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Abstract

We explore computational approaches for artificial agents to play the ultimatum game.  We compare our
agents’ behavior with that predicted by classical game theory, as well as behavior found in experimental
(or behavioral) economics investigations. In particular, we study the following questions: How do arti-
ficial agents perform in playing the ultimatum game against fixed rules, dynamic rules, and rotating
rules? How do coevolving artificial agents perform? Will learning software agents do better? What is the
value of intelligence? What will happen when smart learning agents play against dumb (no-learning)
agents? What will be the impact of agent memory size on performance? This exploratory study provides
experimental results pertaining to these questions.
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1. Introduction

The ultimatum game has been the subject of wide fascination and study with regard to
bargaining and negotiation.  (Subsequently, we will not distinguish these very similar con-
cepts.) For example, any trading rule can be characterized as a negotiation over how to
split the surplus resulting from a trade (see e.g., Croson 1996).  There has been a recent
growing interest in the ultimatum game by game theorists, economists, psychologists, and
computer scientists, among others (Binmore, Gale, and Samuelson 1995; Bolton and Zwick
1995; Burnell, Evans, and Yao 1999; Güth 1995; Huck 1999; Kagel, Kim, and Moser 1996;
Knez and Camerer 1995; Roth et al. 1991; Ruffle 1998; Straub and Murnighan 1995). The
importance of understanding the ultimatum game extends beyond purely scientific con-
siderations. It is important as well from an e-commerce applications perspective: if we are
to field intelligent, (semi-) autonomous agents in conducting bargaining and negotiation
in virtual communities (such as in Internet markets), much remains to be learned about the
principles of design and management of such artificial agents (Kimbrough and Wu 2001).
We have conducted a series of investigations into the dynamics of agents, having varying
degrees of intelligence, in strategic situations (or games). These investigations grew out
of, and advance, our previous studies of the dynamics of game-playing agents. Strategic
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situations are ubiquitous. How do and how can learning, deliberating, adaptive agents
perform in strategic situations? How do their performances compare with those of strat-
egy-centric agents?  How well do different identity-centric agents, using various learning
and adaptation regimes, fare against one another in strategic situations? How well do vari-
ous adaptive mechanisms perform when playing with humans? Are there simple adaptive
mechanisms whose play behavior maps well to that of human subjects?

Despite its simplicity, the ultimatum game presents a challenge in understanding nego-
tiation behavior by humans. The relevant literature can be roughly divided into two ap-
proaches for addressing the ultimatum game: the classical game theory approach and the
experimental economics (or behavioral) approach. The simplest version of the ultimatum
game is as follows. Two players, A and B, must decide how to split N dollars. At the beginning
of each play of the game, Player A decides how much x ∈ [O, N] to offer player B. Player B can
reject the offer, resulting in both of the players getting nothing; or player B can accept the
offer, in which case he gets the x dollars and player A keeps the remaining N-x dollars. For
simplicity, we assume x to be integer only. Figure 1 shows the extensive form of the game.

Classical game theory asserts that any rational Player A should offer a tiny amount, say
for example, one dollar, to Player B, and player B will always accept this minimal offer.
This outcome is indeed sub-game perfect. (It passes the Nash Equilibrium test for every
sub game, i.e., sub-trees in the extensive form).

Further, there exists an infinite number of Sub-Game Perfect Equilibria in this game (Skyrms
1996), they are along the line of x + y = N (in the continuous case; an analogous condition
holds in the discrete case, which we report here). Classical game theory is silent as to which
Nash Equilibrium will be finally selected. Given this weakness in terms of prediction, it is
not surprising that experimental economists found that classical game theory predictions
(e.g., the one dollar equilibrium) were not supported by empirical evidence when human

Figure 1. The ultimatum game in extensive form.
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subjects were playing the ultimatum game. On the contrary, humans when playing the game
in various lab settings, tend to reject offers that do not meet their threshold amounts of share
(e.g., Croson 1996; Kagel, Kim, and Moser 1996; Roth et al. 1991). These findings, inde-
pendently reported by a number of researchers (some even consider cultural differences), are
consistent and credible. Various explanations and theories have been offered for the devia-
tions from what classical game theory would predict (e.g., Bolton and Zwich 1995; Burnell,
Evans, and Yao 1999).  For present purposes, these need not detain us.

We conducted an exploratory, but systematic, investigation of ultimatum game play by
adaptive agents, agents that form and adjust their strategies in response to experience. The
general framework for such agents is reinforcement learning, appearing in the machine
learning literature (Sutton and Barto 1998). Here we explore computational approaches
for artificial agents playing the ultimatum game, and compare our results with classical
game theoretical as well as the experimental (or behavioral) economics approaches. In par-
ticular, we study the following questions: How do artificial agents perform in playing the
ultimatum game against fixed rules, dynamic rules, and rotating rules? How do coevolving
artificial agents behave? Will learning software agents do better? What does intelligence
do to benefit its holders? What will happen when smart learning agents play against dumb
(no-learning) agents? What will be the impact of agent memory size on performance? We
provide some initial computer simulation results to these questions.

The rest of the paper is organized as follows. Section 2 outlines our key research meth-
odologies and implementation details. Section 3 reports our experimental findings. Sec-
tion 4 reports further experiments in order to study the value of intelligence and the impact
of memory size on agent performance. Section 5 summarizes and discusses future research.

2. Methodology and Implementations

In our framework, artificial agents are modeled as finite automata (Hopcroft and Ullman
1979; Wolfram 1994). This framework has been adopted by a number of previous investi-
gators. Among them, Binmore and Samuelson (1992), Sandholm and Crites (1995) and
many others used the framework to study iterated prisoner’s dilemma (IPD). Kimbrough,
Wu, and Zhong (2001) used it to study the MIT “Beer Game”, where genetic learning arti-
ficial agents played the game and managed a linear supply chain. Wu and Sun (2002) in-
vestigated the electronic market off-equilibrium behavior of artificial agents in a price
and capacity bidding game using genetic algorithms (Holland 1992).  These are merely
samples to illustrate the validity of this framework in the literature. See Kimbrough and
Wu (2001) for a survey.

In this study, however, we depart from previous computational research by integrating
several previous standard approaches. First, we study a different game, namely the ultima-
tum game, rather than other games such as the IPD, Beer, Trust, or Investment games. Sec-
ond, in studying this game we use evolutionary computation to model agents. This contrasts
with the standard approaches. Third, our agents are using reinforcement learning (Sutton
and Barto 1998) as a key learning mechanism in game playing while previous studies of
the ultimatum game employ no machine learning. Finally, our agents are identity-centric
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rather than strategy-centric as used in previous studies (e.g., Kimbrough, Wu, and Zhong
2002; Wu and Sun 2002).  That is, our agents may meaningfully be said to have individual
identities and behavior.  They are not just naked strategies that play and succeed or fail.
Individuals, not just populations as a whole, learn and adapt over time and with experi-
ence.  Fielding these kinds of agents, we believe, is needed for e-commerce applications.

We now describe our model and prototype implementations in more detail, using the
framework of reinforcement learning (RL). RL is an AI approach to learning whereby an
agent tries to maximize the total amount of reward it receives when interacting with an
ever changing environment. RL is characterized by trial-and-error (no teacher, in contrast
to supervised learning that needs a teacher) and a delayed reward. Key elements of RL
includes a policy or rule, a (short-term) reward function, a (long-term) value function and
a model of the environment (Sutton and Barto 1998).  We discuss how the rules or state-
action pairs are embedded in our artificial agents, how the rewards were set up, the long-
term goal of the game (returns), the specific reinforcement learning algorithm we designed,
and finally our code design using Java.

Rules (State-Action Pairs): In repeated games, each play of a game will be treated as an
episode. So within any episode, player A only needs to make a decision at the beginning,
and is in only one state during the episode (s = 0). The rules for player A only include the
action part, which is how much to offer to player B. The value function is simple:

Q
A
(0, a) where a ∈ [0,N]

For player B, the action part is either to accept or to reject, and the state part is the amount
offered by player A. So, we have: a ∈ {Accept, Reject} and s ∈ [0,N]. The value function
of Agent B is defined below:

Q
B
(s, a) where s ∈ [O, N], a ∈ {Accept, Reject}

Rewards: Both of the players get their rewards at the end of each episode. The reward for
player A by taking action a will be:
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The value for each state-action pair is simply the average of its rewards during the previ-
ous episodes. (Thus the players assume their opponents are playing a stationary strategy.)
The value will be updated each time a state-action pair is visited.
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Returns: The long-term return is the total payoff each player gets by playing the game
repeatedly.

Reinforcement Learning Algorithm: There are two steps in each episode and one decision
point for each agent. The decision-making at each point is according to the values of the
suitable Q(s, a) and an ε-greedy policy. With probability 1–ε the agent chooses the available
action that has the highest Q(s, a) value, and with probability ε the agent chooses randomly
and uniformly among the other available actions. The pseudo code for the algorithm is:

Initialize Q
A
(0, a) = 0 and Q

B
(s, a′) = 0

Repeat (for each episode)
Player A: chooses a using ε-greedy policy
Player A: takes action
Player B: observes its state (s = a)
Player B: chooses a′ from s using ε-greedy policy
Players A and B: get their rewards r and r′ and   update their value functions.
Q

A
(0, a) ← Q

A
(0, a)*(n –1)/n + r/n

Q
B
(s, a’) ← Q

B
(s, a’)*(n–1)/n + r’/n

(where n is the total number that the state-action pair has visited)
Until k episodes have been played.

Java Coding: In the first experiment, the endowment of player A is set to 63, so its rules as
encoded in a binary string have 6 positions, and consequently the rules for player B have
6 + 1 = 7 positions. Model parameters, such as the length of rules for both agents, endow-
ment and the number of episodes to play etc. can be read in from input files. The results of
each episode are written into a plain text file.

3. Experimental Results

The artificial agents play a series of ultimatum games, first the repeated one-shot game,
second against fixed rules, third against dynamic rules, fourth against rotating rules, and
finally against another agent also coevolving under reinforcement learning.

3.1. Repeated one-shot game

In the initial experiment, there is no explicit memory for either agent, i.e. the agents make
their decisions regardless of the opponent’s last move. Under the current algorithm design,
the agents tend to find the game-theoretic result of the ultimatum game, in which player A
only offers a tiny amount. The simulation has been multiply rerun using the above con-
figuration and the conclusion was found to be statistically valid. Each time it converges to
a different small number less than 10. As for player B, the dominant strategy is to accept.
Table 1 is a partial list of the experimental results.
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The results are robust to increases in the endowments, such as 127, 255 or 1023, with a
larger number of episodes.

These results are not unexpected. Since we set the reward of a reject action by player B to
zero, and a number greater than zero when player B chooses to play accept, and since the
agents have no memory of previous play, accepting will be the better action under any cir-
cumstance. Given B almost always chooses accept, it is better for player A to offer only a
small amount. Changing the rewards assigned to player B in a way to favor the reject action
when the offer from player A is relatively low will change the results of the experiments.

3.2. Learning agent against fixed rules

Here, the strategies of player B are fixed and punishment is introduced, so that when the
last offer from player A is no greater than the current offer, player B will accept it, otherwise
reject it. Furthermore, a certain degree of tolerance can be adopted by player B, so that
when the proportion of the current offer from player A to the endowment is greater than a
certain number p, e.g. 0.8, then B will accept it, otherwise reject it.

IF (currentOffer > = p* Endowment)

Accept currentOffer

ELSE

Reject currentOffer,

where p is a model parameter that is defined in the model parameters configuration file.
For player A, if player B accepts his last offer, he will propose an offer no greater than his

last offer, i.e. suppose player A proposed d
 t–1

  in the t–1 time period, then at time t, he will
make a selection  d

t
 ∈ [0, d 

t–1
].

Cooperation emerged. In our experiment where p = .40, player A converges on a pro-

Table 1. A partial list of the results

Episode no. A’s offer A’s payoff B’s action B’s payoff

1 19 0 0 0
2 6 0 0 0
3 1 0 0 0
4 37 2 6 1 37
5 37 5 2 1 74

486 3 22946 1 5215
487 44 22965 5259
488 3 23025 1 5262
500 3 23685 1 5295
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posal of p*Endowment = 40 when the endowment is 100.  In other words, player A is capa-
ble of learning the policy of player B from iterated games.

3.3. Learning agent against dynamic rules

The lower limit (p) of player B is changing as the game is being played. The values and the
time of the changes are fixed. Table 2 shows the values of p and the occurrence of the adjust-
ment. The first row of Table 2 indicates the number of episodes when a change occurs.

Agent A can track the change very well given enough time periods.

3.4. Learning agent against rotating rules

The lower limit (p) of player B is changing with a rotating pattern, say

p
t–1

 = .40, p
t
 = .50, p

t+1
 = .60.

We want to see if player A can track such a pattern.
With our current reinforcement learning algorithm, player A converges to a proposal of

60 which is the highest value of p * 100. Memory of at least one previous move should be
introduced to the algorithm of player A in order for A to track the rotated rules of player B.

3.5. Learning simultaneously

There are no fixed rules for either player A or player B. They will learn to find good solu-
tions for themselves.

In this experiment, both players have memory of their last action. For player A, the state
in period t, is player B’s response in period t–1:

Sa
t
 = b

t–1

The action of player A in time t is still a proposal of the ultimatum, d
t
 ∈ [0, N].

For player B, the state in time t period has two parameters – the last offer from player A,
and his own response in the time t–1 period:

Sb
t
 = f (d

t–1, 
b

t–1
)

Table 2. The values of p in different episodes

1 2000 5000 7000 10000
p 0.40 0.35 0.45 0.60 0.40
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According to the state signals, player B chooses his lower limit by which he decides whether
or not to accept the proposal from A. The decision-making process for player B can be de-
scribed as follows:

IF b
t –1

 is “accept”

THEN

p
t
 = d

t–1
/N

ELSE

p
t
 ∈ [0, N]/N.

The above decision-making process of player A and B is modeled in Figure 2 using finite
automata.

Figure 2. Decision-making processes for indefinite ultimatum game.

Agent A:

Agent B:
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Figure 2 should be interpreted as follows. As shown in the top part of the diagram, Agent
A starts with a random choice of a possible proposal d ∈ [0, N]. If the proposal is accepted,
agent A will choose the best amount to propose according to the value of Q(s

a
, d) where s

a

= 1 (means accept), and continue doing so as long as agent B accepts the proposal. Other-
wise, agent A will choose the best amount to propose according to the value of Q(s

a
, d)

where s
a
 = 0 (means reject), and continue doing so until B accepts.

In the meantime, as depicted in the lower part of the diagram, Agent B starts with a
random choice of its lower limit p  – acceptable offer. If agent A cooperates, i.e. its offer
exceeds this lower limit p, agent B will accept A’s offer d and set his lower limit the same
as the ratio of agent A’s last offer to the endowment and continue doing so as long as agent
A meets the threshold. Otherwise, if agent A decreases its offer (we denote this state as s

b
),

then agent B will set p ∈ [0, 1] to a new value that maximizes Q(s
b
, p), i.e. the optimal p

value under the condition that agent A didn’t meet B’s previous p value. This process will
continue until agent A gets back to propose an acceptable offer.

Now we describe the experimental results. Cooperation emerges through co-evolution
within 2000 episodes. Player A converges to an offer of 55 or 56, and correspondingly,
player B converges to setting his lower limit at 55 or 56.  Some open questions arise from
this experiment: Why does it converge at 55 and 56 instead of 50? Does the result depend
on the initial random choices? We leave this for future theoretical exploration.

4. Further Experiments

We now describe further experiments to investigate the value of intelligence and the im-
pact of memory size on agent behavior. The questions we are interested in are the follow-
ing. Will learning software agents do better? What good does intelligence do for the agents
having it? What will happen when smart learning agents play against dumb (no-learning)
agents?

4.1. Value of intelligence

We conducted two experiments to investigate the value of intelligence. In the first experi-
ment (4a), we have one smart (learning) agent and many dumb (no-learning, fixed rule)
agents. In the second experiment (4b), we have a population of two types of smart agents
and many dumb agents. The goal of these investigations is to characterize the value of
intelligence, i.e., whether smart agents would be able to do better through learning.

One Smart Agent vs. Multiple Dumb Agents (4a)

In 4(a), we have three types of dumb agents using different fixed rules. Without loss of
generality, we assume the following three rules are being used:
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db1: demand/accept 70 or higher;
db2: demand/accept 50 or higher;
db3: demand/accept 30 or higher.

There is a certain possibility (e.g. 25%) that a smart agent can be chosen to play the game.
We shall keep a running total of the smart agent’s points. The smart agent can learn via
reinforcement learning. We would like to see if this smart or learning agent would be able
to learn a generally good or reasonable policy.  We note here that in designing this learn-
ing agent, we have to track the changing population of dumb agents. In each generation,
the experiment proceeds as follows:

1. Draw one smart agent with 25 percent possibility; otherwise draw one dumb agent
randomly in proportion to their frequency.

2. Draw another dumb agent randomly in proportion to their frequency.
3. Decide the role of each agent, i.e. proposer vs. responder.
4. Two agents play the game against each other.
5. Record the results.
6. Go to the first step until a certain number of games, e.g. 1000 episodes, has been played.
7. Update the frequency of the dumb agent based on observed results of the current or

previous time periods.

When a smart agent is chosen to play the game, he will use reinforcement learning to de-
cide how much to propose or the minimum amount he would accept.

The results of this experiment show that the fair agents who propose 50 and accept any
amount greater or equal to 50 take over the dumb agent population generation by genera-
tion. Figure 3 illustrates such a trend. On the other hand, the smart agents also learn to be
fair. Figure 4 illustrates the evolution of the rules one smart agent chose in the experiment,
as well as its average point score in each generation, as an indicator of its performance.
Although this evolution procedure is different for different smart agents, the graph depicts
the aggregate behavior and performance of the smart agent population.

Multiple Smart Agents and Dumb Agents (4b)

In 4(b), we introduce a population of smart agents playing against many dumb agents, and
playing against each other as well. Table 3 explains our experimental design. Again, we
assume the dumb agents fall into the above three types.

With the same population sizes of smart and dumb agents, the frequency of fair agents
increases very slowly. This process is not very smooth for the first 30 generations. We ob-
served decreasing points in this period. Figure 5 shows the evolving process of the fre-
quency of dumb agents within 100 generations.

Again, the behavior and performance of one smart agent is illustrated in Figure 6 to
portray the evolution procedure of the overall smart agent population. Figure 7 depicts
the distribution of the average points of smart agents.
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Table 4 summarizes the average points earned by different types of agent in 4a and 4b.
Again, the difference between 4a and 4b is that in the latter, the smart agent could play
against another smart agent while in the former case, the smart agent only met with dumb
agents (although there are three types of them). It is clear that in either case, smart agents

Figure 3. Dynamics of the frequencies of dumb agents. Parameters used for this experiment are: Number
of generations = 100, number of plays in each generation = 2000, population size of smart agents = 20,
population size of dumb agents = 90.

Figure 4. Evolution procedure of the rules used by one smart agent in the smart agent population.
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and fair agents are doing well, while greediness or generosity do not pay. On the other
hand, if smart agent plays with another smart agent, then the average points of the smart
agent as well as the fair agent decrease a bit – making unusual profit becomes more diffi-
cult, other types of agents (the greedy and the generous ones) pick up a bit. In a sense, the
distribution of wealth in this community or society becomes a bit “fairer” due to the policy
of allowing smart agents to play with smart agents.

4.2. Impact of memory size

Table 5 summarizes our findings on the impact of memory size on agent performance. Where
there is only one learning agent (5a), clearly longer memory size helps. Where there are
multiple learning agents (5b), and when both have longer memory size, the payoff de-
creases a bit, while the dumb guys pick up. In any case, it turns out the identity or the type
of agent plays an important role. The greedy agents with a longer memory benefit more,
while the fair agents remain almost the same (since they try to be fair anyway), and the
generous agents give a bit more out (due to their generosity). These findings turn out to be
robust across a number of runs.

Table 3. Experimental design of 4b

Responder

Smart (y) Dumb (1–y)

Proposer
Smart (x)
Dumb (1–x)

Figure 5. Dynamics of the frequencies of dumb agents when smart agents can play against each other.
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5. Conclusions and Future Research

Artificial agents using reinforcement learning have been found to be capable of playing
the ultimatum game efficiently and effectively. Agent intelligence and memory have been
found to have positive impacts on performance. The agent-based approach seems consist-
ent with human behavior. The work here is a first step and sheds light on the design of
cooperative agent systems in strategic situations in virtual communities, especially in
electronic commerce such as bargaining and negotiations in supply chains.

Following the same paradigm, as outlined in Kimbrough and Wu (2001), we are ac-
tively investigating other strategic games, among them are two versions of the trust game:
“The classical economic trust game” vs. “The Mad Mex Game” or “The E-Commerce Game”,
see Wu, Kimbrough, and Zhong (2002) for initial results. These trust games are natural
extensions of, yet much more complicated than, the ultimatum game as investigated in
this paper. However, the work reported here served as the initial foundation for subsequent

Figure 6. Evolution procedure of the rules used by one smart agent in the smart agent population while
smart agents can play against each other.

Table 4. Average points of the agents at the end of 100th generation

Average points
Experiment 4a Experiment 4b

Smart Agents 40.1 30.2
Greedy Agents 19.9 25.0
Fair Agents 43.8 35.1
Generous Agents 20.6 25.1



446 ZHONG, KIMBROUGH AND WU

work. We plan to conduct lab experiments with real agents (humans) playing the ultima-
tum game and the trust game, including games in which real agents play with our artificial
agents. The goals of this investigation are several-fold: to validate our model here, to test the
predictive quality of our model, and to explain human decision making behavior. Our ulti-
mate goal is to develop a (semi)-automated negotiation support system in online communities
where artificial agents are integrated with human beings to support human decision mak-
ing in electronic marketplace.   We have reported here some first steps in that direction.
Much remains to be done.
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Figure 7. Distribution of the average points of smart agents.

Table 5. Impact of memory size. Parameters used: Number of plays = 2000, dumb agents population
size = 90, smart agent population size = 20, number of generations = 100

Agent types Experiment 5a Experiment 5b
M = 1 M = 2 M = 1 M = 2

Smart w. mem. 33.3 34.1 26.0 23.7
Smart w/o mem. N/A N/A 29.9 29.0
Greedy 21.2 22.3 25.7 26.1
Fair 43.2 42.8 34.7 34.1
Gen. 20.7 19.6 25.1 25.1
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