
On Generalizing the Concept of Hypertext
Author(s): Michael P. Bieber and Steven O. Kimbrough
Reviewed work(s):
Source: MIS Quarterly, Vol. 16, No. 1 (Mar., 1992), pp. 77-93
Published by: Management Information Systems Research Center, University of Minnesota
Stable URL: http://www.jstor.org/stable/249702 .

Accessed: 01/03/2013 13:01

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

Management Information Systems Research Center, University of Minnesota is collaborating with JSTOR to
digitize, preserve and extend access to MIS Quarterly.

http://www.jstor.org

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=misrc
http://www.jstor.org/stable/249702?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

On Generalizing the

Concept of Hypertext

By: Michael P. Bieber
Computer Science Department
Boston College
Chestnut Hill, Massachusetts

02167-3808 U.S.A.

Steven 0. Kimbrough
Decision Sciences Department
The Wharton School
University of Pennsylvania
Philadelphia, Pennsylvania

19104-6366 U.S.A.

Abstract

Hypertext has quickly become an established
paradigm in the design of information systems.
The success of products in the software market,
evident benefits as reported by users, and the
flowering of related research activity all attest to
the significance and staying power of hypertext-
rich information systems. Although standard
hypertext has a number of unquestioned benefits,
the concept also has a number of well-known pro-
blems and limitations. This article reviews the
main problems and limitations of basic (standard)
hypertext that constrain the use of hypertext in
practical applications. Further, this article
presents and discusses our "generalization" of
the basic hypertext concept, which we call
generalized hypertext. These generalizations en-
compass, among other things, automatic crea-
tion of hypertext elements. Generalized hypertext
promises to be more powerful than standard
hypertext as well as less expensive to implement
and maintain. To illustrate these concepts, we
describe the implementation of a decision sup-
port system currently in use by the U.S. Coast
Guard.

Keywords: Hypertext, generalized hypertext,
hypertext computation, virtual linking,
dynamic linking, decision support
systems, information presentation

ACM Categories: H.1.0, H.3.4, H.4.2

Introduction
The core idea of hypertext has been described
clearly and accurately:

The concept of hypertext is quite simple:
Windows on the screen are associated with
objects in a database, and links are pro-
vided between these objects, both graphi-
cally (as labelled tokens) and in the
database (as pointers) (Conklin, 1987, p.
17)

(See also Nielsen, 1990, and Shneiderman and
Kearsley, 1989, for book-length introductions to
hypertext.)

Still, as is universally recognized, there is more
to the idea of hypertext than linked information
items that allow a user to explore ideas and pur-
sue thoughts in a free and "non-linear" fashion.
After all, well-designed standard computer ap-
plication programs, including reporting systems
and decision support systems, have long
delivered such capability, at least to a respectable
degree. What hypertext systems add, with their
emphasis on the value of linked information
items, is: (1) easier, richer, more highly featured
linking of information; and (2) system-level, rather
than application-level, support for creating, main-
taining, exploiting, and managing linked informa-
tion items (Bieber, 1991). Like database systems,
report generators, graphics packages, and user
interface management systems, hypertext soft-
ware can be seen as application-independent,
system-level tools for providing useful features
for specific applications.
Our aim is to describe and discuss certain ex-
tensions at the system level to the core ideas of
hypertext, which we call generalized hypertext.
We have been motivated to develop generalized
hypertext concepts as part of a larger effort, fund-
ed by the U.S. Coast Guard, to develop decision
support system shells, i.e., system software for
generating particular decision support systems
(Bhargava, et al., 1988; Kimbrough, 1986; Kim-
brough, et al., 1990a; 1990b; Minch, 1990). Our
purpose in this article is mainly to describe these
concepts, the reasons for them, and their present
implementation.
The paper is organized as follows. In the next
section, we present briefly the core concepts and
vocabulary for basic -hypertext, as well as certain

MIS Quarterly/March 1992 77

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

problems and limitations of this hypertext con-
cept. These problems and limitations are widely
recognized. They are the primary motivation
behind our concept of generalized hypertext,
which is the main focus of this article. We then
present the essential ideas of generalized
hypertext, followed by a discussion of our im-
plementation of the system.

Basic Hypertext
Our aim in this section is to briefly present and
discuss basic hypertext. In the following section
we shall contrast this with the generalized
hypertext system that we have conceived,
developed, and implemented. Certainly, many
existing systems have richer feature sets than we
shall describe in connection with basic hypertext,
but our focus in this article is on generalizations
to the basic hypertext concept. Further, although
we shall limit our discussion to hypertext, most
of what we say (when not describing our im-
plementation) can be applied as well to
hypermedia.1
The central concept in hypertext is that of linked
collections of information. A hypertext document
may be seen as a graph, with nodes that are col-
lections of information (called, e.g., windows
(Conklin, 1987), documents (Brown, 1987; 1989;
Haan, et al., 1992), cards (Apple Computer, 1989;
Halasz, 1988), information items (Bhargava, et
al., 1988), chunks (or pieces of text) (Koved,
1988; Trigg, 1983), frames (Akscyn, et al., 1988)).
Links specify relationships between nodes. They
may have properties themselves and fall into
types. They are maintained by the system, and
are named or referred to by buttons (also called
link icons (Conklin, 1987) and link markers
(Halasz and Schwartz 1990)), which normally are
found in the nodes. To illustrate, see Figure 1
(based on Conklin, 1987), where nodes Window
A and Window B are presented as windows on
the display. Within the nodes are the buttons x,
y, z. What is displayed represents part of the
underlying hyperdocument (network of hypertext
nodes and links). Window A is a representation
of node AA in the hyperdocument, and Window
B represents BB. Similarly, a button, e.g., x,

The hypermedia concept extends hypertext to types of infor-
mation items besides text, such as graphics and sound (Haan,
et al., 1991).

represents a particular link in the hyperdocument,
e.g., xx, which links nodes AA and BB.

Typically, a user sees a node displayed in a win-
dow, its buttons highlighted in some fashion. The
user explores the hyperdocument by, e.g., click-
ing on a particular button, thereby causing the
system to find the internal representation of the
link named by the button, to then traverse the
link, to find the node at the link's endpoint, and
to display that node as another text passage. The
newly displayed node may have buttons as well,
which the user may employ in order to continue
exploring the hyperdocument. Alternatively, the
user may at any time decide to return to an earlier
node and explore from there. Users may continue
in this way more or less indefinitely, thereby ex-
ploring at will the hypertext network. A particular
hyperdocument-a collection of nodes and links
-may be thought of as an application written
under the hypertext system. It is the system that
provides the general means for exploring the par-
ticular hyperdocument. Thus, a basic hypertext
system may be thought of as operating a select-
traverse-display loop. The user selects a button,
the system traverses the link named by the but-
ton, and the system displays the node at the far
end of the link, possibly using information picked
up in traversing the link.

Typical, basic operations supported by hypertext
systems include:

* User-directed navigation (traversal (of links)
and display (of nodes)) of the hyperdocument.

* Search and display (for example, the user will
provide a search string and the system will
search until it finds a node containing that
string and then will display the node).

* Map-based navigation (the system displays a
graph (called a map or network overview) of
the hyperdocument, and the user may direct
navigation of the hyperdocument based on the
map, whose buttons, when selected, cause the
corresponding node in the hyperdocument to
be displayed).

* Creation, modification (e.g., editing the con-
tents of a node), and deletion of nodes and
links and their attributes.

* Display of link and node attribute information
(e.g., the name of the node at a link's endpoint,
the type of node or link).

78 MIS Quarterly/March 1992

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

Figure 1. Central Hypertext Concept

? Procedural attachment (link endpoints may be
procedures that are activated by traversal of
their incoming links. These procedures typical-
ly affect how certain nodes are displayed (see
Apple Computer, 1989; Halasz, 1988; Koved,
1988, and Thompson, 1990).

However interesting this basic hypertext concept
is, and however useful various implementations
of it have proved to be, a number of problems
and limitations have been identified with this
basic concept (Bhargava, et al., 1988; Conklin,
1987; Feiner and McKeown, 1991; Halasz, 1988;
Van Dam, 1988). For this article we are
concerned with the following widely recognized
problems and limitations in basic hypertext (and
in many current implementations of hypertext).

* Manual linking (Bhargava, et al., 1988;
DeRose, 1989; Feiner and McKeown, 1991;
Halasz, 1988; Jordan, et al., 1989; Van Dam,
1988). Basic hypertext systems provide editing
features for linking existing nodes and for
creating and manipulating buttons (link icons).
These features axe highly useful to the
builder-or annotator-of a hyperdocument.
The basic hypertext concept, however, does
not encompass inferred or virtual, linking of
nodes by the system at run time. To illustrate
the inferred linking concept (called implicit link-
ing by DeRose, 1989), consider a system with
predefined keyword nodes, whose contents

explain and discuss the keyword in question.
The hypertext system might infer a link (and
thus the existence of an accompanying but-
ton) by being able to recognize keywords in ar-
bitrary nodes and dynamically creating buttons
out of them that are linked to the appropriate
keyword nodes. With such a capability, a
builder could simply type text into a node and
have the system create many of the needed
buttons and links associated with that node.2
Clearly, there is considerable potential
benefit-especially in terms of reducing the
cost of building a hyperdocument-to having
the hypertext system capable of creating but-
tons and links automatically.

* Manual node creation (Bhargava, et al., 1988;
Halasz, 1988; Jordan, et al., 1989; Parunak,
1988). This is the node version of the above
link limitation. Under the basic hypertext con-
cept, the hyperdocument builder builds nodes
by using an editor to key in or to paste in in-
formation. There remains the possibility of the
hypertext system generating nodes (along with

2 Although we will not discuss it further, this feature is supported
in the system we illustrate later. Other researchers have been
active in exploring this sort of feature, e.g., in the context of
extended electronic mail systems (Ackerman and Malone,
1988; Harp, 1988; Lai, et al., 1988; Jackson and Yankelovich,
1991; Schatz, 1988). Other researchers are working on
generating links from content analysis on text (Hammwoehner
and Thiel, 1987; Parunak, 1990).

MIS Quarterly/March 1992 79

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

embedded buttons) on the basis of user inputs,
in conjunction with existing information in its
database (Furuta and Stotts, 1990; Schnase
and Leggett, 1989). (See Feiner and
McKeown, 1991, for mention of work on
generation of graphical objects.) Again, it can
be hoped that with such a capability the cost
of developing a hyperdocument might be
reduced. Finally, we note that automatic crea-
tion of nodes is quite different from procedural
attachment (see above), which has been used
to modify-or modify the display of-nodes,
rather than to create them.

* Network disorientation (Conklin, 1987;
Nielsen, 1990b; Parunak, 1989). This is the
often-cited "lost in hyperspace" problem. At-
will exploration of a rich hyperdocument can
easily lead to user bewilderment. Basic
hypertext systems use map-based navigation,
logging of nodes traversed, and search-and-
display commands as tools for ameliorating
this problem.

* Cognitive overhead disorientation:
displayed information (Conklin, 1987;
Glushko, 1989). A main virtue of hypertext is
that it provides system-level support for
building software that both presents cognitively
tractable amounts of information on the screen
and makes easily accessible arbitrarily large
amounts of associated information. In the
basic hypertext concept, however, the builder
must explicitly design the application's
displays. System-level support for tailoring the
amount of information displayed and its mode
of display is functionality beyond that in the
basic hypertext concept.3

* Multiple views (Halasz, 1988; Koved, 1988;
Perlman, 1989). Basic hypertext systems
typically provide a limited number of ways to
view nodes. For example, many systems oer-
mit buttons to be displayed with or without
highlighting, and some offer both a user's view
and a builder's view for nodes. Other views not
envisioned in basic hypertext are possible. As
a means of reducing cognitive overhead,
nodes might be filtered and transformed for

3 It is not, however, entirely beyond the functionality of some
hypertext systems. As noted above, some systems allow pro-
cedural attachment for altering node display characteristics.
"Card-based" hypertext systems (e.g., Akscyn, et al., 1988;
Apple Computer, 1989; Halasz, 1988), restrict the size of
nodes in some way in order to limit-in a limited way-the
amount of information available on screen at any time.

pertinent information before display (Beeri and
Kornatzky, 1990; Tompa, 1989). For example,
displays specialized by type of user (novice,
experienced, e.g.) might be implemented in
this way.

*Cost of building hyperdocuments
(Bhargava, et al., 1988; Jordan, et al., 1989;
Kimbrough, et al., 1990a; 1990b). Basic
hypertext systems provide substantial support
for building applications in which the user may
interactively explore a large collection of
associated information. Nevertheless, much
more might be achieved by embedding
knowledge into the hypertext system
(DeYoung, 1989). For example, contextual
information could be used automatically to in-
voke filtering routines in support of multiple
views of nodes. Also, nodes (and embedded
buttons) might be generated automatically, at
run time, by machine-based inferential pro-
cesses. There are many other possibilities as
well, e.g., automated node creation and
linking.

With the basic hypertext concept and a list of
some of its pertinent limitations at hand, we shall
now discuss our generalization of the concept
and how this generalization addresses the list of
limitations.

Generalized Hypertext
Our concept of generalized hypertext is basic
hypertext plus generalizations with regard to
nodes, links, and link traversal. These generaliza-
tions are further extended by system-level sup-
port for user and domain contextual
dependencies. The aim of this section is to ar-
ticulate our concept of generalized hypertext by
presenting and discussing these generalizations.
In the following section, we shall illustrate
the generalizations with example's from our
implementation.

Node generalization
In basic hypertext, nodes are largely document
or card nodes: collections of text with embedded
buttons and (often) graphics. Further, these
nodes are explicitly represented in the system.
We generalize nodes in two principal ways. First,
while nodes may be collections of text with
embedded buttons, under our concept a node

80 MIS Quarterly/March 1992

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

may be any information item (structured bit
stream, e.g., a document, a symbol, a picture,
and so forth) about which the system may reason.
Just about any sort of entity may be the endpoint
of a link (including other links), and all such end-
points are considered to be nodes. Abstractly,
nodes are objects that may be named (referred
to) in various ways (explicitly or implicitly) and
linked to other nodes. Further, information about
nodes may be declared in the system, and this
information (including contextual information)
may be used by the system during its link traver-
sal operations. Our second generalization is that
nodes need not be explicitly represented in the
system. They may be virtual, i.e., inferred (or
computed (Halasz, 1988)) at run time from
declarations used to build the system, as well as
from other information, such as user inputs and
attached applications (such as TEFA, see below).
For example, in the decision support system sup-
ported by our generalized hypertext implemen-
tation, (illustrated later), models are represented
in the attached application, TEFA, and every
declared model is also a node. Linked virtually
to every model are the results of various opera-
tions on it, e.g., describing it and evaluating it.
These results are themselves nodes, typically
document nodes with embedded buttons, and
are created in real time during operation of the
system.

Link generalization
In basic hypertext, each link establishes a rela-
tion between a single source node and a single
destination node, called the link endpoint. We
generalize links in two principal ways. First, links
may fork into multiple links. Thus, in selecting a
button, which names a link, the user may then
be asked to choose among several sub-links. (We
call such collections of sub-links link ensembles.)
For example, later we shall see that the name of
a mathematical model may be a button in a docu-
ment. Upon selecting such a button, the link
traversal routine will infer that several analysis
options are presently available, e.g., to run the
model, to describe the model, and to suggest a
scenario (data set) for running the model (see
Figure 2). There are also two hypertext documen-
tation options for adding a comment and for in-
itiating a user-declared (i.e., explicit) link.

Each of these sub-links, or link forks, is traver-
sable by the system and may be thought of as

a command. In basic hypertext each analysis link
may be thought of as a command to display one
of the two endpoints of a link. This generaliza-
tion allows arbitrary commands for operating
upon a link endpoint and is a richer concept
than that normally encompassed by procedural
attachment.

Our second generalization is that links need not
be explicitly represented in the system. Like
nodes, they may be inferred at run time from
declarations used to build the system, as well as
from other information, such as user inputs, at-
tached applications, and context. In fact,
generalized hypertext buttons will often indicate
the presence of such virtual links. These links are
not generated until the user actually chooses to
traverse them.

Generalizing link traversal
In basic hypertext, as noted above, link traver-
sal is normally performed through a select-
traverse-display model: the user selects a button
(e.g., by pointing to it with a mouse and clicking
on the mouse), the system finds the link named
by the button, traverses it, and displays the node
found at the link's endpoint. (In the case of pro-
cedural attachment, the system may find a pro-
cedure at a link endpoint. If so, the system calls
the procedure, which normally changes the con-
tent or display of a node.)
We generalize link traversal as follows. Inference
(indeed, arbitrary processing) may occur both
before and after traversal of a link. After the user
selects a button, the system may perform a series
of inferences in order to determine what the
available links are (i.e., the system collects the
link ensemble), possibly taking context into ac-
count. If there are several options available, the
user is then prompted to choose a particular sub-
link and (when needed) to supply parameters.
(Alternatively, the system may invoke a default.)
Inferencing is performed again in order to validate
the refined request. Upon successful validation,
the system determines (finds or generates) the
appropriate sub-link and traverses it. Traversal-
which may itself be a complex inferencing pro-
cess and may use application-level procedures
-produces a symbol that names a node. Infer-
encing, or processing, is then performed on that
symbol (e.g., for the purpose of formatting and
display). Usually, this final inferencing results in
display of a new node. Thus, our generalization

MIS Quarterly/March 1992 81

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

Q File Edit Information Query Processing MaH Financial

describe(&asset)

The ASSET Cost Rnalysis Module calculates ship acquisition and E

life cycle co _ ro__lde data
which can be t f competing
systems of sh Information Ruailable: del asset
is CARDIDATE C (1) run 3st Guard H.Q.
The model ass (2) describe

(3) suggest-scenario
f-c =: c_1 (4) add comment
c-_-s =s c_ (5) start link
c_1_p =: c_-

c-1Lacq. 3:

c f_s -. c_ (Display J Select
c-f- -p - -Option 1
c-fpacq =:- l Cancel J Number->

p_f =: c_f_ . N, |I

The model asset calls asset-cer to evaluate
c-f-cc, c-f.profit, c-.lcc and c_l-profit.

max Inferred Link Ensemble Associated With the "Asset" Button

Figure 2. Inferred Link Ensemble Associated With the "Asset" Button

follows a select-infer-traverse-infer model. (For
more details see Bieber, 1992.)

Use of the generalizations
Under our concept of generalized hypertext,
nodes are objects (declared or inferred), and links
declare operations that may be applied to objects,
usually producing a hypertext document upon
completion. These generalizations are the out-
come of our intention to construct a hypertext
system in which the cost of building hyper-
documents is greatly reduced through automatic
creation of nodes and links on the basis of
application-dependent declarations. System-level
procedures that implement these generalizations
work on application-specific declarations in order
to make the necessary inferences for automatic
linking, automatic node creation, and support for
multiple views of nodes, links, and buttons. An

important element of our design concept is that
the application should declare-explicitly or
implicitly-what is important to it, and the
generalized hypertext system should exploit
these declarations in order to infer links, nodes,
and views. (This is done, in our system, through
the use of universally quantified generalizations,
which we call bridge laws. The purpose of bridge
laws is to map terms in the attached applications
(such as TEFA, see below) to expressions
(nodes, links, and so forth) native to the general-
ized hypertext system. Detailed discussion of this
technique is beyond the scope of this article. For
further information see Bieber, 1990; 1992;
Bieber and Kimbrough, 1990. Further, it is our
hope that network and cognitive disorientation
are reduced by inferencing procedures that are
broadly available for reporting on and explaining
various system entities, notably nodes, links, and
buttons. The essential idea is to employ a stan-

82 MIS Quarterly/March 1992

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

dard format to declare information about system
entities (nodes and links); use generic (applica-
tion-independent) inferencing procedures to
generate nodes, links, and alternate views; and
provide system-level explanation features.

We shall now illustrate these ideas with a discus-
sion of our implementation of them.

Illustration: Max, a DSS Shell
Max is a generalized hypertext knowledge-based
DSS shell. It is written in Prolog and is currently
being used at the Research and Development
Center at the Office of Engineering, and
elsewhere, in the U.S. Coast Guard. Max has two
main modules: a user interface subsystem, call-
ed Maxi (Max Interface), and a model and data
management subsystem, called TEFA (The
Eileen Ford Agency, model management being
such a "fashionable" subject). The two sub-
systems have no code in common and com-
municate via expressions in a formal
communications language, the expressions of

which are formatted and interpreted in an
elementary message management system (Kim-
brough and Moore, 1992). In Figure 3, A is the
user, B is the communications path on which
messages from the message management
system flow, and C is the locus of external pro-
cedures (e.g., subroutine libraries and commer-
cial model solvers) and data (e.g., in database
management systems).
Maxi is a standalone event-driven generalized
hypertext editing and management system. It
dynamically creates user interface environments
based on requests from TEFA, which are tailored
using context information about the task and the
user (Halasz, 1988). As seen in Figure 3, Maxi
has two main components. The user communi-
cates directly with the dialog subsystem, which
handles the physical input and output. The (large-
ly) configuration-independent hypertext sub-
system passes information between TEFA and
the dialog subsystem, performing hypertext
editing and inferencing as necessary. TEFA is a
domain-independent model and data manage-
ment system currently supporting models that

KSS Shell

Maxi
----- - - - - - - - - . . .

Hypertext
Subsystem

I

Dialog
Subsystem

TEFA B
- C

Figure 3. Max KSS Shell High-Level Architecture

MIS Quarterly/March 1992 83

I 4 A

Arbitrary Application

Application Knowledge Base

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

can be expressed as mathematical equations.
For the application at hand, it provides a model-
ing language (which DSS builders use to record
the domain models and data) and information
about the models and data (Bhargava, et al.,
1988; Bhargava and Kimbrough, 1990; 1992).
Maxi currently runs only on a Macintosh com-
puter. TEFA is written in generic Prolog and is
therefore substantially configuration-indepen-
dent. When not combined with Maxi it has its own
generic Prolog command language component
and is currently functioning in this way in the
VAX/VMS environment. For TEFA to function in
an event-driven windowing environment, these
commands are translated by the message
management system into the communications
language.

Example: Working with a cost model
In order to give a sense of how Max works, we
shall discuss some of the features a user would
employ in a Max application-called Max
Financial-to work with a particular model. We
shall use as our example a model called Asset,
which is used by the Navy and the Coast Guard
to estimate ship acquisition and life cycle costs.
Asset was originally implemented in Fortran. We
reimplemented it in the model representation
language of TEFA. The various reports and
features we shall illustrate are produced inferen-
tially at run time by Max, i.e., by our generalized
hypertext system. They are automatically
available for any model declared in TEFA. (It has
been our experience that this strategy significant-
ly hastens the building of a particular DSS (Kim-
brough, et al., 1990a; 1990b.)

Max was designed to support two types of users;
analysts and executive browsers (or other
readers of prepared reports). Each typically ap-
proaches the system with a different purpose.
Analysts execute models under various data
scenarios. Information is returned in standard
reports that are dynamically created by the
system. The analysts can then copy and paste
from these standard reports to create their own
ad hoc final reports. Again, it is important to note
that Max dynamically generates standard reports
and automatically embeds buttons that name
generalized hypertext links. Copying and pasting
preserves these links in both the original and
duplicate copies. (The computational cost of this

is not excessive because buttons name-or refer
to-links, and these buttons are copied, not the
links.) Executives, on the other hand, generally
do not build reports. Instead, they typically read
reports produced on the system by analysts.
Because analysts can easily include generalized
hypertext buttons in their reports, executive
browsers have access to the same standard
reports and other generalized hypertext informa-
tion as their analysts. This allows executives to
explore the information supporting the analyst's
recommendations and findings without placing
undue burden on the analysts.

Imagine that an executive needs to make a deci-
sion based on the costs of two different fleets,
one consisting of hydrofoils and the other of
SWATH (Small Waterplane Area Twin Hull)
vessels. The analyst's task, then, is to perform
an analysis exercising the Asset life cycle cost
model to create a report. The steps taken are
outlined in Figure 4.

Steps 1 and 2: Analyst's Point of View. After
starting the Max session, the analyst asks for a
full description of the Asset model. To do this he
or she selects the describe command/query from
a menu in Max's menu bar and the Asset model
as the subject of the command. The system pro-
duces a standard report model description
(displayed in an interactive document), shown in
Figure 5. Buttons are highlighted in boldface, in-
dicating that further information is available about
the objects they represent.

Steps 1 and 2: System's Point of View. Dur-
ing Max's initialization, the Max Financial applica-
tion (under TEFA) passed a list of command
options in the communications language to Maxi,
the shell interface subsystem, which installed
them in the menu bar under the heading Max
Financial (see Figure 5). When the analyst chose
one of these items, he or she initiated the follow-
ing dialog with the Max Financial application.

* Dialog Subsystem
- Intercepts user input.
- Passes the hypertext subsystem a message

relaying that the user selected the describe
menu item and entered the text string
"asset."

* Hypertext Subsystem
- Receives the describe menu item and

associated text string.

84 MIS Quarterly/March 1992

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

Figure 4. An Analysis Task Supported by Max

--Determines that this is a generalized
hypertext link traversal request.

- Infers that processing must be performed
by TEFA to determine the destination node.

- Formulates a link traversal request to TEFA
(which TEFA will perceive as a command
request) in the formal communications
language.

* TEFA
- Receives the describe command request

with input text string "asset."
- Infers that the text string "asset" represents

a Max Financial model.
--Infers the generic describe report model for

a (financial) model.
- Executes the generic report model for the

asset financial model. This involves inferring
the financial model's description, source in-
formation, equations, and any related sub-
models. The knowledge base is used to
derive these elements, many of which
themselves are entities containing subcom-
ponents.

- TEFA generates a composite report con-
taining this information (which Maxi will
perceive as the destination node), formats
it in the formal communications language,
and passes it to the hypertext subsystem.

* Hypertext Subsystem
- Receives the link's destination node from

TEFA.
- Processes the node's contents into a for-

mat that the dialog subsystem can use. This
involves tagging buttons with an internal ID
and formulating display information (e.g.,
the buttons' base display text, and whether
each is textual, numeric, monetary).

- Passes the destination node's contents to
the diaglog subsystem.

* Dialog Subsystem
- Receives an ordered set of text and buttons

from the hypertext subsystem.
- Processes the data to create an interactive

document. The button information compiled
by the hypertext subsystem is used to

MIS Quarterly/March 1992 85

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

t File Edit Information Query Processing MaH Financial
I I

IIdecr
I I

be(ass et)I
1

-n- ' describe(&asset) EM

The ASSET Cost Analysis Module calculates ship acquisition and
life cycle costs. The intent of the module is to provide data
which can be used to evaluate the relative costs of competir~
systems of ships. The source / reference for the model asset -?
is CANDIDATE CRAFT STUDY (second analysis), U.S. Coast Guard H.Q.
The model asset has the following equations:

f_c -: c-l-s + n-f * c_f_s
c.-_s =: c_l_acq + c-l_p
c-lJp =: c_l-mp * w_mp + cph * n_h

c_l_acq =: 1.335000 * p_1
p_l =: c_-lcc + c_l_profit
c_f-s =: c-_facq + c-f_p
c-f_p =: c-f_mp * w-mp + cph * n-h

c-,facq =: 1.295000 * p_f
p_f ": c-f-cc + c-_fprofit

The model asset calls asset_cer

c-.fcc, c._fprofit, c_l_cc and
to evaluate
c_l_profit.

Figure 5. Standard Report Describing the Asset Model

determine the actual text representation of
each button on the screen.

- Displays the interactive document shown in
Figure 5 on the screen.

The highlighted buttons in an interactive docu-
ment denote links, real or virtual. Although they
indicate a relation to information in the knowledge
base, they (usually) are not explicitly linked to
anything. As we shall see, only when they are
queried directly will a link be determined and
traversed.

Step 3a: Analyst's Point of View. Next, sup-
pose the analyst wants to execute the Asset
model under two scenarios. The analyst presses
the (Macintosh) option key, and the "show me
all available options" cursor appears as shown
in Figure 5 (near the upper right-hand corner).
The analyst then clicks the mouse on one of the
"asset" buttons. Figure 2 shows the list of
available options (i.e., generalized hypertext

links), which is generated inferentially. Thus, we
say that a button names a link ensemble, or bun-
dle of links, rather than a single link as in basic
hypertext.

Step 3a: System's Point of View. What hap-
pened internally is that the system interface
determined that the user clicked on a set of
known entities: the asset button, the report node,
and the interface window itself. By default the
system chose to take the most specific entity (i.e.,
the button) and translated its internal ID to its
TEFA identifier in Max's generic "What can I do
with this?" query. To the options (sub-links)
returned by the application (TEFA), Maxi's
hypertext subsystem added the hypertext
documentation options for commenting and user-
declared linking.

Steps 3b to 5: Analyst's Point of View. From
this (filtered) list of options the analyst executes

86 MIS Quarterly/March 1992

max P _
-211: m. mom t:?f

4?

85

Q

zi

zz

ilij

:f;

STS?

s

L

&

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

the Asset model twice, once with the scenario
(data set) "hydrofoil(l)" and once with "swath(l)."
The analyst believes the variable "f_c" stands
for the total fleet costs, but just to be sure, clicks
on it to ask for a short description. The general-
ized hypertext reports generated are shown in
Figure 6. These standard reports are quite
sparse, but they could be made more explicit for,
say, a novice analyst. Alternatively, if only the
total fleet cost were needed, a report with only
this value could have been returned.

Steps 3b to 5: System's Point of View. In order
to execute the Asset model for the user, the
system traversed a virtual "execution" link (as
opposed to the other options of traversing a
"describe" link or a "suggest scenario" link, etc.)
from a report button for a model node. As a result
of following the execution link, the model was ex-
ecuted, and, as it happens, a standard report

node comprising the major resulting values was
generated as the link destination (i.e., the node
was created) and passed to the interface for
display.

Steps 6 to 8. Figure 7 shows the final ad hoc
report that the analyst has constructed for the ex-
ecutive browser. Note that the analyst has had
to do no explicit linking. Instead, the automatic
links were carried over through the buttons
(boldface text in the figures) via copy and paste
operations and editing of the final report.
Although the final report is quite short, an ex-
ecutive or browser can query any button for fur-
ther detail (Bieber, 1992). In fact, a large amount
of information is available in this fashion. For ex-
ample, in Figure 7 the executive has queried the
value representing the SWATH fleet cost. The
system recognized that this button represents the
result of a model execution and determines that

| File Edit Information Query Processing MaH Financial

describe(0asset)

The ASSET Cost Rnalysis Moduie calculates ship acquisition and

run(Gasset,'hydrofoil(1)) module is to provide data

run(0asset,'swath(1))

f_c = 3.165701e8
c_-1s = 3.448127e7 f_c = 2.1 10006e8
c_f_s = 2.820888e7 c_-ls = 2.289484e7

c_l_p = 9325000 c_f_s = 1.881057e7
c_f_p = 8150000 c_l_p = 9325000

c_l_acq = 2.515627e7 c_f_p = 8150000
c_f_acq = 2.005888e7 c__lacq = 1.356984e7

c_f_acq = 1.066057e7

1pD- 2what is(0f_c) ED! -
The variable f_c stands for total fleet cost. - ,^ !

max 1 1K>1

c_f_cc, c_f_profit, c_l_cc and c_l_profit.

max _____| -
------------------ ~ i~ft~I i~i

MIS Quarterly/March 1992 87

Figure 6. System Generated Reports From Executing the Asset Model
and Describing the f_c Variable

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

File Edit Information Queru Processing Man Financial

1O - ' Final Report 2 El

We used the asset model to calculate the life cycle costs for
the swath (1) and hydrofoil (1) f I eet scenar i os. The
total fleet costs under each scenario is:

swath (1) 2.110005e8($)
hydrca _

We therefor Information Ruailable: onfigurat Ion.

- (I) eHplain
(2) add comment
(3) add user-link

max r 1

F~ ~

Cancel N E b

Figure 7. Analyst's Final Report and Link Ensemble for SWATH Fleet Cost

an explanation can be generated dynamically.
This explanation appears in Figure 8, complete
with automatic links from the embedded buttons
to provide further information for the executive.

Max supports many other features (e.g., explicit
creation of nodes, links, and buttons; user-
induced, machine-interpretable comments on
models and data) and contains several substan-
tial mathematical models, but discussion of these
lies beyond our current purpose, which is to pre-
sent and discuss generalized hypertext and the
essentials of our implementation of it.

Discussion and Conclusion
Hypertext is recognized as a method for reduc-
ing the human operating cost and cognitive
overhead of using information systems.
Generalized hypertext is a method for reducing

the cost and effort of creating and using hypertext
systems. By providing efficient and standard
techniques for incorporating necessary and
recognized features, our generalization of the
concept of hypertext provides a robust basis for
knowledge-based hypermedia systems.

Our experience with the Max system has
demonstrated that generalized hypertext con-
cepts are both computationally feasible and
useful for builders, as well as users, of hypertext
systems. By way of summary, we shall comment
briefly on the relation of generalized hypertext to
the problems and limitations of basic hypertext,
presented earlier.

* Manual link creation, manual node creation.
Under our concept of generalized hypertext,
both links and nodes may be either explicit (as
in basic hypertext) or virtual (created during
run time by the system, based on inference

88 MIS Quarterly/March 1992

I I

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

* File Edit Information Query Processing MaH Financial

8C_LJ ..._ r Final Report PA
We used the asset model to calculate the life cycle costs for
the swath (1) and hydrofoil (1) fleet scenarios. The
total fleet costs under each scenario Is:

swath (1) 2.110005e8($)
hydrofoil (1) 3.165701e8($)

We therefore recommend the swath (1) fleet configuration.
1-=r-
I eval(&f_c,&asset,&swath(l)) ' e

2.11 0005e8 is the result of evaluating f_c under scenario
nax swath (1) .

The variable f_c is: Total fleet cost i
It is computed using the model asset as follows:
f_c =: c_ I_s + n_f * c_f_s
Here is the data used:

c_l_s = 2.289483e7
n_f = 10
c_f_s = 1 .88 1057e7

k<5l

Figure 8. System Generated Report Explaining the SWATH Fleet Cost Number
in the Analyst's Final Report

from general declarations). We have demon-
strated this concept with an implementation of
a DSS shell and model management system,
called Max, which is currently in use by the
U.S. Coast Guard. Applications of Max beyond
DSS have been developed to the prototype
stage (e.g., for project management and for ex-
ecutive information systems) but are not yet
deployed. The generalized hypertext system
is indeed quite general and application-
independent. Automated link and node crea-
tion can be thought of as being based on a
declared theory of what is important to the ap-
plication. In the Max Financial system (the
DSS application described above), models are
important, data are important, and things that
can be done with them (e.g., describe, explain,
run, suggest a scenario) are important, and the
system contains internal declarations that say

so. In the case of DSS and model manage-
ment, it is fairly clear what sorts of things are
important and hence should be used for
automatic link and node creation. The exten-
sibility of the generalized hypertext idea to
other application domains depends upon
whether it is possible to state a general, broad
theory (set of declarations) regarding what is
important in that domain. Without such
declarations (bridge laws or something like
them), it would of course be impossible for
automatic node and link creation to be
practicable.

* Network disorientation. We do not claim to
have a major advance on this problem. We
have, however, learned something that sug-
gests some progress in this area. Our system
is, as we have seen, oriented toward helping

MIS Quarterly/March 1992 89

J-
- - -

2 ~ ~ ~ ~ ~ ~~ -

.I

I 1 I

a

- I I
I-I I
I

a

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

an analyst construct an interactive document
with generalized hypertext functionality. The
analyst or document builder can create one or
more documents that are organized as the
analyst sees fit. Text and buttons can be
copied from other documents, normally gen-
erated by the system, into a document of the
analyst's choice. (Again, this was illustrated
above.) Working with the system in this way,
the hypertext network tends to take on a nice
structure. Instead of being an essentially ar-
bitrary network of nodes (documents) and
links, the hyperdocument begins to have the
structure of a collection of trees with a com-
mon root, where that root is the document the
analyst is using the system to create. One
begins at the document, forays out for infor-
mation, copies the information (including the
buttons), returns to the document (with a click
on its window), pastes in the retrieved infor-
mation, makes any needed editing changes,
and repeats the basic cycle until done. Similar-
ly, browsers may use a single document or set
of documents as a home base for exploration.
We believe this structure for hypertext ses-
sions reduces the problem of network disori-
entation, but proving it is another matter and
will be the subject of future research efforts.

Cognitive overhead disorientation, multiple
views. Because links and nodes may be
created automatically based on declarations
from the application, it is possible to set up the
declarations in a way that results in salient
chunking of the information. What counts as
salient chunking, of course, is difficult to deter-
mine and will likely be application-dependent.
We have illustrated above the outcome of our
choices in the context of DSS and model
management. How, in general, information
should be organized for presentation under
hypertext is a proper subject for an extended
research program. Generalized hypertext, as
we have presented it, does not solve this prob-
lem or complete the research. Instead, it
facilitates implementation once a solution-a
salient chunking-is chosen. By making the
application-specific declarations (including
contextual information) in the right way, the
generalized hypertext system can be made to
present information in cognitively useful
chunks, and this can be done in a context-
sensitive fashion (Bieber, 1991b). Much re-
mains to be learned on this subject.

* Cost of building hyperdocuments. It is evi-
dent that by relying on automatic generation
of nodes and links through runtime inferenc-
ing on general declarations, generalized
hypertext can greatly reduce the cost of
creating specific hyperdocuments. This is par-
ticularly clear for the application we have
chosen to illustrate here. In Max Financial the
number of virtual nodes is essentially infinite.
There is a generalized hypertext node cor-
responding to every possible parameter set-
ting for every model in the system, but only a
few nodes are ever actualized in any given ses-
sion. Also, it should be emphasized that from
the DSS builder's point of view the general-
ized hypertext features "come for free."
Specifically, models, data, and information
about them are declared in a simple,
straightforward language. (The same tech-
nique is used in other application areas as well,
e.g., project management.) Once declared,
this information is fully available to the
generalized hypertext system. The builder in-
puts (explicit) information about models and
data, not about windows, buttons, and links.
It is this latter information that the system pro-
vides and manages.

Finally, it might be asked, "What does general-
ized hypertext do for the user?" In one sense it
does nothing, nor should it. Debuggers and
compilers do not deliver new functionality for end
users. Instead, they make it easier and cheaper
to produce application software. Similarly,
generalized hypertext-based on our experience
-makes it easier and cheaper to produce hyper-
documents for those who can use them in their
jobs. In Max, for example, a few pages of declara-
tions describing a mathematical model (such as
the Asset model) can result in thousands of (vir-
tual) hypertext links that can be generated
dynamically by the system. Most of these links
get used. Without automatic generation,
however, it simply would not be cost effective to
set up the links manually, i.e., with a standard
hypertext editor.

In sum, while we have installed a functioning
generalized hypertext DSS, there is still very
much room for further work. We view our current
system as a platform for investigating orientation,
scaling, networking, and knowledge-base
maintenance issues, and particularly for further
exploiting contextual clues. We are improving our
specifications of contexts and task environments

90 MIS Quarterly/March 1992

Hypertext

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

and are working on incorporating a hypermedia
model input and modification subsystem, as well
as a hypermedia project management system,
as standard features of the DSS. We are also
modeling a "hypertext engine" to make
generalized hypertext available to information
systems other than DDS (Bieber, 1991). These
are topics for forthcoming systems and future
papers, both of our own and, we hope, of others.

Acknowledgements
Special thanks to Hemant K. Bhargava and
Christopher V. Jones for stimulating discussions,
ideas, and comments on an earlier draft. Dr.
Bhargava is largely responsible for the TEFA sub-
system mentioned in the body of the article. This
work was funded in part by the U.S. Coast Guard
under contract DTCG39-86-C-E92204 (formerly
DTCG39-86-C-80348), Steven O. Kimbrough
principal investigator.

References
Ackerman, M.S. and Malone, T.W. "Intelligent

Agents, Object-Oriented Databases, and
Hypertext," in AAAI-88 Workshop, Al and
Hypertext: Issues and Directions, St. Paul,
MN, August 23, 1988, pp. 1-3.

Akscyn, R.M., McCracken, D.L., and Yoder, E.A.
"KMS: A Distributed Hypermedia System for
Managing Knowledge in Organizations,"
Communications of the ACM (31:7), July 1988,
pp. 820-835.

Apple Computer, Inc. HyperCard User's Guide,
Cupertino, CA, 1989.

Beeri, C. and Kornatzky, Y. "A Logical Query
Language for Hypertext Systems," Hypertext:
Concepts, Systems, and Applications. Pro-
ceedings of the European Conference on
Hypertext '90, Cambridge University Press,
Cambridge, England, 1990, pp. 67-80.

Bhargava, H.K. and Kimbrough, S.O. "On
Embedded Languages for Model Manage-
ment," Proceedings of the Twenty-Third
Hawaii International Conference on System
Sciences, 1990, pp. 443-452.

Bhargava, H.K. and Kimbrough, S.O. "Model
Management: An Embedded Languages Ap-
proach," Decision Support Systems, forth-
coming, 1992.

Bhargava, H., Bieber, M., and Kimbrough, S.O.
"Oona, Max, and the WYWWYWI Principle:

Generalized Hypertext and Model Manage-
ment in a Symbolic Programming Environ-
ment," Proceedings of the Ninth International
Conference on Information Systems, Min-
neapolis, MN, November 30-December 3,
1988, pp. 179-191.

Bieber, M.P. Generalized Hypertext in a
Knowledge-Based DSS Shell Environment,
doctoral dissertation, University of Penn-
sylvania, Philadelphia, PA, 1990.

Bieber, M.P. "Issues in Modeling a 'Dynamic'
Hypertext Interface," Proceedings of
Hypertext '91, San Antonio, TX, December
1991a, pp. 203-218.

Bieber, M.P. "Template-Drive Hypertext: A
Methdology for Integrating a Hypertext Inter-
face into Information Systems," working
paper, BCCS-91-4 Computer Science Depart-
ment, Boston College, Boston, MA, 1991b.

Bieber, M.P. "Automating Hypermedia for Deci-
sion Support," Hypermedia, forthcoming,
1992.

Bieber, M.P. and Kimbrough, S.O., Towards a
Logic Model of Generalized Hypertext," Pro-
ceedings of the Twenty-Third Hawaii Interna-
tional Conference on System Sciences, 1990,
pp. 506-515.

Brown, P.J. "Turning Ideas into Projects: The
Guide System," Hypertext '87 Proceedings,
Chapel Hill, NC, November 1987, pp. 33-39.

Brown, P.J. "A Hypertext System for UNIX,"
Computing Systems (2:1), 1989, pp. 37.53.

Conklin, J. "Hypertext: An Introduction and
Survey," Computer (20:9), September 1987,
pp. 17-41.

DeRose, J. "Expanding the Notion of Links,"
Hypertext '89 Proceddings, Pittsburgh, PA,
1989, pp. 249-258.

DeYoung, L. "Hypertext Challenges in the
Auditing Domain," Hypertext '89 Pro-
ceedings, Pittsburgh, PA, 1989, pp. 169-180.

Feiner, S.K. and McKeown, K.R. "Automating the
Generation of Coordinated Multimedia Ex-
planation," IEEE Computer (24:10), Ocober
1991, pp. 33-41.

Furuta, R. and Stotts, P.D. "The Trellis Hypertext
Reference Model," Proceedings of the
Hypertext Standardization Workshop, NIST
Special Publication SP500-178, Gaithersburg,
MD, January 1990, pp. 83-94.

Gloor, P.A. "CYBERMAP: Yet Another Way of
Navigating in Hyperspace," Hypertext '91
Proceedings, San Antonio, TX, December

MIS Quarterly/March 1992 91

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

1991, pp. 107-121.
Glushko, R. "Design Issues for Multi-Document

Hypertexts," Hypertext '89 Proceedings, Pitts-
burgh, PA, November 1989, pp. 57-60.

Haan, B.J., Kahn, P., Riley, V., Coombs, J.H.,
and Meyrowitz, N.K. "IRIS Hypermedia Ser-
vices," Communications of the ACM (35:1),
January 1992, pp. 36-51.

Halasz, F.G. "Reflections on Notecards: Seven
Issues for the Next Generation of Hypermedia
Systems," Communications of the ACM
(31:7), July 1988, pp. 836-855.

Halasz, F.G. and Schwartz, M. "The Dexter
Hypertext Reference Model," Proceedings of
the Hypertext Standardization Workshop,
NIST Special Publication SP500-178,
Gaithersburg, MD, January 1990, pp. 95-134.

Hammwoehner, R. and Thiel, U. "Content
Oriented Relations between Text Units-A
Structural Model for Hypertexts," Hypertext
'87 Proceedings, Chapel Hill, NC, November
1987, pp. 155-174.

Harp, B. "Facilitating Intelligent Handling by Im-
posing Some Structure on Notes," AAAI-88
Workshop, Al and Hypterext: Issues and
Directions, St. Paul, MN, August 23, 1988, pp.
79-83.

Jackson, S. and Yankelovich, N. "Intermail: A
Prototype Hypermedia Mail System,"
Hypertext '91 Proceedings, San Antonio, TX,
December 1991, pp. 405-409.

Jordan, D.S., Russell, D.M., Jensen, A.S., and
Rogers, R.A. "Facilitating the Development of
Representations in Hypertext with IDE,"
Hypertext '89 Proceedings, Pittsburgh, PA,
November 1989, pp. 93-104.

Kimbrough, S.O. "On Shells for Decision Sup-
port Systems," working paper, Decision
Sciences Department, University of Penn-
sylvania, Philadelphia, PA, 1986.

Kimbrough, S.O. and Moore, S.A. "Message
Management Systems: Concepts and Pro-
spects," Proceedings of the Twenty-Fifth An-
nual Hawaii International Conference on
System Sciences, January 1992.

Kimbrough, S.O., Pritchett, C.W., Bieber, M.P.,
and Bhargava, H.K. "An Overview of the
Coast Guard's KSS Project: DSS Concepts
and Technology," Transactions of DDS-90,
Tenth International Conference on Decision
Support Systems, Boston, MA, May 21-23,
1990a, pp. 63-77.

Kimbrough, S.O., Pritchett, C.W., Bieber, M.P.,
and Bhargava, H.K. "The Coast Guard's KSS

Project," Interfaces (20:6), November-
December 1990b, pp. 5-16.

Koved, L. "Imposing Usability and User Perform-
ance with Hypertext Documents," AAAI-88
Workshop, Al and Hypertext: Issues and
Directions, St. Paul, MN, August 23,1988, pp.
121-122.

Lai, K., Malone, T.W., and Yu, K. "Object Lens:
A 'Spreadsheet' for Cooperative Work," ACM
Transactions on Office Information Systems
(6), 1988, pp. 332-353.

Minch, R.P. "Application and Research Areas for
Hypertext in Decision Support Systems,"
Journal of Management Information Systems
(6:3), Winter 1989/90, pp. 119-138.

Nielsen, J. Hypertext and Hypermedia, Academic
Press, New York, NY, 1990a.

Nielsen, J. "The Art of Navigating Through
Hypertext," Communications of the ACM
(33:3), March 1990b, pp. 296-310.

Parunak, H.V. "AAAI Hypertext Position Paper,"
AAAI-88 Workshop, Al and Hypertext: Issues
and Directions, St. Paul, MN, August 23, 1988,
pp. 140-142.

Parunak, H.V. "Hypermedia Topologies and
User Navigation," Hypertext '89 Proceedings,
Pittsburgh, PA, November 1989, pp. 43-50.

Parunak, H.V. "Toward a Reference Model for
Hypermedia," Proceedings of the Hypertext
Standardization Workshop, NIST Special
Publication SP500-178, Gaithersburg, MD,
January 1990, pp. 197-209.

Perlman, G. "Asyncronous Design/Evaluation
Methods for Hypertext Technology Develop-
ment," in Hypertext '89 Proceedings, Pitts-
burgh, PA, 1989, pp. 61-81.

Schatz, B.R. "Proposal to Attend Workshop on
'Al and Hypertext'," AAAI-88 Workshop, Al
and Hypertext: Issues and Directions, St.
Paul, MN, August 23, 1988, pp. 147-149.

Schnase, J.L. and Leggett, J.J. "Computational
Hypertext in Biological Modelling," Hypertext
'89 Proceedings, Pittsburgh, PA, November
1989, pp. 181-198.

Schneiderman, B. and Kearsley, G. Hypertext
Hands-On! An Introduction to a New Way of
Organizing and Accessing Information,
Addison-Wesley Publishing Company,
Reading, MA, 1989.

Thompson, C. "Strawman Reference Model for
Hypermedia Systems," Proceedings of the
Hypertext Standardization Workshop, NIST
Special Publication SP500-178, Gaithersburg,
MD, January 1990, pp. 197-209.

92 MIS Quarterly/March 1992

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

Hypertext

Tompa, F. "A Data Model for Flexible Hypertext
Database Systems," ACM Transactions on In-
formation Systems (7:1), January 1989, pp.
85-100.

Trigg, R.H. A Network-Based Approach to Text
Handling for the Online Scientific Communi-
ty, doctoral dissertation, University of
Maryland, College Park, MD, 1983.

Van Dam, A. "Hypertext '87: Keynote Address,"
Communications of the ACM (31:7), July 1988,
pp. 887-95.

About the Authors

Michael P. Bieber is assistant professor of in-
formation systems at Boston College, Carroll
School of Management. He received his B.S.E.
in computer science and Ph.D. in decision
sciences at the Wharton School, University of

Pennsylvania. His research interests include
hypertext, information presentation, and
knowledge-based decision support.

Steven 0. Kimbrough is associate professor in
the Decision Sciences Department, the Wharton
School, University of Pennsylvania, and is cur-
rently the William Davidson Visiting Professor of
Computer and Information Systems at the School
of Business Administration, University of
Michigan. He received his M.S. (industrial
engineering) and Ph.D. (philosophy) degrees
from the University of Wisconsin. His research
interests include hypertext, decision support
systems, electronic commerce, and logic model-
ing. Since 1986, he has been principal in-
vestigator for the U.S. Coast Guard's KSS
(knowledge-based decision support systems)
project.

MIS Quarterly/March 1992 93

This content downloaded on Fri, 1 Mar 2013 13:01:46 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp

	Article Contents
	p. 77
	p. 78
	p. 79
	p. 80
	p. 81
	p. 82
	p. 83
	p. 84
	p. 85
	p. 86
	p. 87
	p. 88
	p. 89
	p. 90
	p. 91
	p. 92
	p. 93

	Issue Table of Contents
	MIS Quarterly, Vol. 16, No. 1 (Mar., 1992), pp. i-xxii+1-138
	Volume Information
	Front Matter [p. i]
	Editor's Comments: Bridging Research and Practice [pp. iii - vi]
	Executive Overviews [pp. ix - xxii]
	Issues and Opinions
	Logic Programming as a Paradigm for Financial Modeling: A Comment [pp. 1 - 3]
	Logic Programming as a Paradigm for Financial Modeling: Response to a Comment by McLintock and Berry [pp. 5 - 9]

	Application
	Strategic Data Planning: Lessons from the Field [pp. 11 - 34]
	The Organizational Interface: A Method for Supporting End Users of Packaged Software [pp. 35 - 53]
	Problems and Issues in the Management of International Data Communications Networks: The Experiences of American Companies [pp. 55 - 76]
	On Generalizing the Concept of Hypertext [pp. 77 - 93]

	Theory and Research
	Revisiting DSS Implementation Research: A Meta-Analysis of the Literature and Suggestions for Researchers [pp. 95 - 116]
	A Synthesis of Research on Requirements Analysis and Knowledge Acquisition Techniques [pp. 117 - 138]

