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Introduction 

The method of paired comparisons typically involves the presenta- 
tion of pairs of stimuli to one or more subjects. The basic experimental 
unit is the comparison of two stimuli (e.g., products or brands), A and 
B, by a single subject (e.g., consumer) who, in the simplest case, must 
choose between them (David 1963). This method was introduced by 
Fechner (1860) with considerable extensions made popular by Thur- 
stone (1927). Since this paper is concerned with understanding con- 
sumer choice behavior, we will be using the terminology of consumers 
(for subjects) and products/brands (for stimuli). The method of paired 
comparisons is gainfully utilized in situations where the products to be 
compared can only be judged subjectively; that is, when it is impossible 
to make relevant continuous measurement in order to decide which of 
two products is preferable and by how much. The most frequent 
*applications have been taste testing, consumer tests, color comparisons, 
personnel ratings, and choice behavior (David 1963). For J products 
and I consumers, the total number of paired comparisons will be I(i), 
although a number of incomplete designs are also available (cf. Bock 
and Jones 1968; Box et al. 1978) for reducing the total number of 
pairwise judgments under simplifying sets of assumptions. Note that 
when J is large, the task of making consistent pairwise judgments 
becomes quite difficult.. Oftentimes, intransitivities or circular triads 
occur in such data where, for example, A may be preferred to B, and B 
preferred to C, but the same consumer claims to prefer C to A. 
Therefore, probabilistic models are needed to analyze such paired 
comparisons data. 

The econometric literature on stochastic binary choice models ap- 
pears to be amenable to an analysis of such paired comparisons data. 
For a single comparison between product j and k for consumer i, the 
binary decision by this i-th consumer is represented by a random 
variable aijk that takes on the value 1 if j is selected over k, and zero 
otherwise. Let Pjjk represent the probability that sijk = 1. This general 
class of models assumes that the utility derived from a choice is based 
on the attributes of that choice (product), the consumer’s socio-eco- 
nomic characteristics, and a random error component. Let Ujj and uj, 
denote the respective utilities of products j and k to consumer i, hj 

vectors of characteristics (attributes or features) of the prod- 
a vector of socio-economic characteristics of the i-th 
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uij = Q*j + eij = hJy + )(a -t eij 3 (1) 

4, = &k + eik =h~y+y~lY+eik, (2) 

and 6ijk = 1 if the momentary value of qj > the momentary value of 
U;:k, while 8ijk = 0 if the momentary value of & > the momentary 
value of Uij. Note, a and y are model parameters which weight 
respectively the subject and brand characteristics, while eij and eik are 
error terms. Consequently, 

p(aijk = 1) = P(U;:j > &k) 

= P[(eij-eik) < (hk-hj)‘Y] 

= F( (hk - hj)‘Y)v (3) 

where F is the cumulative distributk !-unction of (eij - eik). Accord- 
ing to Judge et al. (1985), the specific rjpe of binary choice model 
depends on the choice of F. For example, if 

F((hk -hj)‘y) = (hk -hj)‘Y, 

then the linear probability model is defined, and a generalized least- 
squares procedure suggested by Goldberger (1964) and Zellner and Lee 
(1965) to correct for problems of heteroscedasticity can be utilized. If 
one defines 

F((h, - hj)'y) = I(l*-h’)‘*&e_‘2/2 dt, 

-00 

then the probit model results. Similarly, if 

F((hk-hj)‘Y) rz ’ 
1 + e-o,-$)‘Y ’ 

one has a logit model. ge et al. (1985) describe the maximum 
likelihood estimation procedures for obtaining y in the probit and logit 
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Fig. 1. Two-dimensional illustration of the vector model. (Taken from Carroll and D&k&o 
(1983.) 

models. Thus, these analyses derive an estimate of y which denotes the 
impact of the various attributes or features of the products on overall 
preference and utility. 

The psychometric literature attempts to utilize spatial models to 
display the structure in such paired comparisons data in representing 
consumers and products. There have been a number of unidimensional 
scaling procedures proposed to obtain scale values for products from 
such (aggregated) paired comparisons data (Torgerson 1958; Bock and 
Jones 1968; Thurstone 1927). More recently, multidimensional scaling 
models have been devised to account for the multidimensional nature 
of the products. Here, two general classes of models have been typically 
utilized to represent such preference/choice data: vector and unfolding 
models. A vector or scalar products multidimensional scaling model 
(Tucker 1960; Slater 1960) represents consumers as vectors and prod- 
ucts as points in a T-dimensional space. Fig. 1 represents a hypotheti- 
cal two-dimensional portrayal of such a representation where there are 
two consumers (represented by two vectors I and II) and five products 
(represented by the letters A-E). Here, preference order or utility for a 
given consumer is assumed to be given by the projection of products 
onto the vector representing that consumer. For example, for consumer 

roduct has the highest utility, then E, then A, then D, and finally 
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C. For consumer II, the order of utility (from highest to lowest) is A, B, 
C, D, and E. The goal of the analysis here is to estimate the ‘optimal 
vector directions and product coordinates iz B prescrikwd dimensional- 
ity. An intuitively unattractive property of the vector model is that it 
assumes preference or utility to change monotonically with all dimen- 
sions. That is, it assumes that if a certain amount of a thing is good, 
even more must be even better. (The iso-utility contours therefore are 
parallel straight lines perpendicular to a consumer’s vector.) According 
to Carroll (1980), this is not an accurate representation for most 
quantities or attributes in the real world (perhaps with the exception of 
money, happiness, and health). 

There has been some work concerning analyzing such paired com- 
parisons via such vector or scalar products models. Bechtel et al. (1971) 
have developed a scalar products model for examining gradea’ paired 
comparisons responses (i.e., where customers indicate which of two 
products are preferred and to what extent). They impose restrictions on 
sums and variances, and constraints on various parameters to insure 
uniqueness of the solution (e.g., orthogonality). Zinnes and Wolff 
(1977) have developed a probabilistic multidimensional Thurstonian 
modei for spatially representing the structure in different-same judg- 
ments using a threshold perspective. Cooper and Nakanishi (1983) have 
developed two logit models (vector and ideal point) for the external 
analysis of paired comparisons data. Recently, Carroll (1980) suggested 
the wandering vector model for the analysis of paired comparisons 
data. According to this vector model, it is assumed that each consumer 
can be represented by a vector and that individual consumers will 
prefer that brand from a pair having the largest projection on that 
vector. The direction cosines of this vector specify the relative weights 
the consumer attaches to the underlying dimensions. The wandering 
vector model assumes that a consumer’s vector wanders or fluctuates 
from a central vector in such a way that the distribution of the vector 
termini is multivariate normal. De Soete and Carroll (1983) develop a 
maximum likelihood method fop fitting this model and proposes various 
extensions of the original Carroll model to accommodate additional 
sources oi error rjld graded paired comparisons. DeSarbo et al. (1986) 
have extended _the work of Carroll (1980) in developing a probabilistic 
vector model not requiring replications in estimating a vector for each 
consumer, and having user options for including linear restrictions on 
configuration coordinates. 
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Fig. 2. Two-dimensional illustration of the simple ideal point model. (Taken from Carroll and 
IkSarbo (1985).) 

The other major type of psychometric model to represent such 
preference/choice data is the unfolding model (Coombs 1964). We will 
discuss only the simple unfolding model of Coombs (1964) (cf. Carroll 
(1980) and Carroll and DeSarbo (1985) for a discussion of the simple, 
weighted, and general unfolding model, and the work by DeSarbo and 
Rao (1984) on GENFQLD2 - an unfolding methodology which 
accommodates the estimation of all three types of unfolding models). 
In the simple unfolding model, both consumers and products are 
represented as points in a T-dimensional space. The points for con- 
sumers represent ideal products, or optimal sets of dimension values. 
As generalized to the multidimensional case by Bennett and Hays 
(1960), the farther a given product point is from a consumer’s ideal 
point, the less utility that consumer has for that product. This notion of 
relative distance implies a Euclidean metric on the space which implies 
that, in T = 2 dimensions, iso-utility contours are families of concentric 
circles centered at a consumer’s ideal point. Carroll (1980) demon- 
strates that the vector model is a special case of this unfolding model 
where the ideal points go off to infinity. Fig. 2 illustrates a hypothetical 
two-dimensional space from an unfolding perspective, Here there are 

e consumers represented by ideal points labelled I, II, and III, and 
five products labelled A-E. The figure specifies the preference/utility 
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order for each consumer as a function of distance away from the 
respective ideal point. The objective in unfolding analyses is to estimate 
the ‘optimal’ set of ideal points and product coordinates in a prescribed 
dimensionality. 

Although several unidimensional stochastic unfolding models have 
been proposed in the literature (Bechtel 1968, 1976; Coombs et al. 
1961; S&11973; Ziies and Griggs 1974), only three multidimensional 
probabilistic unfolding models have been developed to accommodate 
paired comparisons data. (One option in GENFOLD2 (DeSarbo and 
Rao 1984, 1986), which typically operates on two-way, two-mode 
dominance or profile data, is to collapse the paired comparison matrix 
for each consumer into a vector of marginals, and then analyze the 
resulting two-way, two-mode matrix of (dominance) integer counts. 
Unfortunately, there is typically a substantial loss of information 
involved in collapsing such individual paired comparison matrices to 
perform this analysis.) The first one by Schiinemann and Y&tng (1972; 
Wang et al. 1975) is based on the well-known Bradley-Terry-Lute 
model and consequently assumes strong stochastic transitivity. In the 
multidimensional unfolding model proposed by Zinnes and Griggs 
(1974), it is assumed that the coordinates of both the consumer and the 
product points are independently normally distributed with a common 
variance. (Note that recently this assumption has been relaxed in 
Zinnes and MacKay’s (1983) approach to probabilistic multidimen- 
sional scaling.) Zinnes and Griggs assume that for each element of the 
products pair a consumer independently samples a point from his x 

her ideal point distribution. The Zinnes-Grigs model is defined by 

Pijk = Prob( F”(T, T, d$, d$) I I}, (4) 

where F”( vl, v2, A,, h2) denotes the doubly noncentral F distribution 
with degrees of freedom v1 and v2 and noncentrality parameter X, and 
X2, and dh (respectively d:) the Euclidean distance between the mean 
point of consumer i and the mean point of product j (respectively k). 
More recently, De Soete et al. (1986) have proposed the wandering 
ideal point model for the analysis of such paired comparisons data as 
an extension of the wandering vector model. According to this mo 
it is assumed that each consumer can be represented by an ideal point 
and that they will prefer that product from a pair which has the 
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smallest Euclidean distance from that ideal point (which can be arbi- 
trarily set at the origin of the space). This model assumes that a 
consumer’s ideal p&nt wanders or fluctuates from a central ideal point 
in such a way that the distribution of the ideal point coordinates is 
multivariate normal. De Soete et al. (1986) develop a maximum likeli- 
hood method for fitting this model and show that it is the only existing 
probabilistic multidimensional unfolding model requiring only mod- 
erate stochastic transitivity. 

Unfortunately, the De Soete et al. (1986) model requires replications 
of paired comparison matrices per consumer to estimate more than one 
ideal point. This turns out to be a rather difficult task in terms of data 
collection. Without such replications, only one centroid ideal point can 
be estimated for a sample of I consumers. Assuming considerable 
heterogeneity in the sample, the single centroid ideal point may be 
estimated with considerable high variances. In addition, no provision is 
currently available to explore individual differences (with replications) 
as a function of specified consumer differences (such as demographic 
characteristics), or have similar reparametrizations on products (vis-8-v& 
attributes or features). 

We propose an alternative probabilistic MDS unfolding model which 
also operates on paired comparisons. Our model can estimate separate 
consumer ideal points without requiring within-consumer replications. 
A variety of possible model specifications are provided where ideal 
points and/or product coordinates can be reparametrized as a function 
of specified background variables which aids in the understanding of 
consumer choice behavior. We describe the model structure and the 
various program options. Next, a small illustration is provided whereby 
consumer preferences for several brands of over-the-counter analgesics 
are investigated utilizing one of the reparametrized models. Finally, 
further research avenues are discussed. 

ethodology 

Research objectives 

As stated, the objective of this paper is to develop a new MDS 
ethodology which operates on paired comparison judgments so that 

consumers and products can be displayed spatially, thus permitting 
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inferences concerning the nature of the consumer behavior under 
investigation. In doing so, two sub-objectives will be addressed. The 
first concerns the ability to investigate the nature of individual (con- 
sumer) differences on preference/choice and its measurement, while 
the second involves modeling the effect of specific product features on 
the measurement of preference/choice. The technical aspects of the 
models are described in the next section where consumer preference is 
the latent construct of interest, since this will be the nature of the 
application to be presented later. The discussion section will suggest 
further potential applications to the investigation of still other latent 
constructs. 

The model 

Let: 
i = 
j,k = 

= 
: = 
n = 

Xij = 

8ijk = 

Hj/ = 
v;:, = 
il, = 
b. = 

Jt 

a = 
nt 

Ylt = 

1. . . I consumers, 
1. . . J brands, 
1. . . T dimensions, 
1. . . L brand features 
1. . . N consumer variables, 
the j-th brand presented to the i-th consumer, 

1 

1 if consumer i finds Xi; more satisfying than Xi,, 

0 else, 
the I-th feature/attribute value for the j-th brand, 
the nth variable value for the i-th consumer, 
the t-th coordinate for consumer i, 
the t-th coordinate for brand j, 
the impact coefficient of the n-th consumer variable on the 
t- th dimension, 
the impact coefficient of the I-th brand variable on the t-th 
dimension. 

pu’ow, define a latent consumer ‘dispreference’ (inversely related to 
preference) or disutility construct: 

~j= Qj* + eij, 
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where: 
b$j = 

v;:i* = 

e.. = 

‘I 

the (latent) dispreference/disutility of brand j to consumer i, 
CTCl(ai: - bjl)‘, 
error. 

We assume that: 

eij - N(0, u:), 

(where 0: is the variance parameter for the i-th consumer), 

COV(eij, eik) 10, Vi, j#k, 

COVQeij, ei'k) ~0, vi&, j, k. (6) 

Suppose that the consumer i is presented two objects (e.g., products 
or brands) j and k and is asked to select the one that is ‘more 
preferred’. Then: 

P(8ijk = 1) = P( V;:j < V;:,) 

= P eij 
-eik<2iait(bjt-4r)+ i (b:t-biI 

1 1 t=l t=l _ 

ait(bjt-bkt) -I i (bit -b,Z) 
t-l 

d-- 2uf 
9 

J 

(3 ) 

ion. Stilarly, where @ denotes the standard normal distribution funt :ti 

ait(bjt-bkt)+ i (bk2t-bbj2t) 

t-l 

i- 20; 
. 09 
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The general form of the likelihood function, assuming independence 
over subscripts i, j, and k, is: 

where: 

I 2iait(bjt-b,t)+ i(bi*-b;) 
@(.)=@ r=l t=l 

i-- 1 . 
2u; 

Taking logs, we obtain the log likelihood function: 

i=l j<k i=l j<k 

We use a maximum likelihood procedure to estimate A = (( ait)), 
B = ((bit)), and u = (ai), given A = (( Gijk)) and T. The conjugate gradi- 
ent algorithm used for estimation is described in the appendix. 

Unlike De Soete et al.‘s (1986) original formulation of the wandering 
ideal point model, the model proposed here posits no q&~t distribu- 
tion on the eonsu’mer’s ideal points. Rather, it is a type of random 
utility model (Thurstone 1927) where the latent construct being mod- 
eled (e.g., choice, preference, satisfaction, etc.) is specified following 
McFadden (1976), with the introduction of an error term. Both wander- 
ing vector and ideal point models, again, reqG.re replications of paired 
comparisons data for each consumer in order to estimate more than a 
single vector/ideal point, since the consumer vector/ideal point is 
modeled as being explicitly normally distributed. However, both the 
wandering vector and ideal point models have the advantage of imply- 
ing only moderate stochastic transitivity, whereas the present model, 
like Thurstone’s (1927) Law of Comparative Judgment Case V and the 
three econometric models previously discussed, implies strong stochas- 
tic transitivity. 
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Program options 

The probabilistic ideal point model developed here can accommod- 
ate a number of different model specifications and options. One can 
perform either an internal analysis (where the user estimates both 
consumer ideal points and brand coordinates) or an external analysis 
(where the user can fix one or more sets of coordinates throughout the 
analysis). The user can also select among a number of methods of 
generating starting estimates, including a user-defined option. Also, 
since the unfolding model is invariant to orthogonal transformations, 
options are provided to rotate either A or B to principal axes for 
possible enhancement of subsequent interpretation. One can also esti- 
mate individual q’s, or constrain all o, to be identical to each other. It 
can be shown that this common variance parameter can, without loss of 
generality, be set to a positive constant. 

Perhaps the most valuable program option concerns the possibility 
of reparametrizing consumer ideal point coordinates and/or brand 
coordinates as functions of prespecified background features or attri- 
butes. That is, one may reparametrize consumer ideal points via: 

N 

ai, = c Y;:nan* 9 

n=l 

and/or brand coordinates via: 

(12) 

As in CANDELINC (Cmoll et al. 1979), Three-Way Multivariate 
Conjoint Analysis (DeSarbo et al. 1982), and GHVFOLD2 (DeSarbo 
and Rao 1984), one can use these reparametrization options to examine 
what impact such features/attributes have on the derived solution. This 
can often aid in interpreting the resulting solution, and render insight 
into the motivations of consumers in the choice process. 

As mentioned, these reparametrizations can aid in the interpretation 
of the derived dimensions (cf. Bentler and Weeks 1978; Bloxom 1978; 

Johnson 1977; De Leeuw and Heiser 1980; Heiser 1981; 
eulman 1983$, and can replace the post-analysis 
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property-fitting method often used to attempt to interpret results. In 
addition, as shall be discussed, the imposition of these sets of repara- 
metrizations can provide an effective tool for understanding the nature 
of the particular latent construct under investigation (e.g., preference or 
choice). 

It should be noted that when a linear function replaces a brand or 
consumer coordinate, the number of background variables in the linear 
function cannot exceed the number of entities that exist for those 
variables. For example, if J brands have L attributes, J >, L since one 
can only identify at most JT coordinates (excluding rotational inde- 
terminacy). Similarly, if I consumers have N background variables, 
12 N since one can only identify at most IT coordinates (excluding 
rotational indeterminacy). Thus, in most applications, such reparame- 
trizations actually improve the degrees of freedom of the model by 
reducing the number of parameters to be estimated. 

Degrees of freedom 

One typically collects I( J( J - 1)/2) independent paired comparison 
responses in an application. Defining the degrees of freedom of the 
model as the effective number of free model parameters, one can 
calculate the degrees of freedom for the various models accommodated 
by this methodology. These are shown in table 1, where it is assumed 
one is interested in estimating q, Vi. Note that in all models an 

Table 1 
Model degrees of freedom calculations for the various models. 

Model No. of free model parameters 
-- 

Q? = i (ai, - b,,)* 
t=1 

T(T-l) _T T(Z+J)+(Z-l)- * 

T(T-1) 
T(Z+ L)+(I-l)- 2 

T(T-1) 
T(N+J)+(Z-l)- 2 

T(T-1) 
T(N+ L)+(Z-l)- 2 
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adjustment of T( T - I)/2 is required due to the well-known invariance 
of such unfolding models to orthogonal transformations (cf. Carroll 
(1980) for a complete discussion of this and associated problems of 
interpretation). Also, in models where bit is not reparametrized, one 
can add a constant vector c to all brand vectors bj and not affect the 
choice probabilities in eq. (7). This, necessitates a subtraction of T 
from the degrees of freedom. Finally, in estimating a,, one can set the 
overall scale by fixing one a, = 1. 

An i!!btration 

Study design 

A convenience sample of I = 7 members of the administration staff 
of the University of Pennsylvania were asked to take part in a small 
study designed to measure preferences for various brands of existing 
over-the-counter (OTC) analgesic pain relievers. This was to be a 
pretest for a much larger study to be conducted later. We purposely 
restrict our attention to small sample so that we can report the specific 
details of the results. These respondents were initially questioned as to 
the brand(s) they currently use (as well as frequency of use) and their 
personal motivations for why they chose such a brand(s) (e.g., ing,redi- 
ents, price, availability, etc.). They were then presented eight existing 
OTC analgesic brands: 

Brands Plotting code Brands Plotting code 

1. Anacin A - 5. DatriH E 
2. Bayer B 6. Excedrin F 
3. Bufferin C 7. Tylenol C 
4. Cope D 8. Vanquish H 

Initially, they were presented colored photographs of each brand and 
its packaging, together with price per 100 tablets, ingredients, package 
claims, and manufacturer (cf. DeSarbo and Carroll 1985). Table 2 
presents summaries of selected portions of the descriptions for each of 
the brands. Each subject/consumer was requested to read this informa- 
tion and return to it at any time during the experiment if he/she so 
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Table 2 
Brand dgxcriptions. a 

Brand Price mg. of 
GSpkh 

mg. of 
Acetaminophen 

mg. of 
buffered 

mg. of 
cafftie 

Anacin 3.47 400 0 

ingredients 

0 32 
Bayer 3.41 325 0 0 0 
Bufferin 4.70 324 0 16 0 
ape 6.33 421 0 75 32 
Datril 2.65 0 325 0 0 
Excedrin 4.92 250 250 0 65 
Tylenol 4.53 0 325 0 0 
Vanquish 7.67 227 194 75 0 

Plot codes V W X Y Z 
._-- 

a Based on a store audit conducted in New Jersey in 1983. 

wished. After a period of time, they were asked to make paired 
comparison preference judgments for all possible 28 pairs of brands. 
They were told that they had to choose one from each pair (i.e., no ties 
were allowed). The presented pairs were randomized for each subject. 
Table 3 presents the raw paired comparisons data collected for each of 
the seven consumers (A). A simple way to examine such paired 
comparisons data in a condensed fashion is to compute ‘dominance 
counts’ for each brand by consumer. These counts are merely integers 
which measure the net amount of times a brand is chosen over another 
brand. Positive counts indicate that a consumer typically has selected 
this brand more times over other brands ihan vice versa. Negative 
counts, then, indicate that a consumer has typically selected other 
brands over this one than vice versa. Table 4 presents the two-way, 
two-mode matrix of dominance counts by consumer and brand. As 
Table 4 shows, consumer 1 prefers Datril and Tylenol; consumers 2, 3 
and 5 prefer Bayer and Bufferin; consumer 4 prefers Datril; consumer 
6 prefers Bufferin and Excedrin: and consumer 7 prefers Bayer, Buf- 
ferin, and Tylenol. These judgments were quite consistent with their 
responses to actual usage and motivations for use asked previous to the 
collection of A. Here, consumer 1 uses Datril and Tylenol exclusively 
since he is allergic to aspirin; consumer 2 prefers plain aspirin (e.g., 
Bayer) and typically buys the brand on scale; consumer 3 prefers 
Bufferin and Ibuprophen brands (not tested here) since she tends to 
experience stomach discomfort with plain aspirin, and thus prefers 
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Table 3 
Raw paired comparisons data for I = 7 subjects. 

A B C D E F G H 

Subject 1 

Subject 2 

Subject 3 

Subject 4 

Subject 5 

A 0 
B 
C 
D 
E 
F 
G 
H 

A 0 
B 
C 
D 
E 
F 
G 
H 

A 0 
B 
C 
D 
E 
F 
G 
H 

A 0 
B 
C 
D 
E 
F 
G 
H 

A 0 
B 
C 
D 
E 
F 
G 
H 

0 
0 

0 
1 

0 
0 

0 
1 

0 
0 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

1 
1 
1 

0 
0 
0 
0 

1 
1 
1 
0 

0 
1 
1 
0 

0 
0 
0 
0 

1 
1 
1 
0 

1 
1 
1 
1 
1 

0 
1 
1 
0 
0 

1 
1 
1 
0 
1 

0 
0 
0 
0 
1 

0 
1 
1 
0 
0 

0 
0 
0 
0 
1 
0 

1 
1 
1 
0 
1 
1 

1 
1 
1 
0 
1 
0 

0 
0 
0 
0 
1 
0 

1 
1 
1 
0 
1 
1 

0 
0 
1 
0 
1 
0 
1 

1 
1 
1 
0 
1 
1 
1 

1 
1 
1 
0 
1 
1 
1 

1 
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1 
1 
1 
1 
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1 
1 
1 
0 
1 
1 
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Table 3 (continued) 

373 

A B C D E F G H 

Subject 6 A 0 0 0 0 0 0 0 
B 0 0 0 0 0 0 
C 1 1 0 1 1 
D 0 0 1 0 
E 0 0 0 
F 0 1 
G 1 
H 

Subject 7 A 0 0 1 0 0 0 1 
B 1 1 1 1 0 1 
C 1 0 1 1 1 
D 1 0 0 1 
E 1 1 1 
F 0 1 
G 1 
H 

brands which safeguard against this; she also strongly dislikes brands 
with caffeine; consumer 4 uses Datril and Tylenol since they have no 
aspirin which causes her stomach upset; consumer 5 is another aspirin 
user (Bufferin), but can be persuaded to switch among brands of 
aspirin by coupons and promotions; consumer 6 uses Bufferin, Tylenol, 
or Vanquish since she also worries about aspirins side effect causing 
stomach upset; and, consumer 7 claimed he uses any major brand of 
OTC analgesic - any that are advertised heavily since he believes these 
are more effective. 

Table 4 
Dominance counts. 

Brand 

A B C D E F G H 

Subject 
1 -3 -1 3 -5 7 -7 5 1 
2 1 7 5 -7 -1 3 -3 -5 
3 1 5 7 -7 3 -3 -1 -5 
4 -3 1 -1 -5 7 3 3 -5 
5 1 5 7 -7 -1 3 -3 -5 
6 -7 -5 5 -1 -1 5 3 1 
7 -3 5 3 -3 3 -1 3 -7 
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Analysis 

We conducted an analysis of A (in table 3) in T = 1, 2 and 3 
dimensions with ui = 1, Vi, and the reparametrization option via B = 
my, where H is defined via the five feature variables (standardized to 
zero mean and unit variance) presented in table 2. This specification 
was preferred since H contains features that these consumers said were 
important in their choice of a specific OTC analgesic brand. All 
consumers were encouraged to read this information contained on the 
color photographs of the brand and packaging prior to the paired 
comparison task. Table 5 presents the statistical results of these three 
analyses. Assuming the asymptotic test is appropriate, the T = 2 di- 
mensional solution is identified as the ‘best’ solution. Note, even if this 
statistic were inappropriate, the values of the proportion of correct 
predictions by dimension also confirms this decision, given only a 2% 
increase in moving from the T = 2 to T = 3 dimensional solution. 

Fig. 3 presents the joint space representation for the T = 2 dimen- 
sional solution. Consumer ideal points are represented by the integers 
l-7, brand points by the letters A-H, and brand features as vectors, 
given the nature of eq. (13), by letters V-Z. The figure clearly depicts 
the structure in the data. Consumers 1 and 4 prefer Datril and Tylenol, 
consumers 2, 3 and 5 prefer Bayer; consumer 6 is located near Tylenol, 
and Vanquish; consumer 7 is near the centroid of major brands 
including Anacin, Bayer, Tylenol, Datiil, Bufferin, and Excedrin. This 
is consistent with the information (presented earlier) collected in the 
initial part of the study concerning brand usage and motivations. 

The vectors of H in fig. 3 also render insight into dimensional 
interpretation. Under restrictive assumptions concerning normalization 
and orthogonality, one can show that the cosine of the angle a vector 

Table 5 
Statistical results for analgesics data. 

T Model degrees ln L Deviance Proportion of Difference in 
of freeeom correct predictions deviance 

1 12 - 101.47 202.94 0.73 
2 23 - 83.51 167.62 0.85 35.32 a 
3 33 - 78.98 157.96 0.87 9.66 (NS) 

a p 50.001. 
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Fig. 3. Two-dimensional solution for consumer preference data, 

makes with a dimension is related to the correlation of that vector with 
that dimension. Table 6 presents these correlations between the two 
dimensions of B and the five columns of H. The first dimension is 
clearly an Aspirin vs. Acetaminophen (Aspirin substitute) dimension. 
Here Datril and Tylenol load positively (high Acetaminophen), while 
Cope, Anacin, and Bayer load negatively (high Aspirin). The second 
dimension is dominated by price and to some extent buffered ingredi- 
ents, where brands like Vanquish are high on both, while brands like 
Bayer are Pow on both. These interpretations make sense given the 
scatter of brands and ideal points. The interrelationships between the 
seven consumers and eight brands is very consistent with the pre- 
liminary information collected before the paired comparisons data. 

Another useful set of statistics to investigate concerns the correla- 
tions between dimensions for A, B and y. These will, of course, vary 

Table 6 
Correlations between B and H. 

Dimension 

I II 

Price 0.0’13 - Q.909 
Aspirin - 0.908 - 0.248 
Acetaminophen 0.811 - 0.052 
Buffered ing. 0.042 - 0.836 
Caffeine - 0.590 - 0.403 
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Table 7 
Proportion of correct predictions by subject. 

Subject Proportion 

1 0.93 

2 0.93 
3 0.93 
4 0.68 
5 0.93 
6 0.79 
7 0.79 

Total 0.85 

according to the particular orthogonal rotation utilized to interpret the 
results. They are also indicators of dimensionality since extracting 
dimensions which are highly intercorrelated is not deemed as parsi- 
monious in rendering independent views of the structure in A. Here, 
Cor(A,, AZ) = -0.192, Cor(B,, 4) = 0.005, and Cor( yI, y2) = 0.425 

Table 8 
Additional output. 

Brand 

A B C D E F G H 

Latent disutihty scores 
Subject 

1 17.307 10.350 9.632 
2 1.764 0.070 0.557 
3 5.472 1.704 3.187 
4 5.960 3.024 1.832 
5 1.710 3.092 0.366 
6 7.481 5.904 3.309 
7 4.184 1.520 0.947 

Selection probabilities by subject and brand 
Subject 

1 0.027 0.M 0.049 
2 0.0?5 0.817 0.102 
3 0.106 0.341 0.182 
4 0.038 0.075 0.124 
5 0.039 0.718 0.181 
6 0.040 0.050 0.090 
7 0.062 0.169 0.272 

19.239 0.993 15.001 1.576 9.947 
8.082 4.442 0.388 5.384 10.685 

14.998 4.194 9.804 6.041 15.516 
6.561 0.811 3.959 0.676 3.890 
7.316 4.107 3.832 4.890 9.681 
3.460 3.123 2.498 1.862 0.827 
6.879 1.351 3.818 1.630 5.806 

0.025 0.475 0.031 0.299 0.047 
0.007 0.013 0.013 0.011 0.005 
0.039 0.139 0.059 0.096 0.037 
0.035 0.279 0.057 0.335 0.058 
0.009 0.016 0.017 0.014 0.007 
0.086 0.095 0.119 0.160 0.360 
0.037 0.191 0.067 0.158 0.044 
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indicating that the two dimensions appear to be explaining quite 
different aspects of the structure in A. 

Table 7 presents the proportion of correct predictions (a matching 
coefficient) by consumer. Here, all consumers, with the possible excep- 
tion of consumer 4, are fit well by the model. 

Note that if one were to assume that the reciprocals of QT were 
measures of ‘utility’, then one could convert these Sij = l/v;:i* scores 
into choice probabilities of selection via the Lute and Suppes (1965) 
formula: 

q(i, j)= 7 , 
c S ij 

j=l 

(14) 

where q(i, j) is the probability consumer i selects product j. Table 8 
presents the latent disutility scores and selection probabilities com- 
puted for this small sample of I = 7 and J = 8. Again, these have face 
validity given the preliminary information collected for each of these 
seven consumers. According to the selection probabilities, consumer 1 
is most likely to buy Datril; consumers 2, 3 and 5, Bayer; consumer 4, 
Tylenol; consumer 6, Vanquish; and, consumer 7, Bufferin. 

GENFOLD2 results 

In order to investigate the validity of the solution, the two-way, 
two-mode matrix of integer dominance counts in table 4 was run with 
GENFOLD2 (DeSarbo and Rao 1984, 1986), a metric, two-way un- 
folding methodology which also allows for the reparametrization op- 
tion in eq. (13). A two-dimensional solution was obtained which 
accounted for 93.87% of the variance. Fig. 4 presents the resulting 
two-dimensional solution utilizing the same plot codes. In order to 
compare figs. 4 and 3, a configuration matching procedure was utilized 
to compare the two solutions. Again, given the rotational indetermina- 
ties associated with such unfolding solutions, canonical correlation was 
utilized as an ‘approximate’ configuration matching methodology. Ta- 
ble 9 presents the canonica 1 correlation measures for these various 
configurations and the joint space 
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Fig. 4. Two-dimensional GENFOLD2 solution. 

Table 9 
Configuration matching coefficients. 

A B Y It= “B 
I 1 

A, = 0.908 A, = 0.996 x, = 0.957 A, = 0.953 
A, = 0.263 X2 = 0.857 A, = 0.435 X2 = 0.631 

As shown, there is clearly at least one dimension in common 
between the two sets of solutions. The canonical correlations are lowest 
for the ideal points. This makes sense given the .fact that collapsing the 
paired comparison judgments into integer dominance counts loses 
substantial information by consumer including which specific brands 
dominate which other brands. The canonical correlations for the brands 
shows two congruent dimensions that match. This is not as strong as 
for R and y, yet there is some congruence. Thus, another unfolding 
methodology applied to a set of two-way data derived from A pro- 
duced somewhat similar results. 

sion 

Summary and implications for latent construct measurement 

methodology for the spatial analysis of paired compari- 
een presented and contrasted to existing econometric 
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and psychometric methodologies in terms of model structure, stochastic 
assumptions, input requirements, and model specification options. The 
model, its assumptions, and the variety of different reparametrization 
options available for various analyses have been described. A small 
application of the methodology to a measurement problem in consumer 
preference was described in some detail, where five hypothesized de- 
terminants were combined via the H matrix. An analysis was per- 
formed were brand coordinates (actual OTC analgesic brands) were 
directly reparametrized in terms of these five features. The procedure 
produced two dimensions dominated by aspirin/acetaminophen and 
price/buffered ingredients respectively, as well as approximations of 
each consumer’s latent preference scale and probability of selection for 
each of the eight brands. 

This methodology should prove equally viable for various other 
applications where paired comparisons are collected. It can aid in 
similar measurement problems concerning latent, unobservable con- 
structs such as utility, satisfaction, choice, similarity, risk, intention/ 
attitude, etc. With the various reparametrization options for ai, and bit, 
additional flexibility is provided for investigating determinants of both 
individual differences (e-g., demographic information) and stimulus 
differences. 

Such reparametrization options would also be valuable in utilizing 
this methodology for an external type of preference MDS analysis 
generally referred to as conjoint analysis. Here, a design matrix is 
presented defining hypothetical object brands profiles, and a domi- 
nance judgment such as preference or intention to buy is asked in 
paired comparison form. The methodology then derives the contribu- 
tion of each object design variable to the resulting derived dimensions. 
This has proven to be of substantial interest to the marketing profes- 
sion for product design applications (see DeSarbo et al. 1982). 

Future research 

There are several clear avenues for future investigation concerning 
this methodology. First, a rigorous Monte Carlo study should be 
performed whereby the performance of this new methodology is in- 
vestigated while a number of data. model, and algorithmic factors ;dre 
experimentally varied. Second, the small properties of the estimators 
and the x2 test should be examined in order to justify the asymptotic 
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x2 test for nested models with incidental parameters and no within- 
consumer replications. Finally, further work should proceed in order to 
test this methodology with additional different data sets. 

Appendii 

The algorithm 

Maximum likelihood methods are utilized to estimate the desired set of parameters 
to maximize In L (or minimize -In L) in expression (11). The method of conjugate 
gradients (Fletcher and Reeves 1964) with automatic restarts is utilized to solve this 
nonlinear, unconstrained optimization problem. The partial derivatives of In L in 
expression (11) with respect to the various parameters are: 

8ijk-@(*) *(a)(bjt-bk*) 
j<k ‘(.)[l-‘(*)l m ’ 

8ijk-@(*) ‘P(‘)(ait-bjt) 

izslk> j@(m)[1-8(m)1 @ ' 

&ijk- @(*) ~(-)(Hjt-H,t)(ait-bkt) 

d-- 24 
, 

2 i (rit(bjt-bkt)+ i (bit- 6;) 

X 
t=l t=l 

II 24 

(A-1) 

(A-2) 

(A-3) 

(A4 

(A-5) 

where +( .) represents the evaluation of the standard normal density at (m). For sake of 
convenience, assume that the relevant parameters to be estimated are contained in the 

is the vector of partial derivatives for this set of parameters. 
The complete conjugate gradient procedure can be summarized as follows: 

<i) Start with initial parameter estimates (‘I; set the iteration counter MIT = 1. 



(ii) 
(iii) 

(iv) 

(v) 

W) 
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Set the first search direction S(l) = v@‘). 
Find et21 according to the relation: 

g(2) = @cl) + Uo)S(l), 
(A@ 

where u(‘) is the optimal step length in the direction S(l). The optimal step size is 
found by quadratic interpolation methods. Set MIT = 2. 
Calculate v@(~‘~) and set 

(A-7) 

Compute the optimal step length u(~‘~) in the direction S(“‘T), and find 

@MIT+ 1) = @ MFT) + u( MIT)& MIT) 
. (A.9 

If @M’T+1) is optimal, stop. Otherwise set MIT = MIT + 1 and go to step (iv) 
above (i.e., undertake another iteration). 

It has been demonstrated empirically that conjugate gradient procedures can avoid 
the typical ‘cycling’ often encountered with steepest descent algorithms (cf. Rao 1979). 
In addition, they demonstrate valuable quadratic termination properties (Himmelblau 
1972) - i.e., conjugate gradient procedures will typically find the globally optimum 
solution for a quadratic function in n steps, where n is the number of parameters to be 
solved. Note that since In L in (11) has an upper bound of zero, and since each 
estimating stage (or iteration) of the likelihood maximization can be shown to increase 
ln L, one can use a limiting sums argument (Courant 1965) to prove convergence to at 
least a locally optimum solution. Several Monte Carlo runs on smalI synthetic data sets 
revealed that the procedure does recover (known) configurations. 

This conjugate gradient method is particularly us&l for optimizing functions of 
several parameters since it does not require the storage of any matrices (as is necessary 
in Quasi-Newton and second derivative methods). However, as noted by Powell (I977), 
the rate of convergence of the algorithm is linear only if the iterative procedure is 
‘restarted’ occasionally. Restarts have been implemented in the algorithm automati- 
cally depen&ng upon successive improvement in the objective function. 

A r.:~,:*i3- ,4 ~-v,,&--- dUlrrvr. v1 gVVUA.sfiS-of-fit measures are computed for this model: 

(1) The ln likelihood function: In L, 
(2) A deviance measure (Nelder and Wedderbum 1972; McCullagh and Nelder 1983): 

I J 

o=-2 aijk ln( jijk ) + (I- Sljk ) ln( I- @i jk ) 

Li-1 j<k 

=-21nL, (A-9) 
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(3) 

where aijk is the estimated probability that consumer i finds brand j more 
preferable than brand k as expressed in eq. (7). Note that one can test nested 
models as the difference between respective deviance measures. This difference is 
(asymptotically) x2 distributed with the difference in model degrees of freedom 
providing the appropriate x2 test degrees of freedom. This test is ‘theoretically’ 
appropriate in testing dimensionality as well as the various models described in 
table ? becsuse of the nested terms. Recall, this is an asymptotic test, however. One 
obvious problem with this approach concerns incidental parameters in the likeli- 
hood function (i.e., parameters whose order vaq according to the order of A, such 
as the at’s). According to Anderson (1980), maximum likelihood estimators in 
such cases may not be consistent. (Takane (1983) also noticed this problem with an 
item response model he created and utilixed a marginal likelihood loss function to 
integrate out such (subject) incidental parameters.) This is particularly relevant in 
the present case since there are no replications. This is clearly an avenue of needed 
research for the proposed procedure if the asymptotic test is to be used for 
hypothesis testing. 
The proportion of correct predictions in A. Here, the proportion of times the 
SO~U~~OXJ correctly predicts Sijk is calculated for the total sample as well as for each 
consumer. 
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