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ABSTRACT 

 
People need to accurately detect change across a wide range of personal and professional 

domains. Previous research has documented a systematic pattern of over- and under-reaction to 

signals of change because of system neglect, or the tendency to overweight signals and 

underweight the system producing the signals. We investigate whether experience improves 

ability to detect change. Participants in our study made judgments in 20 trials of 10 periods per 

trial, all in a single system. We found that although the system-neglect pattern is not completely 

attenuated by experience, average performance did improve with experience. However, the 

degree of learning varied substantially across the 12 environments we investigated—participants 

showed significant improvement in some conditions and virtually none in others. We examine 

this variation as a function of the consistency of feedback and entropy, finding that learning 

depends heavily on these characteristics of the decision environment.  
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INTRODUCTION 

The need to detect change accurately is a common problem for people in a wide range of 

domains, from business and politics to social relations and sports. The canonical academic 

example involves monitoring quality levels in a manufacturing process (Deming, 1975; Rubin & 

Girshick, 1952; Shewhart, 1939), but recent work has broadened this paradigm beyond 

operations research. Researchers in finance have used it to explain well-documented patterns of 

over- and under-reaction to news in stock prices (Barberis, Shleifer, & Vishny, 1998; Brav & 

Heaton, 2002), and economists have used change-point models to describe the challenges central 

bankers face in setting interest rates (Ball, 1995; Blinder & Morgan, 2005). Even further afield, 

change detection is important to retailers assessing changes in consumer taste (Fader & Lattin, 

1993), corporate strategists monitoring technological trends (Grove, 1996), politicians tracking 

voter sentiment (Bowler & Donovan, 1994), and individuals keeping track of their health 

(Steineck et al., 2002) or their romantic partner’s commitment (Sprecher, 1999). Indeed, the need 

to detect change accurately is ubiquitous, and it is therefore critical to understand the behavioral 

patterns involved in doing so. 

These examples highlight the challenge of successfully identifying change: One must 

infer the true state or “regime” from unreliable signals while balancing the costs of under-

reacting (failing to realize change has occurred) against the costs of over-reacting (believing 

change has occurred when in fact it has not). For example, an investor needs to recognize when 

cyclical financial markets change from a “bear” to a “bull” market. Economic indicators are, at 

best, imprecise signals, with informativeness varying across indicators and over time. Under-

reacting to signals of change means foregoing the chance to buy stocks at their lowest prices, 

whereas over-reacting entails acquiring shares that are still declining. 
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A number of psychologists have investigated how successfully individuals navigate this 

task (e.g., Barry & Pitz, 1979; Brown & Steyvers, 2009; Chinnis & Peterson, 1968, 1970; Estes, 

1984; Rapoport, Stein, & Burkheimer, 1979; Robinson, 1964; Theios, Brelsford, & Ryan, 1971). 

A theme in this literature is that individuals respond to system parameters, but only partially. As 

Chinnis and Peterson (1968) stated: “subjects, while sensitive to the difference in diagnostic 

value of the data in the two conditions, were not adequately sensitive” (p. 625). Massey and Wu 

(2005a) recently shed light on this problem, proposing the system-neglect hypothesis: People 

react primarily to the signals they observe and secondarily to the system that produced the signal. 

In their experiments, participants were exposed to signals generated by a number of different 

systems in which diagnosticity (i.e., the precision of the signal) and transition probability (i.e., 

the stability of the system) were varied. In our investor example, diagnosticity corresponds to the 

informativeness of the market indicators and transition probability corresponds to the historical 

rate of market vacillation. Massey and Wu’s studies revealed a behavioral pattern consistent with 

system neglect: Under-reaction was most common in unstable systems with precise signals, 

whereas over-reaction was most prevalent in stable systems with noisy signals. Kremer, Moritz, 

and Siemsen (2011) corroborated and extended their work, finding evidence of system neglect in 

a time-series environment with continuous change and continuous signals. 

A common critique of behavioral decision research is that participants engage in 

relatively novel tasks in unfamiliar environments, without sufficient opportunity to learn (e.g., 

Coursey, Hovis, & Schulze, 1987; List, 2003). In Massey and Wu (2005a; hereafter MW), for 

example, the diagnosticity and transition probability of the system changed after each of the 18 

trials. On the one hand, this design enhanced the salience of the system variables, increasing the 

likelihood that participants would give them sufficient attention. On the other hand, this 
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continuously-changing design may have hindered participants’ ability to appropriately adjust to 

these dimensions by minimizing their opportunity to learn about a particular system and 

therefore raises questions about the robustness of the system-neglect hypothesis. Does the pattern 

of over- and under-reaction observed in MW persist in the face of learning? Or is the system-

neglect phenomenon only observed in those inexperienced with the task and therefore less 

applicable to real-world settings where people have sufficient opportunities to learn? Finally, 

what system characteristics moderate the degree of learning? The present paper aims to fill these 

gaps in our understanding. 

The rest of the paper is organized as follows. We begin by describing the statistical 

process used in our experiment and review the system-neglect hypothesis. Next, we present the 

experimental design and results for four different performance measures, in particular examining 

differences in learning between conditions. Then, we propose some psychological variables that 

seem to explain the differences in learning across environments. We conclude by discussing 

open questions and future directions. 

BACKGROUND AND THEORY 

In this section, we introduce the design of our experiment and review the system-neglect 

hypothesis predictions for detecting changes in this statistical process. 

Terminology 

Before we begin, we introduce key terms used throughout the paper. First, the system is 

the random process that generates binary signals (red or blue balls) in each of the 10 periods that 

make up a trial. The systems are dynamic in the sense that they can generate signals using two 

different sets of probabilities, each of which we call a regime. A system is characterized by two 

system variables: diagnosticity, or the informative of the signals it generates, and transition 
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probability, or the likelihood of the system switching to the second regime.  

Experimental Paradigm 

Our experimental paradigm largely mirrors MW’s. In each trial of 10 periods, the system 

begins in the red regime but has a transition probability q of switching to the blue regime in any 

period i (including the first period before any signal is drawn). If the system switches to the blue 

regime, it does not switch back. That is, the blue regime is an absorbing state.4 

The system generates either a red or blue signal in each period. A red signal is generated 

by the red regime with probability pR  .5  and by the blue regime with probability p
B
 .5

 

. Put 

differently, a red signal is more suggestive of a red regime, and a blue signal is more suggestive 

of a blue regime. The probabilities were symmetric in our experiment (i.e., p
R
1 p

B
), so 

p
R

/ p
B

 is a measure of the diagnosticity (d) of the signal, with larger diagnosticities 

corresponding to more precise and informative signals. Participants were given all of these 

system variables and told that their task was to guess which regime generated that period’s signal. 

In particular, they estimated the probability that the system had switched to the blue regime. 

Importantly, at the end of each trial, participants received feedback about the true regime that 

governed each period of that trial. 

Optimal responses to the task required application of Bayes’ Rule. Let  ( Bi  0 ) 

indicate that the system is in the blue (red) regime in period i, and let  ( bi  0) indicate that 

a blue (red) signal is observed in that period. If Hi  (b1,...,bi ) is the history of signals through 

period i, the Bayesian posterior odds of a change to the blue regime after observing a history of 

                                                 
4 Although having an absorbing state is a simplification, this is a standard assumption in this literature. An absorbing 
state process is also a reasonable way to model many of the low-frequency real-world examples we discuss above. 
To the investor who hopes to cash out before a downturn, it does not matter if a bear market would eventually return 
to its bull status—for the relevant decision timeframe, the bear market might as well be an absorbing state.  

Bi 1

bi  1
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signals H
i
 is: 
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where p
i

b  denotes the probability that the system has switched to the blue regime by period i. 

The derivation for Equation (1) is found in Massey and Wu (2005b). 

Our experimental setting allowed us to compare individual judgments against the 

normative standard of Bayesian updating, as we provided participants with all the information 

necessary to calculate Bayesian responses and hence provide optimal judgments. Therefore, our 

experiment was designed to test the system-neglect hypothesis by investigating whether 

individuals update probability judgments in the direction required by Bayesian updating and 

whether their performance improves with experience. 

The System-Neglect Hypothesis 

The system-neglect hypothesis posits that people are more sensitive to signals than to 

system variables. This hypothesis extends work by Griffin and Tversky (1992) that proposes that 

people are disproportionately influenced by the strength of evidence (e.g., the effusiveness of a 

letter of recommendation) at the expense of its weight (e.g., the credibility of the letter writer). 

This relative sensitivity to strength over weight determines a person’s confidence, leading to a 

pattern of over-confidence when strength is high and weight is low, and under-confidence when 

strength is low but weight is high. In the context of our dynamic statistical process, the signal 

(i.e., the sequence of red and blue signals) is the strength, whereas the system variables (i.e., the 

transition probability, q, and the diagnosticity, d) are the weight. The critical implication of 

system neglect is that individuals are more likely to over-react to signals of change in stable 

systems with noisy signals, and are more likely to under-react in unstable systems with precise 



Learning to Detect Change 7 
 

signals. However, note that system neglect makes a relative prediction and is silent about overall 

levels of reaction; as such, it is consistent with patterns of only under-reaction or only over-

reaction. 

To give a concrete example, consider four systems crossing two levels of diagnosticity, d 

= 1.5 and d = 9, with two transition probabilities, q = .05 and q = .20. Suppose that signals in the 

first two periods are both blue. The Bayesian posterior probabilities of a change to the blue 

regime are P(B2 | H2 )  .17 when d = 1.5 and q = .05 (i.e., a noisy and stable system), but 

P(B2 | H2 )  .92  when d = 9 and q = .20 (i.e., a precise and unstable system). If individuals give 

approximately the same response across all four conditions (for example, with a posterior 

probability of .60), they will over-react when d = 1.5 and q = .05 and under-react when d = 9 and 

q = .20. Of course, we do not expect participants to ignore the system variables entirely. 

However, the system-neglect hypothesis requires that people attend too little to diagnosticity and 

transition probability and too much to the signals. 

LEARNING EXPERIMENT 

Methods 

We recruited 240 University of Chicago participants for a task advertised as a 

“probability estimation task.” Each participant was assigned to one of the 12 experimental 

conditions, constructed by crossing three diagnosticity levels (d = 1.5, 3, and 9) with four 

transition probability levels (q = .02, .05, .10, and .20). These 12 systems were the same ones 

used in MW. The most important deviation from MW is switching to a between-subjects design: 

each participant only saw one set of system variables for all 20 trials.  

Although we pre-generated the 20 random trials of 10 periods each for each condition, 

participants received the 20 trials in randomized order. The actual series for each trial can be 
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found in the Appendix. 

We compensated participants according to a quadratic scoring rule that paid a maximum 

of $0.08 (e.g., if a participant indicated a 100% probability that the system was in the blue 

regime and it in fact was) and a minimum of -$0.08 (e.g., if a participant indicated a 100% 

probability that the system was in the blue regime but it was in fact still in the red regime). A 

quadratic scoring rule theoretically elicits true beliefs for a risk-neutral participant (Brier, 1950). 

Although it was possible to lose money overall, doing so was extremely unlikely.5  

The experiment was conducted using a specially-designed Visual Basic program. The 

program began by introducing the statistical process used in the experiment, explaining the 

system variables ( pR , pB  and q), how the computer would pick balls (i.e., the signals) from one 

of two bins (i.e., the regimes), and how the bin may switch. The program showed a schematic 

diagram of bin switching and then displayed four demonstration trials, each consisting of ten 

sequential draws. For these demo trials only, participants saw the actual sequence of bins that 

generated each signal, and therefore if and when the process shifted from the red to the blue bin. 

Participants were then told that after seeing each ball, their job was to estimate the 

probability that the system had switched to the blue bin (i.e., the probability that the regime had 

shifted) by entering any number between 0 and 100. The computer then gave a detailed 

explanation of the incentive procedure including payment curves as a function of estimated 

probability and whether the bin had actually switched to the blue bin by that period. Participants 

completed two unpaid trials to better understand the incentive structure. After each trial, they 

were informed how much money they would have made or lost on that particular trial. Finally, 

participants completed 20 trials for actual pay. At the end of each paid trial, participants received 

                                                 
5 Massey and Wu (2005a) also used a quadratic scoring scheme, although participants in that study could make or 
lose as much as 10 cents in each period.  
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feedback about which bin generated each ball, earnings for that trial, and cumulative earnings in 

the experiment. 

Results 

In this section, we summarize basic results for performance and learning. We look at two 

measures of performance: (1) earnings and (2) mean absolute difference between empirical and 

Bayesian judgments. To test the system-neglect hypothesis, we then consider measures of 

reaction to indications of change. Finally, we estimate a Quasi-Bayesian model to provide a 

formal test of the system-neglect hypothesis. In all cases, we investigate whether participants 

learn with experience over the course of the experiment, as well as how these measures vary 

across experimental conditions. 

Earnings. Recall that we paid participants on the square of the difference between their 

subjective probability of having changed to the blue regime and the actual regime that period (1 

if blue, 0 if red). The mean of this absolute difference between their predictions and the actual 

regime was .149 (median = .072, sd = .191), generating mean earnings of $11.05 total over 200 

responses (range of $2.03 to $15.19 across participants). As a standard for comparison, an 

optimal Bayesian agent would have earned $12.95. Table 1 presents the mean empirical and 

Bayesian earnings for each condition and overall. Participants deviated from Bayesian earnings 

by $1.90 on average (range of $-0.27 to $12.30 across participants), earning 14.6% less than a 

Bayesian agent would earn. 

To investigate whether earnings increased with experience, we first examined how 

earnings changed over the course of the 20 trials by dividing them into five quintiles of 4 trials 

each (results are virtually identical if we use quarters consisting of 5 trials). Table 1 lists the 

earnings by quintile, multiplied by five to be comparable to the overall earnings. Overall, the 
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average earnings monotonically increased for each quintile, from $10.73 in the first quintile to 

$11.33 in the final quintile, and from 84.2% of Bayesian earnings to 86.6%. There was evidence 

of learning in most of the 12 conditions, with absolute earnings increasing from the first to last 

quintile in 8 of the 12 conditions and earnings as a proportion of Bayesian earnings increasing in 

9 of the 12 conditions. 

We conducted a more rigorous test of learning by running linear regressions of earnings 

on trial order for the 400 participant-trial observations per condition (20 participants per 

condition × 20 trials per participant), accounting for participant-level random-effects. The 

coefficients on trial are found at the bottom of Table 1, with positive numbers corresponding to 

improving performance. Although we assumed linear learning for simplicity, we will discuss 

nonlinear learning patterns below. Coefficients in 10 of the 12 conditions were positive and 

significant at the .05 level in the d = 9, q = .10 condition, and at the .10 level in 4 other 

conditions. We conducted the same analysis separately for each of the 240 participants, finding 

positive coefficients for 139 (58%) of the 240 participants overall (p = .017, two-tailed binomial 

test). The percentages of participants who had positive regression coefficients in each condition 

are shown at the bottom of Table 1. 

**************INSERT TABLE 1 HERE************** 

Mean absolute deviation. As evident from Table 1, earnings are a potentially noisy 

measure of performance, since the signals that participants respond to can be unrepresentative of 

the underlying regimes that determine their earnings. Indeed, Bayesian judgments can produce 

lower earnings than non-Bayesian judgments for small, unrepresentative sequences. We 

therefore considered the mean absolute deviation (MAD) between empirical and Bayesian 

judgments as a second, less noisy measure of performance that neither rewards nor punishes 
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judgments based on luck. Table 2 shows results for MADs by condition and quintile. 

 Overall, MADs decreased over the five quintiles, though the pattern was not uniform 

across conditions. As before, we regressed MADs by trial for each condition, accounting for 

participant random-effects (see Table 2). The coefficients were negative (suggesting learning) for 

11 of the 12 conditions and significant at the .05 level in 5 of the conditions, and at the .10 level 

in the d = 3, q = .10 condition. Separate regressions for each participant showed a similar but 

slightly stronger pattern to the analysis in Table 1, with 142 (or 59%) of the 240 participants 

having negative coefficients (p < .01, sign test). Overall, we found somewhat more pronounced 

evidence of learning for this less ambiguous measure of performance. 

**************INSERT TABLE 2 HERE************** 

Measures of reaction. Whereas our analyses of earnings and MADs demonstrated 

learning differences across conditions, the system-neglect hypothesis specifies how empirical 

probability judgments react to indications of change (i.e., blue signals) rather than their absolute 

levels. Therefore, to test for system neglect, we compared participants’ reactions (i.e., the change 

in probability judgments from period i 1 to period i) to the Bayesian reaction using the 

participant’s probability judgment in the previous period as the “prior” (see MW for more 

details). Importantly, this approach focuses only on reactions, granting participants their priors 

regardless of accuracy, and evaluating only how their judgments react to new information. We 

define errors in reaction as the difference between Bayesian and empirical reactions, with under-

reaction indicating an empirical reaction that is less positive than the Bayesian reaction, and 

over-reaction indicating the opposite. Recall that the system-neglect hypothesis predicts a greater 

tendency to under-react in more precise, less stable conditions, and to over-react in noisier, more 

stable conditions. 
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Figure 1 depicts the mean error in reactions to blue signals by condition (red signals are 

indicators of “non-change” and exhibit a different gradient; see Massey and Wu, 2005a). As 

predicted by the system-neglect hypothesis, and replicating MW, the greatest under-reaction 

occurred in the southeast-most cells (d = 9 with q = .05, q = .10, and q = .20, and d = 3 with q 

= .20), while the greatest over-reaction occurred in the northwest-most cells (d = 1.5 with q = .02 

and q = .05 and d = 3 with q = .02). For 41 of the 48 pairwise comparisons between conditions, 

under-reaction increased monotonically with diagnosticity and transition probability. For 

comparison, Figure 1 also plots the reactions from Massey and Wu (2005a). The pattern of 

system neglect is somewhat more pronounced in that study relative to the current investigation. 

**************INSERT FIGURE 1 HERE************** 

Figure 2 plots the same errors in reactions to blue signals by quintile. Note that the degree 

of system neglect is most pronounced in the first quintile but remains significant in the remaining 

four quintiles. For example, 39 of the 48 pairwise comparisons for the last quintile are in the 

direction of the system neglect hypothesis. Figure 2 also suggests that the learning that does take 

place occurs mostly in the highly precise conditions. 

**************INSERT FIGURE 2 HERE************** 

We next follow MW in further analyzing the pattern of reactions in Figure 1 by 

estimating a Quasi-Bayesian model to test for learning to detect change. This analysis allows us 

to formally rule out the possibility that the hypothesized pattern is an artifact of the specific 

sequences of signals. Examining learning through the lens of the Quasi-Bayesian model also 

allows us to say more about what participants are learning. 

The Quasi-Bayesian model is a generalization of Equation (1) that explicitly allows for 

non-optimal sensitivity to transition probability and diagnosticity. We do so by adding two 
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parameters, α (sensitivity to transition probability) and β (sensitivity to diagnosticity): 
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Here, pi
e  denotes the empirical estimate at period i, m  weights the transition probability for 

condition m = .02, .05, .10, and .20, and n weights diagnosticity for condition n = 1.5, 3, or 9, 

and. Note that m 1 and n 1 reflect insensitivities to transition probability and signal 

diagnosticity, respectively, whereas m  n  1 returns the Bayesian expression in Equation (1). 

System neglect requires that α and β vary by condition as follows: 1.5  3  9  and 

.02  .05  .10  .20  (see MW for a more complete discussion of this model). 

We first ran the model by pooling all the data across individuals and conditions and 

estimating a single omnibus nonlinear regression, thereby modeling the behavior of a 

representative participant (McFadden, 1981). We obtain similar results when we estimate 

parameters for each individual and average these estimates by condition. Figure 3 shows the 

estimates of m  and n  as well as the parameter pattern for complete system neglect. Here, 

lower levels imply greater conservatism in the sense of Edwards (1968). The estimated 

parameters were all ordered as predicted by system neglect, with pairwise differences significant 

at p < .0001 (t-statistics > 4.5), except for between β3 and β9 (t = 2.40, p = .017), and between 

α.10 and α.20 (t = 1.39, p = .16). In addition, there was a mixed pattern of conservatism and 

radicalism in both parameters, consistent with the pattern of over- and under-reaction depicted in 

Figure 1. Importantly, whereas the slopes were much steeper than Bayesian, they were less 

shallow than the slope of the complete-neglect curves. In other words, although participants were 

not sufficiently sensitive to system variables, they were not completely insensitive, either. 
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**************INSERT FIGURE 3 HERE************** 

**************INSERT FIGURE 4 HERE************** 

To investigate whether system neglect decreased with experienced, we estimated m  and 

n  as before, adding dummies for each quintile. Figure 4 shows these estimates for the first and 

last quintile. The β parameter estimates for both moderately (d = 3) and highly precise (d = 9) 

conditions converged toward the Bayesian standard of 1 (ts = 1.58 and 4.18, respectively, p = .12 

and p < .0001) but were still less than 1 (ts = -2.23 and -2.63, respectively, p < .05 and p < .01). 

In contrast, participants started the study assigning appropriate weight to noisy signals (β1.5,Q1 = 

1.03, t = 0.09, ns) and there was virtually no change by the end of the study (t = 0.11, ns).  

All α parameter estimates converged toward the Bayesian standard, but the improvement 

was significant only for the q = .20 conditions (t = 2.62, p < .01), and insubstantial for more 

stable conditions (t.02 = 0.41, t.05 = 0.83, t.10 = 0.17, ns). The α parameter estimates in the last 

quintile remained less than 1 for the more unstable conditions (t.10 = -5.70 and t.20 = -7.17, ps 

< .0001), but was not significantly different from 1 for the more stable conditions (t.02 = 1.21 and 

t.05 = -0.58, ns). 

These results are again quite consistent with the earlier analyses on earnings and MADs, 

and additionally reveal that most of the learning corresponds to less conservative responses to 

precise signals and when there is a high base-rate of change. 

Explaining Differences in Learning across conditions 

So far, we have seen that although system neglect is not completely eliminated, average 

performance does improve with experience. We have also demonstrated that this improvement 

differs substantially across conditions. In this section, we try to understand why experience leads 

to learning in some domains and not in others. 
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Figure 5 plots performance—as measured by mean absolute deviation from Bayesian 

judgments—across conditions and reveals a great deal of variation in initial performance, final 

performance, total learning, and shape of the learning over the 20 trials.6 Importantly, initial 

performance (as measured by MAD in the first quintile) was orthogonal to learning (r = .04, ns). 

For example, although initial performance was roughly equal in all three q = .05 conditions, the 

d = 9 condition showed significant learning (t = -2.11, p < .05), the d = 3 condition showed no 

learning (t = -0.48, ns), and the d = 1.5 condition actually got worse with experience, although 

this decrement was not significant (t = 0.64, ns). Similar differences can be found for 

comparisons between the d = 3, q = .02 and d = 9, q = .02 conditions, and between the d = 1.5, q 

= .20 and the d = 3, q = .20 conditions. 

**************INSERT FIGURE 5 HERE************** 

Psychological determinants of learning. Intuition suggests that the hypothesized system-

neglect pattern should attenuate over time, with judgments becoming more Bayesian with 

experience. Although there is little doubt experience can lead to learning, it is also clear that it 

does not always (Brehmer, 1980). To understand the variation in learning across conditions, we 

consider basic psychological determinants of learning and consider how these concepts apply to 

the change-detection paradigm. At its most basic level, learning from past behavior requires 

informative feedback about the consequences of that behavior.7 

                                                 
6 These curves were generated using LOWESS (locally-weighted scatterplot smoothing), a non-parametric method 
for plotting a smoothed curve by computing a localized regression for the nearest 0.5n neighbors for each data point. 
7 Note that we have chosen to investigate the environment explicitly, rather than the learning process itself. This 
approach differs from other research on learning in stochastic environments that directly examines the reinforcement 
learning process (Bush & Mosteller, 1953; Camerer & Ho, 1999; Cross, 1983; Erev & Roth, 1998). We adopt our 
approach for two reasons. First, just as we focus on system variables to understand when system neglect leads to 
over- and under-reaction, we focus on environmental factors to understand what leads to changes in system neglect 
over time. Second, the judgments we study are dynamic. As such, judgments are meaningful only in context. For 
example, a response of .50 in the first period of a trial is very different from a response of .50 after three blue signals. 
Given the unwieldy number of possible scenarios we would have to model learning for, the most obvious way to 
apply reinforcement learning in this setting would be at the parameter level. That is, rather than payoffs reinforcing 
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In our experiment, participants received explicit feedback about when the regime 

actually shifted and therefore what series of probability judgments would have maximized 

payment for that trial. Although this feedback is unambiguous, it was provided only at the end 

of each trial and therefore was not entirely informative or generalizable (i.e., knowing the actual 

regime in each period does not provide the optimal reactions to each signal). On the other hand, 

participants also received implicit feedback about their judgments from subsequent draws. 

Indeed, although ambiguous, this period-level feedback is more immediate and extensive than 

the trial-level feedback. We therefore explore two aspects of period-level feedback that may 

vary across conditions: (1) how consistent the feedback is, and (2) the informativeness of 

feedback for a particular type of judgment. 

We first consider feedback consistency. The central task in change detection is 

monitoring and responding to the appearance of a blue signal, which indicates the possibility of 

change. Although the informativeness of the signal is determined by the system’s diagnosticity, 

the information provided by a blue signal can be reinforced or undermined by whether the next 

signal is consistent (i.e., also a blue signal, strongly suggesting a regime shift) or not (i.e., a red 

signal, suggesting a false alarm). That is, the signal following each probability judgment 

provides feedback about the accuracy of that prior judgment. Even though this feedback is 

noisy, it is immediate, clear, and exceedingly vivid, all qualities that greatly facilitate learning 

(Hogarth, 2001; Maddox, Ashby, & Bohil, 2003; Nisbett & Ross, 1980). We therefore define 

the inconsistency of an environment as the proportion of times that a new signal of change (i.e., 

a blue signal not immediately preceded by another blue signal) is followed immediately by a 

                                                                                                                                                             
certain responses in various scenarios, learning would move α and β toward more optimal parameter values. 
Although such an approach seems reasonable, it would be quite a departure from previous research. 
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signal of non-change (i.e., a red signal). A higher proportion of inconsistent feedback should 

make it more difficult to learn. 

A second fundamental aspect of feedback is its information value. A convenient way to 

measure information value is entropy (Shannon, 1948), H (x)   p(xi )ln p(xi )  . In our 

setting, we consider the entropy of the Bayesian posterior probabilities of change (indicating 

the likelihoods of regime shift). Figure 6 shows how dramatically the Bayesian posterior 

distributions vary across our experimental conditions, from those with virtually all optimal 

judgments at or near 0 or 1, to those with almost all optimal judgments between 0 and 1.  

**************INSERT FIGURE 6 HERE************** 

The entropy of these distributions depends on how uniform versus “spiky” it is. A 

uniform distribution has maximal entropy—and minimal information value—because it 

conveys the least information possible about the true state. In contrast, a point distribution has 

zero entropy, which is the maximum information value, as it conveys with perfect certainty the 

true state. In our task, noiseless conditions, as well as very stable or unstable conditions, have 

low entropy with nearly binary Bayesian posteriors clustered near 0 and 1. On the other hand, 

conditions with noisy signals and intermediate transition probabilities have Bayesian posteriors 

more uniformly distributed on the intermediate probabilities, and thus high entropy. 

Entropy may be negatively related to learning for a few potentially related reasons. 

Most importantly, it is much easier to respond to signals of change in a binary fashion than to 

distinguish between more nuanced levels of probability. Feedback is clear and easy to encode 

when it reinforces binary responses of 0 or 1, whereas feedback that reinforces intermediate 

probabilities has lower informational value and is thus harder to encode. This difficulty of 

encoding intermediate probabilities is consistent with research on the probability weighting 
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function, indicating that individuals do not discriminate intermediate probabilities as well as 

they do more extreme ones (Wu & Gonzalez, 1996). Research on preference reversals also 

suggests that our inherently binary stimuli might induce more binary responses (Fischer & 

Hawkins, 1993; Tversky, Sattath, & Slovic, 1988). 

Another possible reason for entropy to detract from learning is that systems with higher 

entropy provide more exacting feedback (Hogarth, McKenzie, Gibbs, & Marquis, 1991). Due 

to shape of the payoff function, intermediate probability judgments are punished (and rewarded) 

less than extreme ones. In the extreme case, a response of 0.5 in our study is always rewarded 

with 4 cents regardless of the actual regime, whereas a response of 0 or 1 is rewarded or 

punished 8 cents depending on whether the response matches the actual regime. Hence, in 

systems with low entropy—those in which most of the optimal responses are near 0 or 1—

there is a much stronger incentive to be accurate. 

Feedback inconsistency, entropy, and learning 

Table 3 shows the proportion of inconsistent feedback and optimal response entropy 

across the 12 experimental conditions. For our range of system parameters, entropy 

monotonically decreases with signal diagnosticity but has a curvilinear relationship with system 

stability: Very stable (q = .02) and very unstable (q = .20) systems have low entropy whereas 

systems with intermediate transition probabilities have higher entropy. Inconsistency of 

feedback decreases with diagnosticity, and somewhat more so for more unstable systems.  

**************INSERT TABLE 3 HERE************** 

Although we only have 12 conditions as data points, we cautiously explore how these 

psychological variables related to learning. Also, although Figure 5 shows that learning is 

clearly nonlinear and sometimes even non-monotonic, it also shows that simple linear 
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regressions capture most of the learning in each condition. We therefore use the linear 

coefficients of MAD regressed on trial (see Table 2) to index learning as a simple approximation 

of the overall degree of learning. Analyses using alternative measures, such as learning between 

the first quintile to the best quintile (to account for later performance decrements due to 

potential fatigue), from the first quintile to the second quintile (as a measure of early learning), 

and from the third quintile to the last quintile (as a measure of continued learning) yield 

qualitatively similar results. 

Table 4 shows the results of regressions of the linear learning coefficient on each of the 

psychological variables, as well as d, q, and their interaction. Due to the high correlations 

between feedback consistency and entropy (r = .79, p < .01), we do not present the results of 

models that include both psychological variables. In addition, we present a second set of 

regressions controlling for initial performance as measured by MAD in the first quintile. Doing 

so helps reveal learning that is obscured by a floor effect on learning: It seems unlikely for MAD 

to decrease below the .05 level. Controlling for initial performance therefore helps explain the 

lack of learning in conditions that start too well to have much learning. 

**************INSERT TABLE 4 HERE************** 

We can draw a few interesting inferences from these regression results. First, the system 

parameters do not explain learning at all, whether controlling for initial performance or not. 

Second, initial performance has a negative effect on learning, confirming our intuition that 

conditions in which participants had low MADs early on provided minimal opportunity for 

learning. Finally, feedback inconsistency was a strong deterrent of learning, explaining 40% of 

the variance in learning on its own. Entropy was also negatively related to learning but not 

significantly so due to our small sample size. However, controlling for initial performance 
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strengthened the relationship between entropy and learning to significance, and revealed a 

perhaps even stronger relationship than the between consistent feedback and learning. 

DISCUSSION 

We examined learning across 12 conditions varying on signal diagnosticity and system 

stability, using a number of measures of performances, including earnings, absolute deviations 

from Bayesian estimates, or reactions. In all cases, learning was more prevalent in highly precise 

conditions and the moderately precise, more unstable conditions. We also found that system 

neglect was partially attenuated by 20 trials of experience, especially for moderately and highly 

precise conditions, as well as for highly unstable conditions.  

In order to better understand this variation in learning across conditions, we more directly 

examined how two psychological characteristics of the learning environments corresponding to 

the consistency and informational value of feedback predicted learning. We found more learning 

in conditions with lower entropy—and thus more binary optimal responses—and more consistent 

feedback—less likelihood of getting contradictory period-level feedback. 

Although these results are suggestive, we caution that they capture the relationship 

between the psychological variables and learning on only 12 conditions—with only three levels 

of diagnosticity and four levels of transition probability—and only 20 sequences per condition.8 

Although we can simulate the psychological variables for a larger number of series and a wider 

range of system variables, we cannot simulate participants’ performance and learning. It is 

possible that these results are different for a wider range of system variables. Perhaps more 

importantly, we did not directly manipulate these variables and therefore cannot establish their 

causality. We discuss this issue in more detail in the next section. 
                                                 
8 We do note that a remarkably similar pattern of results hold for an earlier pilot study with only six conditions (the 
same three levels of diagnosticity but only q = .05 and .10). That is, feedback inconsistency was the best predictor of 
learning. 
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Psychological determinants of learning 

On some level, entropy and trickiness are necessarily complex, nonlinear transformations 

of some combination of diagnosticity and transition probability. It is therefore possible that there 

are even better transformations that we have not uncovered. Although these psychological 

variables may be related to the system parameters, other elements of a learning environment can 

also affect entropy and how inconsistent the feedback is, independently of the system parameters. 

Future research could therefore isolate the effect of the consistency of feedback or its 

informational value by directly manipulating them while holding the system parameters constant. 

For example, we can change the consistency of period-level feedback by minimizing the 

number of false signals in more tricky environments, perhaps by changing to five periods of two 

signals each, akin to providing feedback every few trials as in Lurie and Swaminathan (2009). Or 

even more directly, we can ask for judgments of the previous periods’ urn. 

Similarly, we can manipulate task design to directly manipulate entropy. Recall that 

entropy may deter learning for one or both of two possible reasons. First, higher entropy 

environments require learning to respond with a continuous range of probabilities, which is 

harder than learning to respond in a binary fashion, both for informational and perceptual reasons. 

Second, the payment function is relatively flat for intermediate probabilities and therefore 

feedback is less clear. Either one of these factors could drive higher entropy environments to be 

harder to learn in. More critically, experimentally manipulating these factors could help to isolate 

their relative contribution. For example, instead of paying based on deviation from the actual 

regime, we can pay based on deviation from the Bayesian judgment (possibly with an error term) 

to increase the sharpness of the payment curve for intermediate probabilities. In addition, we 

could compare our results to stationary probabilistic judgment tasks (such as the “balls and urns” 
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task of Edwards, 1968). In these settings, it is possible to have low entropy with Bayesian 

posteriors clustered around 0.5 (instead of around 0 and 1, as in our task). 

More generally, we draw attention to the usefulness of entropy for explaining judgment 

and learning. Entropy is a central foundation of the field of information theory, and has been 

used in theoretical models of learning (Lehrer & Smorodinsky, 2000). Although entropy has 

been shown to influence the learning of both pigeons (Young & Wasserman, 1997) and 

humans (Kvålseth, 1978), and more recently invoked to explain anomalies in behavioral 

finance and economics (Peng, 2005; Peng & Xiong, 2006; Sims, 2003), it is rarely the focus of 

psychological research. We believe entropy is potentially a rich construct that deserves more 

exploration in studies of judgment and learning. 

Organizational decision-making 

The influence of environmental factors on learning has direct implications for 

organizations. Obviously it would be helpful to increase the quality or quantity of feedback 

available to a decision maker. For example, instituting a waiting period before reacting to signals 

of change helps to reduce feedback inconsistency and therefore rates of reacting to a false alarm. 

Unfortunately firms often do not or cannot control the feedback available in their environment. 

However, they may able to improve decision-makers’ attention to feedback, by enhanced record-

keeping or through activities explicitly aimed at learning from the past (Cyert & March, 1963). 

Another approach is the use of policies to restrict decision-makers’ freedom (Heath, Larrick, & 

Klayman, 1998) with the goal of avoiding “noise chasing” (i.e., overreacting to inconsistent 

feedback). Both of these approaches—learning programs and policy-based decisions—are ways 

to improve institutional memory, an adaptive response to environments with inconsistent 

feedback.  
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Conclusion 

Our paper establishes the robustness of system neglect in change-point detection and 

demonstrates the relationship between psychological characteristics of an environment and 

learning. In the end, we are somewhat sober about the ability of individuals to avoid systematic 

over- and under-reaction in non-stationary environments. However, we are also encouraged by 

the possibility of learning. Together these sentiments suggest that one of the most important 

directions for future research is to understand how different decision environments impact the 

potential for learning.  



Learning to Detect Change 24 
 

REFERENCES 

Ball, L. (1995). Time-consistent policy and persistent changes in inflation. J. Monetary Econom., 

36(2), 329-350. 

Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. J. Financial 

Econom., 49(3), 307-343. 

Barry, D. M., & Pitz, G. F. (1979). Detection of Change in Nonstationary, Random Sequences. 

Organizational Behavior and Human Performance, 24(1), 111-125. 

Blinder, A. S., & Morgan, J. (2005). Are two heads better than one? Monetary policy by 

committee. J. Money, Credit, and Banking, 37(5), 789-811. 

Bowler, S., & Donovan, T. (1994). Information and opinion change on ballot propositions. 

Political Behavior, 16(4), 411-435. 

Brav, A., & Heaton, J. B. (2002). Competing Theories of Financial Anomalies. Rev. Financial 

Stud., 15(2), 575-606. 

Brehmer, B. (1980). In one word: Not from experience. Acta Psychologica, 45(1-3), 223-241. 

Brown, S. D., & Steyvers, M. (2009). Detecting and predicting changes. Cognitive Psychology, 

58(1), 49-67. 

Bush, R. R., & Mosteller, F. (1953). A Stochastic Model with Applications to Learning. Ann. 

Math. Statist., 24(4), 559-585. 

Camerer, C., & Ho, T.-H. (1999). Experience-weighted attraction learning in normal form games. 

Econometrica, 67(4), 827-874. 

Chinnis, J. O., & Peterson, C. R. (1968). Inference About a Nonstationary Process. J. Experiment. 

Psych., 77(4), 620-625. 

Chinnis, J. O., & Peterson, C. R. (1970). Nonstationary processes and conservative inference. J. 

Experiment. Psych., 84(2), 248-251. 



Learning to Detect Change 25 
 

Coursey, D. L., Hovis, J. L., & Schulze, W. D. (1987). The Disparity Between Willingness to 

Accept and Willingness to Pay Measures of Value. Quart. J. Econom., 102(3), 679-690. 

Cross, J. (1983). A Theory of Adaptive Learning Economic Behavior. New York: Cambridge 

University Press. 

Cyert, R. M., & March, J. G. (1963). A behavioral theory of the firm. Englewood Cliffs, NJ: 

Prentice-Hall. 

Deming, W. E. (1975). On Probability as a Basis for Action. Amer. Statistician, 29(4), 146-152. 

Edwards, W. (1968). Conservatism in human information processing. Formal representation of 

human judgment, pp. 17-52. 

Erev, I., & Roth, A. E. (1998). Predicting how people play games: Reinforcement learning in 

experimental games with unique, mixed strategy equilibria. Amer. Econ. Review, 88(4), 

848-881. 

Estes, W. K. (1984). Global and Local-Control of Choice Behavior by Cyclically Varying 

Outcome Probabilities. J. Experiment. Psych.: Learn. Memory, Cognition, 10(2), 258-270. 

Fader, P. S., & Lattin, J. M. (1993). Accounting for Heterogeneity and Nonstationarity in a 

Cross-Sectional Model of Consumer Purchase Behavior. Marketing Sci., 12(3), 304-317. 

Griffin, D., & Tversky, A. (1992). The Weighing of Evidence and the Determinants of 

Confidence. Cognitive Psych., 24(3), 411-435. 

Grove, A. S. (1996). Only the paranoid survive. New York, NY: Doubleday. 

Heath, C., Larrick, R. P., & Klayman, J. (1998). Cognitive repairs: How organizational practices 

can compensate for individual shortcomings. Research in organizational behavior, pp. 1-

37. 

Hogarth, R. M. (2001). Educating intuition. Chicago, IL: University of Chicago Press. 



Learning to Detect Change 26 
 

Hogarth, R. M., McKenzie, C. R. M., Gibbs, B. J., & Marquis, M. A. (1991). Learning From 

Feedback: Exactingness And Incentives. J. Experiment. Psych.: Learn. Memory, 

Cognition, 17(4), 734-752. 

Kremer, M., Moritz, B., & Siemsen, E. (2011). Demand Forecasting Behavior: System Neglect 

and Change Detection. Management Science, 57(10), 1827-1843. 

Kvålseth, T. O. (1978). The effect of task complexity on the human learning function. The 

International Journal of Production Research, 16(5), 427-435. 

Lehrer, E., & Smorodinsky, R. (2000). Relative entropy in sequential decision problems. Journal 

of Mathematical Economics, 33(4), 425-439. 

List, J. A. (2003). Does market experience eliminate market anomalies? Quart. J. Econom., 

118(1), 41-71. 

Lurie, N. H., & Swaminathan, J. M. (2009). Is timely information always better? The effect of 

feedback frequency on decision making. Organ. Behav. Hum. Dec., 108(2), 312-329. 

Maddox, W. T., Ashby, F. G., & Bohil, C. J. (2003). Delayed feedback effects on rule-based and 

information-integration category learning. Journal of Experimental Psychology-Learning 

Memory and Cognition, 29(4), 650-662. 

Massey, C., & Wu, G. (2005a). Detecting Regime Shifts: The Causes of Under- and 

Overreaction. Management Sci., 51(6), 932-947. 

Massey, C., & Wu, G. (2005b). Electronic Companion Paper: "Detecting Regime Shifts: The 

Causes of Under- and Overreaction''). 

http://faculty.chicagobooth.edu/george.wu/research/change_points_ecp.pdf. 

McFadden, D. (1981). Econometric Models of Probabilistic Choice. Structural Analysis of 

Discrete Data with Econometric Applications, pp. 198-272. 

Nisbett, R. E., & Ross, L. (1980). Human inference: Strategies and shortcomings of social 

judgment: Prentice-Hall Englewood Cliffs, NJ. 



Learning to Detect Change 27 
 

Peng, L. (2005). Learning with information capacity constraints. Journal of Financial and 

Quantitative Analysis, 40(2), 307-329. 

Peng, L., & Xiong, W. (2006). Investor attention, overconfidence and category learning. Journal 

of Financial Economics, 80(3), 563-602. 

Rapoport, A., Stein, W. E., & Burkheimer, G. J. (1979). Response models for detection of change. 

Dordrecht, Holland: D. Reidel. 

Robinson, G. H. (1964). Continuous estimation of a time-varying probability. Ergonomics, 7(1), 

7-21. 

Rubin, M. A., & Girshick, H. (1952). A Bayes Approach to a Quality Control Model. Ann. Math. 

Statist., 23(1), 114-125. 

Shannon, C. E. (1948). The mathematical theory of communication. Bell System Technical 

Journal, 27, 379-423. 

Shewhart, W. A. (1939). Statistical Method from the Viewpoint of Quality Control. Washington: 

Graduate School, Department of Agriculture. 

Sims, C. A. (2003). Implications of rational inattention. Journal of monetary Economics, 50(3), 

665-690. 

Sprecher, S. (1999). I Love You More Today Than Yesterday: Romantic Partners' Perceptions of 

Changes in Love and Related Affect Over Time. J. Personality Soc. Psych., 76(1), 46-53. 

Steineck, G., Helgesen, F., Adolfsson, J., Dickman, P. W., Johansson, J.-E., Norlen, B. J., et al. 

(2002). Quality of Life after Radical Prostatectomy or Watchful Waiting. New England J. 

Medicine, 347(11), 790-796. 

Theios, J., Brelsford, J. W., & Ryan, P. (1971). Detection of change in nonstationary binary 

sequences. Perception Psychophysics, 9(6), 489-492. 
 



Learning to Detect Change 28 
 

Appendix: Experimental Stimuli 
 

The stimuli for the experiment are shown below in Table A1, with 0 indicating a red ball 

for a particular period, and 1 indicating a blue ball for that period. The period that the regime 

shifts to the blue regime, if ever, is noted in the “Shift” column. For example, sequence 4 of the d 

= 1.5, q = .02 condition experienced a shift to the blue regime in period 5, meaning that the first 

four draws were from the red regime and the fifth through tenth draws were from the blue regime. 

**************INSERT TABLE A1 HERE************** 
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Figure 1: Over- and under-reaction to blue signals, by condition, as measured by the mean 
difference between the change in empirical probability judgments and Bayesian reaction. The 
left panel shows this measure for the current study. The right panels show the same measure of 
Massey and Wu (2005a). 

 

 

Figure 2: Over- and under-reaction, by condition and quintile, as measured in Figure 1. 
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Figure 3. System neglect parameter estimates by condition, as fit to Quasi-Bayesian model. 
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Figure 4. System neglect parameter estimates by condition for first and last quintile, as fit to 
Quasi-Bayesian model. 
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Figure 5. LOWESS (locally-weighted scatterplot smoothing, using a bandwidth of 0.5n) and 
linear regressions of mean absolute deviation from Bayesian judgment (MAD) on trial. 
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Figure 6. Distribution of Bayesian posteriors by condition, binned by .05 intervals. 
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   Condition      
d 1.5 1.5 1.5 1.5 3 3 3 3 9 9 9 9     
q .02 .05 .10 .20 .02 .05 .10 .20 .02 .05 .10 .20   Overall 

Empirical Earnings                             
    Earnings 14.35 9.69 7.88 6.59 12.36 10.92 10.55 8.84 14.15 12.30 12.08 12.96   11.06 
    Standard Deviation 0.88 1.71 1.32 1.24 1.39 0.84 2.50 2.69 1.61 1.32 0.57 1.75   2.82 
               
Bayesian Earnings                             
    Earnings 14.92 11.47 10.21 9.85 13.49 12.73 12.44 12.20 15.07 14.05 14.70 14.28   12.95 
    Empirical/Bayesian 96.2% 84.5% 77.2% 66.9% 91.6% 85.8% 84.8% 72.5% 93.9% 87.5% 82.2% 90.8%   85.4% 
                              
Empirical Earnings by Quintile (scaled by 5)                         
    Quintile 1 14.18 8.74 8.23 6.87 12.93 10.70 9.81 7.69 13.10 11.63 11.86 12.98   10.73 
    Quintile 2 14.31 10.16 8.62 6.60 11.14 11.43 10.36 8.88 14.30 12.13 11.33 12.94   11.02 
    Quintile 3 14.35 9.57 7.85 6.48 12.50 10.38 10.82 9.11 14.28 12.54 11.75 13.01   11.05 
    Quintile 4 14.14 10.34 6.49 5.56 13.10 11.42 10.48 9.71 14.87 12.57 11.97 13.20   11.15 
    Quintile 5 14.76 9.64 8.23 7.43 12.12 10.68 11.26 8.82 14.18 12.61 13.49 12.69   11.33 
                              
Bayesian Earnings by Quintile (scaled by 5)                         
    Quintile 1 14.77 11.06 10.46 9.02 13.19 12.54 11.62 11.73 15.02 14.08 14.80 14.60   12.74 
    Quintile 2 15.02 11.09 10.36 9.52 13.31 12.71 12.18 12.32 15.13 13.91 14.70 14.19   12.87 
    Quintile 3 15.01 11.40 10.23 10.05 13.68 12.66 12.50 12.58 15.11 14.03 14.53 14.16   13.00 
    Quintile 4 14.92 11.78 10.08 10.38 13.86 12.69 12.74 12.46 15.05 14.17 14.54 14.25   13.08 
    Quintile 5 14.90 12.00 9.93 10.29 13.43 13.06 13.15 11.92 15.02 14.05 14.96 14.19   13.08 
                              
Empirical/Bayesian Earnings by Quintile                         
    Quintile 1 96.0% 79.0% 78.7% 76.2% 98.0% 85.3% 84.4% 65.5% 87.2% 82.6% 80.1% 88.9%   84.2% 
    Quintile 2 95.3% 91.6% 83.2% 69.3% 83.7% 89.9% 85.1% 72.1% 94.5% 87.2% 77.1% 91.2%   85.6% 
    Quintile 3 95.6% 83.9% 76.7% 64.5% 91.4% 82.0% 86.6% 72.4% 94.5% 89.4% 80.9% 91.9%   85.1% 
    Quintile 4 94.8% 87.8% 64.4% 53.6% 94.5% 90.0% 82.3% 77.9% 98.8% 88.7% 82.3% 92.6%   85.3% 
    Quintile 5 99.1% 80.3% 82.9% 72.2% 90.2% 81.8% 85.6% 74.0% 94.4% 89.8% 90.2% 89.4%   86.6% 
                              
Change in earnings by trial (scaled by 20)                         
    Regression coefficient 0.025 0.046 -0.058 -0.001 0.013 0.007 0.077 0.079 0.062 0.071 0.103 0.001   0.035 
    Standard error 0.036 0.065 0.05 0.050 0.050 0.047 0.042† 0.045† 0.033† 0.043† 0.047* 0.026   0.013** 
    % Positive Learning 45% 50% 45% 55% 60% 45% 75% 65% 65% 65% 80% 45%   58% 

Table 1. Mean empirical and Bayesian earnings, as well as empirical earnings as a proportion of Bayesian earnings, by condition and 
quintile (set of 4 trials). Also shown are random-effects linear regression coefficients of earnings change by trial, and percentage of 
participants with improving earnings. Data by quintile and trial are re-scaled to facilitate comparison with overall earnings. † p < .10; 
* p < .05; ** p < .01 
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   Condition     

d 1.5 1.5 1.5 1.5 3 3 3 3 9 9 9 9   

q .02 .05 .10 .20 .02 .05 .10 .20 .02 .05 .10 .20 Overall 

Mean absolute deviation 
from Bayesian (MAD) 

                           

                           
                             

    Overall 0.094 0.171 0.233 0.227 0.107 0.152 0.160 0.215 0.062 0.118 0.136 0.112 0.149

    Standard Deviation 0.076 0.102 0.112 0.115 0.114 0.108 0.107 0.140 0.091 0.119 0.166 0.116 0.127

                             

    Quintile 1 0.100 0.163 0.230 0.230 0.098 0.168 0.172 0.254 0.095 0.140 0.151 0.128 0.161

    Quintile 2 0.096 0.173 0.236 0.222 0.136 0.143 0.168 0.226 0.052 0.110 0.153 0.108 0.152

    Quintile 3 0.092 0.173 0.240 0.227 0.103 0.147 0.152 0.213 0.053 0.128 0.148 0.115 0.149

    Quintile 4 0.094 0.174 0.230 0.233 0.087 0.143 0.162 0.188 0.049 0.108 0.131 0.106 0.142

    Quintile 5 0.086 0.175 0.231 0.224 0.113 0.161 0.144 0.194 0.060 0.105 0.096 0.105 0.141

                             

Change in MAD by trial                            
                             

    Regression coefficient -0.00092 0.00047 -0.00022 -0.00005 -0.00067 -0.00041 -0.00147 -0.00348 -0.00168 -0.00205 -0.00354 -0.00131 -0.0013

    Standard error 0.00063 0.00073 0.00069 0.00074 0.00099 0.000850.00077+ 0.00087*** 0.00077*0.00097* 0.00129** 0.00062*  0.00024***

    % Positive Learning 60% 45% 55% 50% 60% 55% 70% 65% 55% 70% 70% 55% 59%

 

Table 2: Mean absolute deviations (MADs) between empirical judgments and Bayesian judgments, by quintile and overall. Also, 
random-effects linear regression coefficients of MAD change by trial and percentage of participants with improving MADs. † p < .10; 
* p < .05; ** p < .01;*** p < .001 
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  q = .02 q = .05 q = .10 q = .20 

Entropy 
d = 1.5 1.546 2.434 2.769 2.737 
d = 3 1.499 2.386 2.479 2.465 
d = 9 0.810 1.365 1.266 1.343 

      

Feedback Inconsistency 
d = 1.5 0.742 0.825 0.825 0.821 
d = 3 0.767 0.750 0.625 0.721 
d = 9 0.421 0.475 0.413 0.408 

 
Table 3. Entropy (uniformity of the distribution of Bayesian judgments) and feedback 
inconsistency (proportion of new blue signals followed by a red signal) by condition. 
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(1) (2) (3) (4) (5) (6) 
Initial Performance -0.086 -0.101 -0.293 

[0.142] [0.060] [0.085]**
d -0.003 -0.003 

[0.002] [0.002] 
q -0.084 -0.008 

[0.082] [0.152] 
d×q 0.009 0.002 

[0.015] [0.019] 
Feedback Inconsistency 0.046 0.061 

[0.018]* [0.019]* 
Entropy 0.008 0.027 

[0.005] [0.007]**
Constant 0.005 -0.043 -0.027 0.014 -0.036 -0.018 

[0.009] [0.012]** [0.011]* [0.019] [0.012]* [0.008] 

R2 0.42 0.40 0.17 0.45 0.54 0.64 

Adjusted R2 0.21 0.34 0.08 0.14 0.44 0.56 
 
Table 4. Regressions of the linear learning coefficient on system variables and psychological 
variables, controlling for initial performance or not. More negative coefficients indicate greater 
learning. 
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Period Period Period 

# d q 1 2 3 4 5 6 7 8 9 10 Shift # d q 1 2 3 4 5 6 7 8 9 # Shift # d q 1 2 3 4 5 6 7 8 9 # Shift

1 1.5 .02 1 1 0 0 0 0 0 1 0 0 - 1 3 .02 0 0 1 0 1 0 1 0 0 1 - 1 9 .02 0 0 0 0 0 0 0 0 0 0 - 

2 1.5 .02 0 1 1 0 0 1 0 0 1 1 - 2 3 .02 0 1 1 1 0 0 1 1 1 1 2 2 9 .02 0 0 0 0 0 0 0 0 0 1 - 

3 1.5 .02 0 0 0 0 0 0 0 0 0 0 - 3 3 .02 0 1 1 0 0 0 0 0 0 0 - 3 9 .02 0 0 0 0 0 0 0 0 0 0 - 

4 1.5 .02 1 0 0 0 1 1 1 1 0 0 5 4 3 .02 0 0 0 0 0 1 0 0 0 0 - 4 9 .02 0 0 0 0 0 0 1 0 0 0 - 

5 1.5 .02 1 0 1 1 0 0 0 1 0 0 - 5 3 .02 0 0 0 1 0 0 0 0 1 1 - 5 9 .02 1 0 0 0 0 0 0 0 0 0 - 

6 1.5 .02 0 0 0 1 0 1 1 1 0 1 - 6 3 .02 0 0 0 0 0 1 0 0 0 0 - 6 9 .02 0 0 0 0 1 1 1 1 1 1 5 

7 1.5 .02 0 0 1 0 0 0 1 1 0 0 - 7 3 .02 0 1 0 0 0 0 0 0 0 0 - 7 9 .02 0 0 0 0 0 0 0 0 0 0 - 

8 1.5 .02 1 1 0 0 1 1 0 1 1 1 - 8 3 .02 0 0 0 0 0 0 0 1 0 1 - 8 9 .02 0 0 0 0 0 0 0 0 0 0 - 

9 1.5 .02 0 0 0 0 0 0 0 0 0 1 - 9 3 .02 0 0 1 1 1 1 1 0 1 0 2 9 9 .02 0 0 0 0 0 0 0 1 0 0 - 

10 1.5 .02 0 0 1 0 0 0 0 0 0 0 - 10 3 .02 1 1 0 0 0 0 0 1 1 1 - 10 9 .02 1 0 0 0 0 0 1 1 0 1 7 

11 1.5 .02 1 0 0 0 1 1 0 0 0 1 - 11 3 .02 0 0 1 1 0 0 0 0 0 0 - 11 9 .02 0 0 0 0 0 0 0 0 0 0 - 

12 1.5 .02 0 0 0 1 1 0 0 1 1 0 - 12 3 .02 0 1 1 1 0 0 1 1 0 1 2 12 9 .02 1 1 1 0 1 0 1 0 1 1 1 

13 1.5 .02 1 1 1 0 0 0 1 1 1 0 - 13 3 .02 0 0 0 0 0 1 0 0 1 1 8 13 9 .02 0 0 0 0 0 0 1 0 0 0 - 

14 1.5 .02 0 1 0 1 1 0 0 1 0 0 - 14 3 .02 0 0 0 0 0 0 0 1 0 0 - 14 9 .02 0 0 0 0 0 0 0 0 0 0 - 

15 1.5 .02 1 0 1 1 1 1 0 0 1 1 - 15 3 .02 0 0 0 0 0 0 0 0 0 1 - 15 9 .02 0 0 0 0 0 0 1 1 0 0 - 

16 1.5 .02 1 1 0 0 1 0 0 0 0 0 - 16 3 .02 0 1 0 0 0 1 0 0 0 1 - 16 9 .02 0 0 0 0 0 1 1 1 1 1 6 

17 1.5 .02 0 0 1 0 0 1 0 1 1 1 10 17 3 .02 0 1 1 0 0 0 0 0 0 0 - 17 9 .02 0 0 1 1 1 1 1 1 1 1 3 

18 1.5 .02 0 1 0 0 1 0 0 0 0 1 - 18 3 .02 0 1 0 0 1 0 1 0 0 0 - 18 9 .02 0 0 0 0 0 1 0 0 0 0 - 

19 1.5 .02 0 0 0 1 0 0 1 0 0 1 - 19 3 .02 1 0 0 1 0 1 1 1 0 0 - 19 9 .02 0 0 0 0 0 0 0 0 0 0 - 

20 1.5 .02 0 0 0 0 0 1 1 0 0 1 - 20 3 .02 1 0 0 1 0 0 1 0 0 1 10 20 9 .02 0 0 1 0 0 0 0 0 0 0 - 

1 1.5 .05 1 1 1 0 0 1 1 0 1 1 2 1 3 .05 1 1 1 0 0 0 0 0 0 1 - 1 9 .05 0 0 0 0 0 0 0 0 0 1 9 

2 1.5 .05 1 0 0 0 1 0 0 0 1 1 - 2 3 .05 0 0 0 1 1 1 1 1 1 1 4 2 9 .05 0 1 0 0 0 1 1 1 1 1 6 

3 1.5 .05 0 1 1 0 0 1 0 1 0 0 - 3 3 .05 1 0 0 0 0 1 1 1 1 1 4 3 9 .05 0 1 0 0 0 0 0 1 1 1 8 

4 1.5 .05 0 0 1 1 1 0 1 0 0 0 5 4 3 .05 0 0 1 1 0 0 1 0 0 0 - 4 9 .05 0 1 0 0 0 1 1 0 1 1 2 

5 1.5 .05 1 0 1 1 1 1 0 1 1 1 9 5 3 .05 0 0 0 0 0 1 0 0 1 0 - 5 9 .05 1 0 0 0 0 0 1 1 0 1 7 

6 1.5 .05 1 1 1 0 1 0 0 1 0 1 - 6 3 .05 0 1 0 0 1 0 1 1 0 0 - 6 9 .05 0 0 0 0 0 0 1 1 1 1 7 

7 1.5 .05 0 0 1 0 0 1 0 1 1 0 - 7 3 .05 0 0 0 0 0 0 1 1 0 0 - 7 9 .05 0 0 0 0 1 0 0 0 0 0 - 

8 1.5 .05 0 0 1 1 0 1 0 1 1 0 - 8 3 .05 0 0 0 1 0 0 1 0 1 0 - 8 9 .05 0 1 0 0 0 0 0 0 1 0 - 

9 1.5 .05 0 0 0 1 0 1 0 0 0 0 4 9 3 .05 1 1 1 1 1 1 0 0 0 0 1 9 9 .05 0 0 0 0 0 0 0 0 0 0 - 

10 1.5 .05 1 1 0 1 0 1 0 0 1 0 - 10 3 .05 0 1 0 0 0 0 1 0 1 1 6 10 9 .05 0 0 0 0 1 1 1 0 1 1 5 

11 1.5 .05 0 0 1 0 1 0 0 0 1 1 - 11 3 .05 0 0 0 1 0 0 0 0 0 0 - 11 9 .05 0 1 0 1 1 1 1 1 0 1 4 

12 1.5 .05 0 1 1 0 0 1 0 1 1 0 - 12 3 .05 1 1 1 1 1 1 1 1 0 1 1 12 9 .05 0 0 0 0 0 0 0 0 0 0 - 

13 1.5 .05 0 1 1 1 0 1 1 1 0 1 8 13 3 .05 0 0 0 0 0 0 0 0 1 0 - 13 9 .05 0 1 0 0 0 0 0 0 0 0 - 

14 1.5 .05 0 0 1 1 1 0 1 0 0 1 - 14 3 .05 0 0 0 0 0 0 0 0 1 1 - 14 9 .05 0 0 0 0 0 1 0 0 0 0 - 

15 1.5 .05 1 0 0 0 0 0 1 0 1 1 - 15 3 .05 1 0 1 1 0 0 0 0 0 1 - 15 9 .05 0 1 1 1 1 1 1 1 1 1 2 

16 1.5 .05 0 1 1 0 0 1 1 0 0 1 3 16 3 .05 0 0 1 1 0 1 1 0 0 0 - 16 9 .05 0 0 0 0 0 0 0 0 0 0 - 

17 1.5 .05 1 1 0 0 0 0 0 0 0 0 - 17 3 .05 0 1 1 0 0 1 1 0 0 1 - 17 9 .05 0 0 0 0 0 0 0 0 0 0 - 

18 1.5 .05 0 1 0 1 0 0 0 1 0 1 - 18 3 .05 0 0 0 1 1 0 0 0 1 0 - 18 9 .05 0 1 1 0 0 0 0 0 0 0 - 

19 1.5 .05 0 1 0 1 1 0 0 0 0 1 - 19 3 .05 0 1 0 1 1 0 1 1 0 1 4 19 9 .05 0 0 0 1 0 1 0 1 0 0 - 

20 1.5 .05 0 0 1 1 0 1 1 0 1 0 4 20 3 .05 0 1 0 0 1 0 1 1 0 1 6 20 9 .05 0 0 0 0 0 0 0 0 0 1 10 
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1 1.5 .10 0 0 0 0 1 1 1 1 1 1 - 1 3 .10 1 0 0 0 0 0 1 0 0 0 - 1 9 .10 0 0 0 0 0 0 0 1 1 1 8 

2 1.5 .10 0 1 0 0 0 0 1 0 1 1 4 2 3 .10 0 0 1 0 1 1 0 1 0 0 - 2 9 .10 0 0 0 0 0 0 0 0 0 0 - 

3 1.5 .10 0 0 1 0 1 0 0 1 0 1 - 3 3 .10 0 1 0 0 0 0 1 0 0 0 - 3 9 .10 0 1 1 1 0 1 0 1 0 1 2 

4 1.5 .10 0 1 1 0 0 1 1 1 0 1 4 4 3 .10 1 1 1 1 1 1 1 1 1 1 2 4 9 .10 0 0 0 1 1 1 0 1 1 1 4 

5 1.5 .10 1 0 0 1 0 0 1 0 0 0 - 5 3 .10 1 0 0 1 1 1 1 1 1 1 3 5 9 .10 0 1 1 1 1 1 0 1 1 0 2 

6 1.5 .10 1 0 0 0 0 1 1 0 1 0 7 6 3 .10 0 1 1 0 1 1 1 0 1 1 2 6 9 .10 1 1 1 1 1 1 1 1 1 0 1 

7 1.5 .10 1 0 0 1 1 0 1 1 0 1 - 7 3 .10 1 1 1 1 1 0 1 0 0 1 1 7 9 .10 0 0 0 0 0 1 0 0 0 0 - 

8 1.5 .10 1 1 0 1 1 1 1 0 1 0 1 8 3 .10 1 1 0 0 0 1 0 1 1 0 - 8 9 .10 0 0 0 0 0 0 0 0 0 0 - 

9 1.5 .10 0 1 0 1 0 0 1 0 0 1 - 9 3 .10 0 0 1 1 1 1 1 0 1 1 2 9 9 .10 0 0 0 0 1 1 1 1 1 1 3 

10 1.5 .10 0 1 0 1 0 0 1 1 1 0 - 10 3 .10 1 1 0 0 0 0 0 0 0 0 - 10 9 .10 0 1 0 0 0 1 1 1 1 1 7 

11 1.5 .10 0 1 0 1 0 1 1 1 0 0 4 11 3 .10 0 0 1 1 1 1 1 1 1 1 3 11 9 .10 1 1 1 1 1 1 1 1 1 1 2 

12 1.5 .10 1 1 1 0 0 0 0 1 0 1 8 12 3 .10 0 1 0 1 0 1 1 1 1 1 1 12 9 .10 0 0 0 0 0 0 0 0 1 1 9 

13 1.5 .10 0 0 0 0 0 1 0 0 0 1 10 13 3 .10 1 0 0 1 1 0 1 1 1 0 - 13 9 .10 0 0 0 0 0 1 0 0 0 0 - 

14 1.5 .10 0 1 1 1 1 1 1 1 1 0 2 14 3 .10 0 0 0 1 1 1 1 1 1 1 3 14 9 .10 0 0 0 1 1 1 1 1 1 0 4 

15 1.5 .10 1 0 1 0 0 1 1 0 1 0 - 15 3 .10 0 0 0 1 0 0 0 0 0 0 - 15 9 .10 0 1 1 1 1 1 1 1 1 1 1 

16 1.5 .10 1 1 0 0 1 0 0 0 1 0 7 16 3 .10 0 1 1 1 1 0 1 1 1 1 3 16 9 .10 0 1 1 1 1 1 1 1 1 1 2 

17 1.5 .10 1 0 0 0 1 1 0 1 0 1 8 17 3 .10 0 0 1 1 1 1 1 0 1 0 4 17 9 .10 0 1 0 0 0 0 0 0 0 1 - 

18 1.5 .10 0 1 1 0 0 1 0 0 1 0 6 18 3 .10 0 0 0 1 1 1 1 1 1 0 5 18 9 .10 0 0 0 0 0 0 0 0 0 0 - 

19 1.5 .10 1 0 1 0 1 0 1 1 0 0 2 19 3 .10 0 0 0 0 1 1 1 1 1 1 6 19 9 .10 0 0 1 0 0 0 0 0 1 0 - 

20 1.5 .10 0 0 0 1 1 0 1 1 1 0 8 20 3 .10 0 0 0 0 0 0 0 0 1 1 9 20 9 .10 0 0 0 0 0 0 0 0 0 0 - 

1 1.5 .20 1 0 1 1 0 0 0 1 0 1 1 1 3 .20 0 0 1 0 0 0 0 0 1 0 - 1 9 .20 0 0 0 1 0 0 0 0 0 0 - 

2 1.5 .20 0 0 1 0 0 0 1 1 1 0 3 2 3 .20 1 0 0 1 0 1 1 1 1 0 3 2 9 .20 0 0 1 0 0 1 0 1 1 1 6 

3 1.5 .20 1 0 0 1 0 1 0 0 1 1 4 3 3 .20 1 0 1 1 1 1 0 0 0 1 1 3 9 .20 0 0 0 1 0 0 1 0 0 0 - 

4 1.5 .20 1 1 0 1 0 1 1 1 1 0 3 4 3 .20 1 0 0 0 0 1 1 1 1 0 4 4 9 .20 0 0 1 1 1 1 1 1 1 1 4 

5 1.5 .20 1 0 1 0 0 1 0 0 0 0 9 5 3 .20 1 1 0 0 1 1 0 1 1 1 5 5 9 .20 0 1 1 1 1 1 1 0 0 1 2 

6 1.5 .20 0 0 1 0 1 0 1 0 1 1 2 6 3 .20 0 0 1 0 0 1 0 1 0 1 7 6 9 .20 0 1 1 1 1 0 0 1 1 1 2 

7 1.5 .20 0 1 1 1 1 1 1 0 1 0 5 7 3 .20 1 1 1 1 0 1 1 1 0 1 1 7 9 .20 1 1 1 1 1 1 1 1 0 1 1 

8 1.5 .20 0 0 1 1 1 0 1 1 0 1 2 8 3 .20 0 1 0 1 1 1 1 1 1 1 2 8 9 .20 0 0 0 1 1 1 1 1 1 1 2 

9 1.5 .20 0 0 1 1 0 0 1 1 0 1 2 9 3 .20 0 1 1 0 0 1 1 1 0 0 1 9 9 .20 0 0 1 0 0 0 0 0 0 0 - 

10 1.5 .20 0 0 0 1 0 1 1 1 0 1 4 10 3 .20 1 1 1 1 1 1 1 1 1 0 2 10 9 .20 0 0 0 0 0 0 1 1 1 1 7 

11 1.5 .20 1 1 0 1 1 0 1 1 0 0 4 11 3 .20 0 0 1 1 0 0 1 0 1 1 1 11 9 .20 0 1 1 0 1 1 1 1 1 1 2 

12 1.5 .20 0 1 1 1 0 0 1 0 1 1 3 12 3 .20 0 1 1 0 1 0 1 0 0 1 - 12 9 .20 0 0 0 1 1 1 1 1 1 1 3 

13 1.5 .20 0 1 1 1 1 1 0 1 0 1 1 13 3 .20 1 1 1 1 1 1 0 1 1 0 1 13 9 .20 0 1 1 1 1 1 0 0 1 1 2 

14 1.5 .20 0 0 1 0 0 1 1 1 0 1 10 14 3 .20 0 0 0 0 1 1 1 0 1 0 5 14 9 .20 0 0 1 1 1 1 1 1 1 1 3 

15 1.5 .20 0 0 0 1 0 1 0 1 0 1 1 15 3 .20 0 1 0 1 1 1 1 1 1 1 4 15 9 .20 0 0 0 0 0 0 0 1 1 0 8 

16 1.5 .20 0 1 0 0 0 0 0 1 0 1 1 16 3 .20 1 0 0 0 0 0 0 0 1 1 9 16 9 .20 1 1 1 0 1 1 1 1 1 1 1 

17 1.5 .20 0 1 1 0 1 0 0 0 1 0 1 17 3 .20 1 0 1 0 1 1 0 0 1 1 3 17 9 .20 0 0 0 1 0 0 0 1 1 1 8 

18 1.5 .20 1 0 0 1 0 1 0 1 1 1 9 18 3 .20 0 0 1 1 0 0 1 1 1 1 2 18 9 .20 1 1 1 1 1 1 1 1 1 1 1 

19 1.5 .20 0 1 0 1 1 1 0 1 1 0 - 19 3 .20 0 1 1 1 0 1 1 1 1 1 3 19 9 .20 0 1 1 1 1 1 1 1 1 1 4 

20 1.5 .20 0 0 0 0 1 1 0 0 1 0 - 20 3 .20 0 0 0 0 1 1 1 1 1 1 5 20 9 .20 0 0 0 0 0 0 1 1 1 1 8 

Table A1. Stimuli from the learning experiment (0 indicates blue ball, 1 indicates red ball) and period in 
which regime shifted to blue, if ever. 


