
Risk Sharing and Group Decision Making
Author(s): Jehoshua Eliashberg and Robert L. Winkler
Source: Management Science, Vol. 27, No. 11 (Nov., 1981), pp. 1221-1235
Published by: INFORMS
Stable URL: http://www.jstor.org/stable/2631212 .

Accessed: 15/04/2013 10:29

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

INFORMS is collaborating with JSTOR to digitize, preserve and extend access to Management Science.

http://www.jstor.org 

This content downloaded from 128.91.110.146 on Mon, 15 Apr 2013 10:29:41 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=informs
http://www.jstor.org/stable/2631212?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


MANAGEMENT SCIENCE 
Vol. 27, No. I1, November 1981 

Printed in U.S.A. 

RISK SHARING AND GROUP DECISION MAKING* 

JEHOSHUA ELIASHBERGt AND ROBERT L. WINKLERI 
In a decision-making problem where a group will receive an uncertain payoff which must be 

divided among the members of the group, the ultimate payoff of interest is the vector of 
individual payoffs received by the members of the group. In this paper, preferences are 
quantified in terms of cardinal utility functions for such vectors of payoffs. These utility 
functions can represent preferences concerning "equitable" and "inequitable" vectors of 
payoffs as well as attitudes toward risk. The individual utility functions are aggregated to form 
a group utility function for the vector of payoffs, and this latter function is, in turn, used to 
generate a group utility function for the overall group payoff and a sharing rule for dividing 
the group payoff into individual payoffs. The resulting group decisions are Pareto optimal in 
utility space. Properties of the sharing rule and the group utility function are investigated for 
additive and multilinear group utility functions. 
(GROUP DECISION MAKING; RISK SHARING; MULTIATTRIBUTE UTILITY) 

1. Introduction 

This paper considers the situation of a group facing a decision-making problem 
under uncertainty. The group must choose an action and will receive a payoff which 
depends on the action taken and on the outcomes of certain events or variables. After 
the group payoff is received, it must be divided among the members of the group. The 
ultimate interest of the group centers on the vector of payoffs to the individual 
members, not on the group payoff itself. 

An example of the type of situation that is of interest here is a group of individuals 
who form a partnership and proceed to conduct business. Many decisions must be 
made by the partnership, and these decisions will affect the income of the partnership 
and hence of the partners themselves. Different partners may have different attitudes 
toward risk and different preferences concerning the division of the partnership's 
income. In this paper we present a group decision-making model that takes into 
account such attitudes and preferences. 

The problem of group decision making has received a great deal of attention from 
researchers in many disciplines. The concern in this paper is with normative models of 
group decision making, as opposed to behavioral aspects involving interactions within 
the group. Much of the past research involving normative models of decision making 
has focused upon the area of social choice, and a dominant force in this area has been 
the early work of Arrow [1]. Arrow's "Impossibility Theorem" shows that given 
orderings of consequences by a number of individuals, no group ordering of these 
consequences exists that satisfies a set of seemingly reasonable behavioral assumptions. 
Good summaries of social choice theory are provided in the books of Sen [16] and 
Fishburn [3]. 
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1222 JEHOSHUA ELIASHBERG AND ROBERT L. WINKLER 

Working with cardinal utility functions rather than ordinal utility functions, Har- 
sanyi [4] presents conditions under which a group cardinal utility function can be 
expressed as a linear combination of the utility functions of the individuals comprising 
the group. Keeney [7] provides alternate conditions leading to a group utility function. 
The interpersonal comparisons of utility necessary to arrive at a group utility function 
are of particular interest, and such comparisons are discussed in Harsanyi [6]. 

Wilson [18] uses Pareto optimality as a decision-making criterion and considers the 
existence and construction of a group utility function when each individual cares only 
about his own individual payoff. Raiffa [15] discusses bargaining and arbitration as 
procedures for arriving at a single strategy from a Pareto-optimal set. These and other 
aspects of group decision making are covered by LaValle [12], who illustrates these 
concepts quite lucidly with a series of examples. LaValle also proposes the use of an 
"allocation function" as an arbitration procedure for the selection of a Pareto-optimal 
solution. 

The role of equity (the consideration of the "fairness" of different impacts on 
different individuals) in group decision-making models has received particular atten- 
tion, and models have been criticized on the basis of not allowing for equity. For 
example, see Kirkwood [10], Keeney and Kirkwood [8], Bodily [2], and Keeney and 
Raiffa [9]. An important conflict between equity and Pareto optimality is discussed in 
Kirkwood [11]. However, although the models used in this previous work are general 
enough to allow the consideration of individual and group cardinal utility functions 
for vectors of payoffs to individual members of a group, the analysis and discussion 
have focused upon individual and group cardinal utility functions for the group payoff, 
or consequence, not for the payoffs to individual members. 

The objective of this paper is to present an approach for modeling group decision- 
making problems. Preferences are considered in terms of cardinal utilities for entire 
vectors of payoffs to individual members of the group. Thus, considerations such as 
equity can be taken into account. The individual utility functions are aggregated to 
form a group utility function for the vector of payoffs, and this latter function is, in 
turn, used to generate a group utility function for the group payoff and a sharing rule 
for dividing the group payoff into individual payoffs. Properties of the sharing rule and 
the group utility function are investigated under different assumptions concerning the 
form of the group utility function. 

The group decision-making model is presented in ?2. Cases in which the group 
utility function for the vector of individual payoffs is additive and multilinear are 
considered in ??3 and 4, respectively. Some general results are obtained for the 
additive and multilinear cases, for which existence axioms have been developed 
(Keeney and Raiffa [9]), and examples are given to illustrate these cases. Some 
concluding remarks are presented in ?5. 

The discussion here is couched in terms of a group making a decision. The 
methodology also applies to a single decision maker representing a group, as long as 
the payoff will be distributed among the members of the group. The decision maker 
might have the group members assess their individual utility functions, or, especially in 
the case of a large group, might directly assess a "group" utility function for the vector 
of payoffs, possibly with some guidance from the group members. Thus, the approach 
may have potential implications not just for situations such as decisions made by a 
partnership or other small group, but also for situations such as decisions made by a 
public official with payoffs (monetary or otherwise) that will be received by members 
of the general public. 
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RISK SHARING AND GROUP DECISION MAKING 1223 

2. A Group Decision-Making Model 

Suppose that a group of n members faces- a decision-making problem. The group 
must collectively choose an action a from a set of alternatives A, and y represents the 
payoff to the group as a result of the action. The payoff y could simply be a monetary 
payoff, or it could be multidimensional in nature. 

The group members are uncertain about the payoff that will be obtained, and for 
each a E A, the uncertainty is represented in terms of a probability distribution for y 
given that a is chosen. In order to focus on utility-related aspects of the group 
decision-making problem, we assume for the purposes of this paper that the group 
members agree on the probability distributions of interest. In some situations, for 
instance, the probability mechanism generating the payoffs may be well known and 
easy to agree upon, as in the case of a group combining its resources to play a game of 
chance at a casino. When the group members have different information, they might 
pool all of their information and base their probabilities on the pooled information. 
Alternatively, the group members may have only limited knowledge upon which to 
base their probabilities and may therefore obtain probabilities from an outside expert. 
If each member's state of information is diffuse relative to the information provided by 
the expert, then the group might agree to use the expert's probabilities in the group 
decision-making problem. 

Once a is chosen and y is obtained, y must be divided among the group members. 
For convenience, we assume that y is infinitely divisible, although constraints on the 
divisibility of y could easily be incorporated into the model. The payoff to member i is 
denoted by xi, and x = (x,, . . . , xn) represents the vector of payoffs to the n group 
members. For a given payoff y, any vector satisfying y = En>= Ixi is attainable. 

An important aspect of the model developed in this paper is the way in which the 
preferences of the individual group members are brought into the model. We assume 
that the group payoff y has no intrinsic "value" per se to the individuals comprising 
the group, but that its "value" is indirect in the sense that it can be divided into 
individual payoffs xl, . .. ., xn. Thus, the preferences of interest are preferences con- 
cerning xl, . .. , xn, not preferences concerning y. Moreover, we are interested in each 
member's preferences concerning the entire vector x, not just the member's preferences 
for his or her own payoff. This enables each individual to express feelings about his or 
her own payoff in relation to the payoffs received by the other n - 1 group members. 
Some members might strongly prefer an equal division of y, while others might feel 
that certain unequal divisions are "fairer" in some sense (or are preferred even if they 
are "unfair"). 

We assume that each group member assesses a cardinal utility function (e.g., von 
Neumann and Morgenstern [17]) for x. Member i's utility function is denoted by ui(x). 
These utility functions can be assessed by considering preferences among lotteries 
involving x. Since x is multidimensional, the utility assessment procedures discussed in 
Keeney and Raiffa [9] are relevant here. In particular, it is desirable to consider the 
applicability of various preferential assumptions (e.g., additive or mutual utility inde- 
pendence) that may simplify the form of the utility function. Examples involving such 
assumptions are presented in ??3 and 4. 

Given the n individual utility functions u,(x), . . ., un(x), the next step is to form a 
group utility function uG(x). Expressing UG as a function of the individual utility 
functions necessitates the consideration of lotteries involving u1, ... , un. Harsanyi [4] 
shows that if certain conditions are satisfied, UG can be expressed as a linear 
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1224 JEHOSHUA ELIASHBERG AND ROBERT L. WINKLER 

combination (with positive coefficients) of the individual utility functions. Keeney and 
Kirkwood [8] and Keeney and Raiffa [9] discuss alternate sets of conditions that lead 
to a group utility function that is a linear combination of u1, . . ., un as well as 
conditions that lead to more general forms for the group utility function. Although our 
model does not place any restriction on the aggregation rule that is used to determine 
UG from u1, ... , un, we find the linear aggregation rule very appealing for reasons 
discussed later in this section. 

The formation of uG(x) provides the group with a utility function, but it is a function 
of x, whereas the payoff to the group from the group decision-making problem is a 
single value y. The choice of an action a from the set A can be thought of as the 
group's external decision-making problem, and the division of y into individual 
payoffs xl, . . . , xn can be thought of as the group's internal decision-making problem. 
Obviously, the group's external problem may be affected by the internal problem, 
because the desirability of an external payoff y depends on how the payoff is to be 
shared. In the model developed here, each group member's preferences for various 
sharing rules have been incorporated into the model in terms of the individual utility 
functions for x. Furthermore, the agreement of the group members concerning the 
probabilities of events or variables of interest removes the possibility of side bets 
involving these events or variables. Also, if the group has to make a number of 
decisions over time, considering the internal and external problems simultaneously is 
likely to lead to a complex, intractable model. As a result, it seems reasonable to 
separate the internal and external problems, and we treat the internal problem as a 
constrained maximization problem: 

UG(y) = maxUG(X) 
n 

subject to xi =y. (1) 
i = 1 

Geometrically, for a given y we consider the hyperplane En= Xi = y in (x,IuG)-space 
and find the point on that hyperplane for which UG is maximized. 

The x at which UG is maximized for a given y is denoted by x*(y), so that 
UG(Y) = UG(X*(Y)). In some cases x*(y) may not be unique, but the specific group 
utility functions to be considered here yield unique solutions. If x*(y) is considered as 
a function of y, it traces out the "optimal" sharing rule for all values of y. For example, 
if x*(y) follows the line for which xl = x2= . = xn, then the group will always 
divide the payoff equally; if it follows the xi-axis, then member i will always receive 
the entire payoff; and so on. Geometrically, x*(y) represents a "ridge" in the graph of 
UG(x) as a function of x. 

At different steps in the process described here, two different types of tradeoffs are 
considered. First, in the initial assessment of u1, ... I, un, the group members must 
individually consider tradeoffs among the dimensions of x. Second, in the aggregation 
of u1, . .. , un to form UG, tradeoffs among the dimensions of u = (u1, . . ., un) must be 
considered. In the second step, a linear aggregation rule, 

n 

uG(X) = 2 X1u1(x) (2) 
i = 1 

with Xi > 0 for i = 1, ... , n, is very appealing in the sense that it is the only rule which 
guarantees that the resulting decision under uncertainty will be Pareto optimal in 
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RISK SHARING AND GROUP DECISION MAKING 1225 

u-space, but linear rules have been criticized on the grounds that they do not take into 
account equity (the consideration of the "fairness" of different impacts on different 
group members). For a discussion of this "conflict" between Pareto optimality and 
equity, see Kirkwood [ 11]. When the individual and group utility functions are 
functions of the group payoff y, as has generally been the case in the literature, the 
aggregation step provides the only opportunity for tradeoffs among different members 
of the group, and hence matters such as equity, to be considered. As a result, equity 
and Pareto optimality must both be considered in u-space. 

Because the model developed here allows for the consideration of two types of 
tradeoffs, it is possible to avoid a conflict between Pareto optimality and equity. Pareto 
optimality involves u-space, and the use of the linear aggregation rule in (2) guarantees 
Pareto-optimal decisions. Therefore, although our general model does not restrict the 
aggregation rule, we invoke the assumption of a linear aggregation rule for the rest of 
this paper because of the desirability of Pareto optimality. As for equity, it seems to us 
that equity is best considered in terms of x-space rather than u-space, and the group 
members' feelings about equity should be reflected in uG(x). An important advantage 
of assessing utilities in terms of x is that it enables the group to take into account 
equity considerations without sacrificing Pareto optimality. 

3. Additive Group Utility Functions 

As noted in ?2, it is desirable to consider the applicability of various preferential 
assumptions that may simplify the form of the utility function (of an individual or of 
the group) for x. The most commonly encountered type of multiattribute utility 
function in decision analysis applications is an additive form, and additive group 
utility functions are studied in this section. In ?4, multilinear group utility functions, 
which have the advantage of being able to reflect equity considerations, are investi- 
gated. 

The utility function of member i for x is said to be additive if it can be expressed in 
the form 

n 

ui(x)= I kui(x1j), (3) 
j=l 

where u, is a conditional utility function of member i for xj (which is assumed to be a 
monotonic, increasing function of xj) and k. is a positive scaling constant for 
i, j= 1, . .. , n. A utility function for x is additive if and only if the elements of x are 
additive independent (Keeney and Raiff a [9]), which means that preferences over 
lotteries involving x depend only on their marginal probability distributions for the 
elements of x and not on their joint probability distributions. 

We would like to focus on the implications of group utility functions UG that can be 
expressed in additive form: 

n 

UG (X) = E kGjuGj(Xj), (4) 
j=1 

where UGj can be interpreted as a cardinal group utility function for xj and kGj > 0 for 
j= 1, ... , n. Therefore, a few words about how such a UG might arise from the 
individual utility functions u1, . . . , un are in order. The most reasonable scenario 
leading to an additive UG is one in which all of the individual utility functions are 
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1226 JEHOSHUA ELIASHBERG AND ROBERT L. WINKLER 

themselves additive. (Other scenarios could conceivably lead to an additive UG but are 
highly unlikely because they would require the fortuitous circumstance that the 
nonadditive terms from different individuals' utility functions cancel each other out!) 
One of Harsanyi's [4] conditions leading to a linear aggregation rule is that if every 
individual is indifferent between certain lotteries, the group as a whole should be 
indifferent between the lotteries. Thus, indifference among lotteries with different joint 
probabilities but the same marginal probabilities carries over from the individuals to 
the group. Keeney and Raiffa [9] discuss axioms that can be checked to see if an 
additive form is reasonable. Also, Harsanyi [5] argues in favor of additive group utility 
functions from a utilitarian point of view. 

Formally, if ui is given by (3) for i = 1, . . . , n and if the linear aggregation rule in 
(2) is used to generate UG, then 

n n n 

UG14X)- E 2 XikijUi,(xj) = kGjuGj (xj), 
i=1 j=1 j=1 

where 
n n n 

kGj = Xik and uGj(Xj) = i kuy(xj) Xiky. 

In order to be able to interpret (and thus to assess more easily) the utility functions of 
interest here, we impose, without loss of generality, some scaling requirements. For 
each j, we can choose x0 and xi' such that xj1 is preferred to 9. For instance, if the 
set of possible values of xj is bounded, the best and worst possible values of xj can be 
used. Then we scale the utility functions such that 

UGj (Xj ) = ui(Xj ) = UG(X ) = Ui(x) = 0 (6) 

and 

UGj(Xj ) = UY(Xj ) = UG(X) = Ui(X+) = 1 (7) 

for i, j = 1, ... , n, where xo = (x4, ... , x,?) and x+ = (x,.. , x4+). Now (6) and 
(7), together with (3) and (4), imply that , = k1 = 1 for i= 1, .. ., n and J> lkG1 

-1. The scaling constant kIc equals u(xl, . . ., Xj-I,x j . x0), which can be 
assessed by determining the probability p that makes member i indifferent between 
(x, ... ., x l,x1+ l, ... , x,?) and a lottery yielding x+ with probability p and xo 
with probability 1 - p. Intuitively, kIc might be considered to represent the power or 
importance of member j in the group, as judged by member i. The same interpretation 
in terms of group preferences can be given to kGj. Also, the scaling restrictions imply 
that the sum of the coefficients of the linear aggregation function must be one: 

Ei=1Xj = 1. 
Next, we will characterize the optimal sharing rule and the group utility function for 

y when UG is additive. In order to look at the group's attitude toward risk, we assume 
that u,(xj) and UGj(xj) are twice differentiable for j = 1, . . . , n and we define the 
Pratt-Arrow risk aversion functions (Pratt [14]) 

r, (xi) =-u (xi) )/u4,(xi), (8) 

rGj ( Xj) = -UGj ( Xj) / UGj ( Xj) (9) 
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RISK SHARING AND GROUP DECISION MAKING 1227 

and 

rG(Y) = - U (Y)/ UG(Y) (10) 

where the primes denote differentiation. Here rij and rGj represent the risk aversion 
functions of member i and the group for the payoff to member.j, and rG represents the 
group's risk aversion function for the group payoff y. In the following two proposi- 
tions, we assume positive risk aversion functions, which implies risk averse behavior. 

PROPOSITION 3.1. If UG is additive with UGj twice differentiable and r., > 0 for 
j = 1, ..., n, then 

a x* (y) nJ 

=y [ rGj (xj (Y))] ( rGi (4,(Y))] )(1 

and 

rG (y) = l[rGi (x4 (Y)) ])( 12) 

A proof of the proposition is given in the Appendix. From (1 1), the rate of increase 
of memberj's share of y increases as rGj decreases with rGi held constant for] j i. That 
is, as the group becomes less risk averse with respect to xj, member j's "stake" in the 
group payoff y increases. Of course, as the examples presented later in this section will 
demonstrate, memberj may have to pay for this increased "stake" in y by making side 
payments to other group members. The second result in Proposition 3.1 shows how the 
group's risk aversion for y can be related to the group's risk aversion for the individual 
payoffs x,, . . . , xn. From (12), the group is less risk averse toward y than toward any 
individual xi, and the following proposition provides even stronger statements about 
rG(y). 

PROPOSITION 3.2. If ui is additive with u twice differentiable and r, > 0 for i, j 
=1, ..., n, then 

n- min { rGj (xj* (y))} < rG (y) < n lmax {rGj (xj* (y))} (13) 

and 

n min { r,(xj* (y))} < rG (y) < n -'max{ r,(xj* (y)}. (14) 
ij ij 

A proof is given in the Appendix. Proposition 3.2 indicates that not only is the group 
less risk averse toward y than toward any individual xi, but its risk aversion function 
for y is less than the largest rGj(xj*(y)) by a factor of 1/n. This suggests that groups 
consisting of very large numbers of risk-averse members should be approximately risk 
neutral, which can be attributed to the group members sharing the risk. In the special 
case of equally risk-averse members, with rG1 r for all], we have rG(y) = r(x1*(y)) 
/n, which clearly goes to zero as n increases. 

To illustrate group decision making with additive group utility functions, two 
examples with n = 2 will be considered. In the first example, the members' utility 
functions are identical with the possible exception of differences in scaling constants. 
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1228 JEHOSHUA ELIASHBERG AND ROBERT L. WINKLER 

Both conditional utility functions are exponential, implying constant risk aversion: 

ui(x) = kil( -e-clxl) + ki2(l - 
e-C2x2) for i = 1, 2, 

where cl > 0, c2 > 0, xI > 0, and x2 > 0. The group utility function for x is of the form 

UG(X) = kGI(l - ecixl) + kG2(l - ec2x2) 

with kGi = XIkIi + X2k2i for i = 1,2. Maximizing uG(x) under the constraint xl + x2 
- y yields 

X41(Y) = [c2/(cI + C2)]Y + (Cl + C2)11n(kGlCl/kG2C2) = qY + S 

and 

X2*(y) = [CA/(CI + C2)]Y - (Cl + C2)1ln(kGIcl/kG2c2) = (1 - q)y - s. 

Here q = C2/(c1 + C2) represents the proportion of y that member 1 receives, and 
S = (c1 + c2)- 1 ln(kG lcl/kG2c2) represents a side payment from member 2 to member 
1. Note that the proportional division of y depends only on the two risk aversion 
measures rG I(x (y)) = c1 and rG2(X2*(Y)) = C2, not on the scaling constants. From (1 1), 
the rate of increase of x4 asy increases should be cl -[(c1 + c2)/c1c2f 1 = c2/(cI + c2), 
which is consistent with the sharing rule just derived. The more risk averse member 
receives a smaller share of y but will be compensated by receiving a positive side 
payment unless the scaling constant for the less risk averse member is sufficiently large 
to overcome the difference in risk aversion coefficients. This side payment depends on 
the scaling constants as well as on the risk aversion coefficients, and the scaling 
constants might be thought of as an indication of the relative power of the group 
members. Raiffa [15] discusses risk sharing and obtains a sharing rule equivalent to 
that given here for an example involving exponential utility. However, he works with 
individual utilities u1(x1) and u2(x2) instead of multiattribute utilities, justifying the 
sharing rule solely on the basis of Pareto optimality. Thus, he determines a family of 
sharing rules and leaves the choice of a specific rule (i.e., a specific side payment in 
this example) to the two individuals. With the approach used here, the additive group 
utility representation and the scaling constants provide more structure for the determi- 
nation of a specific sharing rule. 

The group utility function for y in this example can be found by substituting xl(y) 
and x*(y) for xl and x2 in uG(x), and the result is 

UG(y) = 1 - (kGle -cS + kG2ec2s )e-cc2y/(c+c2) 

Thus, the group utility function for y is exponential with constant risk aversion 
coefficient rG(y) = cIc2/(c1 + c2), as we could have determined by using (12) to find 
rG(y). Also, from (13) or (14), we have min{c1,c2}/2 < cIc2/(cI + c2) < max{c1,c2} 
/2, which reduces in this case to the result that the more risk averse member receives 
less than half of y. Note that when cl = c2, rG(y) is exactly one-half the common risk 
aversion coefficient. When cl # c2, however, rG(y) is less than the average of cl/2 and 
c2/2 because the less risk averse member is taking on a larger share of the risk than is 
the more risk averse member. 

In our second example involving an additive group utility function, the members' 
utility functions differ in terms of the conditional utility functions as well as the scaling 
constants. Each member is risk averse with respect to his own payoff and risk neutral 
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RISK SHARING AND GROUP DECISION MAKING 1229 

with respect to the other member's payoff: 

ul(x) = kll[ax - (a, - )x 2] + k12x2 

and 

U2(X)= k21x1 + k22[a2x2 - (a2 -I)X2], 

where 1 < ai < 2 and 0 < xi < 1 for i = 1, 2. The risk aversion functions corresponding 
to the conditional utility function are 

r1(x1) = Lai(ai -x1)2 I-xj , r12(X2) = r21(X1) = 0, 

and 

r22(x2) = [a2(a2 - 1) /2 - X2 

The condition that 1 < ai < 2 guarantees that uii(xi) is increasing and risk averse on 
the unit interval. 

The group utility function for x in this example is of the form 

UG(X) = (X1kllal + X2k2I)xI - IXk1(a1-1)xl 

+ (X1k12 + 2k22a2)x2 - X2k22(a2-1)x2. 

Maximizing UG (X) under the constraint x I + x2 = y yields 

x _2k22(a2- l)y 
x (y) 

= XIkII(aI 
- 

1) + X2k22(a2 
- 

1) 

+ XIk12 + X2k22a2 
- 

X2k21 
- 

X,kl,al 
2[X1k11(1 - ai) + X2k22(l - a2)] 

= qy + s 

and 

*Xlkll(al- l)y 
x2(Y) Xlkll(al 

- 
1) + X2k22(a2 

- 
1) 

XIkI2 + X2k22a2 - X2k21 - Xlkllal 

2[X1k1(1 - ai) + X2k22( - a2)] 

= (1 - q)y - s, 

where q and s once again represent the proportion of y that member 1 receives and a 
side payment from member 2 to member 1. Here the division of y depends not just on 
al and a2, which are parameters of u1I and u22 (and hence of rlI and r22 as well), but 
also on the scaling constants kI1 and k22 and on the coefficients XI and X2 of the linear 
aggregation function. The proportion q increases as X2 increases relative to Xi, as k22 
increases relative to k11, and as a2 increases relative to a1. When X2 and k22 increase 
relative to X1 and k1 I, respectively, more weight is placed on u22 relative to u1 I, and this 
greater weight on risk aversion with respect to x2 leads to a smaller proportion of y for 
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member 2. Similarly, as a2 increases relative to al, u22 becomes more risk averse 
relative to u1I. 

When xl(y) and x*(y) are substituted into uG(x), the resulting group utility function 
for y is quadratic: 

UG(y) = ay2 + by + c, 

where 

a = -k,,(a, - I)q2 - k22(a2 - 1)(1 -q) 

and 

b = kl,al - 2k,,(al - I)qs + k2(1 - q) + k2jq 

+ k22a2(1 - q) + 2k22(a2 - 1)(1 - q)s 

(c is irrelevant for decision-making purposes). The risk aversion function correspond- 
ing to UG(y) is rG(y) = [-(b/2a) _ ]- 1, as compared with rGi(xi) = (-di - xi)- for 
i = 1,2, where d, = (Xlkllal + X2k21)/Xjkjj(1 - a,) and d2 = (Xjk12 + X2k22a2) 
/X2k22 - a2). 

The scaling constants and aggregation coefficients play an important role in this 
example, but they make the results somewhat difficult to interpret. Suppose that equal 
weights are used everywhere, so that X1, X2, k11, k12, k21, and k22 all equal one-half. 
Then q = (a2 - 1)/(al + a2 - 2) and s = (a, - a2)/2(a, + a2 - 2), implying that the 
more risk averse member receives less than half of the group payoff y but receives a 
positive side payment from the other member. The group risk aversion function fory is 
rG(y) = [(a1a2 - 1)/(a1 - 1)(a2 - 1) -y]1 

4. Multilinear Group Utility Functions 

Additive group utility functions are convenient to work with but are not able to 
reflect preferences concerning the ex post equity of the individual payoffs. One of the 
advantages of the approach presented in this paper is the ability of the model to take 
such preferences into account without sacrificing Pareto optimality. In this section, we 
study a class of group utility functions, multilinear group utility functions, that are 
able to reflect preferences concerning ex post equity. To simplify the discussion, we 
restrict our attention to groups with two members, although generalizations to groups 
with more than two members certainly are possible (e.g., see the discussion of 
multilinear utility functions in Chapter 6 of Keeney and Raiffa [9]). 

The group utility function for x is said to be multilinear if it can be expressed in the 
form 

UG(X) = kGlUGl(Xl) + kG2UG2(X2) + kGkGlkG2UGl(Xl)UG2(X2), (15) 

where for i = 1,2, uGi is a conditional utility function which is assumed to be a 
monotonic, increasing function of xi; kGl and kG2 are positive scaling constants; and 
kG is a scaling constant not restricted in sign. A utility function for x is multilinear if xl 
and x2 are mutually utility independent, which means that conditional preferences for 
lotteries on xl given x2 do not depend on the level of x2 and conditional preferences 
for lotteries on x2 given xl do not depend on the level of xl (Keeney and Raiffa [9]). 
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While the definition of mutual utility independence may not appear at first glance to 
take equity considerations into account, we shall see that the multilinear utility 
function can indeed reflect such considerations. 

Keeney and Raiffa [9, p. 238] note that if kG #= 0, the multilinear form in (15) has a 
strategically equivalent multiplicative representation. In this respect, the determination 
of an optimal sharing rule might be compared to the Nash bargaining solution, which 
also involves the maximization of a product (Nash [13], Raiffa [15], Bodily [2]). The 
two approaches are comparable in the certainty case but not necessarily in the 
uncertainty case. Also, the Nash solution uses individuals' utilities for their own 
payoffs, not multiattribute utilities for the vector of payoffs. 

In order to be able to interpret the multilinear utility function given by (15), we 
impose, without loss of generality, some scaling requirements. As in Section 3, we 
choose xo and xi+ for i = 1, 2 such that xi+ is preferred to xo. Then we scale the utility 
functions such that uG(x0) = uGi(x?) = 0 and uG(x+) = uGi(xi+) = 1 for i = 1,2. Thus, 
kGi = uG(xi,Xj0) for i= 1,2 and j #- i. Also, from uG(x )= kGl + kG2 + kGkGlk 
we get kG = (1 - kGl - kG2)/kGlkG2. 

The group's preferences regarding equity are indicated by the sign of kG. If kG = 0, 
the multilinear function reduces to an additive function, and ex post equity consider- 
ations are irrelevant when the utility function is additive. If kG is positive, the group 
prefers equal payoffs ex post, whereas if kG is negative, the group may prefer unequal 
payoffs ex post. For example, consider a choice between (1) a lottery that yields x+ 
with probability 1/2 and xo with probability 1/2, and (2) a lottery that yields (x +, x?) 
with probability 1/2 and (x40,x +) with probability 1/2. The expected utility of the first 
lottery is 1/2, and the expected utility of the second lottery is (kGl + kG2)!2 = (1 - 

kGkGlkG2)/2. Indifference between the two lotteries implies indifference about equity 
considerations and leads to kG = 0; the marginal distributions of xl and x2 are the 
same in the two lotteries. A preference for the first lottery suggests a preference for 
equal payoffs and implies that (1 - kGkGlkG2)/2 < 1/2, which means that kG must be 
positive. Of course, in some cases unequal payoffs may be judged more equitable than 
equal payoffs. A preference for the second lottery is a preference for unequal payoffs 
that reverses the above inequality and requires that kG be negative. The contemplation 
of lotteries such as these, with probabilities varied to find indifference points, can be 
useful in the assessment of the scaling constants. 

We are interested in this section in cases in which uG(x) is of the multilinear form. 
Although we are not focusing on the individual utility functions ui(x), we are still 
interested in types of individual utility functions over x that lead to multilinear group 
utility functions through linear aggregation. For instance, the group utility function 
will equal the individual utility functions if they are multilinear and identical, and 
other scenarios are possible too. Alternatively, we could assume that the group 
bypasses the assessment of individual utility functions (or assesses them but does not 
use a mechanical aggregation procedure) and meets to assess a group utility function. 
In a group meeting, equity considerations would be hard to ignore, and a multilinear 
group utility function might be quite appealing. 

However the group utility function is determined, the next step is to solve (1) given 
that UG is multilinear. The case with kG = 0 was treated in ?3, and the case with kG < 0 
(a preference for inequity) seems unlikely to arise often in practice. Therefore, to 
guarantee the existence of a maximum in the general case, we require that kG be 
positive in the following proposition. 
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PROPOSITION 4.1. If UG is multilinear with kG > 0 and with UGj twice differentiable 
and rGj > 0 for j = 1, 2, then 

ax* (y)lay= [rGi(Xi*(y)) + t(xj (y))]/[rGl(X*l(Y)) + rG2(X2(Y)) + 2t(x*(y))] 

(16) 
and 

rG(y) <I [max{rGl(xl(y)),rG2(X (y)) -t(xl(y))], (17) 

where 

t(xl(y)) = kGkG lkG2u l(X(y))/[kG2 + kGkGIuGl(Xl(Y))] 

j = 1, 2, i #P j, and the prime denotes differentiation. 

A proof is given in the Appendix. The implications of the optimal sharing rule can 
best be understood by comparing it with the optimal sharing rule derived in ?3 for 
additive utility functions. The rule given by (16) can be interpreted as a two-step 
division of the joint payoff, as follows: 

axj*(y) rG2(x2*(Y)) 

ay rGl(x*(y)) + rG2(X2*(Y)) + 2t(x*(y)) 

t(x*(y)) 

rG1(X1(Y)) + rG2(X2*(Y)) + 2t(x*(y)) 

and 

ax*(y) rG I (X 1 (y)) 

ay rGI(x*(y)) + rG2(X2*(Y)) + 2t(x*(y)) 

t (x*(y)) 

rG1(X*1(Y)) + rG2(X2*(Y)) + 2t(x*(y)) 

When y increases, a portion of the increase is divided equally between the two 
members, and this is represented by the second term on the right-hand side of each 
equation. The remainder of the increase is not necessarily divided equally, with the 
division depending on rGI and rG2. In contrast, the entire increase iny is allocated on 
the basis of rG1 and rG2 when UG is additive. The additional first-step equal division of 
part of the increase when UG is multilinear with kG > 0 reflects the preference for some 
degree of ex post equity. 

As for the second part of Proposition 4.1, the upper bound for rG (y) given by (17) is 
lower than the upper bound given by (13) for the additive case. Although this is just an 
upper bound, it does suggest that the group may tend to be less risk averse in the 
multilinear case than in the additive case. Perhaps the knowledge that the payoffs will 
be somewhat equitable makes the members willing to assume more risk in their joint 
decisions; a somewhat similar observation is made by Keeney and Kirkwood [8]. 

An example involving exponential conditional utility functions will be presented to 
illustrate group decision making with multilinear group utility functions. The group 
utility function for x is of the form 

UG(X) = kGl(l - ecx) + kG2(l - e CX2) + kGkGlkG2(l - ecx)(1 - e CX2), 
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where kGl, kG2, kG, c, xl, and x2 are positive. The optimal sharing rule is 

xl(y) = (y/2) + (1/2c)ln[(kGl + k k + kGkGlkG2)1 (y/2) + s 

and 

x2(y) = (y/2) - (1/2c)ln[(kGl + kGkG,kG2)1(kG2 + kGkGlkG2)] (y/2) - S. 

If the group utility function were additive with the same conditional utility functions 
for xl and x2, y would still be divided equally but the side payment would be 
s = (l/2c)ln(kGl7kG2). The side payment is smaller in the multilinear case, and 
x*(y) - x(y)l is smaller as a result. 

The group utility function fory in this example is not exponential, but is a weighted 
average of two exponential utility functions: 

UG(y) = 1 + ae-cy - be-cy/2 

where a = kGkGlkG2 and b = kGle-cs + kG2ecs + kGkGlkG2(ec` + es). A weighted 
average of exponential functions does not have constant risk aversion, and the group 
risk aversion function for y is 

rG(Y)= 
C 

2ae-cY ] 

But eC5 + ecs > 2, implying that b > 2a and hence that be-y/2 - 2ae-c' > 0. Thus, 
rG(y) < c/2, which is the value of rG(y) in the additive case with the same conditional 
utility functions. The group is less risk averse in the multilinear case. 

5. Concluding Remarks 

The approach developed in this paper deals with situations in which a group faces 
both an external and an internal problem. The external problem involves the choice of 
an action to be taken by the group, and the internal problem involves the distribution 
of the group payoff among the members. Obviously, the internal and external 
problems are intertwined. 

The ultimate payoff in the group decision-making problem is not the group payoff, 
but the vector of individual payoffs received by the members. Thus, we assume that 
each individual assesses a cardinal utility function for this vector of payoffs. Such 
utility functions can represent an individual's preferences concerning "equitable" and 
"inequitable" vectors as well as attitudes toward risk. Interpersonal comparisons at this 
stage involve comparisons of payoffs, not comparisons of utilities. 

The next stage, the aggregation of individual utility functions, does require interper- 
sonal comparisons of utilities, and we utilize previous results from the literature to 
arrive at a linear aggregation rule. This aggregation rule guarantees that the group 
decision will be Pareto optimal. A major advantage of the approach developed here is 
that it results in Pareto optimal decisions without sacrificing equity considerations. 

The conversion from a group utility function for the vector of individual payoffs to 
a group utility function for the overall group payoff is achieved by solving a 
constrained maximization problem. This step determines a rule for dividing the group 
payoff (the internal problem). Furthermore, the substitution of this sharing rule in the 
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group utility function for the vector of individual payoffs yields a group utility 
function for the group payoff. The latter function can be used to make the group's 
decisions (the external problem). 

Application of the approach presented.here involves the assessment of multiattribute 
utility functions. Thus, the analysis is simplified considerably if certain preferential 
assumptions can be invoked to permit the decomposition of the multiattribute utility 
function into some function of single-attribute utility functions (see Keeney and Raiffa 
[9]). The results obtained in ??3 and 4 for additive and multilinear group utility 
functions provide information about some implications of our group decision-making 
model. 

In ?3, the optimal sharing rule and the group utility function are characterized in the 
additive case. As the group becomes less risk averse with respect to a particular 
member's payoff, that member's "stake" in the group payoff increases, although side 
payments may be necessary to pay for this increased stake. Also, as would be 
expected, the group is less risk averse toward the group payoff than toward any 
individual payoffs, and large groups of risk-averse members might be expected to be 
approximately risk neutral. 

Unlike additive group utility functions, multilinear group utility functions are 
capable of reflecting preferences regarding ex post equity of payoffs. A comparison of 
the results of ?4 with with those of ?3 demonstrates the implications of including ex 
post equity considerations by adding a multiplicative term to the additive utility 
function. The resulting multilinear utility function appears to lead to smaller ex post 
differences in individual payoffs and smaller side payments. Also, an upper bound 
derived for the group risk aversion function in the multilinear case suggests that the 
group may tend to be less risk averse in the multilinear case than in the additive case. 

Appendix 

PROOF OF PROPOSITION 3.1. The first-order condition for optimality is kGiUGi((x) 

= X, i = 1, ... , n, where the prime denotes differentiation, the argument y of xi* is 
omitted for notational simplicity, and X is a Lagrange multiplier such that X.= UG(y). 
Thus, k GU i(x1*) = UG(y). Differentiating w.r.t. y yields kGIu (<)(8X*/8y) =?I 

and dividing the new equation by the preceding equation gives us (axI*/ay)rGi(x4) 
= rG(y), or rG(y)/rGi(x?') = (8</ay). Summing over i yields rG(y)23i= l[rG(x=)] j1 
= 1, which proves (12). Substituting (12) in rG(y)/rGi(x4) = (ax,?/ay), we then get 
(11). The second-order condition assuring that (11) is a maximum is k UGiui(x*) < 0, 

i= 1, ... , n, which follows from the concavity of uGi, i = 1, ... , n. 

PROOF OF PROPOSITION 3.2. From the proof of Proposition 3.1, rG(y) = rGj(xj*) 
axj*lay) and summing over j yields nrG(y) =?=lrGj(xj*)(axj*/ay). Since 0 

axj* /ay < 1 and = l(ax1*/xv) = 1, nrG(y) is a convex combination of rGj(xj 
i= 1, ... ., n; (13) follows directly. Next, we can write uG1(xj) = E i=Abu(xj), where 
b = XXki/2>AikU. Differentiating twice w.r.t. xj, we get u (xj) = En= lbiui1(xj) and 

uGj(xi) = > i=AbuJ(xj), and dividing the former equation by the latter yields rGj(xj) 
= j27= ajrU(xj), where ai = biu' (xj)/3n7=jbjuij(xj). Thus, rGj(xj) is a convex combina- 
tion of rij(xj), . . . , rnj(xj), which implies that 

min { r, (xj*) } < rGj (xj*) < max { r,(xj*)} 1 r 

Combining -this result with (13) yields (14). 
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PROOF OF PROPOSITION 4.1. The first-order condition for optimality can be written 
in the form 

uG1(X1)[kGl + kGkG1kG2UG2(X)] =U2(X)[kG2 + kGkG kG2UG(1 

Differentiating both sides w.r.t. y, dividing the new equation by the old equation, and 
simplifying yields 

rGl(x* )(ax*1/ay) + t(xj )[1 - (ax*/ay)] 

= rG2(x2*)[1 - (ax*/ay)] + t(x* )(ax* /aY). 

Solving for axj /ay yields (16) forj = 1, and (16) forj = 2 follows from ax*/ay = 1 - 
(ax*/ay). The second-order condition indicates that the solution is a maximum. 

Differentiating both sides of the first-order condition [each of which equals UG(y)] 
w.r.t. y, dividing by the first-order condition, and simplifying gives us 

rG(y) = (axlay)rGOP) - t(X )[1 - (0x4/8y)] 

= [1 - (ax*/ay)]rG2(x2*) - t(X* )(ax* 1a 
or 

2rG(y) = (ax*1ay)rGI(X* ) + [ 1 - (aX* /ay)]rG2(X2*) - t(X*l). 

But this equation, together with the inequality 

(84 /8y)rGl(Xl4) + [ -(8x /8y)1rG2(X2*) < max{rGl(x),rG2(x2)} 

yields (17). 
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