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On Automated Discovery of Models Using 
Genetic Programming: Bargaining in a 
Three-Agent Coalitions Game 
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Abstract: The creation of mathematical, as well as qualitative (or rule-based), models 
is difficult, time-consuming, and expensive. Recent developments in evolutionary com- 
putation hold out the prospect that, for many problems of practical import, machine 
learning techniques can be used to discover usefiil models automatically. The prospects 
are particularly bright, we believe, for such automated discoveries in the context of game 
theory. This paper reports on a series of successful experiments in which we used a genetic 
programming regime to discover high-quality negotiation policies. The game-theoretic 
context in which we conducted these experiments - a three-player coalitions game with 
sidepayments - is considerably more complex and subtle than any reported in the previous 
literature on machine learning applied to game theory. 
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MODELING IS DIFFICULT, TIME-CONSUMING, AND EXPENSIVE. Examining a real-world 
system, collecting data, and summarizing the findings in the form of a valid, robust 
model all require of humans a comparatively well-developed level of training, insight, 
intellectual acumen, and domain-specific knowledge. How nice it would be if the 
model formulation process were significantly automated, but surely this is beyond the 
realm of reasonable hope. One of our purposes in this paper is to suggest otherwise, 
at least for many modeling situations of interest in commerce and other applications. 

Recent work in machine learning has demonstrated that evolutionary computation 
(including genetic algorithms and genetic programming techniques) can discover 
useful models for complex systems. Generalizing upon seminal research by John 
Holland [19, 20, 21], important extensions of this approach have been published by 
John Koza [24, 25]. Koza's first book on genetic programming [24] contains many 
examples in which genetic programs are tested against data from known mathematical 
functions and are able to discover (different) mathematical functions that fit the data.1 
Koza also reports impressive results in finding qualitative, or rule-based, models - for 

example, that direct artificial ants in finding (artificial) food, and that control robots 
in various tasks. In his second book, Koza [25] addresses the problem of identifying 
which portion of a protein is normally situated in a cellular membrane (instead of 
inside or outside the membrane), using only the primary structure (amino acid 

sequence) of the protein. This is called the transmembrane problem and it represents 
an important challenge in contemporary microbiology. Koza's summary of his work 
is worth quoting [25]: 

The best predicting program evolved by genetic programming for the set-creating ver- 
sion of the transmembrane problem with automatically defined functions has a slightly 
better error rate than four other published results. This genetically evolved program is 
an instance of an algorithm produced by an automated technique which is superior to 
that written by human investigators. [P. 16. See also ch. 16, especially table 18.1 1, p. 
485] 

Other examples of automated model discovery can certainly be found, even though 
this literature is quite young (see [15, 20, 23]). The field of game theory, however, 
holds perhaps the most significant results to date, as well as some of the best 

opportunities for automated discovery of models. Among the most impressive findings 
along these lines are results that have been reported in connection with the problem 
of finding good strategies for playing Repeated Prisoner's Dilemma (RPD) games. It 

is, for present purposes, well worth recounting those results. 
The Prisoner's Dilemma is among the most intriguing and well-studied games in all 

of social science. The game is (1) simple, (2) a plausible model for very many 
situations, ranging from nuclear confrontation to commercial markets, and (3) an 

enduring challenge to the theory of games. In the basic Prisoner's Dilemma game, two 
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players face each other. Each may cooperate (Q or defect (D), and neither may 
communicate with the other. A typical reward structure works as follows. If player 1 

cooperates and player 2 defects, 1 gets a payoff of 0 and 2 gets 5. Here we say: (C, 
D): (0, 5). The other possibilities are: (C, Q: (3, 3); (D, D): (1, 1); and (A Q: (5, 0). 
The payoffs are denominated - for example, in dollars - so that more is better. Other 

payoff structures are possible, but it is essential to the problem that when both players 
cooperate, both do better than when both defect, but that each player has an incentive 
to defect, given any fixed choice by the opponent. 

Prisoner's Dilemma has a certain tragic element to it: if the players could make an 
enforceable bargain to cooperate, both would be better off than if both defected; yet 
in the absence of such a deal, both have a compelling incentive to defect, producing 
a worse outcome for all involved.2 Suppose, however, that our prisoners play the game 
more than once. Might they, by their behavior in repeated plays, effectively commu- 
nicate and arrive at a jointly beneficial bargain? Game theorists do not agree about 
which strategy is optimal in this repeated contest. Aiming to develop an empirical 

theory for the Repeated Prisoner's Dilemma (RPD), Robert Axelrod [6] held two 

contests in which participants submitted computer programs for playing RPD. The 

first contest attracted fourteen entrants. The winning policy, by far, was TIT FOR 
TAT: cooperate on the first game with an opponent; on all subsequent rounds with 

that opponent, do (C or D) what the opponent did (C or D) in the previous round. 

Axelrod publicized the results of this contest in the game theory community and held 

a second contest. This time sixty-two policies were submitted and again TIT FOR 

TAT won. Significantly for present purposes, only one person submitted TIT FOR 

TAT in the second contest - and that was the same person (Anatol Rapoport) who 

submitted it in the first. 
TIT FOR TAT is evidently a policy for RPD with much to recommend it. No person 

was able to think up a better one, and only one person submitted it for these contests. 

Axelrod, however, reports that a genetic algorithm was able to beat TIT FOR TAT. 

In a subsequent study, Axelrod [7] applied a genetic algorithm in an environment 

consisting of eight entries from the second tournament. In that tournament "98 percent 
of the variance in the tournament scores is explained by knowing a rule's performance 
with these eight representatives" [7, p. 33]. Here is Axelrod's summary of the results: 

The results are quite remarkable: from a strictly random start, the genetic algorithm 
evolved populations whose median member was just as successful as the best rule in 
the tournament, TIT FOR TAT. While most of the runs evolve populations whose 
rules are very similar to TIT FOR TAT, in eleven of the forty runs, the median rule ac- 
tually does substantially better than TIT FOR TAT. In these eleven runs, the popula- 
tions evolved strategies that manage to exploit one of the eight representatives at the 
cost of achieving somewhat less cooperation with two others. But the net effect is a 
gain in effectiveness. This is a remarkable achievement. [7, p. 36f] 

We agree that this is indeed a remarkable achievement. A computer program was 

able to discover strategies superior to those discovered by humans in this tournament 

of one of the most important and well-studied games in social science. This work, 

along with other investigations in evolutionary computation (e.g., [18, 23, 30]), 
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suggests the hypothesis that boundedly rational (artificial) agents, operating with fairly 
elementary computational mechanisms, can adapt within challenging decision envi- 
ronments to develop effective strategies (internally represented as mathematical or 
qualitative models) that approximate optimal behavior. The results for Prisoner's 
Dilemma, among other results, hold out the promise that such boundedly rational 
artificial agents may actually make original discoveries of models (or strategies) for 
a wide variety of important problems. 

We are conducting a series of investigations whose primary objective is to demonstr- 
ate that boundedly rational agents, operating with fairly elementary computational 
mechanisms, can adapt to achieve approximately optimal strategies for bargaining 
with other agents in complex and dynamic environments of multilateral negotiations 
that humans find challenging. We have achieved considerable success in these 
investigations through pilot studies during the last two years, demonstrating that these 
artificial agents can generate effective strategies that approximate optimal solutions, 
and can do so under rather difficult circumstances. Moreover, we have found that the 
behavior of these artificial agents rivals that achieved by humans in laboratory studies. 
Our principal goal in this paper is to report on these results.3 

Background 

Research Perspectives on Limits to Human Rationality in Bargaining 

Results from a rapidly growing collection of laboratory studies indicate 
various ways in which humans depart in multilateral negotiations from the perfect 
rationality envisioned in the theory of games (e.g., [5, 8]). We interpret these results 
to indicate the following general scenario (see [2]). People approach somewhat novel 
multiperson conflict situations, not de nova, but from perspectives of tentative rules 
of thumb developed from their previous experience. They cope with this new envi- 
ronment by keying on prominent features of the situation and employing simple 
heuristics to form an initial, but tentative, assessment of the bargaining problem. As 
suggested by behavioral decision theory (see [10, 36]), this "first-cut" analysis 
produces the starting points ("anchors") from which subsequent adjustments are made, 
whether via cognitive or adaptive responses, to the competitive process of negotia- 
tions. This adjustment process is vulnerable to vagaries in the coevolution of the parties 
as they respond to one another. It is only with considerable experience in the situation 
and through intensive negotiations that players begin to approach outcomes that 
approximate a game-theoretic equilibrium. Even then, people have difficulty articu- 
lating a well-defined, comprehensive strategy. Their behavior seems to be based on 
rules of thumb that represent, at best, mere fragments of the type of complete and 
optimal strategies identified in the theory of games for negotiating coalition agree- 
ments (see [27, 33]). Players apply these strategy fragments myopically, and have 
great difficulty anticipating the other players' moves. Thus, although there is some 
learning with intensive experience in the situation, much of the movement toward the 
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game-theoretic solution appears to result from adaptive, rather than cognitive, pro- 
cesses. 

In response to these results from laboratory studies, recent progress in game- 
theoretic reasoning injects into the analysis some elements of nonrational behavior. 
For one example, although he did so to refine Nash' s concept of strategic equilibrium 
[3 1 ], Selten [32] introduced small probabilities that each player might make a mistake 
("tremble") when implementing (but not computing) a strategy. Selten assumes that 
these "tremble" probabilities are common knowledge among the players, and that each 
player takes them into account in computing an optimal strategy by solving a thereby 
constrained maximization problem. For another example, to account for the fact that 
real people can cooperate in the finitely repeated Prisoner's Dilemma, Kreps, 
Milgrom, Roberts, and Wilson [26] introduced the possibility that one player believes 
that another player is, with some small probability, a "crazy type" who is programmed 
always to play a particular strategy, such as TIT FOR TAT. The rational player takes 
into account the probability of a "crazy type" in computing an optimal response, and 
may conclude that it pays to emulate the "crazy type," at least for a while. Paradoxi- 

cally, such injections of a little nonrationality into the analysis greatly complicate the 
decision problem facing any player who is computing a best response. Such work 
testifies to the increasingly sophisticated body of rigorous ideas we call game theory 
that continues to yield significant insights into the structure of mixed-motive situa- 
tions. Yet such attempts to incorporate elements of nonrationality into game theory 
just nibble at the edges of the basic problem, because they do not generate a plausible 
causal explanation of how finite agents, such as humans, cope with the complexities 
of mixed-motive situations. 

Evolutionary Dynamics, Finite Automata, and Genetic Algorithms 

A fundamentally more direct approach is to assume that boundedly rational players 
address complex game situations, not by solving the game de nova, but rather by 
employing fairly simple rules of thumb that help to govern behavior but are too 

incomplete to constitute a well-formulated strategy. Aumann [5] calls this "rule 

rationality," in contrast to "act rationality." From this perspective, the rules may evolve 
with experience over a sequence of games, and help to determine the starting point of 
deliberations within any bargaining game. The process of negotiations from this initial 

stage within the play of the game is guided by these rules and the dynamic processes of 

competition. Thus, in contrast to previous game theory's almost exclusive focus on 

equilibrium and scant attention to the processes through which equilibrium is reached in 
rational play, we think the time is ripe to investigate the adaptive coping processes through 
which boundedly rational agents adjust to complex, dynamic, and reactive environments. 

Biological Models 

Some research in animal behavior (e.g., [16]), inspired by the seminal work of the 

biologist Maynard Smith [29], is based upon such a boundedly rational process model. 
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This approach assumes that each animal is born genetically endowed with specific 
pure strategies that govern its actions. If this animal's strategies are effective in coping 
with the current environment, then they increase the individual's fitness and thus, 
through Darwinian selection, are more likely to be inherited by members of the next 
generation. If the replicator dynamics across generations reach an equilibrium, the 
vector of population proportions of animals who play various pure strategies consti- 
tutes a mixed-strategy (Nash) equilibrium in the population as a whole. This approach 
can be useful in understanding not only the behavior of animals, but also that of 
markets and formal organizations [9]. 

Finite Automata and Genetic Algorithms 

A related approach is to represent alternative, complete strategies as a set of finite-state 
automata that compete with each other in a tournament of, say, repeated two-agent, 
binary choice [C(cooperate) versus D(defect)] Prisoner's Dilemma games (e.g., [1, 
1 8, 30]). The strategy TIT FOR TAT, for example, can be represented formally by a 
finite-state automaton (Moore machine) that begins in state 1 (play Q and remains 
there if the opponent plays C. Otherwise it moves to state 2 (play D) and continues in 
this state if the opponent plays D, but returns to state 1 if the opponent plays C. For 

example, Miller [30] begins his analysis with a set of randomly constituted strategies, 
represented as Moore machines. These structures play a tournament of repeated 
Prisoner's Dilemma games with each other. The strength (biological fitness) of each 
structure increments or decrements in accordance with the payoff this strategy wins 
in each game it plays. At the end of the tournament, the next generation of structures 
is created by probabilistically retaining the stronger structures, and creating new 
structures (offspring) as follows: Select, with probabilities in proportion to their 
strengths, pairs of old structures for mating. Each of the couples produces two 
offspring who, after being exposed to the genetic operations of crossover and mutation 
[15, 19, 20], constitute new structures that join the next generation. Then repeat this 
process through a series of generations. 

Miller's results from various computer simulations indicate that, after an initial 
adjustment period from the random start, the frequency of cooperation and the average 
payoffs realized from the repeated game encounters increase across generations until 
a plateau is reached. With experience, the best-performing structures tend to become 
less complex. Moreover, the top performers that emerge from Miller's computer runs 
perform credibly against strategies submitted by game theorists for Axelrod's [6] 
second tournament of Repeated Prisoner's Dilemma games. 

Two Problems 

These results indicate that adaptive processes can generate relatively simple but 
reasonably successful strategies for dealing with difficult environments. Yet studies 
such as Miller's (also see [3]), however promising and provocative, have certain 
limitations. The first limitation, which we call the complexity problem, is that their 
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artificial agents play in fairly simple environments. How will they perform in more 
complex environments, especially environments with a richer variety of (perhaps 
noisy) relevant information and in the presence of multiple other, coevolving agents? 
The second limitation, which we call the encoding problem, arises from the fact that 
all these experiments employed a specific, usually fairly clever, representation of the 
agent's problem. The investigator imposed this encoding, rather than permitting the 
agents to discover a useful formulation of their problem and its solution. 

Our work, described below, constitutes the beginning of a systematic investigation 
into how these general limitations (and others not described herein) may be overcome. 
However promising these techniques may be for the automated discovery of models, 
their promise will not be fulfilled until at least these two limitations are relaxed. We 
now turn to the story of our investigations in that regard. 

Design of the Investigation 

The motivation of our research is to augment evolutionary computation's 

ability to automatically discover models. Earlier projects [11, 14] focused on the 

complexity problem, using a genetic algorithm approach to discover models of 

adaptive agents playing characteristic function games - a much more complex envi- 
ronment than previously reported in applications of genetic algorithms. The current 

project uses genetic programming, a new technique in evolutionary computation, to 
solve the encoding problem in this complex environment. 

The Complexity Problem: Characteristic Function Games 

To deal with the complexity problem, we are investigating an appreciably more 

heterogeneous and dynamic environment than has been addressed in the previous 
literature employing an evolutionary computation approach: a cooperative game with 

side-payments. In this paper we focus on a special case of such a game, in which three 

agents negotiate competitively to decide which two-agent coalition forms and to agree 
on a division between the coalition partners of the points constituting this coalition's 
value. The agent who is excluded from the coalition wins zero. The game is not 

symmetric, in that each coalition (if) of two players has a unique value: v(AB) = 18, 
v(AQ = 24, v(BQ - 30. This is a dynamic environment in which three agents are 

coevolving throughout while they negotiate a considerably more difficult decision 

problem than has been addressed in the previous research cited above. 
The process of these negotiations is governed by formal rules embodied in this 

mechanism. The mechanism awards the floor to one of the three agents to initiate 

negotiations. Technically, the mechanism makes this agent a null offer. If the agent 
accepts, the game ends and all three agents win zero payoff. Otherwise, the initiator 
selects a potential coalition partner as responder and proposes a two-way split of their 
coalition's value. If the responder accepts, the game ends, and the coalition partners 
win the payoffs as specified in the agreement, while the third player wins zero. If the 

responder does not accept, then it becomes the initiator and makes a proposal, tacitly 
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rejecting the previous offer.4 The game continues in this fashion until an agreement 
is reached, or until a specified maximum number (here, six) of offers have been 
rejected, in which case the mechanism ends the game by default, and awards all three 
agents a payoff of zero.5 
This environment is more complex in three ways than games that were previously 

modeled with genetic algorithms. First, in this situation three agents interact with each 
other and coevolve; thus, the revolutionary dynamics become more complex. Each 

agent's performance depends not only on its reactions to the other two agents, but also 
on their reactions to it and to each other, and so on. 

Second, characteristic function games involve many more possible contingencies 
and options than the games previously studied from an evolutionary computation 
perspective. In the Prisoner's Dilemma players have a single binary choice: defect or 
cooperate. The environment studied by Marimon, McGrattan, and Sargent [28] 
presents more options, but not many: an agent must decide whether or not to trade its 
current good, and then decide whether or not to consume any good it owns. In our 
environment, the agent holding the floor can accept the proposal or make an offer. In 

generating a proposal, the agent must choose one of the two other agents to be the 

responder and also must decide on the proposed division of payoffs. Agents has the 
fewest alternatives in this game. In addition to accept, A can offer [0 - 18] to B or [0 
- 24] to C. Thus, A selects from forty-five mutually exclusive alternatives, while 

agents B and C have fifty-one and fifty-seven options, respectively. 
Third, the greater number of options also implies that players must react to a greater 

number of contingencies. If each agent in a two-player Repeated Prisoner's Dilemma 
game conditions its actions only on the outcome of the preceeding game, then it need 
react only to four contingencies, the Cartesian product of the agent's and opponent's 
previous binary move. In the exchange economy studied by Marimon, McGrattan, and 
Sargent [28], agents react to the information of what item they own and what item is 
offered them. Thus, the number of input states is the square of the number of items. 
The number of items is never greater than five, so the number of input states never 
exceeds twenty-five. In contrast, each agent in our environment must respond to every 
proposal that includes it as coalition partner. Thus, agents A, B9 and C, respectively, 
face forty-four, fifty, and fifty-six possible contingencies. 

The Encoding Problem: Genetic Programming 

In genetic algorithms, models are represented by fixed-length strings in which each 
field of the string has a meaning preset by the programmer. The programmer must 
write instructions for translating these strings in order to evaluate the models. Genetic 
programming (GP), developed by John Koza [24, 25], manipulates flexible, tree-struc- 
tured computer programs rather than fixed-length strings. 

A benefit of genetic programming over traditional genetic algorithms is that players 
evolve not just the values of variables in their models but also the structure of their 
models. In genetic algorithms, how inputs are processed, how output is determined, 
and how inputs are mapped to outputs is preset by the programmer who designs the 
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fixed-length string representation of the models. In genetic programming, the pro- 
grammer predetermines what information is available to the model and what output 
the model provides. However, the structure that determines how the input information 
is combined, and how the input information relates to the model's output is left to the 
evolutionary process. As Angeline [4] observes, 

In genetic programming, the interpretation of a particular expression tree is performed 
without consideration to the position of the alíele. Thus, as in computer programs, the 
interpretation of the alíele "if in a genetic program is the same regardless of its posi- 
tion in the expression tree. The arbitrarily complex association between an expression 
and its interpreted behavior allows for an unlimited variety of dynamics to emerge nat- 
urally from the evolutionary process. Again, while there is in principle no reason why 
a standard genetic algorithm could not use a similar interpretation [of] functions, this 
has not been the practice. [P. 83] 

Genetic operators in traditional genetic algorithms operate on the underlying repre- 
sentation of the models- the bit string- without regard to its interpretation. In 

contrast, the genetic operators in genetic programming are designed to preserve the 

syntactic correctness of the evolving programs. Therefore, genetic programming 

operators work more closely with the evaluated representation of a model. Again, as 

Angeline [4] puts it, 

In actuality, GP's use of a crossover operator that preserves the syntactic constraints 
of the representation language is the only true distinction between standard genetic al- 

gorithms and genetic programming. More importantly, the conceptual conveniences 
of a dynamic representation, non-positional interpretations, and direct manipulation of 

representation, highlights the narrow focus of previous genetic algorithms research. 
Genetic programming' s most significant contribution to the field may be to re-empha- 
size the variety of options not yet explored. [P. 83] 

System Design 

Model Representation 

In determining the representation of a genetic programming (GP) model, one must 

supply three ingredients: 
• Program syntax: constrains (but does not determine) the structure of the program 

trees to assure meaningful, and executable, models. 
• Function set: specifies the class of operators to be permitted as nonterminal nodes 

in the program trees, thus determining which functions the models can employ. 
• Terminal set: defines the symbols that comprise the leaf nodes of the program 

trees, thereby determining what contingencies the models can possibly recog- 
nize, and what output they can produce. 

The next few subsections discuss our specifications for these three components of 
a GP representation. Our models are Lisp programs. However, GP systems have been 

implemented in other languages such as C, Prolog, and Pascal. They have also been 

implemented using object-oriented languages such as Lisp with CLOS, C++, and 
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SmallTalk. Figure 1 presents the full representation for our models. Figure 2 gives an 
example of a strategy for each agent. In the first example, agent A will accept any 
proposal in which it is offered between two and eight points (inclusive). Otherwise, it 
will reject the offer and propose an ((A 6)(C 18)) split of v(AC) = 24. 

Program Syntax 

Essentially, each strategy model is a nested if-then-else statement. An if-then-else 
statement consists of a condition and two action statements. If the condition statement 
evaluates to true, then the first of the two action statements is evaluated. Otherwise, 
the second action statement is evaluated. 

The condition statements can be a condition or a Boolean combination of conditions. 
Action statements are either accept, make an offer (which implies a rejection of the 

previous proposal), or another if-then-else statement. Therefore, the models can 

represent strategies of almost arbitrary complexity by nesting Boolean condition 
statements and if-then-else action statements.7 

Function Set 

There are two sets of functions, one for condition statements and a second for action 
statements. Functions for condition statements consist of the two-place Boolean 
operators "and," "or," and "not." Each function returns true or false by applying the 
Boolean operator on the two arguments. "Not" ignores its second argument (which is 
included to provide closure under the genetic operations).8 The only function for action 
statements is if-then-else. 

Terminal Set 

Like the function set, the terminal set is divided into condition-statement terminals 
and action-statement terminals. The conditional terminal and offer terminals consist 
of a triple of values and a pair of values respectively. We call them complex data 
structures (CDS) to distinguish them from the single-valued terminals, true, false, and 
accept. A coalition structure consists of two pieces of information: a set of players in 
the proposed coalition, and a distribution of the coalition's value over those players. 
Therefore, combinations of player names and payoff amounts - which a CDS com- 
bines - are essential building blocks for constructing strategies. We designed special 
genetic operators, discussed later, to manipulate the CDS terminals. 

The only condition terminal is the conditional complex data structure. These 
terminals specify contingencies for the strategy. They evaluate to true or false. A 
conditional CDS - written as {Player, Lower Bound, Upper Bound} - evaluates to 
true if, in the proposed agreement, the specified player would receive a payoff between 
Lower Bound and Upper Bound (inclusive). For example, suppose B offers 5 points 
to A. Taking v(AB) = 18 into account, the mechanism would record this as ((5 13)04 
5)), listing the initiator's payoff first. Then the following conditional complex data 
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SYNTACTIC 
STRUCTURE 

strategy model:: if- then-else statement 

if- then-else statement:: (IF-THEN-ELSE condition action action) 
condition:: (condition-fn condition condition) I condition-terminal 

action:: if -then-else statement I action-terminal 

SYMBOLS 

condition-fn:: AND I OR I NOT 

condition-terminal:: {PLAYER, LOWER-BOUND, UPPER-BOUND} 
action- terminal:: ACCEPT I {PLAYER, AMOUNT} 

Figure 1. Representation of the Strategy Models 

Agent A (IF-THEN-ELSE {A 2 8} ACCEPT {C 18}) 

Agent B (IF-THEN-ELSE (NOT {B 10 30}) {C 15} ACCEPT) 

AgentC (IF-THEN-ELSE {B 10 30} 
(IF-THEN-ELSE {C 0 16} {B 12} ACCEPT ) 
(IF-THEN-ELSE (OR {C 20 30} {A 12 18}) ACCEPT {A 5} )) 

Figure 2. An Example of a Strategy for Each Agent 

structures in^'s rules would evaluate as follows: 

{A 5 14} true: ^4's proposed payoff of 5 points lies in the closed interval [5, 13]. 
{5 2 10} false: £'s payoff of 13 would exceed the Upper Bound. 
{C 0 12} true: C would get 0 (implicitly). 

The action terminal set consists of the accept symbol, and the offer complex data 
structure, which signifies a rejection and subsequent alternative offer. The action 
terminals are the outputs of the program and indicate a player's move. An offer 
CDS - written as {Player Offer} - represents a proposal to the specified respondent 
(Player) who would receive the payoff stipulated by Offer. The initiator's own 
proposed payoff equals the coalition's value minus Offer. Therefore, if Player C makes 
the offer {A 10}, then the mechanism records this as the proposal ((C '4)(A 10)). 

Model Evolution 

Genetic Operators 

We employ four genetic operators to create new straegy models, and constrain these 
operators to ensure that the syntactic structure is maintained. Crossover swaps subtrees 
from two parents. Mutation changes the symbol at a randomly picked function or 
terminal node in the tree. If a terminal node is chosen, then a new CDS may be created 

This content downloaded  on Fri, 1 Mar 2013 11:00:59 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


108 D WORM AN, KIMBROUGH, AND LAING 

for that node. We provide two additional operators - CDS crossover and CDS muta- 
tion - to evolve the genetic material inside a CDS. Crossover and mutation operate on 
entire subtrees or nodes of a program tree; they do not operate on the values inside a 
CDS. Therefore, without CDS-specific operators, the values inside a CDS would never 
change, and the agent would be prevented from evolving new offers or conditions. 

Both of the CDS operators work on a randomly chosen field within a CDS. CDS 
mutation toggles a random bit in the chosen field, thereby creating a new value. CDS 
crossover selects two CDS, one from each parent, then picks a random point in the 
chosen field's bit string and swaps the right-hand sides ofthat field's bit string in the 
two CDS. Again, both CDS operations are constrained to ensure legal syntactic 
structures. 

The Evolutionary Process 

At generation 0, all strategies are created randomly. Care is taken to assure that 

programs of differing shapes and sizes are created. This way there is much diversity 
of population structure and content when a simulation begins. After the strategies are 
evaluated (a process described in the next subsection), new populations are created. 
Most of a new population (between 50 percent and 80 percent, depending upon 
parameter settings) is created by copying old strategies. The old strategies are selected 

probabilistically for copying based upon their scores in the evaluation. The higher the 
score, the greater the probability of being selected for copying. Selection is performed 
with replacement, so a single strategy may be copied more than once. When a strategy 
is copied, mutation or CDS mutation may be applied to generate a modified version 
for the next generation. 

The rest of the new population is created using crossover. Two parents are selected 
probabilistically, crossover is performed on them, and the children are placed into the 
new population. Again, parents are chosen based upon their scores in the evaluation, 
and selection is with replacement, so a strategy may serve as a parent more than once. 
After crossover is performed, the children may be changed further by mutation, CDS 
crossover, or CDS mutation. 

Parameters control the evolution of the population. They include specifications for 
the percentage of the population created via copying rather than via crossover and the 
probabilities of the other three genetic operators being performed on any given child. 

The Game Simulation 

Our research simulated negotiations in the three-player cooperative game defined 
above. Each agent is represented by a population of fifty strategies.9 A tournament of 
games is used to evaluate all the strategies. Ideally, every strategy in an agent's 
population of rules would play each combination of opponent agents' strategies and 
do so three times, so that each of the players in the combination is given a turn to begin 
the negotiations. Unfortunately, that would require 3(503) = 375,000 games per 
generation, and thus is not feasible. Instead, selecting randomly without replacement, 
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First Initiator: Bargaining Sequence: 

A A: ((A 6)(C 18)) 
C: ((C 19)(A 5)) 
A: ACCEPT 

B B: ((B 15)(C 15)) 
C: ((C 18)(B 12)) 
B: ACCEPT 

C C: ((C 19)(A 5)) 
A: ACCEPT 

Figure 3. Three Games Played by the Strategies Displayed in Figure 2 

we match each strategy of a player with exactly 250 combinations of the other two 
players9 strategies. Each selected combination then plays three games, each initiated 
by a different player. Thus, each strategy plays 750 games in the tournament. 

A strategy's strength (fitness) is based on its score in the tournament, which we 
calculate as the average payoff (points) won by the strategy in the outcomes of games 
in which, sometime during the negotiations, it got the floor. In accordance with the 
rules of procedure governing the bargaining process (described above), the strategies 
displayed in Figure 2 generate the three bargaining sequences shown in Figure 3. 

Comments about the Models 

It is important to point out the limitations we are imposing on these artificial agents. 
Their strategies are constrained to be of the simple form "If x is the current proposal, 
then do>>, else do z." Such rules are contingent only on the current offer, and thus are 
entirely oblivious to the history of the negotiations, and even to the value of the various 
coalitions. As output, they can only accept or make a proposal. The agents are 
prevented from developing expectations about other agents in the game. Moreover, 
these agents begin in the first generation with randomly constructed strategies that are 
likely to be simply inane. Indeed, the first generation often contains rules such as "If 
A offers me 15, then request 5 from A." 

The next section presents results indicating that, quite remarkably, these simple 
agents, so severely limited cognitively, nevertheless can discover strategies that cope 
well with this complex and dynamic environment. 

Results 

This section analyzes data from simulations through 4,000 generations. 
The simulations are based on a twelve-cell experimental design consisting of a Cartesian 
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product of parameter values for the genetic programming representation.10 In each of 
these twelve cells, separate runs were conducted for three different seeds of the 
pseudo-random number generator. The data result from 12x3 = 36 simulations. We 
recorded data at the random start (generation 0), and then every five generations in 
the 4,000-generation runs; thus, the results for each of the 36 runs are based on 
variables contained in 801 reports, each of which averages the results from up to 
3(players) x 50(rules/player) x 750(games/rule) = 112,500 distinct bargaining se- 
quences played in the tournament for that generation. 
This paper focuses on the results from two cells in the twelve-cell design, which we 

will refer to as run 1 and run 2.11 On average, the results for these two runs are very 
similar. Later, we shall see that the results for these two cells are in fact representative 
of the other cells in the design. Also, in discussing these results, we shall compare 
where possible the behavior of these artificial agents with the behavior of human 
subjects who were observed in a laboratory study of a game that is comparable to ours 
([22]: game IV, experiments 1-3 combined, n = 48 triads).12 

Game Length and Agreement Frequencies 

Some of the variables adjust quickly from the random start, so that the averages for 
the first 1,000 generations differ little from later generations. The first pair of rows in 
Table 1 indicate that, on average, less than two rounds is needed to complete the 
bargaining. The second pair of rows report that roughly 84 percent of the games in run 
1, and 87 percent in run 2, result in a coalition agreement (rather than ending by 
default), both in the first 1,000 generations and in generations l,000+ - 4,000 
combined. Although this is a high level of agreement, the artificial agents are 
somewhat less successful than human subjects in forming agreements: all forty-eight 
of Kahan and Rapoport's triads succeeded in forming a coalition. 

The bottom six rows of Table 1 break down the overall frequency of agreement into 
the frequencies with which each two-agent coalition forms. From detailed examina- 
tions of the graphs of coalition frequencies across generations (not shown), we note 
that, in a typical generation, most of the agreements involve just two of the three 
coalitions, but that the pair of coalitions that currently is prevalent changes across 
generations. Nonetheless, the overall averages for the 1,000- generation sub- 
populations displayed in Table 1 indicate that the BC coalition is somewhat disadvan- 
taged in these data, particularly in the second run. However, no coalition is frozen out 
of these negotiations indefinitely. 

This contrasts with the oft-observed proclivity of human subjects in characteristic- 
function games to opt for the "most valuable" coalition: the forty-eight coalitions 
observed by Kahan and Rapoport are distributed n(AB) = 6, n(AC) = 7, n(BC) = 
35. Yet, if payoffs conform to the quota solution, then each player should be 
indifferent as to which coalition that player joins. Thus, it might seem that, at 
equilibrium, all two-person coalitions should be equally likely to form in this game.13 
Apparently the artificial agents, ignorant of this game's characteristic function, were 
not distracted by the fact that (BC) is the "most valuable" coalition. 
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Table 1. 

n  Generations (thousands)  
0-1 l+-2 2+-3 3+-4 l+-4 
(201) (200) (200) (200) (600) 

Mean game length 
run1 1.843 1.763 1.851 1.860 1.825 
run 2 1.767 1.765 1.876 1.862 1.834 

Agreement frequency 
run1 0.842 0.854 0.836 0.836 0.842 
run 2 0.873 0.882 0.861 0.858 0.867 

Coalition frequency 
AB 
run1 0.255 0.360 0.274 0.233 0.289 
run 2 0.379 0.336 0.360 0.328 0.342 

AC 
run1 0.350 0.299 0.359 0.360 0.339 
run 2 0.324 0.429 0.345 0.389 0.388 

BC 
run1 0.237 0.195 0.203 0.242 0.213 
run 2 0.169 0.116 0.156 0.140 0.137 

Coalition Payoffs and the Quota Solution 

Various solution concepts from cooperative game theory prescribe for this game a 

quota solution (e.g., see [35], p. 177n), akin to a vector of equilibrium prices, which 

specifies the equilibrium values of the three agents' positions in this situation when 
each agent seeks to maximize its total payoff under perfect competition. Specifically, 
the quota solution to this game is q = (qA, qB, qc) = (6, 12, 18). It prescribes that if 
coalition ((/) forms in this game, then the payoffs should be divided between coalition 

partners in accordance with their quotas, while the third player must, in this game, win 
zero. For example, the quota solution prescribes that if A and B form a coalition, then 

they should split v(AB) = 18 such that A wins qA = 6 points and B gets qB = 12. Note 
that q^qs^ v(AB). 

We are interested particularly in determining the extent to which these simple agents, 
so cognitively limited, can coevolve in this rather complex bargaining environment 
to produce coalition agreements that roughly approximate those prescribed by the 

theory of cooperative games. Note well: the rules are being selected in the evolutionary 
process on the basis of their fitness as measured by the average payoffs they win in 
the tournament, not by how closely their payoffs approach the quota solution. For this 

purpose, to avoid concentrating on rules that are outliers, we focus on the average 
payoffs won in coalition agreements by the rule of each agent that, for the generation 
being reported, earned the median overall payoff among the agent's population of fifty 
rules. To provide a summary measure, let us define the mean absolute deviation from 
the quota: to wit, we compute for each agent the absolute value of the difference 

This content downloaded  on Fri, 1 Mar 2013 11:00:59 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


112 DWORMAN, KIMBROUGH, AND LAING 

between the agent's quota and the average payoff won in coalition agreements by the 
agent's median rule, then average the results across the three agents. Figures 4 through 
6 (respectively, 7 through 9) plot the 801 values of this summary measure for each of 
the three seeds used in the first (resp., second) run.14 

Figures 4 through 9 display some very encouraging results. In Figure 4, after a 
substantial departure from the quotas in the early generations, the median rule 
approaches the quota solution by the nine-hundredth generation, then remains within 
about one to two points of the quota until a medium strength random shock to the 
system occurs at roughly generation 2,200. Beyond this point, the system recovers to 
within a point of the quota in generation 3,000 and again, after further small shocks, in 
generation 4,000. Note that the genetic operations can produce enormous changes in just 
one generation. For example, even if identical parents mate, subtree crossover can produce 
strikingly different offspring, and this can reverberate throughout the coevolving system 
of the three agents' populations of rules. Nonetheless, although the graphs depicted in 
Figures 7 through 9 are somewhat less dramatic (as is consistent with the milder parameter 
values used in run 2), in all six figures the systems recover rather nicely from these shocks 
and return to the neighborhood of the game's quota solution.15 

Although the graphs indicate differences in details, the six sets of data (two runs, 
three seeds each) exhibit very similar results when we compute the average across 
each 1,000-generation segment. Table 2 presents the mean absolute deviation from 
the quota (and standard error of the mean) for the two respective runs, averaged within 
each 1,000-generation segment and across the three seeds. In both runs, the deviation 
from the quota is less in subsequent generations than during the first 1 ,000-generation 
adjustment period, averaging over these subsequent generations to about 2.6 and 2.1 
points, respectively, from the quota solution. 

Table 3 presents for the two runs the average payoffs (and standard error) won as a 
coalition member by each agent's median rule, again averaged across seeds within 
1,000-generation segments. The means across the last 3,000 generations indicate that 
agent A is averaging one to two points more than its quota (qA = 6), whereas both 
agents B and C are averaging within less than a point of their quotas (qB =l2,qc = 

18) in the tournament of games. Thus, on average, these systems of simple rules 
coevolve into the neighborhood of the cooperative game-theoretic solution. 

Equilibrium 

We now describe the extent to which, at "equilibrium," the artificial agents reach 
agreements approximating those prescribed by game theory. In these simulations, 
"equilibrium" is at best transitory. As demonstrated in Figures 4 through 9, the 
behavior of the three agents remains stable for a while, becomes somewhat chaotic as 
random changes shake the system, and then settles down again. This cycle between 
stable and nonstable states is common to all thirty-six simulations in the twelve-cell 
design. To measure the extent to which the system is presently in a state that 
approximates an equilibrium, we use the following operational construct. Let x(t) 
denote any variable x at a point t in the sequence of generation reports. In particular, 
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Table 2. 

 Generations (thousands)  
0-1 l+-2 2+-3 3+-4 l+-4 

Mean absolute deviation from quota, median rule (s.e.) 
run1 3.861 2.173 2.614 2.962 2.583 

(0.198) (0.101) (0.132) (0.126) (0.076) 

run 2 2.807 1.911 2.375 2.064 2.116 
(0.108) (0.095) (0.117) (0.119) (0.068) 

Table 3. 

 Generations (thousands)  
0-1 l+-2 2+-3 3+-4 T-4 

Average payoff as coalition member, median rule (s.e.) 
Agent A 
run1 9.566 7.212 8.147 8.773 8.004 

(0.264) (0.129) (0.193) (0.189) (0.011) 

run 2 8.561 7.243 7.527 7.379 7.383 
(0.133) (0.136) (0.153) (0.156) (0.095) 

Agent B 
run1 12.806 11.802 12.304 11.815 11.974 

(0.311) (0.187) (0.239) (0.278) (0.142) 

run 2 11.567 11.732 11.425 11.439 11.532 
(0.225) (0.195) (0.216) (0.223) (0.124) 

Agent C 
run1 17.293 19.516 18.192 17.435 18.533 

(0.260) (0.159) (0.190) (0.230) (0.121) 

run 2 17.171 17.736 19.101 18.938 18.591 
(0.228) (0.180) (0.202) (0.175) (0.112) 

we shall be concerned with the case in which x(t) represents the average payoff won 
as a member of a coalition agreement by an agent's best rule, that is, the agent's rule 
that wins overall the greatest average payoff. First, let us define x(t) to be settled prima 
facie if both of the following conditions obtain: (1) the m: = 5 immediate predecessors 
of x(t), with mean x(m,t), have a standard deviation no greater than d: = 0.5, and (2) 
x(t) deviates no more than d from x(m,t). Second, if x(t) is settled prima facie, then we 
define to be settled retrospectively any of its m immediate predecessors that deviates 
no more than d from x(m,t). Then, we say that x(t) is settled at t if it is settled prima 
facie or retrospectively at t. Finally, we define the system of agents to be settled at t 
if, for each of the three agents, the average payoff won by that agent's best rule when 
it succeeds in forming a coalition agreement is settled at t. 
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In our discussion of equilibrium behavior (as defined by settledness), rather than 
discuss details of just the two runs mentioned earlier, we report results in terms of 

weighted averages across all thirty-six simulations. Specifically, these averages are 

reported for those generations (n = 3,158, out of a total of 801x12 = 9,612 generation 
reports) during which, as defined above, the systems were settled. 

Coalition Payoffs during Equilibrium 

During the periods in which the system was settled, the best rules of artificial agents 
A, B, and C, respectively, averaged in their coalition agreements a payoff of 8.6, 1 1 .9, 
and 18.5 points. (For these same periods, the payoffs won by each of the agent's median 
rules averaged only about a half-point less: 8.1, 1 1.4, and 18.1, respectively.) Thus, A's 
best rule averages 2.6 points more than the quota in these simulations. In comparison, 
human subjects in Kahan and Rapoport's experiments average 4.8, 12.7, and 17.7 (trans- 
formed - see note 15) to players ,4, 2?, and C, respectively. Presumably, A is disadvantaged 
by the proclivity of human subjects, unlike the artificial agents, to form the (BQ coalition. ] 6 

Players B and C approximate their quotas in both the human and artificial data. 

Overall, the mean absolute deviation from the quota solution is roughly 2.5 points 
in the artificial data, rivaling that of 2.0 points in the human data. Moreover, in the 
artificial data, the distance from the quota decreases in a strictly monotonie progression 
as the number of agents whose best rule is settled increases in unit steps from zero to 
three: the more settled the system, the more it approaches the game-theoretic solution. 
In addition, fully 94.2 percent of the coalition agreements formed by artificial agents, 
but only 68.7 percent of those formed by the humans in Kahan and Rapoport's 
laboratory study [22], lie closer to the quota solution than to an even split of the 
coalition's value. In this respect, the artificial agents, perhaps because they are not 
encumbered by equity considerations or the cognitive and social prominence of even 
splits, are closer than humans to the game-theoretic solution. 

Opportunity Costs and Best Responses 

But do these rules approximate optimal responses to the environment? The quota 
solution can be implemented by a class of equilibrium strategies (stationary, subgame- 
perfect, Nash), and thus is consistent with rational play of the bargaining situation 
represented as a noncooperative game in extensive (tree) form [27, 33, 34]. We have 
demonstrated above that the cooperative agreements reached in these games lie 
roughly in the neighborhood of the cooperative game-theoretic solution, but now 
investigate further whether the rules embody strategies that, at least approximately, 
constitute best responses to the rules they are playing in the tournament. 

If so, then the rules incur no opportunity cost. We operationalize opportunity cost 
in this situation as follows: Consider any game in the tournament in which a rule gets 
the floor in the negotiations. At this stage in the bargaining, the rule can make an offer 
to either of the other two agents. We compute the rule's opportunity cost for this game 
as the maximum payoff the rule could win by making an offer that would be accepted 
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immediately, minus the actual payoff achieved by the rule in this game's outcome.17 
For example, consider the bargaining sequence displayed in Figure 3 for the game 

in which B is the first initiator. B achieves a payoff of twelve points in this game's 
outcome. Yet the strategies shown in Figure 2 reveal that A (respectively, Q would 

accept an offer from B in which B wins sixteen points (respectively, thirteen). The 
maximum of these opportunities for B is sixteen. Thus, in agreeing to an offer of twelve 

points, B incurs an opportunity cost of 16-12 = 4. Clearly, B's strategy is not a best 

response to the strategies of the other agents. At a Nash equilibrium, each agent's 
opportunity cost would be zero. 

Table 4 presents the mean opportunity cost (and standard error of the mean) incurred 
in the two runs for each of the three agents' median rules, averaged across games, 
seeds, and 1,000-generation segments. The results clearly indicate that these rules are 

failing to exploit opportunities present in their opponents' strategies: most signifi- 
cantly, the median rules of agents B and C are incurring average opportunity costs of 
about 5.5 and 7 points, respectively, in the last 3,000 generations. These agents' 
median rules do not approximate best response strategies, and little learning in this 

regard is evident in these data. 

Focusing on the opportunity costs accrued during equilibrium play tells a similar 

story. The opportunity costs incurred in all thirty-six simulations during the settled 

periods by the best rule of agents A, 2?, and C averaged approximately zero, three, and 
four points, respectively. Thus, A employs a strategy that is a best response to the 

strategies being played by the other agents, but B and C do not. 

Thus, although these cognitively simple, adaptive agents coevolve in these runs to 

produce coalition agreements that approximate the cooperative game-theoretic solu- 

tion, they do not discover best responses to their opponents' strategies. We wonder 
whether the human subjects in the Kahan and Rapoport study formulated strategies 
that more closely approximated a Nash equilibrium. 

Conclusion 

These results are encouraging, but not unalloyedly so. In a cognitively 
deprived, information-poor environment (e.g., no memory of previous play, lack of 
full knowledge of the game' s conditions), our agents have been able to evolve behavior 

that accords well with what has been prescribed by game theory. The agents more or 
less find the quota solution. They do so with rules we can demonstrate to be 

nonoptimal: even the best rules during equilibrium play have significant opportunity 
costs. Nonetheless, good play has been achieved and rules that in fact do well against 
a broad set of competing rules have been discovered. That this has been done in the 
current context, when a normative solution is known, augurs well for contexts in which 
no unique solution is known. We may hope that computational approaches, GP in 

particular, will yield insights into games for which game-theoretic solution theory 

provides no clear answer. 
The good, though nonoptimal, performance of our artificial agents should be 

evaluated in the context of the large search space they face. Let us calculate: Agent ,4 
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Table 4. 

 Generations (thousands)  
0-1 l+-2 2+-3 3+-4 l+-4 

Average opportunity cost, median rule (s.e.) 
Agent A 
run1 2.378 1.688 1.796 2.035 1.981 

(0.276) (0.183) (0.235) (0.215) (0.130) 

run 2 1.349 1.522 0.638 0.448 0.869 
(0.225) (0.236) (0.222) (0.193) (0.134) 

Agent B 
run1 5.347 5.146 5.685 5.410 5.577 

(0.256) (0.231) (0.226) (0.203) (0.130) 

run 2 6.684 6.150 5.335 5.190 5.559 
(0.209) (0.188) (0.195) (0.207) (0.117) 

Agent C 
run1 6.804 6.090 7.493 5.921 6.846 

(0.220) (0.177) (0.185) (0.194) (0.114) 

run 2 7.911 7.757 7.112 6.594 7.155 
(0.200) (0.181) (0.216) (0.191) (0.119) 

can receive 19 different offers from agent B (0-18), and 25 different offers by C for 
a total of 44 different possible inputs. A then has 44 + 1 = 45 different responses that 
are possible. A can respond with any of ̂'s possible offers, or A can end the game by 
accepting. Thus, A must choose among 44 x 45 = 1,980 different response policies. 

Even so, A" s problem is much harder, since the rules and responses for B and C are 
relevant. £'s corresponding numbers are: (on input) 19 + 31 = 50, (on output) 51, and 
(overall) 50 x 5 1 = 2,550. And, Cs corresponding numbers are: (on input) 25 + 3 1 = 56, 
(on output) 57, and (overall) 56 x 57 = 3,192. Thus, the system of players must search 
over a space of 1,980 x 2,550 x 3,192 = 1.6 x 1010 combinations of response policies. 

There are very many more possible combinations of rules, since: 

1 . Every player is forced (by the design of the experiment) to have a complete 
decision policy. That is, every player must be able at all times to respond to 
every possible valid input condition for that player. 

2. Every such (complete) decision policy for playing this game is possible 
syntactically. That is, every response policy may be represented rather 
directly in the syntax of the agents' rule language. 

3. Any given complete decision policy can be represented by a large number 
of syntactically distinct, but behaviorally equivalent, rules. 

Conservatively, there will be more than 100 logically (behaviorally) equivalent 
representations per complete decision policy. Thus, the search space is at least on the 
order of 1012. Note further that: 
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4. Our (artificial) players are coevolving; they are not playing against constant 
opponents. 

5. In a run of 4,000 generations with 3 players and 50 rules per player per 
generation, the maximum number of rules created in the simulation is 6 x 
105. 

Given this, we can but stand in awe of these simple agents' performance in achieving 
quite reasonable results. 
Much, of course, remains to be done. Longer runs will likely yield better results and 

further insight. We are conducting them. Better architectures and more complex 
problems need to be investigated. Still, the results to date can only lend credence to 
the belief that automatically discovered models, decision policies, and strategies may 
someday be routinely in our service. 

NOTES 

1. See, in particular, chapter 10 of Koza [24], in which he investigates the symbolic 
regression problem. A functional relationship, y =/jc), known to the experimenter, but not to 
the genetic program, is used to generate data, i.e., <x, y> pairs, which are used by the genetic 
program to evolve a function that fits the data. Koza' s work here does not include studies of 
reactions to noisy data. 

2. Any tragedy is from the point of view of the players. If the players are firms setting prices 
in a market, then from the point of view of social welfare, failure (mutual defection) may be the 
preferred outcome. 

3. Throughout this paper we assume basic familiarity with genetic algorithms and genetic 
programming. Excellent introductions to genetic algorithms (e.g., [15, 19]) and genetic pro- 
gramming (e.g., [24, 25]) are readily available. 

4. Actually, the responder might return the same proposal. The mechanism treats such an 
echo like any other proposal, recording an agreement other than the default outcome if and only 
if the resDonse is accented. 

5. The restriction to six offers per game is not very limiting. In our simulations, almost all 
agreements are reached within three offers. Initially, we limited games to ten offers, but 
discovered that any game that went beyond five offers continued until the mechanism ended 
the game by default. Therefore, we lowered the limit to six to speed up the simulations. 

6. This section summarizes the details of our system. In [13], we present additional details 
of our system and discuss the differences between our system and the original genetic program- 
ming system developed by Rice and Koza [24]. 

7. Actually, we limit the complexity of the strategies to a maximum tree depth of eight. See 
[13] for details. 

8. In the second example of Figure 2, we omit the second argument of NOT, which is 
ignored anyway, to improve readability. 

9. Population size also is controlled by a parameter. 
1 0. For all runs reported in this paper, mutation probability = 0.5. The twelve-cell design is 

based on the full Cartesian product (2x2x3) of the following parameter sets: crossover fractions 
= {0.2, 0.5}, leaf crossover probabilities = {0.2, 0.5}, and leaf mutation probabilities = {0.2, 
0.5, 0.8}. See [13] for details. 

1 1 . In the first (respectively, second) run, crossover fraction = CDS crossover probability = 
0.5 (resp., 0.2), and CDS mutation probability = 0.2 (resp., 0.8). 

12. The characteristic function of their game IV is: V(AB) = 66, v'AQ = 86, V(BC) = 106, 
else V(S) = 0. To compare payoffs achieved by human subjects in game IV to those obtained 
by our artificial agents, we use the following transformation for positive-valued coalitions: v(5) 
= 0.3[v'(SM] ifv'(-S) > 0; hence v(AB) = 1 8, v(BQ = 24, v(BQ = 30. 

13. We have restricted these agents to employ strategies that do not select actions pro- 
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babilistically (i.e., pure strategies). In contrast, for a game in which negotiations are governed 
by rules that differ from those used in our games, Selten [34, eh. 11] has characterized 
probabilistic strategies for negotiating three-person quota games that, at equilibrium, both 
implement the quota solution and generate precise coalition probabilities such that, indeed, BC 
is the most likely coalition. 

14. The function plotted in Figures 3 through 8 is fitted with the SYSTAT software by 
distance-weighted least squares, with tension parameter: = 0.0001, a considerably less stiff 
tension value than SYSTAT's default value, '/n ( = 0.00125, given n = 801). 

1 5. Given these results, we were confident that the system in Figure 6 would recover from 
the large shock experienced after generation 3,900 once we extended this run beyond generation 
4,000. It did. 

1 6. During the periods in which the system was settled, taking into account the results of all 
twelve cells in the design, the best rules of the artificial agents formed coalitions with the 
following frequencies: p(AB) = 0.359, p(AQ = 0.360, p(BQ = 0.162. 

1 7. By this measure, an agent's opportunity cost in a particular game can be negative: the 
agent may accept an offer of a greater payoff than it could achieve by making an offer to another 
agent that would be accepted. 
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