modest.

7. CONCLUDING REMARKS

In this article, we develop a model of endogenous productivity change resulting from investment
in knowledge. While the knowledge capital model in its basic form can be viewed as a special
case of our model, we differ in that, rather than attempting to construct a stock of knowledge
capital from a firm’s observed R&D expenditures, we consider productivity to be unobservable
to the econometrician. We also derive an estimator for production functions in this setting.

Applying our approach to an unbalanced panel of more than 1800 Spanish manufacturing firms
in nine industries during the 1990s, we show that the link between R&D and productivity is subject
to a high degree of uncertainty, nonlinearity, and heterogeneity. R&D is a major determinant of
the differences in productivity across firms and the evolution of firm-level productivity over time.

While our focus is on the link between R&D and productivity, we hope that our model of
endogenous productivity change facilitates further inquiries into the determinants of productivity.
To date, it has been applied by [Aw ef al M) to examine the impact of export market
participation on the productivity of firms; other applications include [Maican and OrtH ([2008)
and [Afion and Manjor (2009).

Our parametric inversion and the resulting estimator for production functions may also
prove useful in empirical research that requires multi-dimensional productivity measures. It
is often possible to recover multiple unobservables from observing multiple decisions of a

m. [Doraszelski and Jaumandred (2009), for example, separately measure Hicks-neutral and
labour-augmentlng productivity to inquire about the nature of technological change. Another
promising avenue for future research may be to study the impact of investments in R&D and
related activities on product innovations. To this end, one may build on M) and
{laumandreu and Mairessd 2010) by introducing an additional unobservable that captures shifts
and rotations in demand resulting from product innovations. In parallel to the productivity measure
in the current article, this demand-side unobservable can then be endogenized by letting its law
of motion depend on R&D expenditures.

APPENDIX A

We observe firms for a maximum of ten years between 1990 and 1999. We restrict the sample to firms with at least
two years of data on all variables required for estimation. Because of data problems we exclude industry 5 (office and
data-processing machines and electrical goods). Our final sample covers 1870 firms in 9 industries. The number of firms
with 2, 3,..., 10 years of data is 259, 377, 244, 191, 171, 134, 127, 153, and 214, respectively. Tablem]gives the industry
definitions along with their equivalent definitions in terms of the ESEE, National Accounts, and ISIC classifications

spending one dollar on R&D adds one unit of knowledge capital g% is, in turn, equal to ?TX or the gross rate of return to
R&D.
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TABLE Al
Industry definitions, equivalent classifications, and shares
Classifications Share of Number of
Industry ESEE National accounts ISIC value added  subindustries
1 2) (€) “ (&)

1. Ferrous and non-ferrous 1+4 DJ D 27428 12.6 13

metals and metal products
2. Non-metallic minerals 2 DI D 26 7.8 8
3. Chemical products 3+17 DG-DH D 24+25 13.7 8
4. Agricultural and industrial 5 DK D29 59 8

machinery
6. Transport equipment 8+9 DM D 34+35 11.0 10
7. Food, drink, and tobacco 10+11+12 DA D15+16 16.5 10
8. Textile, leather, and shoes 13+ 14 DB-DC D17+18+19 7.9 13
9. Timber and furniture 15 DD-DN 38 D 20430 6.3 8
10. Paper and printing products 16 DE D 21422 8.2 5
Total 90.0

(Columns (1)—(3)). We finally report the shares of the various industries in the total value added of the manufacturing
sector in 1995 (Column (4)).

The ESEE survey provides information on the total R&D expenditures of each firm in each year. These include
the cost of intramural R&D activities, payments for outside R&D contracts with laboratories and research centers, and
payments for imported technology in the form of patent licensing or technical assistance, with the various expenditures
defined according to the OECD Oslo and Frascati manuals. We consider a firm to be performing R&D if it reports
positive expenditures. While total R&D expenditures vary widely across firms, it is quite likely even for small firms that
they exceed non-negligible values relative to firm size. In addition, firms are asked to provide many details about the
combination of R&D activities, R&D employment, R&D subsidies, and the number of process and product innovations as
well as the patents that result from these activities. Taken together, this supports the notion that the reported expenditures
are truly R&D related.

In what follows we define the remaining variables.

e [nvestment. Value of current investments in equipment goods (excluding buildings, land, and financial assets)
deflated by the price index of investment. By measuring investment in operative capital we avoid some of the more
severe measurement issues of the other assets. We followm M) and assume that the investment
decided in period  — 1 coincides with the investment observed in period 7. Experimentation with the lagged value
of this flow gave very similar results.

e Capital. Capital at current replacement values IA(‘]-, is computed recursively from an initial estimate and the data
on current investments in equipment goods Z,. We update the value of the past stock of capital by means of the

price index of investment Py, as Kj; =(1—4) Pili N Kj;—1+1j;—1, where § is an industry-specific estimate of the rate

of depreciation. Capital in real terms is obtained by deflating capital at current replacement values by the price

index of investment as Kj; = [[S—’;.

e Labour. Total hours worked computed as the number of workers times the average hours per worker, where the
latter is computed as normal hours plus average overtime minus average time lost at the workplace.

e Materials. Value of intermediate consumption (including raw materials, components, energy, and services)
deflated by a firm-specific price index of materials.

e Output. Value of produced goods and services computed as sales plus the variation of inventories deflated by a
firm-specific price index of output.

e Price of investment. Equipment goods component of the index of industry prices computed and published by the
Spanish Ministry of Industry.

e Wage. Hourly wage cost computed as total labour cost including social security payments divided by total hours
worked.

e Price of materials. Firm-specific price index for intermediate consumption. Firms are asked about the price
changes that occurred during the year for raw materials, components, energy, and services. The price index is
computed as a Paasche-type index of the responses and normalized by the average of its values for each firm.
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e Price of output. Firm-specific price index for output. Firms are asked about the price changes they made during
the year in up to 5 separate markets in which they operate. The price index is computed as a Paasche-type index
of the responses and normalized by the average of its values for each firm.

o Index of market dynamism. Firms are asked to assess the current and future situation (contraction, stability, or
expansion) of up to 5 separate markets in which they operate. The index of market dynamism is computed as a
weighted average of the responses and proxies for the demand shifter dj;.

e Technological sophistication. Dummy variable that takes the value one if the firm uses digitally controlled
machines, robots, CAD/CAM, or some combination of these procedures.

o Identification between ownership and control. Dummy variable that takes the value one if the owner of the firm
or the family of the owner hold management positions.

e Age. Years elapsed since the foundation of the firm with a maximum of 40 years.

e Work force. Fraction of workers under fixed term contracts with very small or no severance pay (temporary
workers). Fraction of non-production employees (white collar workers), workers with an engineering degree
(engineers), and workers with an intermediate degree (technicians).

e Location of industrial employment. Nineteen dummy variables corresponding to the Spanish autonomous
communities when employment is located in a unique region and another dummy variable when employment is
spread over several regions.

e Product submarket. Dummy variables corresponding to a finer breakdown of the 9 industries into subindustries
(see Column (5) of Table [AT).

APPENDIX B

To simplify the exposition, we restrict the production function in Equation () to Vit = Bilj +wj +ej, the law of
motion in Equation @) to an exogenous AR(1) process with g(wjr—1)=pwj—1, and assume perfect competition in the
product market with n(-) = oco. Normalizing the price of output, the labour demand function is

zj,:L(lnﬂﬁMfw.*ﬁwj,). (B.1)
1= /

While Equation (B:I) accurately describes the firm’s decision-making process, there is a problem of observability.
Assume, as may easily happen in practice, that we as econometricians imperfectly observe prices: instead of Wj*; we
observe wj;, where the difference between observed and true prices is measurement error vj, =wj; —wj’j. Given what we
observe, we can no longer recover true productivity as

hjyy = wje =+ 1= Bl +wj;. (B.2)
where A; =—Inf; — u. Instead we recover
/’l]jt =Al+(1—ﬂ1)lj;+th=hj§+Vj,. (B.3)
We refer to hyj; as observed (as opposed to true) productivity and base the estimation on it.

We assume throughout that the measurement error v;; is independent of productivity wj; and distinguish two polar
cases: in the case of classical measurement error with respect to prices, the measurement error vj, is uncorrelated with
true prices W}; and therefore correlated with observed prices wy; in the case of non-classical measurement error with
respect to prices, the measurement error v;; is uncorrelated with observed prices wj, and therefore correlated with true
prices wj;.

To explore the consequences of imperfectly observable prices, we assume that

Vie =E [vit|lie, wit |+ wjy = 80+ 81 Ljy + Sawjs 4w, (B.4)

where uj; is mean independent of /;; and wj,E For the case of classical measurement error with respect to prices we then
have

o; 2 o; 2 2
si=01-8) ’ O, 2= L (62 +02)
wer w w
Gv%*ag+av%*a\12+aa2)0"2 Uv%‘*03+gv%*g\/2+ga2)6\lz
and 5 5
o, o,
Si=(0-8)—5"5 b=—">
2 27 2 2
oy +og oy +og

for the case of non-classical measurement error with respect to prices.

49. Assumption ([B4) does not require vy, lj;, and wj to be jointly normal distributed and extends, for example, to
the elliptical and Pearson families. Moreover, it is easy to show that if the joint distribution of vj;, wj;, and wﬁ (classical
measurement error) or wj, (non-classical measurement error) is in the elliptical family, then so is the induced joint
distribution of vj, lj;, and wj;. More generally, assumption (B:4) may be viewed as a useful approximation that allows us
to explore the consequences of imperfectly observable prices.
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Substituting wj; = pwj;—1 +&j; and Equation (B2 into Yjr = Bilji +wjs +ejr, the model is
Vir=no+Biljt + phjy,_; +&i + e,
where Ao =—p(Ing;+ ). Using Equations (B3) and (B4} to express the model in terms of observables we thus have
it =ho+Biljt+p (hyjt—1 — 80— 8141 —8awje—1) — puji—1 + & +eje
=—Fo A+ (1= b1 +wji-1 ) = pui1 + &+ e

where
131
—8

We conclude that imperfectly observable prices drive a wedge between the coefficients in the production function and

their counterparts in the inverse labour demand function which may cause the parameter restrictions test to reject.
Fortunately, however, by simply dropping the restriction between parameters it remains possible to consistently

estimate the coefficients in the production function (8; in this simple example) because uj,—1 is uncorrelated with the

instruments (constant, [;; 1, and wj_1). With these coefficients in hand we are moreover able to consistently recover

actual productivity wj,. What we are no longer able to do is consistently decompose wj; into expected productivity pwj;—1

and the random shock Ej,ﬂ

ro=ro—pdo, P=p(1—-8&), 1-fi=

APPENDIX C

Introducing adjustment costs Cp,, (Lpjr, Lpj;—1) the Bellman equation @ becomes

1 :
V(sj)=_ max I(s;)—Ci(ij;)— C(rjs) — Crp(Lpjr, Lpji— 1)+ [V(Sjr+1)|5jt, ljh"jt]s
ijt Tt Lpjt +p0
where the indirect profit function I(-) is based on the production function in Equation (I3} and the vector of state variables
sjr = (t, kjr, Lpjr—1, @jr, Wpjt, Wrjr, Pmjr - djr) includes lagged permanent labour Lpj,—1, the log of the wage of permanent
workers wpj;, and that of temporary workers wrj;.
At an interior solution the first-order condition for permanent labour is

Wpj: (14 A;
BrcePoeht P LB PIO= b g g i lﬂ) , D
Pjr (1 - ’I(ﬂjzvdﬂ))
where, by the envelope theorem, the gap between the wage of permanent workers Wp;; and their shadow wage is
1 (9Cr,(Lpjt,Lpji— 1 V(s
Aj= ( Lp(Lpje, Lpji—1) E[ [(S'II-H)Isz,l'jz,rjz])
Whpje dLpjs I+p dLpj
1 (9Cr,(Lpjt,Lpji— 1 9Crp(Lpji+1,Lpj
_ < Lo ( i Ly 1) [ Lp (LPji+1,Lpjt) Isz,ijz,r]zD €2
Wpj L)ij, 1+p 3LPjt
At an interior solution the first-order conditions for temporary labour and materials are
W .
B =)o KR LT LI 0T M et = — (3)
Pjt (1 - U(I’/ud/f))
_ Py
BeP MR L L M e = —— ML (4
Pjt (1 - ﬂ(l’jzvdjr))
50. For the case of non-classical measurement error with respect to prices, we obtain 1—f;= % =1-p

because 6; =(1— ;)32 in our simple example, but this does not generalize to the model with capital.
51. Our conclusions generalize beyond the simple example if we strengthen assumption (B-4). For example, for an
exogenous Markov process for productivity with law of motion wj, = p1wj—1 + pzwjzt,l + p3wj3F | +&j: we further assume

that u%t and uj3, are mean independent of /;, and wj, i.e. that uj, is homoskedastic and has constant skewness conditional
of lj; and wy.
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Multiplying the first-order conditions (CI) and (C3) by Lpj; and Ly, respectively, adding them, and rearranging
yields an expression resembling a first-order condition for effective labour L;; :L;",ilL(Ti.f @,

Wpji (14 Ay)Lpj + Wrj Lyj

(1= —L ) *
P-”(l ’IU’_ind/t))L./t

Rewriting in terms of observed labour Lj =Lpj+Lgj; and the observed wage Wj = Wpj,(1—S7j,)+ Wr;:Stjr, where

Bi—1
ﬂlfﬂo eﬁ,[](j}?k (L;;) 1 lefm ot o —

Ly . . .
St = % is the share of temporary workers in our data, yields
VVjt C2jr

(-1 Ciji’
Pi (1 n@fhdzﬁ) g

where the corrections Cij, and Cy;; are defined in Equations (7D and {IX). Together with Equation {C4), Equation
yields the aggregate labour demand function in Equation (I8). We finally obtain Equation by dividing the first-order

.. . Lyj
conditions (C.I) and (C.3) and recalling that S7j; = LL’:
7!

Prefo e Kk (L, Cio)P1 = MG e et = (C5)
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