How to get Sol samples? $_{\rm O}$

How best to sample the Sols? $_{\rm OO}$

Processing Sols

Robustness under Risk

Solution Pluralism, Deliberation, and Metaheuristics

Extracting More Value from Optimization Models Part 2: Engineering and Scientific Challenges.

Steven O. Kimbrough

University of Pennsylvania kimbrough@wharton.upenn.edu

MIC: Metaheuristics International Conference, Singapore, 5–8 August 2013

http://research.larc.smu.edu.sg/mic2013/

How to get Sol samples?	How best to sample the Sols?	Processing Sols o	Robustness under Risk
Outline			

How to get Sol samples?

How	to	get	Sol	samp	les?

How best to sample the Sols? $_{\circ\circ}$

Processing Sols

Robustness under Risk

Sampling in our examples of part 1

- Philly redistricting project. See cited papers. Basically, OR (IP) heuristic models for initial contiguous solutions, then innovative GA to find high-quality new solutions.
- TSP. Well-known heuristic, Lin 2-opt, with multiple starting points. Lots of obvious alternatives.
- GAP. FI-2Pop GA. Especially good at finding lols [Kimbrough et al., 2008, Kimbrough et al., 2009].
- VRPs. RJR (homegrown, "rotate, jiggle, repair") on top of TSP. Affords multiple solutions.
- 2-sided matching. GAs in multiple cases. ABM in one case [Kimbrough and Kuo, 2010, Kimbrough, 2012].

How to get Sol samples?	How best to sample the Sols? ●○	Processing Sols o	Robustness under Risk
Sampling the	Sols		

- Evolutionary computation is a natural place to look first.
- In general, population-based approaches
 - Particle swarm optimization, many forms of EC, ant colony optimization, artificial immune systems, ...
- NB: Interacts with constraint handling.
 - Again, the FI-2Pop GA has been especially good at finding lols [Kimbrough et al., 2008, Kimbrough et al., 2009].

How to get Sol samples?	How best to sample the Sols?	Processing Sols	Robustness under Risk
o	○●	o	
Points arising			

- Very little is known about which methods of sampling (particularly which metaheuristics) are most effective.
- Conducting local search in the neighborhood of a known (e.g., conventionally discovered) solution is an obvious tactic (but is largely unexplored for these purposes).
- In experiments with GAPs, we found that the Sols (both Fols and lols) were quite dense [Kimbrough et al., 2010].
- Do different sampling methods find very different samples?

How to get Sol samples? $_{\circ}$

How best to sample the Sols?

Processing Sols

Robustness under Risk

How to process large numbers of sampled Sols?

- Reduce by DEA, Pareto dominance.
- DSS. Prototype for GAP-like problems.

How to get Sol samples?	How best to sample the Sols?	Processing Sols	Robustness under Risk
o		o	●○
Robust optimi	zation		

- Standardly: under uncertainty.
- Solution pluralism affords under-risk analyses [Kimbrough et al., 2011].

How to get S o	ol samples?	How best to sample the Sols?	Processing Sols ○	Robustness under Risk ●○
	Kimbrough, <i>Agents, Ga</i> <i>Play</i> . CRC Press	S. O. (2012). mes, and Evolution: St. , Boca Raton, FL.	rategies at Work	(and
	Kimbrough, (2008). On a feasib algorithm fo no free lund <i>European</i> 3 190(2):310-	S. O., Koehler, G. J., L le–infeasible two–popu or constrained optimizat ch. <i>Journal of Operational F</i> -327.	u, M., and Wood lation (FI-2Pop) ion: Distance tra Research,	d, D. H. genetic acing and
	Kimbrough, On heuristic marriage pr	S. O. and Kuo, A. (201 cs for two-sided matching oblem as a multiobject	0). ng: Revisiting th ive problem.	e stable

In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2010). AGM.

http://dl.acm.org/citation.cfm?doid= 1830483.1830712.

- Kimbrough, S. O., Kuo, A., and LAU, H. C. (2010).
 Effective heuristic methods for finding non-optimal solutions of interest in constrained optimization models.
 In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2010). ACM.
 http://dl.acm.org/citation.cfm?doid= 1830483.1830538.
- Kimbrough, S. O., Kuo, A., and LAU, H. C. (2011). Finding robust-under-risk solutions for flowshop scheduling.

In *MIC 2011: The IX Metaheuristics International Conference*, Udine, Italy.

Kimbrough, S. O., Kuo, A., Lau, H. C., Lindawati, and Wood, D. H. (2009).

How to get SoI samples? $_{\rm O}$

How best to sample the Sols? $_{\circ\circ}$

Processing Sols

Robustness under Risk

On using genetic algorithms to support post-solution deliberation in the generalized assignment problem. MIC 2009: The VIII METAHEURISTICS INTERNATIONAL CONFERENCE, conference CD.

How to get Sol samples?	How best to sample the Sols?	Processing Sols o	Robustness under Risk o●

\$Id: deliberation-COModel-part2-master-beamer.tex 3653 2013-07-23 13:47:46Z sok \$