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MANAGEMENT SCIENCE 
Vol. 27. No. 7, July 1981 

Printed in U.S.A. 

AN INVESTIGATION OF COMPETITIVE PREFERENCE 
STRUCTURES AND POSTERIOR PERFORMANCE 
THROUGH A BAYESIAN DECISION-THEORETIC 

APPROACH* 

JEHOSHUA ELIASHBERGt 

In this paper we analyze competitive decision-making situations in terms of their preference 
structures and posterior performance, through a Bayesian decision-theoretic framework. The 
setting is that of a two-by-two, two-person, non-zero-sum and noncooperative game which is 
repeated over time. The dynamic behavior of the competitors for different classes of games, as 
identified by their preference structures, is examined and a classification scheme is proposed 
for the purpose of unification. The competitors' dynamic behavior and posterior performance 
for some general classes of games is then derived, and the relationship to the results implied 
from game-theoretic considerations is discussed. Illustrative examples are given, too. 
(GAMES-NONCOOPERATIVE; DECISION ANALYSIS-SEQUENTIAL; UTILITY/ 
PREFERENCE) 

1. Introduction 

The essence of decision analysis is to provide the decision maker with an optimal 
decision rule in order to evaluate alternatives under uncertainty, where the outcomes 
are governed by nature. White [24, p. 17] notes " . . . when 'optimality' is a valid 
concept, it is a 'prior' concept and not a 'posterior' one. In other words, a decision is 
optimal at the point of taking it, in the line of circumstances surrounding it, and not 
necessarily optimal in retrospect." Consequently, the decision rule that is prescribed is 
stated in terms of expected value and the focus is on the "goodness" of the decision 
rather than the "goodness" of the posterior outcomes (performance). Howard [9, p. 86] 
emphasizes the distinction between a good decision and a good outcome and argues 
that "Hopefully, by making good decisions in all the situations that we face we shall 
insure as high a percentage as possible of good outcomes." 

Adopting this relative frequency interpretation in repetitive decision-making under 
uncertainty against nature, one can make only the following statement concerning the 
relationship between the expected and the posterior performance: the expected perfor- 
mance represents the "average value" of the posterior performance if the decision is to 
be made repetitively, a large number of times. The concern here is with long-run 
posterior performance. The analysis of the posterior performance, however, can be 
more elaborate and insightful when nature is replaced by another decision maker who 
also behaves according to optimal decision rules and the problem thereby falls within a 
competitive decision-making framework. 

The need for managers to gain better understanding of competitive decision-making 
and behavior becomes more evident these days since many industries have reached 
their maturity level and hence, a firm's growth is possible only by attacking the share 
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786 JEHOSHUA ELIASHBERG 

of its competitor. Increased attention by companies to formal strategic planning has 
highlighted questions such as: What actions are competitors likely to take? What 
is the best way to respond? How will my industry evolve in the short-run and in the 
long-run? Porter [11] presents an interesting conceptual framework which attempts to 
help a firm analyze its industry as a whole, to predict the industry's future evolution, to 
understand its competitors and its own position, and to translate this analysis into a 
competitive strategy for a particular business. His approach, however, is qualitative 
and does not provide answers to the above stated questions in a quantitative sense. 

For years, the classical game theory [26] has been regarded as a logical jointly 
prescriptive quantitative approach for modeling competitive decision-making. A game- 
theoretic approach is static in its nature, assumes that the competitors do not assign 
subjective probabilities to each other's choice of a pure action, allows for mixed- 
strategies as an optimal solution, and emphasizes the existence and stability of 
competitive equilibrium. Perhaps one of the reasons why game-theoretic ideas have not 
found more widespread application is that randomization of the decisions seems to 
have limited appeal in many practical situations. In addition, the evaluation of the 
industry evolution when mixed-strategies are allowed, is similar to that of games 
against nature and is stated in expected values terms. Therefore, creating competitive 
decision-making models where the competitors are assumed to choose only pure 
strategies at any point of time, and which can still preserve the desired properties of 
equilibrium in mixed-strategies as developed in game theory, is important in the 
analysis of competitive industries. This can be done through a Bayesian decision- 
theoretic approach which is dynamic in its nature. It allows the decision maker to 
assign subjective probabilities to the opponent's choices of actions and to revise them 
in light of new information. It prescribes the selection of pure strategies as an optimal 
behavior, and considers the optimality of the behavior of one competitor. 

This paper analyzes competitive situations within a Bayesian decision-theoretic 
framework. The major objective of the paper is to provide insight and a benchmark for 
how different industries may evolve over time in terms of posterior performance. The 
approach presented in this paper can also provide a unifying framework for analyzing 
industries that are constantly at peace, constantly at war, or cycling between states of 
peace and war. Using game-theoretic terminology, the paper analyzes competitive 
situations characterized as two-by-two, two-person, non-zero-sum, repeated and non- 
cooperative games. The paper is rather conceptual and deals mainly with interpreta- 
tions and discussions, relying on another paper for the basic mathematical proofs [3]. 
Only sketches of the proofs will be given here. 

In ?2, we describe in detail the competitive situations that are studied and the 
decision-making model employed, and we refer to some of the relevant literature. In 
?3, we present the major results of the model by examining the behavior of the 
competitors in various competitive situations and over time, and the relationship 
between their behavior and that implied from game-theoretic considerations. In ?4, 
illustrative examples are given and discussed. ?5 provides a summary and suggestions 
for further research. 

2. The Competitive Situation and the Bayesian Model 

The competitive situation studied here involves two competitors (players) I and II, 
with two actions (strategies) available to each competitor, (a1, a2) for Player I and 
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( 1 02) for Player II, and where the decisions are made simultaneously by the two 
players. The term "simultaneously" does not refer to the physical flow of time but 
means "without knowing the decision taken by the other player." Both players know 
this, and each player knows his own possible returns. 

Several possibilities exist as far as the knowledge of the opponent's returns are 
concerned. Perhaps the most realistic one is the case in which each player does not 
know his opponent's returns for any of the four possible combinations of the 
competitors' pairs of strategy choices (outcomes). In this case, in the terminology of 
game theory, we are dealing with games with incomplete information [8], represented 
in normal form by a 2 x 2 matrix. This same competitive situation is repeated many 
times and allows the competitors to learn about each other's past decisions which are 
observable. Future decisions of the opponent are not known to each player and can be 
just inferred from his past behavior. The analysis of this situation can be thought of as 
taken from the point of view of an industrial analyst or other observer trying to 
forecast the industry evolution. In the sequel we shall show that the knowledge of the 
ordinal preference of the players over the four possible outcomes, is sufficient to 
broadly determine how the sequential game will proceed in the future, for certain 
classes of games. If the outside observer manages to collect or estimate additional and 
finer information such as the cardinal preference of the players, the forecasting of the 
industry evolution becomes more elaborate. The cardinal preference can be, for 
example, a von Neumann-Morgenstern utility function over the business goals that are 
achieved by each player, for each of the four pairs of strategy choices. Other 
possibilities concerning the knowledge of the opponent's returns, such as complete- 
information or asymmetric-information, also exist, but will not be considered in this 
paper. 

Although competitive situations depicted as 2 X 2 games are the simplest two-person 
games, they have attracted attention of researchers from many disciplines. Rapoport, 
Guyer and Gordon [16] summarize and interpret what has been learned in the last 
fifteen years, through experimentation, about social interaction and behavior using this 
paradigm. Classifications for all 2 x 2 games have been suggested by Rapoport and 
Guyer [15] and Harris [6], [7] to aid in combining together games with similar 
game-theoretic and behavioral aspects. Iterated Prisoners' Dilemma games have also 
been studied extensively [5], [13]. Sequential games arise in contexts such as economics 
[22], gaming [23], and stochastic processes [18], [19]. 

In a business context, the two actions available to each competitor can be thought of 
as strategic moves such as offensive or defensive moves. Martial language is familiar in 
many business situations. There are the gasoline price "wars," the "escalating arms 
budgets" of the soap companies and "invading Coke's markets," to name a few. Porter 
[11, Chapter 5] describes several conditions that may increase the likelihood of 
"competitive warfare." Hence, it appears that the language of warfare in business is 
not just descriptive and bears operational logic to business executives in plotting 
competitive strategy. At the broadest level, two major strategies can be identified, 
namely: attack (or defend) vs. keep the status-quo. An attack strategy can then be 
formulated in terms of product, price, advertising, etc. Strategic decisions concerning 
these two broad strategies are made periodically and may be interpreted as generating 
sequential games. 

Noting that the results and the conclusions drawn later are constrained of course by 
the assumptions made, we turn now to a detailed description and explanation of the 
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788 JEHOSHUA ELIASHBERG 

competitive decision-making model's assumptions. The model developed here assumes 
that the competitors regard each other's behavior as a stochastic decision process. This 
assumption is implicit in the "fictitious play" literature [1], [17]. Each player assumes, 
for lack of other information, that his opponent will behave randomly. Consistent with 
this assumption, if the pair (p, q) represents the probabilities of Players I and II 
choosing their first available action, respectively, then q is not known to Player I and p 
is not known to Player II. However, they can assess some prior probability density 
functions (p . d . f) over these parameters. The p d . f's are denoted by (fl(q), f"1(p)). 
In words, f'(q) is Player I's prior p d . f over the event that Player II is choosing his 
first available action with probability q, and f"(p) is Player II's prior p d f over the 
event that Player I is choosing his first available action with probability p. It is also 
assumed in our model that the opponent's behavior can be described by a Bernoulli 
process. A Bernoulli process is a data-generating process with two possible outcomes 
on each trial ("success" and "failure"), such that the probabilities of these outcomes 
are stationary, and the outcomes of the trials are independent. In our context, a trial 
corresponds to simultaneous decisions and a "success" corresponds to the event that 
the opponent did choose his first action. After observing each other's decision, the two 
players learn and revise their prior p d f's according to the Bayesian rule and thus 
obtain their posterior p d . f's. These serve as prior p d f's for the next simultaneous 
decisions. It has been noted in the statistical decision-theoretic literature [12], [25] that 
the revision could be difficult to do analytically unless the prior distribution is a 
member of the family of distributions that is conjugate with respect to the Bernoulli 
process. The conjugate family in this case is the family of beta distributions. 

A beta distribution f(p I r, n) for 0 < p < 1 is characterized by two parameters, r and 
n, where n > r > 0 and its mean and variance are: 

E(p I r,n) = r/n (2.1) 

and 

V(p I r, n) = r(n - r)/n2(n + 1). (2.2) 

The shape of f(p I r, n) depends on r and n, and can accommodate a large number of 
probabilistic judgments. If the prior parameters at time t are r, and n,, and the sample 
results are r "successes" in n trials, the posterior parameters at time t + 1, rt+ and 
nt + 1can be easily computed from: 

n,+, = n1 + n (2.3) 

and 

r,+, = r, + r. (2.4) 

In our context, of course, n = 1 and r = 1 or 0, depending on whether or not the 
opponent did select his first action. We note, therefore, that nt and rt can be viewed as 
counters such that nt - no counts the number of simultaneous decisions that have been 
made, and r, - ro counts the number of times the opponent has used his first action. 
Within the Bayesian decision-theoretic framework, the simultaneous decisions amount 
to the selection of an action which does not influence the subjective probability of the 
random events (states) associated with this action. This case which is assumed 
throughout this paper, is called the act-unconditional states case. An alternative 
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Bayesian decision-making model, act-conditional states [21], allows for the possibility 
that the selection of an alternative may influence the subjective probability of the 
random events that will follow the choice. More formally, if f'(q I al) and f'(q a2) 
denote Player I's subjective p d f over the event that Player II is choosing his first 
action with probability q, given that he (Player I) selects his first and second action 
respectively, then, under the act-unconditional states assumption, f'(q I a,) = f'(q I a2) 

at any point of time. Symmetrically, f"1(p | IB1) = f "1(p t 02) at any point of time. 
After the players revise their prior p . d f's and obtain the posterior p d . f's, they 

use them to compute their expected returns in the next period. It will be assumed that 
the decision-making rule used by both players is to select their first action if and only 
if its expected return is strictly greater than the expected return from the second action. 
Consequently, the second action is chosen by both players if and only if its expected 
return is greater than or equal to the expected return from the first action. No 
generality is lost by this decision rule since by relabeling the actions, all 2 x 2 games 
can be treated this way. 

We conclude this section by noting that a model similar somewhat to the sequential 
game model analyzed in this paper has been briefly discussed by Sanghvi and Sobel 
[18] as a noncompact game. In their model it is assumed that Player I plays a zero-sum 
2 x 2 game against a programmed opponent who uses a stationary mixed-strategy and 
never learns about Player I's behavior. Noting the difference between this model and 
the other models discussed in their paper (compact games), they prove (Theorem 5.1) 
that this game is ergodic, in the sense that it has a positive probability of being in any 
state in the long-run. 

3. Analysis of Competitive Preference Structures and Posterior Performance 

Let Matrix (a) represent a 2 x 2 game with the following returns to the players: 

Player II's Actions 

Al /2 

Player I's a, R'(aI),R "(aI) R 102),R 112) 

Actions a2 R 1(03), R 'I(0G3) R 1(oT4), R (104) 

Matrix (a) 

where ai (i = 1, 2, 3, 4) denotes the four possible outcomes (states) of the game, defined 
by the competitors' pairs of strategy choices, and RI(.),R I(.) denote the returns to 
Players I and II respectively, from each of these four possible states. Next, assume that 
R I( ) and R II(.) are measured on an ordinal scale. That is, if R I(.) is measured, for 
example, in profit terms, then the information contained in Matrix (a) allows one to 
make a statement such as: R 1(a 1) > R 1(02) means that the profit generated to Player I 
in state a, is larger than the profit generated to him in state 02. Note that in making 
this statement one does not have to know the exact value of the profit generated in 
each state. We can also interpret R(.) as an ordinal preference measure and make, for 
instance, the following statement: R '(a,) > R 1(02) if and only if Player I prefers state 
GI to a2. Here, several specific goals can be achieved by the player in each state. We 
shall assume, unless otherwise specified, strict preference ordering of the states. It has 
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790 JEHOSHUA ELIASHBERG 

been noted by Rapoport and Guyer [15] that cases of indifference between two states 
can be considered as limiting cases of strict preference. 

Our first aim is to investigate whether the ordinal scale is sufficient to determine the 
course of the sequential game for any possible 2 X 2 game, and to identify classes of 
games such that sequential games may evolve in the same pattern within each class. 
We rely on the taxonomy developed by Rapoport and Guyer [15] for this purpose. 
They have shown that out of all five hundred and seventy-six possible pairs of 
preference orderings (4! x 4!), only seventy-eight of these are nonequivalent. Equiva- 
lent games can be generated from one another by relabeling actions and/or players. 
For example, consider the following game, in which the preference ordering is 
4>3>2> 1. 

91 92 

a, 2,2 4,1 

a2 1,4 3,3 

Matrix (b) 

By interchanging rows, columns, or both rows and columns, we obtain from Matrix (b) 
three other matrices representing the same game: 

a 1 22 ,2 21 a 2 1 

a2 1,4 3,3 4 41 292 a2 3,3 1,4 

a, 2,2 4,1 a2 3,3 1 4 a1 4,1 2,2 

Matrix (c) Matrix (d) Matrix (e) 

When we interchange the players, however, we obtain a matrix which is identical to 
Matrix (b). Thus, Matrix (b) can generate only four equivalent games. Other matrices 
may generate a different number of equivalent games. We shall term a game such as 
the one described in Matrix (b) as a "competitive preference structure." Rapoport and 
Guyer classify all 2 x 2 nonequivalent games into three major classes. Class I: each 
player has a dominating strategy (games 1-21); Class II: one player has a dominating 
strategy (games 22-57); and Class III: neither player has a dominating strategy (games 
58-78). 

To investigate and classify the dynamic competitive behavior implied by our model, 
we denote the differences in the players' return by S, T, U, and V such that: 

S = R'(a4)-R 1- A 

T= R'(a3)-R '(1) 

U= R"(a4) -R'103)9 

V= R"l(a2)-R (a,) 
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Our classification of the 2 X 2 games is made according to the following relationships: 
Class (i): S > 0, T > 0. 
Class (ii): S < 0, T > 0, U < 0, V > 0. 
Class (iii): S > 0, T < 0, U < 0, V > 0. 

That is, we shall always rearrange a 2 X 2 game such that it will fall in one of the 
above three classes. In our classification, games in Class (i) are such that at least one 
player has a dominating strategy. This class contains games 1-57 in accordance with 
Rapoport and Guyer's taxonomy. Our Class (ii) of games contains games 58-65 in 
their taxonomy by interchanging the columns or rows of these games, and in addition, 
it contains their games 66-69. Finally, our Class (iii) contains Rapoport and Guyer's 
games 70-78, by interchanging their columns or rows. 

We turn now to the first proposition which shows that the ordinal information 
regarding the competitors' returns is sufficient to uniquely determine the course of the 
game for some classes, and insufficient for other classes. We shall view the generated 
sequential game as a discrete time Semi-Markov process with a discrete state space 
(aI, 02, 03, 04) and which possesses transition probabilities equal to zeros and ones. The 
state of the process is determined by the play's outcome and we shall characterize the 
dynamic behavior of the process (game) using terminology from the theory of 
stochastic processes. 

PROPOSITION 1. Given the state of the process at time t and the Class to which the 
competitive preference structure belongs, the next different state visited by the process is 
given by the entries of Table 1. 

TABLE I 

Current and Next- Visited Different State for Each Class of Games 

Class of Games 

GI n/a* not unique G2 
Current a2 n/a* none** G4 

State a3 n/a* ora4 none** GI 
a4 none not unique a3 

*not applicable since the game will never enter this state. 
**whenever the game is in this state, it remains there on all future 

plays. 

Table 1 shows that for games in Class (i), al and 02 are two states which the process 
will never enter. This is so because our definition of Class (i) is such that S > 0 and 
T > 0. This implies that a2 is Player I's dominating strategy. Hence, he will always 
choose this action, regardless of what his subjective probability assessment over the 
opponent's choice of action is. If Player II also has a dominating strategy, we shall 
label it as /B2 and in this case state 03 will never be visited by the process. If, however, 
Player II does not have a dominating strategy we shall label as /B2 the strategy that 
makes U > 0, and it is still possible to find the process at some point of time in state 
03. (Recall that we assume that Player II does not know the returns for Player I.) This 
state is, however, a transient state and after a finite number of simultaneous decisions 
the process will leave this state and enter state 04. State 04 is thus an absorbing state; 
once the process enters this state, it remains there on all future plays. 
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An example of a competitive business situation which can be structured as one of 
Class (i)'s games is shown in the following game matrix: 

Competitor II 
Keep the Cut 

Status-Quo Price 
PI 12 

Keep the 
Status-Quo a, B, F DE 

Competitor I 
Cut 
Price a2 AH C, G 

Matrix (f) 

Here, A > B > C > D and E > F > G > H are the returns for Player I and Player 
II, respectively. This is a Prisoner's Dilemma like game matrix where both players have 
dominating strategies: a2 and /2* Of course, due to our incomplete information 
assumption, neither player knows his opponent's payoffs and when acting as a 
Bayesian player, our model would then predict that if the game is repeated over time, 
the decisions made by the competitors each time will always be to cut the price, and 
hence, the posterior performance will be C and G for Players I and II, respectively, at 
any point of time. An illustration of this game, in the context of advertising radial tires 
competition between Sears and Goodyear, is shown and discussed in [4]. 

Turning to the games of Class (ii), we consider, for example, the following game: 

,81 82 

a, C,G B,E 

a2 AF D,H 

Matrix (g) 

where, again, A > B > C > D and E > F > G > H. Any competitive situation 
which has a payoff table with the same properties as game matrix (g) is known as a 
"Battle of the Sexes". An illustration and discussion of the game in the context of new 
product introduction is given in [4]. Notice that both pairs of choices (a?, /82) (state a2) 

and (a2, fl1) (state 3) are equilibrium pairs in the sense that if the game is in one of 
these states, it is to neither player's advantage to unilaterally choose a different 
strategy. Hence, states a2 and a3 are the absorbing states for games in Class (ii). What 
will be the course of a Class (ii) game if the current state is a, or a4? Unfortunately, the 
answer to this question is not unique. This will be illustrated by means of an example 
related to Matrix (g). 

Suppose that the game described by Matrix (g) is currently in state G4. This is true if 
and only if, EVJl((a,) < EVtl(a2) and EVtj(,/3) < EVt"(,82), where the EVJ( )'s are the 
expected returns of the two actions available to the two players, at time t. Of course, in 
computing the player's expected returns we have to interpret A, B, C, D, E, F, G, H as 
cardinal returns. However, they can be any cardinal numbers that preserve the 
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assumed ordinal relationship. Given that state a4 has just occurred, the two players will 
revise their beta distributions and obtain the following revised expected returns: 

nt'EVt''(a,) 
+ B anEVt (a_+_D EVI( = 

t 
) and EV?1(a2) - 2) + D E t +(a,) 

ii + 1n 
t+ a) n' +1 

EV" 
~~nl'EJ't"/3 + F an 

VI()-n~"EV,1"(/3l2) + H 
+ nil + +1682) 

~~~n~ +1 

where nt denotes one of the two parameters of the beta distribution at time t. For 
numerical illustration, suppose that EVtl(aI) = EVtl(a2) = 4, EVtll( fl) = 3, EVt/l( I2) 
- 5, n' = 3 and n'l = 4. It can be readily seen now that the next visited different state 
will be a, if: F-H > 8, or 2 if: F- H < 8. Hence, in addition to the ordinal 
property of the returns, we need to know the difference in the expected returns at time 
t relative to the difference in the respective returns, in order to determine the future 
course of the game. 

Although dynamic games of Class (ii) are in general nonunique, it is still possible to 
identify conditions for some games, based on their competitive preference structure, 
where the future course of these games can be uniquely determined. It has been shown 
by Rapoport and Guyer [15] that some games in Class (ii) contain a single Pareto- 
optimal outcome and that there are other games in Class (ii) which contain two 
Pareto-optimal outcomes. A Pareto-optimal outcome of a game is defined as an 
outcome such that there is no other in which both players get larger returns. We turn 
now to Corollary 1.1 whose proof is straightforward and which formalizes the game- 
theoretic behavior implied for some of the games in Class (ii). We shall use this 
property in the sequel, to further investigate the posterior performance of these games. 

COROLLARY 1.1. There exist games in Class (ii) with the property that it is possible to 
identify for them competitive preference structures so that the equilibrium mixed-strategies 
of the two players will be equal. 

We shall illustrate the corollary by means of an example. Consider the following two 
game matrices: 

fl, fl2 fl, 802 

a, CH A,E 1 B,F C,E 
a2 B,F DG a2 A,G D,H 

Matrix (h) Matrix (i) 

We are still assuming the following ordinal relationship: A > B > C > D and E > F 
> G > H. Matrix (h) contains a single Pareto-optimal outcome (A, E). In Matrix (i), 
however, the Pareto-optimal outcomes are (C, E) and (A, G). 

For non-zero-sum games where the players' returns are measured on a cardinal 
scale, the prescription provided by game-theory is given in terms of the following 
equilibrium mixed-strategies (see [14, p. 138] for an example of a specific derivation 
and the rationale): 

Matrix (h) Matrix (i) 
p* = Pr(I playsy1} = (F- G)/(E + F- G- H) p*=(G-H)/(E+ G-F-H) (3.1) 
q*=Pr{IIplays13l} =(A-D)/(A + B-C-D) q* = (C- D)/(A + C-B- D) (3.2) 
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Notice that because of the ordinal relationship that we are assuming, in Matrix (h): 
q* > 1/2 and p* < 1/2 and hence, q* p*. However, in Matrix (i) it is possible to 
identify competitive preference structures such that p* = q*. The necessary condition 
for that is: (A - B)(C -D) = (E - F)/(G - H). We turn now to a proposition 
concerning the dynamic behavior of the games of Class (ii) discussed in Corollary 1.1. 

PROPOSITION 2. Games in Class (ii), where p* = q* and where the players' expected 
values of the beta distribution at t = 0 are equal, are developed in cycles, in the sense that 
the process oscillates between states a, and a4. 

It can be seen from Matrix (i), one of the matrices for which Proposition 2 holds, 
that states a2 and a3 are two absorbing states from which it is to neither player's 
advantage to unilaterally move out. Note also that the conditions required by Proposi- 
tion 2 make these games very symmetric. Consequently, the switch in the players' 
strategy choice occurs exactly at the same time. 

Unlike the games discussed in Proposition 2 in which the process may visit only two 
states, games of Class (iii) are developed in cycles in which all four states are visited. 
This is formalized in the following proposition: 

PROPOSITION 3. Games in Class (iii) are developed in cycles, in the sense that once the 
process leaves state ai (i = 1, 2, 3, 4), the probability of returning to this state after a finite 
number of steps is one. 

The proof of this proposition is based on the preference structure of Class (iii)'s 
games. Whenever one player switches to a different strategy, his opponent's expected 
returns are such that it is still optimal for him to keep choosing his old strategy. 

In stochastic processes jargon, the process for Class (iii)'s games is a regenerative 
process. Note from Table 1 that the sequence of the visited states is a4- a3 -> a1 - a2. 
It is also worth noting that the game described in Matrix (j), for A > B > C > D and 
E > F > G > H, 

,81 fl2 

a, B, G DE 
a2 CF AH 

Matrix (j) 

is a pure conflict game and belongs to Class (iii). This competitive preference structure 
is important because it can capture both non-zero-sum and zero-sum conditions 
(E = - D, F = - C, G = - B, H = - A). The basic mathematical proofs concerning 
the dynamic behavior of this game are given in [3]. Since games in Class (ii) and (iii) 
proceed by cycles (Propositions 2, 3), it makes no difference when we start observing 
them when studying their dynamic behavior. We shall, therefore, assume that at t = 0 
the process is in state 4. A question of interest is: how many plays a game such as the 
one described in Matrix (j) will be in each of its four possible states? To answer this 
question we need to know the competitive cardinal preference structure. We denote by 
it' it's k', 4t' (it', j, k', 4t' are positive integers) the cumulative number of plays that states 
a4, a3, a1 and a2 (in this order), respectively, have been realized for a game in Class 
(iii), during the first t cycles. We also denote by El(q) and E11(p) the expected values, 
at t = 0, of the prior beta distributions of Players I and II, respectively. Proposition 4 
presents the necessary and sufficient condition for this game to be realized, and sets 
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lower bounds for it, it, k;, and 4'. Its proof is based on the computation of the 
expected returns of the competitors' actions, at times when transitions occur, and on 
some algebraic manipulations. 

PROPOSITION 4. For games of Class (iii) and under the Bayesian model, if at t = 0, 
EJ(q) < q* and E"'(p) > p*, then the process starts in state 4 and the following 
inequalities hold: 

it >[it + k;J[ V I -:- - + (3.3) 

};, > [ , + 4]L -TJ- + - (3.4) 

kt > [ t+it, U [ It- V '35 

It' > [ k + jt'] 
T 

] (3.6) 

where 8= nJI[EVOJ(,/2) - EVoI(/I)] and e = nI[EVO(a2) - EVo(a1)]. 

Series for it, jf" k' and 4t' can be formed recursively, under certain conditions, from 
(3.3)-(3.6). Let S/(-T) = K, (-U)/ V=L, 8/(-U) = M and e/(-T) = N. We 
can turn now to Proposition 5 which provides insight on the cumulative number of 
times that each state has been visited during the first t cycles, and we show that under 
certain conditions, it can be expressed by a second-order power series. The required 
conditions are stated in the proposition and the proof is based on Proposition 4 and 
mathematical induction. 

PROPOSITION 5. For games of Class (iii), where L = 1; M, N > 0 and integers; 
K > N + 3 and integer, and under the Bayesian model, if at t = 0, EI(q) < q* and 
E A(p) > p*, then the following equations hold: 

i= t2 + Mt for t = 1, 2, 3, .. ., (3.7) 

FKt2+[MK+ K2 1 t- K2 3 +N fort= 13,5 ... 
- L It-~~~2 (3.8) 
LKt2+[MK+ K- 1 t fort=2,4,6, 

k, = Kt2+[MK+K ]t K23+ N for t =1,3, 5, . .. 
k Kt2+[MK+ K2+ l t fort =2,4,6,... ( 

4' = t2 + (M + 1)t for t = 1,2,3 . (3.10) 

REMARK. Although we require in the proposition that K > N + 3, proofs for 
2 < K < N + 3 are similar but have to be considered separately. 

To compare the dynamic behavior of Class (iii)'s games with that of games of Class 
(ii) (the ones discussed in Proposition 2), we present now Proposition 6 whose proof is 
similar to Proposition 5's proof. We let now (- S)/ T = K = (-U)/ V = L, 8/(- U) 
- M and E/T= N. 
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PROPOSITION 6. For games of Class (ii)? where K > 1 and integer; M, N > 0 and 
integers; p* = q* and El(q) = E11(p), and under the Bayesian model, if at t = 0, 
E1(q) > q* (E 11(p) > p*), then the following equations hold: 

i= M+ 1, (3.11) 

k= [(M + 1)K-N]t for t = 1,2,3, ... ., (3.12) 

i= t fort= 1,2,35.. . (3.13) 

We can now comment on some of the major differences and similarities in the 
dynamic behavior of games of Class (ii) and Class (iii). First, games of Class (ii) 
proceed by fixed cycles; that is, the number of simultaneous decisions made in each 
cycle, remains constant. On the other hand, the cycles are variable and becoming 
longer for games of Class (iii). Second, for games of Class (ii) there exists a transient 
period of time (i0) before the process starts cycling. This transient period of time gets 
longer, the larger the difference between the players' initial expectations, Eof(), and the 
game-theoretic equilibrium mixed-strategies. Games of Class (iii), on the other hand, 
start cycling from their beginning. Finally, it can be shown that for both classes of 
games, the empirical relative frequencies of strategy choices converge to the game- 
theoretic equilibrium strategies. This interesting result has been conjectured by Brown 
[1] and proved by Robinson [17] for finite two-person zero-sum games. Our competi- 
tive model extends this result to non-zero-sum games. It should be noted, however, 
that the convergence is not the same in the two classes of games. The games of Class 
(ii) converge immediately and with the same rate to their equilibrium mixed-strategies 
because of their symmetric structure (p* = q* and El(q) = E11(p)). The convergence, 
however, may take different forms for games of Class (iii). It can come from above or 
from below, and with different convergence rates. For example, for games such as the 
ones described in Proposition 5, Player II converges more rapidly than Player I to his 
game-theoretic equilibrium strategy. This may be due to the assumption that the initial 
state is a4 which is the least desirable one for Player II. 

This concludes our analysis of competitive preference structures and posterior 
performance and the presentation of the results implied by our competitive decision- 
making model. The next section illustrates some of our findings with examples. 

4. Illustrative Examples 

EXAMPLE 1. In this example we consider two industries (1) and (2), where in each 
industry Player I can be thought of as a possible entrant and Player II can be viewed 
as the market leader. The competitive preference structures of the two industries are 
represented by Matrices (4.1.1) and (4.1.2), where the preferences are measured, for 
instance, on a 0-100 cardinal scale. 

Leader Leader 
Keep the Keep the 

Defend Status- Defend Status- 
Quo Quo 

91 I2 1 92 

Keep the Keep the 
Status-Quo a, 40,20 20,40 Status-Quo a 60,20 20,40 

Entrant Entrant 
Attack a2 30, 30 80, 10 Attack a2 40, 30 100, 10 

Matrix (4.1.1) Industry (1) Matrix (4.1.2) Industry (2) 
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Several arguments may support these competitive preference structures which are 
basically pure conflict games. From the leader's point of view, his most preferred 
outcome is that both sides keep the status-quo (i.e., peace prevails). His second most 
preferred outcome is a combination of an offensive move on the part of the competitor 
and a defensive move on his part. This may be justified since the disciplining action 
can lead any aggressor to expect that retaliation will always occur. Porter [11, p. 99] 
refers to this strategy as "discipline as a form of defense." The leader's third most 
preferred outcome is a defensive move on his part while the competitor is keeping the 
status-quo. This may mean unjustified warfare costs for the leader. Finally, the leader's 
least preferred outcome is to keep the status-quo while the competitor is attacking. For 
the entrant, the preference ordering of the four states is exactly reversed due to similar 
arguments. 

We shall use now the notations developed in ?3 to investigate the evolution of the 
two industries. 

Industry (1) Industry (2) 

S=60,T= -10,U= -20,V=20,K=6 S = 80, T= -20, U = -20, V= 20, K= 4, 
L = 1, p* = 1/2, q* = 6/7, El(q) = 4/5, L = 1, p* = 1/2, q* = 4/5, El(q) = 8/11, 

Eo'(p) = 2/3, n' = 2.5, n11 = 3, N = 1, Eo1(p) = 2/3, n' = 2.75, n11 = 3, N = 1, 

M=1. M=1. 

Note that the two industries are similar in every respect except for their K-ratios. 
Given the competitive preference structures, we identify the two games as belonging to 
Class (iii). Hence, from the data and due to Propositions 3 and 5 we know that 
currently both industries are in state a4, that is, the entrant is attacking while the leader 
is keeping the status-quo. How many plays they will stay in each state can be 
determined from equations (3.7)-(3.10). For example, the first cycle will last as 
follows: 

Industry (1) Industry (2) 

il = 2, il 
= 14, k, = 15, 11 = 3 il = 2, il = 10,ki = 11,l 1 = 3 

il +jl + k+11 = 34 il +jl + k, + 11 = 26 

Clearly, the cycles in Industry (1) are longer because of its larger K-ratio. An insight as 
to the asymptotic dynamic behavior of the two industries can be obtained from the 
limits of the empirical relative frequencies which we denote by ppt'(a l) and ppt'( /,l) for 
strategies a, and P,, respectively. 

k' + It' 
t = i + 1 + k; + It 

(4.1) 

and 

+ k; 
ppt,0 )= j, + k, (4.2) 

Substituting (3.7)-(3.10) for some t odd we obtain: 

(K + I)t2 + [MK + (K + 3)/2 + M]t - (K - 3)/2 + N 

2(K + l)t2 + (2M + 2 MK+ K+ al)t- K+3 ( 4 . 
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and 

2Kt2 + K(2M+ I)t-K+ 3 +2N 

PP() =2(K+)t2+(2M+(2M+MK+K+1)t-K+3+2N (44) 

For the two industries being investigated we obtain: 

Industry (1) Industry (2) 

, (,) 7t2+ 11.5t - 0.5 '(a,)= 5t2 + 8.5t +0.5 
PP(a)=14 t2 +21t1 -10plt2 +15t+ 1 

12t2 +18t - 1 8t2 +12t + 1 

It turns out that pp,(ai) converges to p* from above in both industries. The conver- 
gence of ppt'(P/) to q* is from below in Industry (1) and from above in Industry (2). 
We also note that pp'(P/) converges to its equilibrium more rapidly than ppf(ai) in 
both industries. 

EXAMPLE 2. Consider the industry with a competitive preference structure repre- 
sented by Matrix (4.2.1) and where the preferences are measured, say, on a 0-20 
cardinal scale. 

Competitor II 
Keep the 

Status-Quo Attack 
91 /2 

Keep the 
Status-Quo a, 10,12 8, 15 

Competitor I 
Attack a2 12, 10 2, 1 

Matrix (4.2.1) 

This industry is symmetric with respect to the competitors' preference ordering of the 
four states. However, the strength of the preference is different. The competitive 
preference structure described in Matrix (4.2.1) may represent an industry where 
mutual war could be a disaster for both competitors and hence, it is their least 
preferred state. The second least preferred state for each competitor is the case where 
he is keeping the status-quo while his opponent is attacking. The second most 
preferred state is the case where both competitors are in peace. Finally, the most 
preferred outcome for each competitor is to attack while his opponent is keeping the 
status-quo. 

What would be the evolution of the industry for some given expectations over the 
competitor's likelihood of choosing his strategies? We shall determine it from the 
industry's parameters, using the notations presented in ?3: S = -6, T = 2, U = -9, 
V = 3, K = 3, L = 3, p* = 3/4, q* = 3/4, EJ(q) = 3/4, EI'(p) = 3/4, M = 0, N = 0. We 
note that the competitive preference structure belongs to Class (ii) and meets the 
conditions specified in Proposition 6. Hence, the industry will cycle through two states: 
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a and a4, namely, keeping peace simultaneously or mutual war. From the data and 
Proposition 6 we can determine the number of plays that these states will be visited. 
The process will start with one simultaneous decision of war (io = 1). This will be the 
transient period. Then, cycles will develop and always be composed of three simulta- 
neous peace decisions (k = 3) and a single simultaneous war decision (i = 1). 

EXAMPLE 3. In this example we shall illustrate the effect of the competitors' 
attitudes toward risk upon their posterior performance. Consider the competitive 
preference structures represented by Matrices (4.3.1) and (4.3.2). 

P1 2 P I P2 

a1 40,20 20,40 a1 3.50,20 1.87,40 

a2 30, 30 80,10 a2 2.56,30 12.23, 10 

Matrix (4.3.1) Matrix (4.3.2) 

Here, Matrix (4.3.1) is identical to Matrix (4.1.1) presented in Example 1, and we can 
use the results illustrated there. However, we shall interpret now the numerical returns 
as monetary payoffs. Matrix (4.3.2) is derived from Matrix (4.3.1) in some particular 
manner. It is assumed that Player II is still risk neutral and hence, his returns are the 
same as in Matrix (4.3.1). For Player I, though, Matrix (4.3.2) is constructed from the 
monetary payoffs in Matrix (4.3.1) and under the assumption that he is a risk taker 
with an exponential utility function: U(x) = e.0313-Y. Exponential utility is viewed as a 
reasonable approximation to the preferences of many decision makers [10], [20]. Note 
that the preference ordering of the four states does not change but the parameters of 
the industry represented by Matrix (4.3.2) now become: S = 10.36, T = - 0.94, U = 
-20,V= 20,K= 11,L= 1,p* = 1/2,q* = 11/12,E'(q)=4/5,5 E(p) = 2/3,n'= 
2.5, n,1 = 3, N = 3, M = 1. Consequently, the posterior performance of the competitors 
during the first cycle will be: i, = 2,Ij = 26, k, = 27 and 1l = 3. The length of the first 
cycle is now composed of 58 simultaneous decisions compared with 34 decisions for 
the two risk-neutrals case, i.e., the cycle is longer. The same implication holds for any 
other cycle. A more general discussion of the effect of the competitors' attitudes 
toward risk is given in [3]. It is based on the results that have been reported in [2]. 

5. Summary 

This paper has investigated competitive preference structures which can be repre- 
sented by 2 x 2 game matrices, and examined their implied posterior performances. 
The approach taken was Bayesian decision-theoretic, where the decision maker regards 
his opponent's behavior as a stochastic decision process. Each decision maker is 
assumed to assess subjective probability distributions over the likelihoods of his 
opponent's choices of strategies. After observing each other's decision, the two compet- 
itors learn and revise their probability distributions. At each play, each player acts in 
such a way as to maximize his expected return and selects an optimal pure strategy, 
based on the players' mutual past history. 

It was first shown that different competitive preference structures may generate 
different sequential games. A classification of the games was then presented such that 
the same pattern of dynamic behavior is to be observed within each class of games. 
For some general classes of games, bounds and expressions on the number of times in 
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a sequence of plays that certain strategy pairs will be employed, were obtained. The 
convergence of the dynamic competitive behavior implied by our model, to the one 
implied from game-theoretic considerations, was noted and characterized, too. Exam- 
ples which illustrate the implications of the results were also presented. 

The analysis of real competitive situations can be quite complicated. However, it is 
felt that the approach presented in this paper could provide some insight and a 
benchmark as to how different industries may evolve over time, in terms of the 
competitors' posterior performance. This understanding becomes more important these 
days since many industries have reached their maturity level and a firm's growth is 
possible only by attacking the share of its competitor. In addition, the results reported 
in this paper can be used for generating hypotheses regarding actual dynamic behavior 
in competitive situations. These hypotheses can then be tested in an experimental 
gaming setting or with industry data and may provide stepping stones to developing 
theory in the direction of greater relevance to the "real world." 

Several possibilities exist for future work in the same spirit as the work reported 
here. Perhaps, the two most interesting changes in the details of the game that should 
be considered are the following. First, a dynamic preference theory can be incorpo- 
rated to account for the temporal aspects of the problem, and the results could be 
compared with the stable preference assumed in this paper. Second, a relaxation of the 
act-unconditional states assumption may provide an insight on the effect of the 
players' beliefs concerning possible "information leaks" upon their competitive behav- 
ior. 

'The author wishes to thank John Joyce and Andy Zoltners for reading the paper and providing some 
comments which contributed to its clarity. 
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