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Abstract

This model uses three implicit states (Core CPI, the unemployment
rate, and the quarterly growth rate of non-farm payrolls) which follow a
multivariate continuous-time Ornstein-Uhlenbeck (OU) process. The in-
stantaneous risk-free rate (Fed Funds) is set using a policy rule (following
Black (1995)) which is affi ne in the implicit states with a lower bound at
one basis point. The policy rule is fixed throughout the sample period
from November, 1985 through March, 2013. While the policy rule is fixed
throughout the sample, the economy responds differently when Fed Funds
are stuck at their minimum (the Zero Period) than it does when the Fed
can use Fed Funds more effectively to influence the economy (the Normal
Period). The implicit state OU processes have different coeffi cients, both
physical and risk neutral, in the two response periods. While market par-
ticipants may know the implicit states, an econometrician must estimate
from them market and macroeconomic data. I estimate the implicit states
and the OU processes parameters by maximizing the joint conditional like-
lihood that the implicit states are consistent with the government states
estimates; that the model accurately determines the yield curve; and that
the actual one-month returns are forecasted by the model. The data
are monthly estimates of the state variables published by the government,
month-end zero coupon yield curves with maturities from 2 to 30 years

∗This draft is a substantial revision of the first draft. I thank Jon Ingersoll, Leo Krippner,
Glenn Rudebusch, Ivan Shaliastovich, Jonathan Wright, Amir Yaron and the seminar partici-
pants at Wharton for comments. I also thank Barr Yaron for computational assistance. Send
comments to scottri@wharton.upenn.edu. Excel workbooks and Matlab code which calculate
all aspects of this paper are available at https://fnce.wharton.upenn.edu/profile/972/research.
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published by the Fed, and one month returns for the benchmark 2, 10,
and 30 year Treasury zeros calculated from the month-end yield curves
from November, 1985 through March, 2013. Over the entire sample the
root mean square error (RMSE) in fitting yield curves is only 4.6 basis
points. I find conditional yield curve responses to changes in the state
variables, which are significantly different from the unconditional factors.
The model is tested out-of-sample by fitting Treasury Inflation Protected
Securities. I find ample profit opportunities.
Keywords: Non-linear term structure model, macroeconomic state vari-
ables, numerical bond prices, conditional risk measures.
JEL Classification: C32, C51,C52,E43,G12.

1 Introduction

In this paper I use financial engineering based on known theory to find an ac-
curate, practical, conditional model of the term structure of interest rates with
important implications for forecasting, risk measurement, and risk management.
The conditioning information is captured by three macroeconomic state vari-
ables: The annual growth rate of the Core Consumer Price Index (CPI), the
Unemployment rate (UE) and the quarterly growth rate of Non-Farm Payrolls
(NFP). Accurate forecasts of the three state variables results in accurate fore-
casts of the term structure.
I assume that the Fed sets interest rates based on a policy rule which is a

modified Taylor (1993) Rule.1 Following Black (1995), the policy rate is an
affi ne function of the three state variables, but with a minimum lower bound:

r(xt) = max(r∞ + (xt − x∞)γ, rm), (1)

where xt = (CPIt, UEt, NFPt) are the government state variables at time t,
x∞ is the Fed’s equilibrium targets for the states, r∞ is the Fed’s equilibrium
target short rate, γ = (γCPI , γUE,γNFP ) are the Fed’s response coeffi cients for
the state variables and rm is the minimum rate. The quantity

st = r∞ + (xt − x∞)γ (2)

is called the target rate or the shadow rate.
This policy rule implies that there are two economic regimes: In the Normal

Response Period (NP), the policy rate is set using the affi ne function; in the
Zero Response Period (ZP) the policy rate is at the minimum, even though

1The Taylor Rule is a policy directive based on quarterly data using the GDP deflator and
the output gap as state variables. I need to adapt the Taylor Rule to use monthly data.
I substitute Core CPI as an inflation measure. I know from Okun’s Law that the output
gap is inversely related to the unemployment rate, which is also released monthly. So UE
is a natural state variable. But Veronesi (2010) reports that the growth rate of Non-Farm
Payrolls has more explanatory power for yields than UE. Since UE measures the level of the
labor market and NFP measures the growth of the labor market, I add NFP as the third
proposed state variable.
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the FED would prefer a lower, even negative, rate.2 While the response of the
economy changes in the two periods, I assume that Fed policy does not change
over the entire sample. The policy rule is the first source of non-linearity in
the model.
Using a VAR, I estimate that x∞ = (1.52%, 4.96%, 0.99%). These estimates

are the revealed Fed state targets. The equilibrium state estimates seem to
correspond well with announced FED policy: Equilibrium inflation is 1.52%,
which is virtually the center of the FED’s announced range; equilibrium UE is
4.96%, which is the FED’s revealed level of full employment; and equilibrium
NFP growth is 0.99%, which is very close to the long term growth rate of the
labor force. I estimate that γ = (2.06,−1.26, 0.47). These coeffi cients imply
that the Fed raises Fed Funds by 206 basis points for a 100 basis point increase
in Core CPI;3 lowers Fed Funds by 126 basis points in response to a 100 basis
point increase in UE; and raises Fed Funds by 47 basis points in response to a
100 basis point increase in NFP. Finally, I estimate that r∞ = 2.43%, (which
is lower than Taylor’s prescribed target of 4%).
I assume that rm is one basis point for two reasons. The first reason is

empirical: Actual short rates have never been below one basis point in the
available data sample. Since July 1, 1954, the minimum Effective Fed Funds4

rate has been four basis points; since November, 1985, the minimum month-end,
one-month Treasury repo rate has been one basis point. The second reason is
theoretical: There must be some discounting if prices for zero coupon bonds are
to converge to zero, even if the risk-neutral processes for the state variables are
non-stationary. If zero coupon bond prices do not converge to zero, then, in
theory, a consol bond has an infinite price.
I model the state dynamics as a multivariate Ornstein-Uhlenbeck (OU)

process with different coeffi cients in the NP and ZP.

dxt = (x∞ − xt)θpdt+ dwt
√
Sp (3)

where θp is the mean reversion matrix in period p = N,Z and Sp is the in-
stantaneous covariance matrix of the states in period p. There can be only
one economic equilibrium, so the equilibrium state vector is the same as the
Fed targets, x∞, in both periods. Equation (3) implies, of course, that {xt} is
Gaussian. Not surprisingly, I show that the economy responds differently in
the two periods, probably because the FED lacks it most potent policy tool in
the ZP.
Market participants set prices using unobserved implicit state variables. The

true states are implicit in prices, rather than explicit in the data published by the

2 In the data, the Zero Response Period begins in December, 2008 when the FED announced
that they were no longer targeting the Fed Funds rate and would allow it to drift between
zero and 25 basis points.

3The Fed must raise rates faster than 1-to-1 in order to fight inflation.
4There is an active market in bank reserves trading at the Effective Fed Funds rate. This

rate is usually kept close to the Fed’s policy rate target through open market operations.
Unsurprisingly, market participants do not lend money, even with 101% Treasury collateral,
at zero rates.
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government, for at least two reasons. First, the government’s published state
variables are really only estimates of the true states based on survey data and
subject to revision. Second, the government state variable data for each month
are published with a one month delay. For example, the unemployment rate
and non-farm payroll are usually released on the first Friday of the next month;
the inflation data are typically released in the middle of the next month. Hence
even at release the data refer to time past, not the present or the future. It is
unreasonable to expect market participants to use backward looking data alone
in setting prices. In fact, I expect market participants to use the published data,
along with all other information, to calculate the current implicit state variables.
Nevertheless, the government data contains important information about the
implicit state variables because both the government and the market are trying
to estimate the same true states. Hence, I require that the market participants
draw the implicit current state from a normal distribution with a mean equal to
the forecast of the current states from the last reported government states (to
compensate for the publication delay) and covariance of Σp in period p, where
Σp is the monthly covariance implied by equation (3). Hence, the published
state variables are observations with error of the implicit state variables.
Under rational expectations, investors are assumed to know the processes

governing the evolution of both the government and implicit state variables.
Equation (3) is the model for the physical processes for the government state
variables in the NP and the ZP. The model for the implicit state variables
follows a multivariate OU processes as well, but with different coeffi cients in the
NP and ZP:

dξt = (x∞ − ξt)θPpdt+ dwPt
√
Sp, (4)

where {ξt} are the implicit states and θPp is the mean reversion matrix in period
p = N,Z. While the mean reversion matrix may differ between the government
state process, equation (3), and the implicit state process, equation (4), I assume
that the equilibrium states are the Fed targets, x∞, for both processes. (There
can only be one equilibrium.) Also, to tie the implicit states to the actual states
I assume that both the government state process and the implicit state process
have the same instantaneous covariance matrix in each of the economic periods.
I next model the risk neutral processes for the implicit states. The implicit

state variables follow a multivariate Ornstein-Uhlenbeck process in policy period
p = n, z:

dξt = (µQp − ξt)θQp dt+ dwQt
√
Sp, (5)

where µQp is the vector of risk-neutral equilibrium states and θQp is a mean
matrix. Girsanov’s Theorem requires that the instantaneous covariance matrix
be identical under the physical and risk-neutral measures.
As usual, nominal zero-coupon bond prices are the expected present value

of $1 to be delivered at maturity discounted at the compounded future policy
rates using risk-neutral probabilities. Let P (ξt, τ)5 be the price in state ξt of a

5The model price does not depend explicitly on time, t, because none of the model para-
meters are functions of time.
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τ−year zero coupon bond:6

P (ξt, τ) = EQt exp

− s=t+τ∫
s=t

r(ξs)ds

 . (6)

There is no known formula for the zero coupon bond prices so I calculate them
numerically.
In addition to data on the state of the economy, I use month-end yield curves

and zero-coupon bond returns to calibrate the model. The yield curve data are
published on the Federal Reserve Research web site.7 The data are month end
continuously compounded yields on constant maturity zero coupon bonds with
annual maturities of two8 to thirty years from November, 1985 through March,
2013. The data begin in November, 1985 because that is the first month in which
30 year maturity yields are published. I also calculate one-month returns on
the two, ten and thirty year maturity Treasury zero coupon bonds using the
Federal Reserve yields.9

I use maximum likelihood estimation to find the 42 coeffi cients {µQp , θQp , θPp}
and the 987 implicit state variables {ξt}. These are a lot of coeffi cients and
states to estimate, but I have a tremendous amount of data: 329 × 3 = 987
government state variables, 329×29 = 9541month-end yields, and 329×3 = 987
monthly returns for a total of 11515 data points. The conditional likelihood
function is the joint probability of fitting the month-end yield curves, drawing
the implicit state variables from the distribution of the month ahead government
state forecasts, and forecasting actual one-month returns on the two, ten and
thirty year maturity Treasury zeros. I find the maximum of the likelihood
function by a numerical search. Notice that implicit states are not the same as
latent states which are chosen only to fit yield curves.
There are at least three important uses of the model. First, it can be used to

take positions on the yield curve. This requires investors to forecast the implicit
state variables. Investors can take comfort in the fact that the differences

6Cox and Ross (1976) show that a financial asset price is equal to the expected present
value, under the risk-neutral measure, of the asset’s cash flows discounted at the risk-free
rate.

7http://www.federalreserve.gov/econresdata/researchdata.htmas.
The yield curves are calculated through an extension of the Nelson-Siegel fitting tech-

nique. I use the same Nelson-Siegel spline to calculate bond yields with maturi-
ties of 23, 35, ..., 359 months which are needed to calculate one month returns. See
Gürkaynak, Sack and Wright (2007). See Veronesi (2010) for a critique of fitting techniques.

8 I eliminate the one-year bond because it is money-market eligible. The money market
and the Treasury bond market are segmented by SEC regulation, which limits money market
securities to 13 months or less to maturity. Furthermore, money market securities are traded
on the money market desk while Treasury bonds are traded by different traders in a different
market on the Treasury bond desk. This results in segmentation that is evident in market
prices. [Knez, Litterman and Scheinkman (1994)]

9The model has only three independent zero coupon bond returns because there are only
three independent state variables. Hence I select the benchmark maturities, 2, 10, and 30
years, which are the bonds auctioned regularly by the Treasury. Not surprisingly they are
also the maturities with interest rate futures.
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between the implicit and government state variables mean revert fairly quickly
to zero.10 Hence, investors can formulate trades to take advantage of their views
on the future economy: The model translates their views on future implicit
state variables into a view on the future yield curve. Conversely, by using the
model to fit forward yield curves, investors can back-out the market’s view of
the future breakeven states of the economy. If the market’s breakeven views are
inconsistent or extreme, investors may want to bet against these views.
A second important use of the model is in risk measurement and risk man-

agement of bond portfolios. Traditional bond portfolio risk measures such
as duration and convexity are calculated using the implausible assumption
that the yield curve changes by parallel shifts. Following, the publication by
Litterman and Scheinkman (1991) of a principal component analysis (PCA) of
yield changes, investors began measuring risk with respect to yield curve changes
implied by the three factors, level, slope and curvature. These unconditional
risk measures were a big improvement over duration and convexity during the
NP when interest rates were far from zero. When the economy is in the ZP,
or even when Fed Funds are 2% or less, however, investors must replace the
unconditional risk measures with conditional ones.
The third important use of the model is to exploit inconsistencies between the

nominal Treasury market and the Treasury Inflation Protected Security (TIPS)
market. TIPS values can be calculated directly from the non-linear model. The
model values differ significantly from the market prices. By constructing a self-
financing portfolio of a TIPS bond hedged with three nominal Treasury bonds, I
can show that the model values indicate profitable trading opportunities. This
can also be viewed as an out-of-sample test of the non-linear model.
This paper is organized as follows. Section 2 is a brief literature review.

Section 3 contains the non-linear bond pricing model. I discuss the model
implications in Section 4. In Section 5, I show that the model identifies a
profitable strategy for managing a hedged TIPS portfolio. My conclusions are
in Section 6. There are three Appendices. Appendix A contains a principal
components analysis (PCA) of the yield curve data. Appendix B contains
the development and estimation of the standard affi ne term structure model in
continuous time, which I use as a comparison to the non-linear model. The
details of the numerical solution for bond prices are found in Appendix C.

2 Literature

In this paper I weave together three strands of the term structure research
literature.11 The first strand uses an affi ne model with observed macroeconomic
state variables to fit yield curves, such as Bernanke, Reinhart and Sack (2004)

10The mean reversion half lives of CPI, UE and NFP are 0.91 years, 0.32 years and 0.22
years, respectively.
11There is a vast literature about the term structure of interest, way too large to summarize

in a literature review. Fortunately, Gurkaynak and Wright (2012) have recently written an
excellent survey of the literature which focuses on the relationship between the term structure
and the macroeconomy.
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and Smith and Taylor (2009). Unfortunately, these models do not accurately
fit the term structure.
Better fits are afforded by latent state variables, the second strand of re-

search. Latent state variables are unidentified statistical factors which fit yield
curves. The earliest latent state variable model is the PCA of Litterman and Scheinkman (1991),
who identified three factors, which they called level, slope and curvature, which
together explained over 99% of the variation in yield curves. A lot of subsequent
research continued using latent factors, but added more structure to the model
by modeling the latent variables using a VAR.12 Armstrong and Richard (2002)13 ,
Ang and Piazzesi (2003), Diebold, Rudebusch and Arouba (2006) and Rudebusch and Wu (2008)
have taken a fusion approach by combining observed macroeconomic state vari-
ables14 with latent state variables in affi ne term structure models. Latent states
have a virtue and a vice. Their virtue is that they fit yield curves very well. For
example, in Appendix A, you can see that the first three principal components
of the data explain 99.96% of yield curve variation. Their vice is that they lack
economic content in that they are not interpreted as macroeconomic variables.
It is diffi cult to see how market participants would be comfortable taking posi-
tions in the bond market based on their views of latent states. In this paper, I
eliminate the vice but retain the virtue by using implicit state variables, which
are not latent states, but a compromise between the latent states —which pro-
vide the best fit to the yield curve —and the government states —which provide
economic content.
The final strand of research is non-linear term structure modeling. The

great majority of structural models of the yield curve begin with a rule where
the policy rate is an affi ne function of the state variables, either observed or
latent or both, and derive an affi ne model of the term structure. Some of
these models, following Vasicek (1977), do not restrict the state variables to be
positive so that negative interest rates are possible. Others, recognizing the
shortcoming of negative interest rates, follow Cox, Ingersoll and Ross (1985) by
modeling the state variables using distributions that restrict the states to be non-
negative.15 Black (1995) realized the shortcoming of both of these approaches:
there is no economic reason to suppose that the state variables in the policy
rule are restricted to be non-negative, even though interest rates must be in the
presence of currency. Policy rules based on observed state variables, such as
the Taylor (1993) Rule, assume that the policy rate is an affi ne function of the
rate of inflation, which can be negative, and some variables which measure real
economic activity, such as the output gap, which can also be negative. Black
theorizes that in certain states of the economy, policy makers would like to set a
negative policy rate, but cannot because of currency, so they are forced to set the

12See Gurkaynak and Wright (2012) for a list of references.
13We did not publish the model because we were using it for proprietary portfolio manage-

ment.
14To be more precise, these papers use a reduced number of economic factors to capture

the effects of a larger set of nominal and real economic variables.
15For example, see Richard (1978) where I model both inflation and the real instantaneous

risk-free rate as non-negative.
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policy rate at or near zero. Hence the policy rule is a non-linear modified affi ne
rule where the policy rate is the greater of the affi ne rule rate or rmin. Recently,
Feldhuter, Heyerdahl-Larsen and Illeditsch (2013) have presented an alternative
to the Black model using Gaussian state variables but with a stochastic discount
factor that results in a yield formula with positive interest rates.
There have been two approaches to solving Black’s model. The first ap-

proach has been to solve the model exactly as possible with numerical tech-
niques. Gorovoi and Linetsky (2004) solve Black’s model with a single state
variable16 using eigenfunction techniques. They illustrate the results by fit-
ting Japanese Government Bond (JGB) data using latent state variables.17

Kim and Singleton (2012) use modern numerical methods to solve the differ-
ential equation for bond prices derived from Black’s model with two latent state
variables. Their model fits weekly JGB data from January, 1995 through March,
2008 very well with a root mean squared error (RMSE) of about 10 basis points.
Because of the curse of dimensionality, Krippner (2013) has pioneered using

an approximate solution to the Black model. Krippner’s approximation can
be extended to more than three state variables and can be estimated quickly.
Christensen and Rudebusch (2013) apply Krippner’s technique to JGB data us-
ing both a two and a three state variable Black model .
This paper extends the literature in three ways: First, I introduce three

identified implicit (not latent or government) state variables 18 ; second, I use
monthly US yield curve data with maturities from two to 30 years from Novem-
ber, 1985 through March, 2013; and third, I use two economic response periods,
a new nonlinearity.

3 The Non-Linear Term Structure Model

In this section I develop and estimate the non-linear model with implicit state
variables.

3.1 Two Regime State Variable VARs

My first step is to estimate the coeffi cients for the OU process in the NP and ZP
for the government state variables given by equation (3).19 I solve Equation
(3) for a monthly VAR for the states:20

xt+1 = cp + xtMp + εpt, (7)

16 I am unaware of any generalization of their results to two or more state variables.
17They illustrate their model by successfully calibrating it to the JGB yield curve on Feb-

ruary 3, 2002 with a respectable RMSE of 6.4 basis points.
18The extension from two to three state variables is not trivial. I had to use a new

numerical scheme because the one used by Kim and Singleton is not unconditionally stable in
three dimensions.
19The government state variables estimates are taken from the FRED database published

by the Federal Reserve Bank of St. Louis.
http://research.stlouisfed.org/fred2/
20Meucci (2010)
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where Mp = e−θp/12 is a 3× 3 mean matrix, cp = x∞(I −Mp) is a 1× 3 vector
of constants, and {εpt ∼ N(0,Σp)} are independent and identically distributed.
The monthly covariance matrix, Σp, can be expressed in terms of the stack
operator vec and the Kronecker sum

vec(Σp) = (θ′p ⊕ θ′p)−1(I − exp(−θ′p ⊕ θ′p/12))vec(Sp). (8)

Hence the next step is to estimate a VAR for the Normal Rate Period, which
results in estimates of cn,Mn and Σn. I then calculate that θn = −12 ln(Mn).
I can only estimate the Fed’s implicit state targets, x∞, using data from the NP
since there is no information about x∞ during the ZP:

x∞ = cn(I −Mn)−1. (9)

Finally I invert equation (8) to obtain an estimate of Sn.
I estimate the state variable VAR coeffi cients, cn and Mn in equation (7),

using ordinary least squares regression. Table 1 shows the coeffi cients and
statistics estimated in the NP. A few comments are in order about the regression
results. The CPI and UE regressions have excellent fits with R2 greater than
98%; growth rates are more diffi cult to predict so the R2 for NFP falls to about
91%. Examining the T-statistics, you can see that all but three of the regression
coeffi cients are statistically significant at the 95% level. The Durbin-Watson
statistics shows that serial correlation is not a serious problem. The three
state variables all mean revert to equilibrium states, but with different rates
of mean-reversion. Inflation once begun is notoriously diffi cult to abate; this
is reflected in the long half-life for mean-reversion of 6.75 years.21 The real
economic states, UE and NFP, follow the business cycle with a mean-reversion
half-life of 3.06 years.
From Mn and Σn I can back-out an estimate of the continuous time covari-

ance matrix, Sn, shown in Table 2. Notice that none of the correlations are
statistically different from zero.
Now I turn to the ZP during which I expect FED policy to be less effective

in managing the economy. I again use ordinary least squares estimation, but
I specify the equilibrium states to be the same ones I found in the NP, as
discussed above. Constraining the equilibrium states to be x∞ requires that
I transform the state variables to be the difference between the current state
and the equilibrium state, {xt − x∞}, and then calculate the regressions. The
results are shown in Table 3.
Again, a few comments are in order about the VAR. The regression fits, as

measured by R2, are worse for CPI and UE. In fact five of the nine regression
coeffi cients are not significant at the 95% level. There are now problems with
serial correlation which means that the T-statistics are biased upward although
they are asymptotically consistent. Finally, the state variables mean revert in
the ZP, but with shorter measured half lives.

21The half life is the time it takes a state varaible to return half-way to equilibrium in the
absence of further random shocks.
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Normal Response Period State VAR
Coeffi cients CPI UE NFP

cn 0.0008 0.0017 -0.0036
(1.67) (3.51) (-2.01)

Mn 0.9989 0.0256 -0.0517
(113.08) (2.91) (-1.58)
-0.0181 0.9665 0.0898
(-1.93) (103.87) (2.60)
0.0114 -0.0405 0.9886
(2.21) (-7.88) (51.83)

x∞ 1.52% 4.96% 0.99%
Half-Life (years) 6.75 3.06 3.06

R2 98.32% 98.16% 90.73%
Durbin-Watson 2.06 2.53 1.93

Table 1: Ordinary least squares regression coeffi cients and statistics for the state
variables VAR in the Normal Response Period.

Normal Response Period Instantaneous Covariance
Sn CPI UE NFP

Volatility 0.45% 0.45% 1.66%
Correlations 0.000 0.042 -0.052

(0.00) (0.30) (-0.37)

Table 2: The instantaneous volatilities and correlations in the Normal Response
Period. The correlations are, in order, CPI and UE, CPI and NFP, UE and NFP.
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Zero Response Period State VAR
Coeffi cients CPI UE NFP

Mz 0.9653 0.0216 -0.1162
(26.89) (0.53) (-0.68)
0.0030 0.9845 0.0325
(0.64) (183.69) (1.45)
0.0103 -0.0526 0.9585
(1.70) (-7.62) (33.27)

Half Life (years) 3.34 1.52 1.52

R2 93.21% 96.56% 95.57%
Durbin-Watson 1.21 1.87 1.24

Table 3: Ordinary least squares regression coeffi cients and statistics for the state
variables VAR in the Zero Response Period.

Zero Response Period Instantaneous Covariance
Sz CPI UE NFP

Volatility 0.44% 0.48% 2.08%
Correlations 0.061 -0.151 -0.236%

(0.44) (-1.10) (-1.75)

Table 4: The instantaneous volatilities and correlations in the Zero Response
Period. The correlations are, in order, CPI and UE, CPI and NFP, UE and
NFP

The estimate of the continuous time covariance matrix in the ZP, Sz, is
shown in Table 4. The volatilities of the real labor market state variables in
the ZP are similar to the NP. The inflation volatility is greater in the ZP than
the NP, perhaps reflecting less FED control. Again, none of the estimated
correlation coeffi cients is statistically significant.
So it appears that the economy reacts differently in the two policy periods.

To confirm this formally I calculated the log-likelihood for the two policy periods
comprising the split regime and summed them to get 4732.1. In Appendix B, I
re-calculated the log-likelihood using the restriction that the two policy periods
have identical coeffi cients to get a log-likelihood of 4720.9. A likelihood ratio
test with difference statistic d = 2(4732.1 − 4720.9) = 22.3 and 12 degrees of
freedom shows that the probability that the economy has responded differently
in the two policy periods is 96.6%. Hence, with a high degree of confidence, I
conclude that a split regime model fits the data better.

3.2 The Policy Rule

I estimate the Fed’s policy rule by regressing Fed Funds on the government state
variables, lagged one month for publication delay, during the NP. I limit the
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Normal Response Period Policy Rule
Coeffi cients γ0 γCPI γUE γNFP

0.051 2.06 -1.26 0.47
(7.48) (19.28) (-9.59) (8.36)

r∞ R2 SE Durbin-Watson Autocorrelation
2.43% 86.16% 0.808% 0.25 .85

Table 5: The coeffi cients and key statistics for a regression of Fed Funds on one-
month lagged government state variables duirng the Normal Response Period.
The standard errors of the coeffi cents are adjusted for serial correlation using
the Newey-West procedure.

sample to the NP because the Fed announced that they were no longer targeting
the Fed Funds rate starting in December, 2008. The regression coeffi cients and
key statistics are shown in Table 5. The regression constant is denoted γ0. I
solve equation (1) to find that

r∞ = γ0 + x∞γ. (10)

My estimate is r∞ = 2.43%, which is lower than most prescribed policy rules,
(such as Taylor (1993)).

3.3 Numerical Bond Prices

Let P (ξt, τ) be the price in state ξt of a τ−year zero coupon bond. Under the
risk-neutral probabilities, the expected instantaneous return on this bond must
equal the instantaneous risk-free rate in state ξt:

EQt
dP (ξt, τ)

P (ξt, τ)
= r(ξt)dt, (11)

where r(ξt) is given by equation (1). Using Ito’s Formula I calculate that

EQt
dP (ξt, τ)

P (ξt, τ)
=

[
−∂P
∂τ

+
1

2
tr(Sp

∂2P

∂ξ′∂ξ
) + (µQp − ξ)θQp

∂P

∂ξ

]
dt. (12)

Substituting equation (12) into equation (11) I get the fundamental partial
differential equation for zero coupon bond prices:

∂P

∂τ
=

1

2
tr(Sp

∂2P

∂ξ′∂ξ
) + (µQp − ξ)θQp

∂P

∂ξ
− r(ξ)P. (13)

The Feynman-Kac Theorem guarantees that the unique solution to equation
(13), subject to the boundary condition P (ξt, 0) = 1, is given by equation (6).
But I can go no further with the analytical development because of the non-
linearity introduced in equation (1) and because the state dynamics given by
equation (5) differ by policy period. Instead I turn to numerical techniques
to calculate the price by solving equation (13). The details of the numerical
solution are in Appendix C.
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3.4 Maximum Likelihood

Each month I want to find three implicit state variables which are rational es-
timates of the true current state of the economy, fit the yield curve in the sense
that the pricing model using the implicit state variables has small errors, and
forecast one-month benchmark bond returns as accurately as possible. How do I
find rational estimates of the true current state? Normally, the government state
variables are treated as observations on the true states with unknown measure-
ment error, which is estimated as part of the calibration. Because the implicit
states are endogenous, however, I cannot estimate both the implicit states and
the measurement error. If I try, the maximum likelihood is infinite because
setting the implicit states equal to the government states results in zero mea-
surement error. So I have to specify the covariance matrix of the measurement
errors. Hence, I assume that market participants draw the implicit states from
the month-end distribution for the government state. Investors use equations
(7) to forecast the month-end government states (which are not yet published)
in the two policy periods. The expected states at the end of the month are

mpt = cp + xt−1Mp. (14)

Hence the unobserved current implicit state is drawn from the physical distrib-
ution for the month-end government states:

ξt ∼ N(mpt,Σp). (15)

Thus I specify that Σp is the covariance matrix of state measurement errors.
In implicit state ξt and response period p, the expected physical one-month

change in the implicit state is

∆P
pξt = (x∞ − ξt)(I − exp(−θPp/12)). (16)

The covariance of the one-month state change is ΣPp is

vec(ΣPp) = (θP′p ⊕ (θP′p )−1(I − exp(−(θP′p ⊕ θP′p /12))vec(Sp). (17)

Let Y (ξt, n) = − ln(P (ξt, n))/n be the yield on an n-year bond in state ξt. I can
closely approximate the annualized one-month conditional expected return on
an n-year bond in state ξt and policy period p by using a Taylor series expansion:

ρ(ξt, n) = 12[nY (ξt, n)−(n− 1
12 )(Y (ξt, n− 1

12 )+(∆P
pξt)

∂Y (ξt, n)

∂ξt
+

1

2
tr(ΣPp

∂2Y (ξt, n)

∂ξ′t∂ξt
)]

(18)
The joint conditional log-likelihood that the implicit states are distributed

according to equation (15), that the bond prices fit the government yield curve
and that the month ahead implicit state forecasts minimize the prediction errors
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of the one-month returns is:

L =

T∑
t=1

[
− 32 ln(2π)− 1

2 ln(|Σp|)− 1
2 (ξt −mpt)Σ

−1
p (ξt −mpt)′

]
(19)

− 12
[
29 ln(2π) + 29 ln(σ2rp) + (yt − Y (ξt))(yt − Y (ξt))′/σ2rp

]
− 12
[
3 ln(2π) + ln(Σρp) + (Rt+1 − ρ(ξt))Σ

−1
ρp (Rt+1 − ρ(ξt))′

]
where σrp is the yield curve fitting error in response period p; yt = [y2t, ..., y30t]
is the yield curve data at time t; Y (ξt) = [Y (ξt, 2), ..., Y (ξt, 30)] is the model
yield curve in state ξt; Rt+1 = [R2t+1, R10t+1, R30t+1] are the realized returns
on the 2, 10 and 30 year Treasury zeros between month t and month t+ 1; and
ρ(ξt) = [ρ(ξt, 2), ρ(ξt, 10), ρ(ξt, 30)] are the model predicted returns on the same
bonds.22

A numerical search finds the coeffi cient values and implicit states which
maximize the conditional joint log-likelihood, equation (19). There are 42
coeffi cients , nine in each response period for the physical OU implicit state
process, equation (4), and twelve coeffi cients in each period for the risk-neutral
OU implicit state process, equation (5). Define the coeffi cient vector Ψ =
(MP

n ,M
P
z , µ

Q
n , θ

Q
n , µ

Q
z , θ

Q
z ). I use a Powell search without derivatives, which is a

sequential conjugate direction search, to find improvement in Ψ. When I find
improvement I use a Nelder-Mead search to update the implicit state variables,
{ξt}. I continue the search until no further improvement is possible within
numerical tolerances. The details of the search are in Appendix C.23

3.5 Coeffi cient Estimates

Turning first to the NP, I find the coeffi cients for both the physical and risk-
neutral OU processes, shown in Tables 6 and 7, respectively. The physical VAR
implies that the implicit states CPI and UE mean revert to x∞ at about the
same rate as the government states do, but implicit NFP mean reverts much
faster than government NFP. The coeffi cient estimates imply that the states
do not mean revert under the risk-neutral measure, as can be seen from the
negative eigenvalue of θQn in Table 7.
Now I turn to the Zero Response Period, where I again find the coeffi cients

for both the physical and risk-neutral OU processes, shown in Tables 8 and 9,
respectively. The largest real eigenvalue for the physical OU process in the ZP
is greater than one, implying that the physical process for ξt is not stationary
in the ZP.
22 I use the yield curve on April 30, 2013 to compute the returns during March, 2013.
23 In an earlier draft of this paper, I reported that the search for the optimal parameters

took about one month. Since then I have improved the search so that it takes about three
days. In any case, once the model parameters are estimated, the calculation of yield curves
for new implicit states takes less than one second.
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Normal Response Period Physical Implicit State VAR Coeffi cients
NP Coeffi cients Implicit CPI Implicit UE Implicit NFP

MP
n 0.9787 0.0236 0.0407

(79.57) (1.40) (1.70)
0.0112 0.9485 -0.0493
(0.77) (48.20) (-1.39)
0.0218 -0.0491 0.8987
(1.68) (-2.35) (31.03)

Half-Life 4.98 2.67 0.38
R2 97.16% 93.61% 83.12%

Durbin-Watson 1.80 1.86 2.01

Table 6: Optimal coeffi cients and asymptotic T-statistics for the physical im-
plicit state VAR in the NP.

Normal Response Period Risk-Neutral OU Coeffi cients
NP Coeffi cients Implicit CPI Implicit UE Implicit NFP

µQn 0.0447 0.0481 0.0163
(232.6) (293.2) (64.9)

θQn 0.0480 -0.0062 -0.0464
(158.9) (-3.6) (-33.4)
-0.0987 0.1570 -0.1377
(-139.4) (76.7) (-44.1)
0.0340 -0.1747 0.0254
(78.6) (-149.5) (10.8)

Real Eigenvalues 0.248 0.070 -0.087

Table 7: Optimal coeffi cients and asymptotic T-statistics for the risk-neutral
OU process in the NP.

Zero Response Period Physical Implicit State VAR Coeffi cients
ZP Coeffi cients Implicit CPI Implicit UE Implicit NFP

MP
z 0.7149 -1.4079 -0.9706

(6.16) (-0.72) (-1.15)
-0.0160 0.9211 -0.0200
(-2.64) (7.21) (-0.46)
-0.0012 0.0762 1.0204
(-0.14) (0.60) (10.70)

Real Eigenvalues 1.06 0.96 0.64
R2 74.65% 89.67% 92.63%

Durbin-Watson 2.12 1.44 2.41

Table 8: Optimal coeffi cients and asymptotic T-statistics for the physical im-
plicit state VAR in the ZP.
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Zero Response Period Risk-Neutral OU Coeffi cients
ZP Coeffi cients Implicit CPI Implicit UE Implicit NFP

µQz 0.0062 0.0628 0.0036
(2.8) (5.6) (0.2)

θQz -0.3565 -5.9971 -1.2660
(-7.6) (-11.7) (-3.1)
-0.1223 6.2551 0.3458
(-4.6) (21.9) (1.6)
0.1251 -3.0477 0.0167
(13.0) (-30.4) (0.2)

Real Eigenvalues 6.178 0.079 -0.342

Table 9: Optimal coeffi cients and asymptotic T-statistics for the risk-neutral
OU process in the ZP.

3.5.1 Implicit State Estimates

The implicit state variables are reasonably close fits to the forecasts as can be
seen in the Figure 1. You can see that the implicit CPI has trended down
tracking government estimates of CPI, but there have been some notable devi-
ations. In March 2013, for example, government Core CPI has been running
about 2%, but implicit Core CPI has been about 1.4%. The non-linear model’s
implicit UE tracks the government’s estimation of the UE rate with high fidelity.
Finally, implicit NFP, like CPI, tracks government estimated NFP, but with no-
table deviations. For example, in March 2013, the implicit NFP growth rate is
strong at 3.6%, but the government estimate from the Establishment Survey is
only 2%. The fourth panel in Figure 1 shows the residual error by maturity in
fitting the yield curve.
The goodness of fit statistics in Table 10 show that the non-linear model

fits yield curves extremely well throughout the sample. The non-linear model’s
fitting error to the yield curve is only 4.6 basis points RMSE over the entire
sample. In the NP the fit improves to 4.1 basis points RMSE, but deteriorates
to 6.7 basis points RMSE during the ZP.
For purposes of comparison, I have also estimated the affi ne counterpart to

the term structure model in which I eliminate both nonlinearities: The policy
rule is given by equation (1), but without the lower bound at rmin and the
physical and risk neutral OU processes for the implicit states are the same in
both response periods.
In Table 10, I compare the goodness of fit measures between the non-linear

model and the affi ne model. While the differences in σr between the two models
is minor, the differences in the log-likelihood are major because they measure
the model’s ability to fit simultaneously both the yield curves and the states.
Thus you can see that the non-linear model fits yields a little better than the
affi ne model, but with a substantial improvement in the fit to the government
states as shown in Figure 18 in Appendix B.
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Figure 1: Implicit States and one month ahead government states VAR forecast
during the entire sample period. Panel 4 is the residual fitting error by maturity.

Non-Linear and Affi nel Models Goodness of Fit
Entire Sample Normal Period Zero Period Affi ne

σrp 0.046% 0.041% 0.067% 0.047%
R2 99.946% 99.938% 99.706% 99.944%

Likelihood 59259.04 50377.22 8881.82 51381.12

Table 10: Comparison of goodness of fit measures for the non-linear model in
both response periods and the affi ne model.
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4 Model Implications

There are at least 11 important model implications.

1. The problem of forecasting the yield curve boils down to making forecasts
of CPI, UE and NFP.

2. There is an equilibrium yield curve.

3. Conditional monthly yield volatilities vary substantially over the sample.

4. Conditional monthly expected excess returns vary substantially over the
sample.

5. Conditional Sharpe ratios (computed by annualizing monthly data) vary
substantially over the sample.

6. The market’s breakeven forecasts of future states can be inferred from
forward rate curves.

7. The shadow policy rate agrees closely with Fed Funds during the NP. It
is, of course, negative —and sometimes substantially so —during the ZP.

8. There is little evidence that there are unspanned risks in bond returns.

9. Conditional level, slope and curvature factors are actually responses to
changes in CPI, UE and NFP, respectively. They vary significantly over
the sample period.

10. Conditional state duration and convexity differ significantly from the stan-
dard unconditional measures. This means that current commonly used
unconditional portfolio risk measures and hedges are incorrect.24

11. Conditional risk premiums vary significantly over the sample.

I discuss each implication in turn.

4.1 Government States minus Implicit States

I have shown that conditioned on the implicit values of the three state variables
the term structure can be forecasted very accurately. In my experience, it
would increase investor comfort if the implicit state variables mean-revert to
the government state variables in a usefully short time. In fact, they do mean
revert fairly quickly as can be seen in Figure 2 which shows a graph of the
government minus the implicit state variables and Table 11 which reports the
results of a VAR of the difference between the government and implicit state
variables. You can see that the implicit real variables, UE and NFP, mean-revert
quickly with a half life of about four months and three months, respectively. A
difference in CPI is slower to mean revert with a half-life of about 11 months.
24See Hansen and Richard (1987) for a discussion of the role of conditioning information on

risk measures and the mean-variance frontier.
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Figure 2: Government minus Implicit state variables over the entire sample
period.

Government - Implicit State VAR
VAR Coeffi cients Gvt-Imp CPI Gvt-Imp UE Gvt-Imp NFP

Gvt-Imp CPI 0.9057 -0.0003 -0.3192
38.0 0.0 -4.1

Gvt-Imp UE -0.0367 0.8301 0.1225
-1.4 27.4 1.5

Gvt-Imp NFP -0.0200 -0.0149 0.8109
-2.1 -1.3 25.9

Half Life (Years) 0.91 0.32 0.22
Standard Error 0.20% 0.24% 0.65%

R2 87.29% 72.09% 77.59%
Durbin-Watson 1.83 1.93 1.80

Table 11: Coeffi cients and statistics for a VAR of the government minus implicit
state varaibles over the entire sample period.
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Figure 3: The non-linear model yield curve and the affi ne model yield curve at
equilibrium, x∞ = [1.52%, 4.96%, 0.99%].

4.2 Equilibrium Yield Curve

The equilibrium yield curve, which is the non-linear model yield curve when the
state is x∞, is shown in Figure 3. The shape of the equilibrium yield curve
would be expected by most bond market participants because of the gains from
convexity. Recall that bond convexity increases the expected rate of return of
owing a bond by 0.5 × convexity × Y ield V ariance. For a τ year zero coupon
bonds convexity = τ2 so that the yield must fall for long maturity zero coupon
bonds to offset the gains from convexity. Also shown is the equilibrium yield
curve for the affi ne model. The affi ne equilibrium is about 100 basis lower than
the non-linear model equilibrium because the affi ne model permits negative
yields, hence lowering the equilibrium yield curve.

4.3 Conditional Yield Volatility

The results in this section and the following two sections are based on calcula-
tions over a one month time span for the benchmark zero coupon bonds with
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Figure 4: The conditional one-month yield volatilities for the benchmark bonds
computed by both the non-linear and the affi ne models.

maturities of two, ten and thirty years. First, I find conditional yield volatili-
ties shown in Figure 4. Following the crisis in 2008, conditional yield volatility
on the two year bond fell dramatically as the yield on the bond neared zero,
eliminating the possibility of further declines. In contrast the conditional yield
volatility of the ten and thirty year maturity bonds increased dramatically due
to the diminished effect of Fed policy in managing the economy. In the affi ne
model, the conditional yield volatilities of all maturities are constant. This ob-
servation, per se, should eliminate affi ne models as serious contenders to explain
the term structure.

4.4 Conditional Excess Returns

The conditional excess expected returns vary significantly during the sample as
shown in Figure 5. Unlike the yield volatility the conditional expected excess
returns in the affi ne model are not constant.
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Figure 5: The conditional excess expected returns for the benchmark bonds
computed by the non-linear and affi ne models.
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Figure 6: The conditional Sharpe ratios for the benchmark bonds for the non-
linear and affi ne models.

4.5 Conditional Sharpe Ratio

The conditional Sharpe ratio for the non-linear and affi ne models are shown in
Figure 6. There is noticeably less variation in the affi ne model Sharpe ratio
over the sample period for the ten and thirty year bonds. This is due to both no
variation in the conditional yield volatilities and less variation in the conditional
expected excess returns.

4.6 Forward Curve Breakeven Forecasts

I can use the term structure model to back-out the forward implicit state vari-
ables from forward yield curves. The forward implicit state variables tell us
how the market views inflation, unemployment and growth over the next one
to three years in the sense that these are the breakeven levels built into the
forward curves. They are not the market’s unbiased expectations because the
forward yields include a term risk premium; thus the forward yields are cer-
tainty equivalents and are not equal to expected future spot yields. They do,
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however, represent the breakeven levels against which investors are betting if
they execute a yield curve trade. The forward implicit state variables are found
by searching for those values which minimize the RMSE in fitting to the yield
curves one, two and three years forward.
Figure 7 shows the breakeven forward states as of March 31, 2013. For

comparison purposes I also include the VAR forecast. The forward implicit CPI
breakeven is consistently about 40 - 50 basis points below the VAR projection.
This is also about the difference on March 31, 2013 between government Core
CPI and implicit Core CPI. My interpretation of this difference is that it reflects
the current Fed policy of down-weighting inflation as a trigger for rate hikes.
In fact the Fed has announced that it will not tighten before UE reaches 6.5%
unless expected inflation increases to 2.5%, which it is not forecasted to do even
as far out as 2016. Turning to UE, the VAR projections are similar to the
forward implicit states. To finish interpreting forward UE I need also to look
at forward NFP. The market is pricing forward yields as if NFP, starting from a
current level of 3.6% —which is too high —is going to fall fairly rapidly starting
in 2014, but that UE is also going to fall fairly rapidly. It seems that the
forward implicit NFP is inconsistent with forward implicit UE. Both cannot
be correct. This may be a trading opportunity since the market is making an
inconsistent forecast.

4.7 Unspanned Risks

Are there unspanned risks in bond returns, i.e., are any data besides the state
variables, such as yields, the latent states, or the government states, useful in
forecasting returns? If so, this would indicate unspanned risks in the bond
market. The answer hinges on what I use as state variables. If the model
uses either latent state variables or government state variables, then there are
unspanned risks. (Joslin, Priebsch, and Singleton (2013)) On-the-other-hand,
if the model uses the implicit states there is little evidence of unspanned risks.
I have assumed from the start that neither latent states variables nor govern-
ment states variables are the market state variables. Hence in this sense I
have assumed that there are unspanned risks in the bond market relative to the
latent states and the government states. But once I replace latent and govern-
ment states with implicit states, there is no longer any significant evidence of
unspanned risks.
Table 12 shows the R2 for regressions of one month benchmark returns on the

beginning-of-month expected returns from the non-linear model. There is some
predictive value in the returns forecasted using the implicit states. Table 13
shows the results of regressions of the residual benchmark returns on beginning-
of-month government state variables and the yield curve as summarized by the
level, slope and curvature factor loadings. The residuals cannot be explained
by the government states or the factor loadings as shown by the feeble R2

coeffi cients and the insignificant T-statistics. Only the residual regression for
the two year zero has any significant coeffi cients at all.
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Figure 7: Panels 1 - 3 show conditional current, one, two and three year ahead
breakeven implicit state forecasts from forward curves on March 31, 2013. For
comparison the state VAR forecast is also shown. The fourth panel shows the
RMSE error in fitting the one, two and three year forward curves.

Regression of Monthly Returns on Model Predictions
Maturity 2 10 30

R2 15.01% 4.89% 6.39%

Table 12: Regression of benchmark maturity one-month returns on non-linear
model predicted returns for the entire sample period.
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Regression of Residual Monthly Returns on Lagged Government
States and Yields

T-statistics 2 10 30
Constant 0.22 -0.32 -0.01

CPI -0.35 -1.19 -0.76
UE 0.53 1.33 0.69

NFP -2.94 0.04 -0.49
Level 1.05 1.33 1.05
Slope -1.32 -0.93 -0.58

Curvature 2.24 -0.27 0.06

R2 3.25% 1.06% 0.48%
Durbin-Watson 1.65 1.82 1.86

Table 13: Regression of residual benchmark returns on government CPI, UE,
and NFP and level, slope and curvature loadings for the entire sample period.

4.8 Shadow Rate and Fed Funds

I can estimate the shadow rate, which is the Fed’s empirical policy rule target in
two ways. First I can extrapolate the regression of Fed Funds on the government
state variables to the ZP. I can construct a second empirical estimate of the
shadow rate using the implicit states estimated in the non-linear model. The
result of both estimations are shown in Figure 8.
I interpret the Fed’s use of quantitative easing as an effort to replicate the

effect on the economy of setting Fed Funds equal to the shadow rate. To follow
the shadow rate implicit in bond prices, the Fed would have had to purchase
enough bonds to be equivalent to reducing the Fed Funds rate to about -6.00%
by June, 2009. While they tried, they probably got nowhere close as can be
seen from Bernanke’s own testimony:

Bernanke said the Fed’s bond purchases helped the economy. Stock
prices are higher and bond yields have fallen. He estimated that the
effect of the program was roughly equivalent to a 40 to 120 basis-
point reduction in the federal funds rate. And, the second round of
bond buying lowered long-term interest rates by roughly 10 to 30
basis points.25

4.9 Conditional State IRS

In this section I find the conditional IRS for zero coupon bonds, which are
the derivatives of zero coupon bond yields with respect to changes in the state

25Bloomberg, "Bernanke Says Fed ‘Prepared to Respond’ If Stimulus Needed", July
13, 2011. http://www.bloomberg.com/news/2011-07-13/fed-prepared-to-respond-if-needed-
bernanke.html
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Figure 8: Effective Fed Funds and two estimates of the shadow Fed Funds rate.
The first estimate, labeled Regression, is the result of an OLS regression of
Effective Fed Funds on the government state variables in the Normal Response
Period, which is then extrapolated to the Zero Response Period. The second
estimate, labeled Non-Linear Model, is the shadow rate calculated from the
implicit states estimated in the non-linear model.

27



Conditional State IRS

0 10 20 30
­1

­0.5

0

0.5

1

1.5

2
3/31/1986

Maturity

B
as

is
 P

oi
nt

s

CPI
UE
NFP

0 10 20 30
­1

­0.5

0

0.5

1

1.5

2
3/31/1995

Maturity

B
as

is
 P

oi
nt

s

0 10 20 30
­2

­1

0

1

2

3
3/31/2004

Maturity

B
as

is
 P

oi
nt

s

0 10 20 30
­1

0

1

2

3

4

5
3/31/2013

Maturity

B
as

is
 P

oi
nt

s

Figure 9: Conditional IRS of zero coupon bond yield with respect to a one basis
point change in the states on four selected dates.

variables:

IRS(ξt, τ) =
∂y(ξt, τ)

∂ξt
(20)

In Appendix B, I show that for the affi ne model the IRS for level slope and
curvature do not change with the state as shown in Figure 19. If instead I
use the non-linear term structure model you can see that the conditional level,
slope and curvature actually differ significantly from date to date. To illustrate
this difference, I selected the most recent state IRS curves and those 9, 18 and
27 years ago as shown in Figure 9. Obviously, likely yield curve reshapings
are strongly conditioned by the current state of the economy and its associated
yield curve. You can see that the level, slope and curvature factors are actually
responses to changes in CPI, UE and NFP, respectively. Hence bond investors
taking positions on the direction of rate changes are actually betting on changes
in inflationary expectations. Steepening or flattening trades are actually bets
on future UE. Butterfly trades are actually bets on future economic growth as
measured by NFP.
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Figure 10: Conditional durations of zero coupon bond price with respect to the
states on four selected dates. The conditional duration is the negative of the
percentage price change caused by a one percent increase in the state.

4.10 Conditional State Duration and Convexity

Another useful measure of exposure to state changes is the conditional state
durations, which are the negatives of the percentage price changes for a zero
coupon bond caused by a change to the implicit state:

Dur(ξt, τ) = − 1

P (ξt, τ)

∂P (ξt, τ)

∂ξt
. (21)

Using the state duration an investor can calculate the effect of state variable
changes on her portfolio return. Alternatively, she can calculate how many
futures or other bonds to sell to hedge her portfolio’s exposure to a state variable.
As you can see in Figure 10, the exposures or hedges vary significantly in size
with the state of the economy. Hedging with unconditional durations is likely
to be dangerous to your portfolio’s health.
Bond investors know that duration measures the first order effect of changes

in the state, but for longer maturity bonds the second order effect, called con-
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Figure 11: Conditional convexities of zero coupon bond price with respect to the
states on four selected dates. The conditional convexity is the second derivative
of the price change with respect to the state divided by the bond price.

vexity, cannot be ignored. Convexity is defined as

Con(ξt, τ) = diag(
1

P (ξt, τ)

∂2P (ξt, τ)

∂ξ′t∂ξt
). (22)

Figure 11 shows the conditional convexity of zero coupon bonds on the four
selected dates. On March 31, 2013, shown in Panel 1, the conditional convexities
are atypical. Normally, a zero-coupon bond has significant positive convexity
with respect to all three state variable as shown in Panels 2 - 4. The conditional
convexities in the ZP are negative because yield changes in a rally are limited by
the zero lower boundary. An investor needs to realize that holding intermediate
Treasury bonds actually decreases the convexity of her portfolio during much of
the ZP.
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Conditional State Risk Premiums
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Figure 12: The state risk premiums on selected dates

4.11 State Risk Premiums

The state risk-premiums are given by equation (23):

ρ(ξt, τ) = −[(x∞ − ξt)θPp − (µQp − ξt)θQp ]Dur(ξt, τ). (23)

Figure 12 shows the state risk premiums on zero coupon bonds on the four
select dates. In the NP the main risk in bonds is inflation, which normally
earns the largest risk premium. In contrast, in the ZP the main risks are real
risks, especially UE.

4.12 Unconditional Yield Volatility

Investors and risk managers will miscalculate portfolio risk if they rely on uncon-
ditional volatility, or even rolling unconditional estimates of volatility. Figure
13 shows the unconditional volatility of monthly yield changes for the entire
sample. There are some peculiar aspects to this graph. For example, why
does zero coupon yield volatility rise after 26 years? The answer, I think, is
a problem with the data. Recall that the zero coupon yield data are fitted
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to coupon bond market data. The actual longest Treasury bond is 30 years
only in the month the bond is auctioned, but declines until the next auction.
The auction schedule has changed throughout the history of the 30-year bond.
Sometimes it was auctioned annually, sometimes semi-annually. From February
2002 through February 2006 the auction was suspended altogether. The result
is that beyond 26 years, the fitting often requires extrapolating shorter yield
curve data rather than interpolating actual yields.26 What about the decline
in volatility at the short end of the curve? I think that is due to the fact that
the Federal Reserve controls the overnight rate as a policy instrument. This
dampens the observed volatility at the front end of the yield curve. Whatever
the reason for the peculiar shape of unconditional yield volatility, conditional
volatilities vary significantly from date to date as can be seen in Figure 14 and
are rarely similar to unconditional yield volatility.

5 TIPS

The available yield curve data have a relatively short and recent Zero Response
Period, especially considering my reliance on asymptotic statistics. As a result I
have used all the data in estimating the model and do not have a hold-out sample
for out-of-sample testing. Luckily, the TIPS market provides ideal out-of-sample
data because it was never used in the estimation and because TIPS prices can
be calculated directly from the term structure model without estimating further
coeffi cients.
Before examining the model output let me digress to review the mechanism

for TIPS cash flow calculations. A TIPS bond, like a nominal Treasury coupon
bond, is issued with a fixed coupon and a fixed maturity date. The TIPS also
has a Reference Index (RI) which is the U.S. City Average All Items Consumer
Price Index for All Urban Consumers (CPI-U), not seasonally adjusted, and
using unrevised data. Principal is adjusted for inflation monthly. The principal
adjustment is the current RI divided by the RI at issuance. On the first of each
month the RI is CPI-U lagged three months. For example, on April 1 the RI
is the level of the January CPI-U (reported in mid-February). Notice that on
April 1, I can also calculate the RI for May 1, which is the February CPI-U
(reported in mid-March). After the first day of the month the RI is the linear
interpolation of the RI at the beginning of the month and the beginning of the
next month. For example, on April 16, the RI is the average of the RI on April
1 and May 1. The TIPS bond owner receives a semi-annual coupon cash flow
which equals the coupon rate times adjusted principal, including a coupon at
maturity. Principal repayment at maturity is the greater of 100 or the adjusted
principal at maturity, so investors implicitly own a put option at par.

26The data supplied on the Federal Reserve website may be a little funky because it is
derived only from Treasury coupon bond prices. I also have similar zero coupon Treasury
data supplied by an anonymous very large bank which is fitted directly to prices in the zero
coupon bond market. The bank data show markedly less increase in unconditional yield
volatilities for long maturities. I use the Federal Reserve data because it is publicly available
to all researchers.
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Figure 13: The unconditional annualized volatility of monthly changes in zero
coupon bond yields from November, 1985 - March, 2013.
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Non­Linear Model Conditional Yield Volatility
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Figure 14: Conditional yield volatility of zero coupon bonds on four selected
dates.
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To use the model for TIPS valuation, I need only modify equation (1) for
the policy rule to equation (24) which is the real policy rule:

Rt(ξt) = r(ξt)− ξ1t = max(γ0 + ξtγ, 0)− ξ1t. (24)

I then compute real zero prices instead of nominal zero prices using the non-
linear term structure model. I use the same risk-neutral coeffi cients and implicit
states I found using nominal data. Nothing else needs to change to value TIPS.
This model is a close approximation to TIPS valuation, but not exact for three
reasons: The inflation adjustment is based on Core CPI, not CPI-U; the RI is
adjusted with only a two month lag and without interpolation between months;
and I ignore the put at maturity.
The data again come from the Federal Reserve Research web site.27 The

data are month end continuously compounded yields on constant maturity TIPS
zero coupon bonds with annual maturities of five to twenty years from January,
1999 through December, 2003 and with maturities of two to twenty years from
January, 2004 through March, 2013.
There are significant differences between the model’s calculated TIPS values

and the actual market prices. The fitting error across all yield curves in the
sample is a dismal 65.3 basis points with an r-squared of only 76.8%. I can
draw one of two conclusions:

1. The model does a poor job out-of-sample, or

2. There are significant mispricings and profit opportunities in the TIPS
market relative to nominal Treasury bonds.

Let me show you why the model is accurate so that there are profitable
trading strategies. I consider two self-financing portfolio strategies each con-
sisting of a long ten year TIPS zero hedged with three nominal zeros chosen to
eliminate all systematic state risk in the portfolio. The first strategy invests a
constant $1 each month. Specifically, at the beginning of each month invest $1
in a 10 year maturity TIPS and hedge it by selling enough 5, 10 and 15 year
nominal zeros to completely hedge out all exposure to CPI, UE and NFP, where
the hedge ratios are calculated using the non-linear model. If the hedge costs
less than $1, invest the excess at one-month repo; if the hedge costs more than
$1, finance the portfolio at repo. At the end of each month liquidate and start
over. This unweighted, zero-investment, strategy over the entire sample period
makes 101 basis points per year with a standard deviation of 5.95% giving an
information ratio of 0.17, which is below buying and holding the broad bond
market index. The modest profits from this strategy indicate that the model
is accurately calculating hedge ratios for TIPS.
Now consider a second strategy in which I use the indicated richness or

cheapness of the 10 year TIPS to scale the investment. Specifically, if the

27http://www.federalreserve.gov/econresdata/researchdata.htmas.
The yield curves are again calculated through an extension of the Nelson-Siegel fitting

technique. See Gürkaynak, Sack and Wright (2010).
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TIPS is c% cheap I invest c/0.025 in the strategy; if the TIPS is r% rich, I
short r/0.025 of the portfolio. I call 2.5% the scale factor; in my experience
2.5% is a significant mispricing, but I will circle back to see if it makes sense
in terms of the standard deviation of the difference between TIPS price and
value. The value-weighted strategy makes 10.32% per annum with a standard
deviation of 6.92% and an information ratio of 0.61. The value-added from
the model signal is the difference between the the signal-weighted returns and
unweighted strategy returns. The value-added from the signal has a mean of
9.31%, a standard deviation of 16.54% and an information ratio of 0.56. The
two strategies are illustrated in Figure 15. Higher scale factors reduce the
profits, but leave the information ratio unchanged; lower scale factors increase
the profits. What might be reasonable scale factor? The standard deviation of
the TIPS percentage pricing error, model value divided by actual price, is 5.55%.
So the assumed scale factor is fairly close to a one-half standard deviation signal.
(But there was no way of knowing this a priori.) Evidently the model adds
significant value to out-of-sample TIPS investments.

6 Conclusions

The model works. It shows that two essential nonlinearities, viz., interest
rates are bounded below at zero and the economy behaves differently in the
NP than it does in the ZP, must be included to value bonds accurately. It
fits yield curves over the entire sample with a RMSE of 4.6 basis points. The
implicit state variables mirror the government lagged state variables and are
rational forecasts of the current states and one-month returns for benchmark
bonds.28 The model reduces the problem of forecasting the yield curve to that
of forecasting the three states, CPI, UE and NFP . So investors do not have to
guess how their macroeconomic views translate into yield curves. If an investor
can accurately forecast the macroeconomy, an admittedly diffi cult task, she can
make money. Hedging and risk management should be greatly improved using
the conditional state durations, state convexities and yield volatilities. The
model adds significant value in pricing TIPS out-of-sample.
What are model’s shortcomings? First, it requires several days on a fast

PC to estimate. Second, unlike affi ne models, the non-linear numerical solution
for a bond price is not transparent. Third, the model is reduced-form assuming
that the FED follows a consistent policy rule and that the economy responds
consistently, but differently, in the two policy periods. A dynamic stochastic
general equilibrium model would be an improvement.

28The model’s predictions of one-month returns do not have a high R2, but I have no reason
to believe any other model can do better.
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the 5, 10 and 15 year Treasury zeros and financed at repo. The second strategy
uses the model’s indicated richness or cheapness of the TIPS as a signal to size
the monthly investment.

37



0 5 10 15 20 25 30
­0.5

0

0.5

1

1.5

2

2.5

Maturity

B
as

is
 P

oi
nt

s
First Three Principal Components of the Yield Curv e

Level
Slope
Curvature

Figure 16: The first three principal components of the covariance matrix of
month end yield curves from November, 1985 through March, 2013. Each line
is the response to a one basis point change in the factor.

A Principal Components Analysis

In this Appendix I accomplish two tasks: First, I use principal component
analysis (PCA) to motivate a three state variable model of the yield curve. The
PCA analysis finds that the first three principal components explain 99.96% of
the variation in yield curves with a root mean squared error (RMSE) of only 3.9
basis points over the entire sample period from November, 1985 through March,
2013. It turns out that the factor loadings are similar to three macroeconomic
time series, CPI, UE and NFP.
Preliminary to the PCA analysis, I construct the 29× 29 covariance matrix

of yield levels. The first three principal components, commonly called the
level, slope and curvature "factors", are shown in Figure 16. The level, slope,
and curvature factors explain 97.06%, 2.65%, and 0.24%, respectively, of yield
curve variation. No three state variable affi ne model can improve on this fit
in-sample.
There are two important interpretations of the factors. First, the factors
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can be thought of as unconditional interest rate sensitivities (IRSs) to the three
most common random shocks to the yield curve.29 Hence an investor wanting to
hedge her portfolio against interest rate risk would have to short three Treasury
bonds (or futures) in sizes such that the hedged portfolio is insensitive to a
change in the yield curve caused by any of the factor shocks.30

The factors can also be thought of as the building blocks necessary to closely
approximate any yield curve by taking a weighted combination of the three
curves. The weights needed to reproduce closely all the yield curves in the
sample are called the factor loadings31 and are shown in Figure 17. You can
see for yourself that the normalized, (mean zero and variance one) state variables
are very similar to the factors loadings as shown in Figure 17. This observation
informed my choice of state variables.

B The Affi ne Term Structure Model

In this Appendix, I estimate the standard continuous time affi ne term structure
model, but based on implicit state variables. The affi ne model does well enough,
fitting the month end yield curves with a RMSE of only 4.7 basis points. But
in this case well enough is not good enough for three reasons: Recently model
yields are negative for shorter maturity bonds; the implicit states, especially
UE, differ too much from the government states; and conditional yield volatility
is constant, which is not even remotely consistent with the data.

B.1 State Variable VAR

As a preliminary to estimating the affi ne term structure model I first define the
government state variable OU process for the entire data set by equation (25).32

dxt = (x∞ − xt)θAdt+ dwt
√
SA. (25)

Equation (25) implies that the government states mean revert to the same equi-
librium, x∞, as in the case of separate economic response periods. The VAR
solution to equation (25) is

xt+1 = cA + xtMA + εt, (26)

where MA = exp(−θA/12), cA = x∞ (I −MA) , and {εt ∼ N(0,ΣA)} are
independent and identically distributed. The monthly covariance matrix, ΣA,
can be expressed in terms of the stack operator vec and the Kronecker sum

vec(ΣA) = (θ′A ⊕ θ′A)−1(I − exp(−θ′A ⊕ θ′A/12))vec(SA). (27)

29The IRS measures the change in the bond’s yield for a one basis point change in the
factor.
30 I refer to the level, slope, and curvature as factors or as IRSs depending on the context.
31By construction the loadings have mean zero, variance one and are mutually orthogonal.
32 I must use the entire data set since I have not found an affi ne solution to the non-linear

problem with different economic response periods.
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variance one.

40



Government State Variable VAR for the Entire Sample
Coeffi cients CPI UE NFP

MA 0.99144 0.02003 -0.03259
(203.13) (4.02) (-1.73)
-0.00088 0.98254 0.04743
(-0.21) (228.15) (2.91)
0.01110 -0.04548 0.97767
(2.81) (-11.26) (64.08)

Half-Life (years) 9.0 2.7 2.7
Volatility 0.129% 0.132% 0.497%

R2 98.51% 99.25% 93.16%
Durbin-Watson 1.90 2.40 1.76

Table 14: Ordinary least squares regression coeffi cients and statistics for the
government state variables VAR over the entire sample.

Government State Varaible Instantaneous Covariance
CPI UE NFP

Volatility 0.448% 0.454% 1.74%
Correlation 0.019 -0.004 -0.081

(0.34) (-0.07) (-1.48)

Table 15: The instantaneous volatilities, correlations and T-statistics for the
government state variables.

I now calibrate the state variable VAR using ordinary least squares estima-
tion to find the coeffi cients cA,MA, and ΣA in equation (26). Table 14 shows
the estimated coeffi cients and statistics. The VAR appears to fit the data well
as can be seen from the R2 coeffi cients. The VAR indicates that the government
states mean revert to x∞ with a half-life of 9.0 years for CPI and a half-life of 2.7
years for UE and NFP. The instantaneous government state covariance matrix,
SA, is shown in Table 15.

B.2 Affi ne Bond Prices

I now turn to pricing bonds. The physical and risk-neutral OU processes for
the implicit state variables are

dξt = (x∞ − ξt)θPAdt+ dwPt
√
SA (28)

and

dξt = (µQA − ξt)θ
Q
Adt+ dwQt

√
SA, (29)

respectively.
The solution to equation (28) is
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ξt+s = cPA(s) + ξtM
P
A(s) + εPt,s, (30)

whereMP
A(s) = exp(−θPAs), cPA(s) = x∞(I−MP

A(s)) and εPt,τ ∼ N(0, V Ps ), where

vec(V Ps ) = (θP′A ⊕ θP′A)−1(I − exp(−θP′A ⊕ θP′As)vec(SA). (31)

Similarly, the solution to equation (29) is

ξt+s = µQA(I − exp(−θQAs)) + ξt exp(−θQAs) + εQt,s, (32)

where εQt,τ ∼ N(0, V Qs ), and

vec(V Qs ) = (θQ′A ⊕ θ
Q′
A )−1(I − exp(−θQ′A ⊕ θ

Q′
A s)vec(SA). (33)

The policy rule is still given by equation (1), but without the minimum at
rm :

r(ξt) = r∞ + (ξt − x∞)γ. (34)

Substituting equation (32) into equation (34) for the instantaneous risk-free
rate, I get that

rt+s(ξt) = γ0 + µQAγ + (ξt − µQA) exp(−θQAs))γ + εQt,sγ. (35)

Define the cumulated policy rate

J(ξt, τ) =

t+τ∫
t

rt+s(ξt)ds ∼ N(a(ξt, τ), b(τ)), (36)

where a(ξt, τ) is the conditional mean and b(τ) is the conditional variance under
the risk neutral distribution. Substituting equation (35) into equation (36) and
integrating I find that

a(ξt, τ) = (γ0 + µQAγ)τ + (ξt − µQA)(I − exp(−θQAτ))Γ, (37)

where Γ = (θQA)−1γ and

b(τ) = Γ′SAΓτ − 2Γ′SA(θQA)−1(I − exp(−θQAτ))Γ + Γ′VτΓ. (38)

Since J(ξt, τ) is normally distributed, the price of a zero coupon bond is

P (ξt, τ) = exp(−a(ξt, τ) +
1

2
b(τ)). (39)

Hence the yield on the bond is

Y (ξt, τ) = α(τ) + ξtβ(τ), (40)

where

β(τ) =
(I − exp(−τθQA))Γ

τ
, (41)

and

α(τ) = γ0 + µQAγ − µ
Q
Aβ(τ)− 1

2
Γ′SAΓ + Γ′SA(θQA)−1β(τ)− 1

2
Γ′VτΓ/τ . (42)
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B.2.1 Maximizing the Conditional Joint Likelihood

The annualized one-month conditional expected return on a n-year bond in state
ξt, ρA(ξt, n), is

ρA(ξt, n) = α̂(n) + ξtβ̂(n), (43)

where
α̂(n) = 12[nα(n)− (n− 1

12 )(α(n− 1
12 ) + cPAβ(n− 1

12 ))] (44)

and
β̂(n) = 12(nβ(n)− (n− 1

12 )MP
Aβ(n− 1

12 )) (45)

Define the expected conditional return on the benchmark bonds by ρA(ξt) =
[ρA(ξt, 2), ρA(ξt, 10), ρA(ξt, 30)].
The joint conditional log-likelihood is

L =

T∑
t=1

[
− 32 ln(2π)− 1

2 ln(|ΣA|)− 1
2 (ξt −mAt)Σ

−1
A (ξt −mAt)′

]
(46)

− 12
[
29 ln(2π) + 29 ln(σ2r) + (yt − α− ξtβ)(yt − α− ξtβ)′/σ2Ar

]
− 12
[
3 ln(2π) + ln(ΣρA) + (Rt+1 − α̂− ξtβ̂)Σ−1Aρ(Rt+1 − α̂− ξtβ̂)′

]
where mAt = cA + xt−1MA is the expected month-end government state, σAr
is the volatility of the yield curve fitting residuals, α = [α(2), ..., α(30)] , β =
[β(2), ..., β(30)], and ΣAρ is the covariance matrix of the return fitting residuals.
Taking the derivative of L with respect to ξt I find that

ξt = (mAtΣ
−1
A + (yt − α)β′/σ2Ar + (Rt+1 − α̂)Σ−1Aρβ̂

′
A)Ω−1, (47)

where
β̂A = [12(nβ(n)− (n− 1

12 )MP
Aβ(n− 1

12 ));n = 2, 10, 30], (48)

and
Ω = Σ−1A + ββ′/σ2Ar + β̂AΣ−1Aρβ̂

′
A. (49)

A Nelder-Mead search finds the 21 coeffi cients , ΨA = (MP
A, µ

Q
A, θ

Q
A), which

maximize the conditional joint log-likelihood, equation (46). The estimated
coeffi cients for the physical implicit state process is shown in Table 16. The
implicit states mean revert in the physical VAR. The risk-neutral coeffi cients
are shown in Table 17. The smallest eigenvalue is negative which means that
the risk-neutral state dynamics are non -stationary. This in turn implies that
in the absence of a lower bound on the policy rate, yields will eventually become
negative for long enough maturities.
The implicit state variables are compared to the forecasts in Figure 18. You

can see that Implicit CPI has trended down with government CPI, but there
have been some notable deviations. Recently, government Core CPI has been
running about 2%, but implicit Core CPI has been about 1.5%. I think that
this is the market’s way of incorporating Bernanke’s forecast that the FED will
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Affi ne Model Physical VAR
Coeffi cients CPI UE NFP

MP
A 0.9934 0.0320 0.0415

179.42 2.21 1.95
-0.0018 0.9760 -0.0109
-0.35 82.99 -0.77

-0.0046 -0.0585 0.8941
-0.81 -2.91 36.05

Half-Life (Years) 5.93 3.57 0.49

Table 16: Coeffi cients and t-statistics for the physical VAR estimated using the
affi ne term structure model.

Affi neModel Risk Neutral Coeffi cients
Coeffi cients CPI UE NFP

µQA 0.0366 0.0260 -0.0011
(193.4) (192.8) (-3.3)

θQA -0.0316 0.1958 -0.1977
(-59.8) (61.3) (-110.0)
-0.0553 0.2665 -0.0536
(-100.3) (129.6) (-33.8)
0.0296 -0.2960 0.0632
(68.1) (-149.2) (28.8)

Real Eigenvalues 0.25 0.10 -0.05

Table 17: Optimal coeffi cients and t-statistics for the risk neutral OU process
estimated using the affi ne term structure model.
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Figure 18: Affi ne model implicit states and one-month ahead VAR forecasts of
the government states.

not tighten before 2015. You can also see that the market’s implicit UE rate
has exaggerated the cycles in government UE rate so the fit is not very tight.
Finally, the market’s view of NFP has also followed the data, but at the present,
the market is pricing bonds as if future growth of NFP will be higher than the
recent data.
Figure 19 shows the conditional yield curve changes in response to a one

basis point change in each of the state variables. Unlike the conditional IRS
in the non-linear model, these responses are always the same in every state at
every time.
The goodness of fit statistics shown in Table 18 indicate that the affi ne model

fits yield curves extremely well throughout the sample with only a 4.7 basis point
RMSE. In the text I showed that the non-linear model’s RMSE is only a little
less, 4.6 basis points, over the entire sample. While the difference in fitting
error is minor, the difference in the log-likelihood is major. This is important
because the log-likelihood measure the model’s ability to fit simultaneously the
yield curves, the government states, and the benchmark returns.
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Figure 19: Affi ne model conditional state IRS, the change in bond yields caused
by a one basis point change in the state. The conditional IRS never changes
from state to state.

Affi ne Model Goodness of Fit
Entire Sample NP ZP

RMSE 0.047% 0.044% 0.059%
R2 99.94% 99.93% 99.77%

Log Likelihood 51381.12 46486.82 4894.31

Table 18: Goodness of fit measures for the affi ne model in both response periods.
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C Numerical Solution Technique

In this Appendix I show how to calculate prices and implicit state variables
which simultaneously maximize the joint conditional likelihood of fitting the
government states, the actual yield curves, and the benchmark returns. There
are only two steps. The first step is to specify the numerical scheme for ap-
proximating the solution to equation(13). Then for any vector of coeffi cients,
Ψ, I can calculate prices. Then the final step is to search for the optimal Ψ and
{ξt} which maximizes the conditional likelihood function, equation (19).

C.1 The Implicit Numerical Scheme

I first specify the numerical scheme I use to solve equation(13). Equation(13) is
a type of parabolic partial differential equation known as a convection-diffusion
equation. It turns out that numerical solutions of convection-diffusion equa-
tions are tricky because a priori you do not know whether the convection or the
diffusion term will dominate, and doubly tricky in this model because the coef-
ficients in equation(13) are state dependent. It turns out for this problem that
the convection term dominates in most states, but the solution scheme I use,
due to Douglas (1962), works in either case. Douglas’s scheme is an alternating
direction implicit (ADI) solution scheme that is second order accurate in both
the spacial and time steps and unconditionally stable.33 Finally, I ignore the
instantaneous state correlations in solving equation (13) because the estimated
correlation coeffi cients are not statistically significant34 ; this greatly reduces
the computational complexity of solving equation (13).
The implicit scheme begins with a lattice which approximates the state vari-

ables in space and time. Each state variable is approximated with a grid of
values spaced at intervals δi, i = 1, 2, 3. CPI start at ξ1L = −4% and then
increments by δ1 = 0.5% until it reaches ξ1U = 10% for a total of I = 29 grid
points. I choose 50 basis points as the step size because it is about equal to the
annual standard deviation of CPI. I also use 50 basis point steps to approxi-
mate UE for the same reason; UE begins at a minimum of ξ2L = −4% and is
incremented by δ2 = 0.5% until it reaches a maximum of ξ2U = 15% for a total
of J = 39 grid points.35 NFP has substantially more volatility than either CPI
or UE, so I use 100 basis point steps. The grid for NFP starts at ξ3L = −12%
and is incremented by δ3 = 1.0% until it reaches a maximum of ξ3U = 12% for
a total of K = 25 grid points. Spatially the grid is 29× 39× 25 = 28, 275 lattice
points, which is large. For convenience I will call the spatial domain a "cube"
even though the sides are of different lengths. The time increment, denoted h, is
monthly so that h = 1/12; hence there are a total of 361 time stages in 30 years,

33Unconditional stability is vital for a search because I do not know a priori whether the
final parameters found by the search will satisfy any conditional stability criterion.
34Only the instantaneous covariance matrix is diagonal. Over any finite interval the mul-

tivariate OU process solution has correlation among the state variables.
35Reported UE cannot be negative, but we are using UE as a surrogate for the output gap,

which is unbounded above and below.
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n = 0, 1, ..., 360. Hence the total grid has a total of 28, 275× 361 = 10, 207, 275
nodes.
The implicit scheme starts at maturity where P 0ijk = 1. The scheme then

steps backward in time to calculate the value of a zero coupon bond, Pnijk,
in node i, j, k with n months until maturity for every trio i = 1, ..., I, j =
1, ..., J, k = 1, ...,K and every n = 1, 2, ..., 360. The next step in the numerical
solution is to calculate the risk-free rate, rijk, at each node of the grid using
equation (1). If rijk = rm, then the node is in the ZP; if rijk > rm, then the
node is in the NP.
At each node of the grid there are three means and variances, one for each

state direction, which differ by policy period. So the next step is to assign
means, mijkl, and variances, vijkl, in direction l = 1, 2, 3 at every node, ijk, in
the grid.

mijkl = { (µQnl − ξijk)θQnl if rijk > 0,

(µQzl − ξijk)θQzl if rijk = rm.
(50)

vijkl = {
1
2σ

2
nl if rijk > 0,

1
2σ

2
zl if rijk = rm.

(51)

.

C.1.1 Derivative Approximations at Interior Points

At interior points in the grid I use centered approximations for the first deriv-
atives in equation (13). For example the first derivative for CPI in direction 1
is approximated as:

∆1P
n
ijk =

Pni+1jk − Pni−1jk
2δ1

. (52)

The first derivative approximations for UE and NFP are defined similarly. The
second derivative term in equation(13) for CPI is also approximated using cen-
tered differences:

∆2
1P

n
ijk =

Pni+1jk + Pni−1jk − 2Pnijk

δ21
. (53)

The second derivative approximations for UE and NFP are defined similarly.
These centered approximations are second-order accurate.

C.1.2 Derivative Approximations at Boundary Points

The boundary conditions are an essential part of the model. The boundary
conditions are a variation of a Neumann problem. At the cube boundary I
assume that the second derivative of the price is zero.

∆2
1P

n
1jk = ∆2

1P
n
Ijk = ∆2

2P
n
i1k = ∆2

2P
n
iJk = ∆2

3P
n
ij1 = ∆2

3P
n
ijK = 0. (54)

Also, at the boundary I cannot use a centered approximation for the first deriv-
ative. Instead I use an upwind approximation, provided the upwind direction
points into the grid; if the upwind direction points out of the grid, I set the first
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derivative to zero. For example, the first derivative in direction 1 at the lower
boundary for CPI is

∆1P
n
1jk = { (Pn2jk − Pn1jk)/δ1 if m1jk1 ≥ 0

0 otherwise
. (55)

The first derivatives at the other boundary points are defined similarly. The
boundary point approximations are only first order accurate. I try to minimize
the effect of boundary conditions by setting the upper boundaries far above and
the lower boundaries far below the actual data range.

C.1.3 Time Stepping

The time stepping is an extension of a stable, second order accurate scheme
proposed by Douglas (1962).36 This scheme is a version of ADI in which prices
are updated in each of the three spacial dimensions in turn. In the first of three
steps bond prices are first updated from stage n to a fictitious fractional stage
n+1/3 by updating only CPI; then prices are updated from stage n+1/3 to the
fictitious fractional stage n + 2/3 by updating only UE; and finally prices are
updated from stage n+2/3 to n+1 by updating only NFP. For each grid node,
ijk, and each time step, n, and each direction, l, define the difference operator

ΛijklP
n
ijk = vijkl∆

2
1P

n
ijk +mijkl∆1P

n
ijk − 1

3rijkP
n
ijk (56)

Suppressing the ijk subscripts for clarity, the first time step is implicit in
CPI:

Pn+1/3 − Pn
h

=
1

2
Λ1(P

n+1/3 + Pn) + Λ2P
n + Λ3P

n. (57)

(The scheme is called implicit because the price at time n + 1/3 appears on
both sides of the equation.) The second time step is implicit in UE:

Pn+2/3 − Pn+1/3
h

=
1

2
Λ2(P

n+2/3 − Pn). (58)

The final time step is implicit in NFP:

Pn+1 − Pn+2/3
h

=
1

2
Λ3(P

n+1 − Pn). (59)

By mimicking the derivation in Yanenko (1971) pages 28-30 I can show that the
scheme given by equations (57) - (59) is unconditionally stable, second order
accurate in time, and second order accurate in space, except at the boundary
points. Although the grid is necessarily large, the approximate prices can be
computed in less than one minute because solving equations (57) - (59) requires
only the inversion of tridiagonal matrixes.

36The classical ADI scheme used by Kim and Singleton (2012) is not unconditionally stable
in three spatial dimensions.
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C.2 Maximum Likelihood Search

I now find the implicit state variables and risk-neutral coeffi cients which maxi-
mize the joint conditional log-likelihood function. The data has T = 329 month
end yield curves, of which the first 277 observations are the NP (where p = n)
and the last 52 are the ZP (where p = z). The joint conditional log-likelihood
is given by equation (19). To calculate Y (ξt, i) for arbitrary ξt I use trilinear
interpolation among the eight proximal lattice points. If I have T months of
yield curves, then there are 3T implicit state variables.
I use a search to maximize the log-likelihood. I use a Powell search without

derivatives, which is a sequential conjugate direction search in each of the 28 co-
effi cients inΨ, to find improvement. [Press, Flannery, Teukolsky and Vetterling (1992)].
When I find improvement I use a Nelder-Mead search to update the implicit
state variables. The search continues until no further improvement is possible
within numerical tolerances. The standard errors of the coeffi cients are esti-
mated using the outer product of gradients estimator, which is asymptotically
consistent. [Greene (2012), page 522.]
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