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thwork theory, like some other branches of organizational sociology, has developed its own
specialized terminology and technology. An unfortunate result has been that many non-special-
ists have lost touch with advances and debates in this branch. Not the least of the merits of this
article by Abrahamson and Rosenkopf is that they have succeeded in bridging this gap. They show
the power of network theory and modeling in analyzing a process of central interest to our field, the

diffusion of innovations.

Paul S. Adler

Abstract

Theories of innovation diffusion no longer focus exclusively
on explaining the rate at which innovations diffuse or the
sequence in which they are adopted. They also focus on
explaining why certain innovations diffuse extensively, be-
coming de facto standards, whereas others do so partially or
not at all. Many of these theories specify a bandwagon
process: a positive feedback loop in which increases in the
number of adopters create stronger bandwagon pressures,
and stronger bandwagon pressures, in turn, cause increases
in the number of adopters. Factors affecting if and how many
times this feedback loop cycles explain if and how many
potential adopters jump on a bandwagon. We argue that one
important factor has not yet been incorporated into theories
explaining bandwagons’ extent: the structure of social net-
works through which potential adopters of innovations find
out information about these innovations which can cause
them to adopt these innovations. We advance a theory of
how the structure of social networks affects bandwagons’
extent. We propose that both the number of network links, as
well as small, seemingly insignificant idiosyncracies of their
structures, can have very large effects on the extent of an
innovation’s diffusion among members of a social network,
(Innovation Diffusion; Institutional Theory; Network
Externalities; Social Networks)
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Introduction

Consider the following three short vignettes. Between
1979 and 1981, Gaetan Dugas, a flight attendant for
Air Canada, infected four sexual partners in New York
City (NYC) and four in Los Angeles (LA) with Ac-
quired Immune Deficiency Syndrome (AIDS). Dugas,
or Patient 0 as the Center for Disease Control later
called him, is believed to have introduced AIDS into
both NYC and LA gay-men networks, triggering epi-
demics in these two cities that have and are decimating
thousands (Klovdahl 1985). Mortality, however, has
differed substantially across communities within these
cities. AIDS has decimated entire networks of needle-
swapping intravenous drug users, for example, but con-
tinues to leave certain other networks virtually un-
touched.

Somewhat like new viruses, the introduction of inno-
vative ideas, techniques, technologies or products into
new segments of social networks can trigger the partial
diffusion of these innovations throughout parts of these
networks. Following World War II, Dr. W. Edwards
Deming had little stature in the U.S., and his Total
Quality Management (TOM) approach did not diffuse
there. On a trip to Japan in the late 1940s, he con-
vinced Ichiro Ichikawa of the soundness of TOM tech-
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niques. Ichikawa, a well-known scholar in Japanese
business circles, subsequently convinced several key
Japanese industrialists who spread TOM throughout
their extensive social networks (Halberstam 1986).
From there, TOM diffused in a fadlike fashion to
broad segments of Japanese and, later, U.S. industry.
Like the diffusion of AIDS, however, the diffusion of
TQM will most likely remain partial. TOM will proba-
bly never make broad inroads into U.S. academia and
small law firms, for example, or into many countries
with little appetite for management fads.

More generally, the introduction of innovations into
new segments of social networks does not guarantee
these innovations’ diffusions in these segments. This is
the case even for highly beneficial innovations (Rogers
1995). Incontrovertible evidence that lime juice cured
scurvy, for example, was presented first in 1601 by
James Lancaster, an English sea captain, and again in
1747 by James Lind, a British Navy physician. This
cure was ignored until 1795, however, at which point its
diffusion virtually eradicated scurvy from the British
Navy. Neither Lancaster nor Lind were prominent in
British Navy social networks, which may explain why
their radical cure was ignored for almost two centuries
(Mosteller 1981).

These vignettes highlight four points. First, many
innovations, whether they be new diseases, new cures,
or new techniques and technologies, diffuse through
social networks linking individuals or organizations.
Second, these networks are segmented by internal
boundaries which can form at geographic, status, cul-
tural, or industry lines. Third, these boundaries can
limit the diffusion of innovations, so that innovations
frequently do not diffuse to all potential adopters.
Fourth, when and how extensively an innovation dif-
fuses through social networks can be greatly affected
by apparently insignificant events occurring at these
networks’ internal boundaries. Edward Deming con-
vinced one prominent actor at such a boundary, diffus-
ing TOM broadly, whereas James Lancaster did not,
and we know of a cure for scurvy only because it
diffused two centuries later. Our central argument, in
this article, is that such social-network effects must be
incorporated into theories that explain when and to
what extent innovations diffuse.

From Diffusion Rate to Diffusion Extent

Traditionally, the literature on the diffusion of innova-
tions has examined innovations that diffused fully,
meaning that every potential adopter adopted them.
The focus has not been on explaining why these inno-
vations diffused fully when they did, but rather on
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explaining the rate at which these innovations diffused
or the order in which they were adopted (Rogers 1995).
More recently, scholars have begun to ask a very differ-
ent type of question: why, at particular points in time,
do certain innovations diffuse fully and become the
de facto standard or dominant design, whereas other
innovations diffuse partially or not at all? (Granovetter
1978; Arthur 1983; David 1985, 1991; Granovetter and
Soong 1986, 1988; Abrahamson and Rosenkopf 1990,
1993a).

The burgeoning literature exploring the diffusion-
extent question has yielded a host of counterintuitive
propositions. Extremely small differences in the initial
distribution of preferences about an innovation can
have extremely large effects on the extent of its diffu-
sion (Granovetter 1978). One variant of an innovation
may prevail completely over another due to small,
random factors prompting a few more adoptions early
in the diffusion of the innovation that prevailed (Arthur
1983, David 1991). The widespread diffusion of a less
technically-efficient variant can “lock it in,” forestalling
the diffusion of a more technically-efficient variant
(David 1985, Cowan 1990). Innovations can diffuse
extensively across potential adopters, even when the
vast majority of these potential adopters were quite
certain, initially, that the innovation would produce a
loss (Abrahamson and Rosenkopf 1993a), and even if
they subsequently learned information reinforcing this
impression (Abrahamson and Rosenkopf 1991; paper
available from the first author upon request).

This literature on diffusion extent has focused on
how information about costs, returns, risk, efficiency,
and legitimacy influences the extent of innovation dif-
fusion. These theories largely ignore, however, the
possibility that this information is channeled by social
networks only to certain potential adopters. Conse-
quently, we still know little about when and how the
structure of social networks can influence the extent of
an innovation’s diffusion by determining which network
participants can become aware of information about
this innovation and adopt it (Granovetter 1985, 1992).

This article has three sections. In the first, we distin-
guish three broad types of theories explaining the
diffusion of single innovations. We discuss which of
these theories can be enriched by a social networks
perspective in order to explain the extent of innovation
diffusion. In the second section, we develop proposi-
tions about how the structure of social networks can
influence the extent of diffusion of an innovation—that
is, how many potential adopters adopt this innovation.
Our central argument is that small, apparently insignif-
icant idiosyncracies of these networks™ structures can
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exert major influences on diffusion extent. Conse-
quently, it is essential to examine the precise structure
of social networks in order to develop propositions
about when and how extensively an innovation will
diffuse through them. We develop these propositions
using models of how the distribution of potential
adopters’ resistances to adopting—their adoption
thresholds—influences the extent of diffusion through
varying network structures (Granovetter 1978; Gra-
novetter and Soong 1986, 1988; Valente and Rogers
1993). We use computer simulation of these threshold
models to develop propositions because the diffusion
of innovations through networks of potential adopters
with differing thresholds is both dynamic and complex
and, thus, difficult to anticipate.

In the final section, we discuss how our abstract
model of innovation diffusion applies to the diffusion
of a broad range of innovations: administrative, techno-
logical, and product innovations and ideas. Moreover,
we consider how it generalizes to diffusion across dif-
ferent types of potential adopters (both organizations
and individuals), in different types of networks (both
island networks as well as core-periphery networks),
and with different types of diffusion processes (both
diffusion by cohesion and by structural equivalence).
We illustrate the utility of our model not only when
most members of social networks believe initially that
they should not adopt an innovation, but also when
most believe that they should. More generally, we ask,
when will a focus on social networks enrich theories
and models of the extent of innovation diffusion?

Bandwagon Theories

Theories bearing on innovation diffusion typically spec-
ify one of three types of bandwagon processes that
have the underlying structure depicted in Figure 1.
Increases in the number of adopters of an innovation
generate new information about the innovation, creat-
ing stronger bandwagon pressures to adopt it. Stronger
bandwagon pressures, in turn, prompt increases in the
number of adopters of the innovation. These three
bandwagon theories differ according to the assump-
tions they make about the ambiguity of information
concerning innovations. After discussing this ambiguity
concept, we review each of the three types of band-
wagon theories in turn.

Uncertainty and Ambiguity. Certain decision-making
models assume that potential adopters of an innova-
tion receive information about the innovation which
leaves them uncertain about its profitability. Under
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Figure 1 Bandwagon Processes and Theories
BANDWAGON PROCESSES
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FAD SOCIAL
; NUBBER OF BANDWAGON
THEORIES: ADOPTERS PRESSURE

A |

such conditions of uncertainty, the decision situation is
represented by a subjective probability distribution of
possible outcomes from adopting an innovation. The
basic decision rule is that decision makers assess the
profitability of adopting the innovation by summing the
products of probabilities of each possible dollar out-
come and this outcome, and adopting if this sum
exceeds some threshold. As decision maker who adopts
when assessed returns exceed () and who assesses a 0.4
chance of making $10 and a 0.6 chance of losing $5
would adopt because the sum of the product of proba-
bilities and outcomes (($10*0.4) + (—$5%0.6) = $1) ex-
ceeds zero.

A number of scholars have found that greater envi-
ronmental turbulence and complexity causes informa-
tion about innovations to be ambiguous (Aldrich 1979,
Dess and Beard 1984, Milliken 1987, Pfeffer and
Salancik 1978, Wholey and Brittain 1989). Ambiguity
differs from uncertainty. Milliken (1987) distinguished
three types of ambiguity. State ambiguity denotes the
degree of ignorance, on the part of decision-makers,
about possible future environmental states. Effect am-
biguity denotes the degree of ignorance about the
effect of environmental states, whether or not those
states are clear. Response ambiguity denotes a lack of
clarity about the outcomes of choices in response to
environmental states, regardless of their clarity. State,
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effect and response ambiguity make the range of choice
alternatives unclear. Moreover, state, effect and re-
sponse ambiguity obscure both the range of possible
outcomes from making a choice and the probability of
these outcomes occurring. Finally, state, effect and
response ambiguity can obscure which type of outcome
should be maximized. Thus, under conditions of uncer-
tainty, the range of alternatives, the range of outcomes
for each alternative, and the probability of each out-
come are assumed to be clear. Under conditions of
ambiguity, one or all of these are unclear, and the
model of decision-making under conditions of uncer-
tainty cannot be assumed (March and Olsen 1976).

Increasing Returns Theories of Bandwagons generally
assume that the profitability of innovations is unam-
biguous. Information about the innovation's costs is
apparent from its price, whereas information about its
returns is either apparent from the innovation itself or
casily obtainable from an accurate and credible exter-
nal source. Consequently, potential adopters can de-
cide to adopt based on a simple cost-benefit analysis
(David 1969, Davies 1979).

Increasing Return theories suggest that as the num-
ber of adopters of an innovation increases, so does its
profitability, causing more potential adopters to adopt.
One variant of this type assumes that returns increase
with the number of adopters because of positive exter-
nalities, such as the “network externalities” case where
the more potential adopters adopt a communication
standard, the greater the returns to each adopter be-
cause it can communicate with more adopters (Farrell
and Saloner 1985; Katz and Shapiro 1985, 1994). An-
other variant assumes negative externalities, where re-
turns to any adopter decline with the number of
adopters, yet the innovation’s profitability increases
with the number of adopters because costs decline the
later the adoption date (Reinganum 1981, Fudenberg
and Tirole 1985, Quirmbach 1986).

Learning Theories of Bandwagons assume incomplete
information (Mansfield 1961). As a result, an innova-
tion’s profitability can be conceived of as ambiguous,
and potential adopters must learn about the innovation
before deciding to adopt it. As more potential adopters
of an innovation adopt it, however, they generate more
information bearing on the innovation’s profitability
(Rogers 1995; Valente and Rogers 1993). Information
about innovations tends to cause potential adopters to
learn and revise their assessed profits either upward,
causing more adoptions, or downward, forestalling such

3%
=)
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adoptions (Feder and O'Mara 1982, Oren and Schwartz
1988, Lattin and Roberts 1989, Chatterjee and Eliash-
berg 1990, Valente and Rogers 1993).

Fad Theories of Bandwagons assume not only that
profitability is ambiguous, but that updated informa-
tion about innovations’ profitability either does not
flow from earlier to later adopters or does not influ-
ence their adoption decisions. Under these conditions,
it is information about who has adopted the innova-
tion, rather than about the innovation itself, that gen-
erates a social bandwagon pressure to conform, causing
more potential adopters to adopt, thereby reinforcing
the bandwagon pressure. One sociological variant of
fad theories specifies institutional bandwagon pres-
sures on potential adopters, arising from the threat of
lost legitimacy. In these theories, the more potential
adopters adopt an innovation, the more it becomes
taken for granted that it is normal, or even legitimate,
for potential adopters to use this innovation (Meyer
and Rowan 1977). When this happens, potential
adopters that do not use the innovation tend to appear
abnormal and illegitimate to their stakeholders; these
potential adopters tend to adopt the innovation be-
cause of the fear of lost legitimacy and stakeholder
support (Tolbert and Zucker 1983, Pennings and
Harianto 1992, Abrahamson and Rosenkopf 1993a,
Wade 1995). A similar variant from the field of eco-
nomics assumes that potential adopters tend to adopt
an innovation the more other potential adopters have
adopted it because these potential adopters will be
evaluated more favorably if they do what other adopters
are doing (Sharfstein and Stein 1990). A second variant
of fad theories describes competitive bandwagon pres-
sures—pressures on potential adopters arising from
the threat of lost competitive advantage. Bandwagon
pressures occur because as the proportion of adopters
increases, potential adopters experience a growing risk
that if the innovation is a success, their performance
will fall well below the average performance of other
potential adopters; they adopt to avoid running this
risk (Abrahamson and Rosenkopf 1990, 1993a). Still a
third variant of fad theories assumes that potential
adopters adopt an innovation the more other potential
adopters have already adopted it because the number
of adopters is taken as evidence that these adopters
must know something that the potential adopter does
not know (Banerjee 1992; Bikhchandani, Hirshleifer
and Welch 1992).

Both learning and fad theories of innovation diffu-
sion assume that the profitability of innovations is
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ambiguous. This assumption adds realism when ex-
plaining the diffusion of innovations, such as adminis-
trative innovations or technological innovations in tur-
bulent complex environments, whose profitability is
quite ambiguous (Kimberly 1981, Abrahamson 1991).
We argue in the next section that Fad and Learning
bandwagon theories must extend this greater realism
by considering the impact of social networks in explain-
ing the extent of diffusion of innovations with ambigu-
ous profitabilities.

Ambiguous Profitability and Social Networks

Despite their differences, most Increasing Returns,
Learning, and Fad theories of bandwagons’ extent re-
semble each other in one fundamental way. They as-
sume that all potential adopters experience the same
bandwagon pressure to adopt an innovation in each
cycle of a bandwagon process. That is, each potential
adopter experiences the same pressure to adopt an
innovation because of its price, perceived efficiency, or
legitimacy. What these theories rarely recognize, how-
ever, is that this assumption is realistic only when all
potential adopters receive the same information about
an innovation. Indeed, if potential adopters receive
different information, then they will tend to experience
bandwagon pressures of differing strength.

The assumption of equal information and band-
wagon pressure is not necessarily reasonable when the
profitability of innovations is ambiguous. Under these
conditions, the question—should I adopt this innova-
tion?—cannot be answered by pointing only to con-
crete aspects of the innovation or to its price. Social-
comparison theory suggests that, when confronted with
such empirically ambiguous questions, decision makers
tend to base their decisions on social cues, such as,
how many of their close contacts have adopted this
innovation or what do they have to say about it
(Festinger et al. 1950, Festinger 1954, Coleman et al.
1966; Burt 1987). What each potential adopter finds
out about an innovation, therefore, depends on the
structure of the social network that disseminates the
information about this innovation and on this potential
adopter’s position in that network. Network structure
can cause certain potential adopters to find out more
information and, therefore, to experience a different
bandwagon pressure than potential adopters who find
out less or different information. In sum, network
structure influences the strength of bandwagon pres-
sure on each potential adopter, whether or not they
adopt and, consequently, the extent of innovation dif-
fusion.
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As an aside, it should be noted that diffusion chan-
neled through communication networks is often called
diffusion by *“cohesion.” Diffusion can, however, also
oceur by “structural equivalence” (Abrahamson and
Fombrun 1994, Burt 1987, Friedkin 1984, Lorraine and
White 1971). The structural equivalence argument sug-
gests that the more similar the pattern of linkages
binding actors to a network—that is the more struc-
turally equivalent the network position of these actors
—the more intensely they will compete, and the more
likely each is to adopt an innovation adopted by its
competitor, even if they do not communicate with each
other. We focus on diffusion by cohesion in the body of
this article and we show, in the article’s conclusion,
that our argument generalizes to diffusion by structural
equivalence.

Empirical Evidence

Tests of social comparison theory suggest that the
structure of communication networks influences the
order in which potential adopters receive information
about an innovation and, therefore, the order in which
they adopt. We review this research in this section. We
note, however, that this research does not examine how
network structure influences the extent of diffusion.
We turn to this question in the following section.

Research about social network effects on the tempo-
ral order of adoptions usually tests so-called “mixed-
influence” theories of innovation diffusion (Mahajan
and Peterson 1985). The term “mixed-influence™ is
used because diffusion is explained by a mix of influ-
ences emanating not only from influencers, such as the
mass-media, located outside the set of potential
adopters, but also from internal influences that these
potential adopters exert on each other.

Imagine, for instance, a social network with the
core-periphery structure depicted in Figure 2. A
densely-interlinked core stratum of potential adopters
has relatively few links with a weakly-interlinked
peripheral stratum of potential adopters. The diffusion
of innovations tends to follow the well-known *two-step
flow” hypothesis (Lazarsfeld et al. 1944). In the first
step, external actors, such as the mass media, make
potential adopters aware of an innovation and may
affect their evaluations of the innovation as well. But
these external influences are not strong enough to push
all adopters over their adoption thresholds. It is largely
internal influences that potential adopters exert on
cach other in a sccond step that persuades them to
adopt (Abrahamson 1996a; Coleman et al. 1965; Rogers
1995; Valente and Rogers 1993). More specifically,
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Figure 2 Core-periphery Network

CORE STRATUM

PERIPHERAL STRATUM

in what Abrahamson and Fombrun (1994) called a
“trickle-down process,” adoptions by potential adopters
in the core strata of social networks tend to trigger
imitations by members in these networks’ peripheral
strata (Rogers 1995, DiMaggio and Powell 1983).
Rogers (1995) reviews many studies which reveal
trickle-down diffusion processes among individuals.
More recently, researchers have found trickle-down
diffusion among organizations (Walker 1969, Galask-
iewicz and Wasserman 1989, Davis 1991, Mizruchi
1992, Burns and Wholey 1993, Haunschild 1993, Have-
man 1993, Palmer et al. 1993).

More rarely, trickle-up processes can also occur,
whereby adoptions in peripheral strata trigger adop-
tions in core strata. Becker (1970) reviews studies that
have revealed trickle-up diffusion processes. These
studies indicate that whereas trickle-down processes
tend to diffuse innovations congruent with network
norms, trickle-up processes, to the contrary, tend to
diffuse contra-normative innovations. The explanation
offered is that potential adopters at the core of net-
works tend to have higher reputations, and that they
do not adopt contra-normative innovations first be-
cause doing so violates norms and puts their reputa-
tions at risk. Potential adopters at the network’s
periphery, however, have lower reputations and are
willing to take the risk of appearing deviant by adopt-
ing a contra-normative innovation in return for a chance
to improve their reputations if the innovation succeeds
(Becker 1970, Burt 1981, Kimberly 1981, Rogers 1995).
Under certain conditions, they can push higher-reputa-
tion potential adopters, at the core of social networks,
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to adopt, and the innovation trickles up from periph-
eral to core strata. A number of observers have noted,
however, that these trickle-up processes are rare. Most
often, incumbents fail to adopt contra-normative or
competence-destroying innovations, and it is new mem-
bers of social networks, instead, who adopt and exploit
such innovations (Tushman and Anderson 1986, Bower
and Christensen 1995).

In sum, tests of social comparison theory reveal that
trickle-up and -down diffusion process channel diffu-
sion through core-periphery networks. This research
does not indicate, however, when, or to what extent
trickle-up and -down diffusion occurs. It leaves open
the question of how variations in the structure of
core-periphery networks determine whether innova-
tions diffuse fully, becoming de facto standards, or
whether they do so partially or not at all? We explore
this question in the next section. We attempt to show,
in particular, that apparently insignificant idiosyncra-
cies of the structure of core-periphery networks can
exert major influences on the extent of innovation
diffusion. Consequently, it is essential to examine the
precise structure of social networks in order to develop
propositions about when and how extensively innova-
tions will diffuse through them.

Network Influences on Diffusion Extent
This section has three parts. In the first, we explain
why we use threshold models in order to explore how
social-network structure influences the extent of inno-
vation diffusion. In the second, we focus on a threshold
model of innovation diffusion we advanced in another
article (Abrahamson and Rosenkopf 1993a) because it
assumes that the profitability of innovations is ambigu-
ous, though it does not consider how social networks
affect diffusion extent. In the third part, we modify this
model so as to incorporate the effects of variations in
core-periphery social network structures on the extent
of innovation diffusion. We use computer simulation of
this modified model to verify propositions about diffu-
sion extent.

From Rate to Threshold Models
Rate Models. Rate-oriented models of innovation
diffusion are not designed to explain the timing and

extent of innovation diffusion. These models are vari-
ants of the generic model,

R,=bxn,«[N—n,], (1)
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where R, is the rate of diffusion at time 7, n, is the
number of adopters at time ¢, N is the total number of
potential adopters, and b is a constant (Mahajan and
Peterson 1985). Integrating Eq. (1) produces the well-
known logistic S-curve for the cumulative number of
adopters over time. This model is not designed to
explain when diffusion occurs. It is apparent from
Eq. (1) that when the number of adopters, n,, equals 0,
so does the rate of diffusion, R,. What, then, starts the
diffusion process? These models also are not designed
to help researchers forecast how many adoptions a
diffusion process will cause. According to Eq. (1), once
diffusion has started, the adoption rate, R, is greater
than 0, and diffusion ends only when the total number
of potential adopters N equals the number of adopters,
n,, that is, when 100 percent of potential adopters have
adopted. What, then, causes a situation of partial diffu-
sion? Rate-oriented models of innovation diffusion do
not answer this question.

Threshold Models. Bandwagons have a positive
feedback loop in which information generated by more
adoptions creates a stronger bandwagon pressure, and
a stronger bandwagon pressure prompts more adop-
tions. Yet each potential adopter need not necessarily
succumb to the bandwagon pressure. Threshold models
of innovation diffusion assume that potential adopters
have varying predispositions against adopting an inno-
vation. A potential adopter will give in to a bandwagon
pressure to adopt only if it exceeds this potential
adopter’s threshold—the point at which the strength of
the bandwagon pressure to adopt is greater than the
potential adopter’s predisposition against adopting
(David 1969). Therefore, a potential adopter with a
high threshold adopts only in response to a strong
bandwagon pressure, whereas it only takes a weak
bandwagon pressure to cause a potential adopter with
a low threshold to adopt, and it takes no bandwagon
pressure for a potential adopter with a zero threshold
to do so.

Threshold models can easily describe complex pro-
cesses that cause bandwagons to start and various
proportions of potential adopters to adopt. Potential
adopters with zero thresholds have no predisposition
against adopting and they adopt first. Their adoptions
cause the strength of the bandwagon pressure to in-
crease. Potential adopters whose threshold is exceeded
by this increase in the bandwagon pressure adopt,
further raising the strength of the bandwagon pressure,
and possibly prompting still more adoptions. There can
be repeated cycles of this process in which more adop-
tions raise the strength of the bandwagon pressure and
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the strength of the bandwagon pressure causes more
adoptions. This cycle stops whenever the increase in
the bandwagon pressure, in one cycle of the process, is
insufficient to prompt the non-adopter with the lowest
threshold to adopt. A bandwagon’s extent equals the
number of adopters when the bandwagon cycle stops.
Note that threshold models can explain why a band-
wagon would stop before all potential adopters had
adopted. Indeed, if at any stage of a bandwagon, all
non-adopters have a threshold that exceeds the band-
wagon pressure, the bandwagon stops.

A Threshold Model Ignoring Social Network Structure
We have advanced a threshold model for the diffusion
of innovations that have ambiguous profitability
(Abrahamson and Rosenkopf 1993a). We made as-
sumptions, common to most threshold models of band-
wagons, that a potential adopter’s threshold is deter-
mined by the profits (losses) it assesses from adopting
and that profitability assessments differ across poten-
tial adopters. By “assessing profits” we mean establish-
ing a probability distribution of different outcomes of
which “profit” is the sum of the products of possible
profitability outcomes and their probabilities.

Potential adopters who assess that they will obtain a
profit from adopting have no predisposition against
adopting (zero threshold) and therefore they adopt.
The greater the loss a potential adopter assesses from
adopting, the greater its initial predisposition against
adopting (the higher its threshold). But why would
potential adopters who assess a loss from adopting ever
adopt?

Fad theories of innovation diffusion provide one
answer. Potential adopters are unsure about their as-
sessed profits calculations. This doubt about assessed
profits and losses is called ambiguity, and theories of
fads assume that under conditions of ambiguity, the
number of potential adopters that have adopted previ-
ously influences the remaining potential adopters’
adoption decisions (March and Olsen 1976, DiMaggio
and Powell 1983). We expressed this relation with the
equation,

By =1+ (A;*P_,y), (2)

where B, , is potential adopter i’s “bandwagon assess-
ment” of the innovation, in bandwagon cycle k (Abra-
hamson and Rosenkopf 1993a). The bandwagon assess-
ment is a function of both 7, which denotes potential
adopter i's individual assessment of the innovation’s
profitability and A, s P,_,, which denotes the band-
wagon pressure.

(o]
k=]
n
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P,_, stands for the information that creates the
bandwagon pressure after k — 1 cycles. In our model-
ing of fads, information about the proportion of poten-
tial adopters in a collectivity that adopted was assumed
to cause the bandwagon pressure (Abrahamson and
Rosenkopf 1993a). P, |, therefore, stood for this pro-
portion. To model a learning process, P, ,, can be
made to stand for information about the innovation’s
profitability learned from other potential adopters that
have already adopted it. In learning models, P, _,, is
usually calculated as the average of this information
across all adopters (e.g., Feder and O'Mara 1982).

A; denotes how much potential adopter i weights
the information represented by P,_,. Social-compari-
son theory suggests that 4 will increase with the level
of ambiguity about an innovations profitability
(Festinger 1950, DiMaggio and Powell 1983). Put dif-
ferently, the less a potential adopter is certain about its
individual assessment of the innovation, 7, the more its
decision to adopt the innovation will be swayed by
information, P, ;. Research indicates that environ-
mental turbulence and complexity generates ambiguity,
so that ambiguity and A4;s will tend to be the same
across potential adopters facing the same environment
(Milliken 1987). Yet A;s might differ somewhat if
potential adopters in core strata of social networks are
less sensitive to social pressures than peripheral-strata
potential adopters (Hollander 1976). We explore this
possibility below.

Figure 3 depicts how Equation (2) evolves dynami-
cally. If the distribution of assessed profits from adopt-
ing is such that certain potential adopters assess a
profit from adopting (zero threshold), then these po-
tential adopters adopt. Potential adopters that did not
adopt at this point adjust their assessed losses by the
bandwagon pressure (Equation (2)). If there is not at
least one potential adopter whose adjusted bandwagon
assessment, B; ;. leads it to assess a profit, then diffu-
sion will stop. If there is such a potential adopter, then
it adopts. We call these potential adopters *“band-
wagon adopters.”

The process may not stop there, however. Band-
wagon processes animate a feedback loop in which
growing bandwagon pressures prompt the number of
bandwagon adopters to increase, and increases in the
number of bandwagon adopters prompts bandwagon
pressures to grow. With each cycle of the feedback
loop, the bandwagon pressure grows and prompts
adoptions by potential adopters that initially assessed
greater losses from adopting. It is even possible that
this feedback loop will cycle until potential adopters
that initially assessed large losses adopt nonetheless.
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Figure 3 Flow Diagram for the Model
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Of course, if at any stage of this process, the non-
adopter with the highest bandwagon assessment of the
innovation’s value, B, ., does not adopt, then the cycle
ends and diffusion stops.

Diffusion Extent. Threshold models of innovation
diffusion suggest that a potential adopter’s predisposi-
tion against adopting an innovation, measured by its
assessed profits from adopting the innovation, affects
whether it gives in to a bandwagon pressure and adopts.
Therefore, the distribution of assessed profits across
potential adopters affects the extent of bandwagon
diffusion among these potential adopters. Mathemati-
cal models and computer simulations suggest that the
mean and variance of these distributions, in particular,
have powerful effects on the extent of bandwagon
diffusions (Abrahamson and Rosenkopf 1993a,
Granovetter 1978, Schelling 1978). This is because dis-
tributions of assessed profits determine the difference
in assessed profits between the last adopter, and the
non-adopter with the lowest threshold, at any time
during a bandwagon diffusion. If this difference is such
that the increase in bandwagon pressure caused by the
last adopter is strong enough to push the lowest-
threshold non-adopter to adopt. then the bandwagon
keeps on rolling, otherwise it stops and the maximal
extent of innovation diffusion is attained.
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The greater the mean of the distribution of assessed
profits, the more potential adopters will tend to assess
a profit and adopt, the greater the bandwagon pressure
caused by these adoptions, and the more likely that
potential adopters that have not adopted will do so
because of the bandwagon pressure. The most interest-
ing cases occur, however, when the mean is negative.
Then, most potential adopters assess a loss from adopt-
ing. An innovation can nevertheless diffuse widely be-
cause of a faddish bandwagon process. Such bandwag-
ons can occur if the variance of the distribution of
assessed profits is large enough so that a few potential
adopters will tend to assess profits, triggering a faddish
bandwagon. High variance, however, also tends to stop
bandwagons because it entails large gaps in the distri-
butions of assessed profits. At these gaps, the adoption
by the non-adopter with the highest assessed profits
creates an added bandwagon pressure which is not
powerful enough to cause the non-adopter with the
next highest assessed profit to adopt, and the band-
wagon stops as a result (Abrahamson and Rosenkopf
1993a). We assume that assessed returns are normally
distributed and we examine only such negative-mean
scenarios throughout this section. In the following sec-
tion, we consider positive-mean scenarios.

Threshold Model Considering Social Network Structure
In this part of the article, we modify our previous
model so as to incorporate the effect of variations in
core-periphery network structures on the extent of
innovations’ diffusion. We use computer simulation of
this modified model to verity propositions about diffu-
sion extent across social networks.

Modified Model. We created an artificial core-
periphery network like that depicted in Figure 2. A
densely-linked core stratum of seven potential adopters
is linked to a weakly-linked peripheral stratum of four-
teen potential adopters. Figure 2 shows the specific
case of 19 links beyond the core: 16 links between the
core and peripheral strata, and 3 links within the
peripheral stratum. Note that in a fully-linked network,
there would be a maximum of 189 links beyond the
core: 98 core-periphery links and 91 periphery-periph-
ery links. For a given number of links beyond the core,
random selection among the 189 possible links gener-
ated the network structure. Any two potential adopters
for which a random link is generated are said to
communicate.

The diffusion process was initiated by randomly
choosing one potential adopter in the focal stratum as
the initial adopter—we call it the seed—and no
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adopters in the non-focal stratum. To simulate trickle-
down diffusions (core/focal to peripheral /non-focal
diffusion), we randomly selected one seed in the core
stratum and the peripheral stratum was considered
non-focal. To the contrary, to simulate trickle-up diffu-
sion (periphery/focal to core /non-focal diffusion), we
randomly selected one seed in the peripheral stratum,
and the core stratum was considered non-focal.

We also modified Equation (2) in order to reflect
our assumptions that different potential adopters re-
ceived different information depending on their posi-
tions in the social network. Other than the seed, for
any potential adopter to adopt, it had to find out
information about the innovation through the network
(i.e., communicate with an adopter), and it had to find
the innovation adoptable as a result of finding out this
information (i.e., positive B, ;). Moreover, while in
Equation (2) the information that creates the band-
wagon pressure, P, ,, was operationalized as the total
number of adopters divided by the total number of
potential adopters, we used a measure specific to each
potential adopter, P, , ,. This adopter-specific mea-
sure was operationalized as the number of adopters of
the innovation with which potential adopter i commu-
nicates, divided by the total number of potential
adopters. This new proportion is equal for all potential
adopters in the case of perfect information, but when
information flow is constrained by less dense network
structure, the proportion is reduced. Thus, in a set of
25 potential adopters, a potential adopter that commu-
nicates with 10 others can experience a maximum
bandwagon pressure of 10/25, or 0.4, whereas in the
perfect information case, it can experience a maximum
bandwagon pressure of 24 /25.

Research Design. Three sets of simulations were
performed. In the first set, propositions were tested
using a basic model of faddish diffusion, described
below. A second set of simulations explored the robust-
ness of these findings when the assumption that every
firm was equally sensitive to information creating
bandwagon pressures was relaxed. A third set of simu-
lations explores how these findings differ using a model
based on Learning rather than Fad theories.

First Set of Simulations. Network density is the ratio
of the actual to the maximum number of links between
actors in a network. Since we simulated core-periphery
networks with fully-linked cores (Figure 2), network
density was varied by varying the number of network
ties beyond the core. We permitted the number of
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these ties to vary from 0 to 185 in intervals of 5. This
vielded 38 cases to examine. Assessed profits were
drawn randomly from a normal distribution with mean
—1.0 and standard deviation 1.0. These settings create
a situation where the majority of potential adopters
assess negative returns, but a small percentage (0.16,
on average) of potential adopters assess positive re-
turns, thereby creating the possibility of bandwagons
and extensive diffusions. Furthermore, as we noted
above, A, denotes how much potential adopter i
weights the information which causes the bandwagon
pressure. In this first simulation, A4; was fixed to the
same value for all firms, but this value was permitted to
vary between 1 and 5 in intervals of 1. This range was
selected because, with mean and standard deviation
fixed at the levels just described, little diffusion oc-
curred at the lower bound of 1, while extensive diffu-
sion generally occurred at the higher bound of 5. These
five levels of ambiguity increased the number of cases
by a factor of 5, for a total of 190 cases. For each case,
we ran 100 trials and calculated the average number of
adopters in the focal and non-focal strata,

We also tested the robustness of our findings to
changes in the mean and standard deviation from
which assessed returns were drawn. Abrahamson and
Rosenkopf (1993a) showed that, as the mean and stan-
dard deviation decrease, the level of ambiguity re-
quired to impel diffusion of equal extent must also
increase. Likewise, when we varied means and stan-
dard deviations, results were not qualitatively different,
although they occurred at higher levels of ambiguity.
The results of these simulations are not presented
here, but are available from the authors.

We argued above that social networks influence the
extent of an innovation’s diffusion by determining which
potential adopters can become aware of information
about this innovation and adopt it. It is clear, there-
fore, that the greater the number of links between core
and peripheral strata, the greater the opportunities for
non-focal stratum potential adopters to learn about the
innovation, adopt it, and, therefore, the greater the
extent of innovation diffusion into these non-focal
strata. We advance Proposition 1, though it is rather
obvious, so it can serve as a base line proposition
against which more counterintuitive network effects
will stand out.

PROPOSITION 1. The greater network density, the
greater the number of bandwagon adopters in the non-
focal stratum.

Figure 4 displays the results of our simulation for the
trickle-down case. Due to space limitations, trickle-up
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Figure 4 Extent of Peripheral Diffusion for Varying Ambigu-
ity and Network Density
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results are not presented here. While the effects of
density and ambiguity are similar in trickle-up scenar-
ios, the extent of diffusion into the core is about half
that of the trickle-down case. In Figure 4, the average
number of adopters in the periphery is graphed against
network density beyond the core. Five trends are dis-
played, one corresponding to each level of ambiguity
from one to five. Notice that the extent of diffusion
grows with the level of ambiguity, since ambiguity
magnifies bandwagon pressure. In accordance with
Proposition 1, as the network density beyond the core
stratum increases, so too does the total number of
bandwagon adopters in the periphery. While this linear
trend is clear, it masks the variability that can occur
from trial to trial. Consider trickle-down cases (core to
periphery diffusion) where ambiguity is set to the inter-
mediate level of 3. When there are 90 links beyond the
core (density equal to 90/189, or approximately 0.5),
for example, the mean number of adopters is 7.3. This
breaks down, on average, to 4.4 adopters in the core
and 2.9 adopters in the periphery. A closer look at the
outcomes of each of the 100 trials shows, however, the
variability in the extent of diffusion in both the core
and periphery. Figure 5 shows the number of adopters
in the non-focal, peripheral stratum caused by the
number of adopters in the focal, core stratum. The
number next to each box denotes multiple trials with
the same outcome. A weak linear trend exists between
core and peripheral diffusion. What is notable, how-
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Figure 5  Variability of Core and Peripheral Diffusion (100
Cases with Ambiguity = 3 & Network Density =
0.5)
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ever, is that each level of core diffusion caused widely
varying levels of peripheral diffusion.

Why. controlling for core diffusion, does the extent
of peripheral diffusion vary so much from trial to trial?
To answer this question, we explored how, controlling
for variables such as focal-stratum diffusion, variations
in the structure of network ties linking core and periph-
eral strata affect diffusion between these strata.

Network Idiosyncracies. We focused on chance in-
teractions between our randomly generated network
structures and threshold distributions that could have a
major effect on the extent of innovation diffusion. We
distinguished two such types of chance interactions
which we call “network idiosyncracies.” As the cases of
AIDS, TOM, and scurvy prevention suggested, such
network idiosyncracies occur at the internal boundaries
of networks. At these boundaries, an idiosyncracy of
the network that enables an innovation to diffuse across
the boundary can have a major influence on the extent
of innovation diffusion. This is because the diffusion is
no longer confined to one side of the boundary, but
rather can spread to the other side of the boundary,
possibly prompting many more adoptions (Granovetter
1973). TOM, for example, broke the U.S./Japan
geographical boundary and was introduced to a core
network of Japanese executives. From there it broke
another status boundary and trickled down to the
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peripheries of Japanese industry. To the contrary, when
it was first discovered, the cure for scurvy could not
break out of the periphery of the British naval circle. It
only trickled up to its core two centuries later.

In our simulations, a boundary exists between the
inner (core) and outer (peripheral) circles in Figure 2.
A network idiosyncracy at this internal network bound-
ary can cause the innovation to trickle either up or
down the core-periphery status boundary. Figure 6
depicts the two types of network idiosyncracies, which
we call “boundary pressure points” and *“boundary
weaknesses,” that can coexist or occur independently.

A boundary pressure point occurs in Figure 6 when a
potential adopter on one side of a boundary (actor E),
has many linkages to potential adopters on the other
side of the boundary (actors A, B, C and D). If most of
these potential adopters adopt, they can create band-
wagon pressure strong enough to prompt the potential
adopter at the pressure point to adopt, even if it has a
relatively high threshold. If, for example, a number of
English captains had convinced the English navy’s up-
per brass that lime juice was a cure for scurvy, they
might have triggered this treatment’s widespread diffu-
sion two centuries earlier. Likewise, it may have been
necessary for actors at the peripheries of Japanese
industry to receive multiple messages from core actors
about the benefits of TQM before they adopted it.

In sum, we define a boundary pressure point as a
concentration of social ties linking potential adopters
of an innovation in one segment of a network to a

Figure 6 Network Idiosyncracies: An Example
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potential adopter in another segment of that network.
We argue that pressure points increase the likelihood
that an innovation diffusing in one segment of a net-
work would spread across a boundary to another seg-
ment of that network.

In the second set of simulations, we operationalized
boundary pressure points by counting each non-focal
potential adopter that communicates with at least half
of the focal potential adopters. We also tried propor-
tions other than one half, and the results did not differ
substantially. We examined the following proposition.

ProrosiTion 2. The greater the number of pressure
points at the boundary of a non-focal stratum, the greater
the number of bandwagon adopters in that stratum.

Boundary weaknesses, like boundary pressure points,
are not purely structural features. A boundary weak-
ness occurs in Figure 7 when potential adopter F both
has ties bridging two sides of a boundary and has a low
adoption threshold. A single adoption can cause such a
weakly linked potential adopter to adopt, spreading the
innovation to many potential adopters across the
boundary. The diffusion of TOM illustrates this phe-
nomenon. The adoption of the TQM idea by Ichiro
Ichikawa, and its resulting global diffusion, provides a
powerful example of how a single boundary weakness
can have a major effect on the extent of diffusion of an
innovation.

In sum, we define a boundary weakness as a social
tie linking a potential adopter of an innovation in one
segment of a network to a potential adopter, in an-
other segment of that network, who is highly predis-
posed to adopting this innovation. We argue that
boundary weaknesses increase the likelihood that an

Figure 7 Network Idiosyncracies
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innovation diffusing in one segment of a network will
spread to another segment of that network.

Figure 7 summarizes our argument concerning the
conditions when linkages and threshold cause network
idiosyncracies. This figure indicates that boundary
weaknesses and pressure points can occur simultane-
ously when multiple social ties link a potential adopter
of an innovation in one segment of a network to a
potential adopter, in another segment of that network,
who is highly predisposed to adopting this innovation
(has a low threshold).

In trickle-down diffusion, innovations diffuse from
the core (focal stratum) to the peripheral (non-focal)
stratum. In trickle up-diffusion, innovations diffuse
from the peripheral (focal stratum) to the core (non-
focal stratum). Therefore, in the second set of simula-
tions, we operationalized boundary weaknesses by
counting each non-focal potential adopter that satisfied
two conditions: the potential adopter had to communi-
cate with a focal potential adopter, and it had to have
assessed profits high enough such that one adoption
would create enough impetus for this potential adopter
to adopt. We examined the following proposition.

PROPOSITION 3. The greater the number of weaknesses
at the boundary of a non-focal stratum, the greater the
number of bandwagon adopiers in that stratum.

This article’s central thesis is that the structure of
social networks can matter greatly in explaining the
diffusion of innovations when social network density is
less than unity. Put differently, at less than unity,
Propositions 2 and 3 become relevant, because network
structure affects which potential adopter finds out what
information about an innovation and, therefore, how
many adopt it. By extension, these propositions may be
more relevant in lower as opposed to higher density
networks. Thus, we reasoned that,

PROPOSITION 4. Boundary pressure points and weak-
nesses will have relatively greater effects on diffusion extent
in lower- as opposed to higher-density networks.

In the simulations we operationalized lower-density as
less than 0.5 network density beyond the core and
higher density as more than 0.5.

Following Nelson and Winter (1982), we verified
whether we were justified in advancing Propositions 2
through 4 by performing regressions on data generated
by the simulation. With 100 trials for each of the 190
cases (5 levels of ambiguity times 38 levels of density),
we generated a sample of 19,000 different diffusion
scenarios. Our dependent variable was the number of
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adopters in non-focal strata. Both trickle-up and -down
cases were examined.

We used hierarchical, Ordinary-Least-Squares re-
gressions (OLS) to analyze our data (Cohen and Cohen
1983). In this approach, control variables are entered
in a base model. Then independent variables of theo-
retical interest are added to the base model. The
increase in R* from the addition of these variables to
the model serves to assess their impact. Independent
variables that are theorized to have a causative influ-
ence on other independent variables of theoretical
interest are added before the causally-influenced vari-
ables. An F-test is used to determine whether the
addition of each variable to the previous model results
in a statistically significant increase in R* and whether,
therefore, this variable’s hypothesized effect is sup-
ported. In our analysis, sample size was large enough
that all increases in R* were statistically significant.
Therefore we do not report F tests.

Table 1 follows this logic of hierarchical regression.
Model | introduces three control variables: ambiguity,
focal diffusion, and network density beyond the core.
We then examined the effects of two variables of
theoretical interest: the number of boundary weak-
nesses and pressure points in models 2a and 2b. Since
there is no clear causal ordering between the two
network idiosyncracy variables, they were entered to-
gether in models 2a and 2b and standardized regres-
sion coefficients were used to determine their relative
impact.

Table 1 displays the results for both trickle-down
(core /focal to periphery/non-focal diffusion) and
trickle-up scenarios (periphery/focal to core/non-
focal diffusion). Each model produces an increase in
R” over the previous model when network idiosyncracy
variables are included. The increase of model 2a over
la and model 2b over 1b verifies our network-idio-
syncracy Propositions 2 and 3, in the trickle-down and
trickle-up scenarios respectively. Moreover, the stan-
dardized regression coefficients indicate that, in both
trickle-up and -down scenarios, boundary weaknesses
had a greater impact on the extent of diffusion than
boundary pressure points.

Table 1 results also indicate that the effects of
ambiguity and network density are weaker in the
trickle-up as opposed to trickle-up diffusion, and that
trickle-up diffusion is rare and much less extensive
than trickle-down diffusion. These results are consis-
tent with the work of observers who have noted that
trickle-up processes are rare in industry (Tushman and
Anderson 1986, Bower and Christensen 1995). This
phenomenon oceurs in our simulations for two reasons.
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Table 1 Extent of Diffusion in Non-focal
Strata (Standardized Betas)
TRICKLE-DOWN
Variables Model 1A Model 2A
Ambiguity 0.15 013
Core diffusion 0.58 0.53
Density 0.38 017
Peripheral
Weaknesses 0.28
Peripheral
Pressure Paints 013
R? 0.761 0.819
Change In 0.058
df 18996 18994
Mean peripheral diffusion = 4.83
std dev = 5.09
min=0
max = 14
TRICKLE-UP
Variables Model 1B Muodel 2B
Ambiguity 0.07 0.07
Core diffusion 0.81 0.76
Density 0.07 —-0.02
Peripheral
Weaknesses 0.24
Peripheral
Pressure Poirts 0.08
R? 0.793 0.845
Change In 0.052
fal 18996 18994

Mean Core Diffusion = 2,42
std dev = 2.69

min =0

max = 14

First, because trickle-down diffusion tends to occur
relatively easily. Non-adopters in the core are densely
networked. Consequently, during trickle-down diffu-
sions, most core members find out when one core
member adopts, causing strong bandwagon pressures
in the core, and prompting many core members to
adopt. These core adopters prompt still more adop-
tions by peripheral network participants. Second, be-
cause trickle-up diffusion occurs only with great diffi-
culty. Non-adopters in the network’s periphery are not
densely interconnected. In trickle-up diffusion, there-
fore, adoptions by peripherals remain unknown by
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other peripherals. As a result, weak bandwagon pres-
sures and few additional adoptions tend to result. For
these two reasons, diffusion extent tends to be greater
in trickle-down as opposed to trickle-up diffusion.
Moreover, even when ambiguity and density are high in
the trickle-up scenario, they do not influence diffusion
as much as than in the trickle-down scenario, and
therefore, the coefficients for ambiguity and density
are lower in the former as opposed to the latter.

Proposition 4 stated that boundary pressure points
and weaknesses would have relatively greater effects
on diffusion extent in lower- as opposed to higher-
density networks. To verify this proposition, we bi-
sected our simulation results into lower-density (below
0.5) and higher-density (above 0.5) subsets in order to
compare the relative effects of our network idiosyn-
cracy variables in each subset. The results are dis-
played in Table 2. The addition of the weakness and
pressure point variables in the higher density scenario
yielded only 0.05 R® increases. In the lower-density
scenario, however, they resulted in R* increases of 0.17
(trickle-down) and 0.13 (trickle-up). These results are
consistent with Proposition 4’s claim that network id-
iosyncracies matter more in lower- as opposed to
higher-density networks. Note also that the standard-
ized betas for network idiosyncracies are always greater
in the low- as opposed to high-density case. Although
we do not report the results here, it should also be
clear to the reader that the network idiosyncracies will
interact with the level of ambiguity, having greater
effects on the extent of diffusion in more ambiguous
conditions,

Second Set of Simulations.  To assess the robustness
of our findings concerning network idiosyncracies, we
relaxed the assumption that all potential adopters place
the same weight, A4, on information, P, ,, which
creates a bandwagon pressure. We considered the pos-
sibility that this weighting factor, A4,, might be a func-
tion of an potential adopter’s position in a core-periph-
ery network. More specifically, research indicates that
potential adopters in core strata, by virtue of their
higher social status, are typically less sensitive to band-
wagon pressures than lower-status potential adopters
in peripheral strata (e.g., Hollander 1976). By exten-
sion, we reasoned that core potential adopters would
be less sensitive to bandwagon pressures—lower 4,—
than peripheral potential adopters.

We wanted to compare situations of homogeneous
and heterogeneous A;s. Therefore, we used one simu-
lation to create a homogeneous baseline. We compared

Table 2 Extent of Diffusion Non-focal Strata
(Standardized Betas)
TRICKLE-DOWN
Low Density High Density
Ambiguity 0.12 0.07 0.20 0.22
Care Diffusion 0.43 0.39 0.73 0.65
Density 0.44 0.10 0.099 0.10
Peripheral Weaknesses 0.50 0.23
Peripheral Pressure
Points 0.1 0.01
R? 0.481 0.651 0.804 0.851
Change in R? 0.170 0.047
df 9496 9494 9496 9494
Mean 2.0 7.6
Std Dev 29 53
Min 0 0
Max 14 14
TRICKLE-UP
Low Density High Density

Ambiguity 0.06 0.04 0.13 0.14
Peripheral Diffusion 0.67 0.61 0.79 0.73
Density 0.08 -0.038 0.06 0.06
Core Weaknesses 0:39 0.23
Core Pressure Points 0.1 0.01
RE‘
Change in R? 0.534 0.663  0.806 0.854
df 0.129 0.048

9496 9494 9496 9494
Mean 1.0 3.7
Std Dev 1.8 27
Min 0
Max 7 7

these homogeneous baseline results to the results of
heterogeneous simulations in which peripheral poten-
tial adopters’ 4;s were twice that of core potential
adopters. For ease of exposition, we limited our
presentation of results to a comparison between homo-
geneous scenarios where all A5 equal 3, the midpoint
of the 1 to 5 range used previously, and heterogeneous
scenarios, where A;s equals 2 for core potential
adopters and 4 for peripheral potential adopters. Table
3 indicates that increases in R? caused by the addition
of network idiosyncracy variables were comparable in
homogeneous and heterogeneous scenarios. These re-
sults suggest that Propositions 2 and 3 generalize to
contexts in which the susceptibility (A4,) of potential
adopters to information causing bandwagon pressures
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Table 3

Varying Ambiguity Between Core

and Periphery (Standardized Betas)

TRICKLE-DOWN

A=24 A=3
Focal Diffusion 0.43 0.40 0.57 0.50
Density 0.54 0.14 0.42 0.14
Nonfocal Weaknesses 0.30 0.30
Nonfocal Pressure Points 0.32 0.22
R.‘:
Change in R? 0.711 0.786 0.735 0.808
0.075 0.073
df 3797 3795 3797 3795
Mean 59 4.8
Std Dev 5.5 4.9
Min 0 0
Max 14 14
TRICKLE-UP
A A=24 A=3
Focal Diffusion 0.68 0.57 0.78 0.70
Density 0.14 —0.03 0.11 —0.05
Nonfocal Weaknesses 0.36 0.27
MNonfocal Pressure Points 0.20 0.18
RE
Change in R? 0.627 0.745 0.739 0.806
0.118 0.067
df 3797 3795 3797 3795
Mean 20 23
Std Dev 2.1 25
Min 0 0
Max 7 7

is heterogeneous. The results suggest, however, that
the extent of diffusion varies across homogeneous and
heterogeneous scenarios. Increasing peripheral ambi-
guity and decreasing core ambiguity in led to greater
trickle-down diffusion (mean of 5.9 vs. mean of 4.8 in
the homogeneous case) and lesser trickle-up diffusion
(mean of 2.0 vs. mean of 2.3 in the homogeneous case).
Increased peripheral ambiguity causes peripheral po-
tential adopters to be more susceptible to trickle-down
diffusion from the core, but causes core potential
adopters to be less susceptible to trickle-up diffusion
from the periphery.

Third Set of Simulations. We explored with a third
set of simulations whether network effects in learning
scenarios would be similar to those derived in fad
scenarios. In modeling Fad scenarios, the information,
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P, ,_,, that creates the bandwagon pressure reveals the
number of adopters. It was operationalized by dividing
the number of adopters with which potential adopter i
communicates by the total number of potential adopters
in the network. In modeling learning theories, the
information that causes the bandwagon pressure,
P, ,, reveals the innovation’s profitability for prior
adopters. To represent this information, each firm,
upon adoption, was randomly assigned either a “posi-
tive” or “negative” experience with the innovation.

To model learning theories, we had to make assump-
tions about the probability that potential adopters
would have either a positive or a negative experience
with the innovation. We assumed that potential
adopters’ assessments of whether their experience from
adopting the innovation was going to be positive or
negative would be correct, on average. It followed that
the mean and variance of the distribution of assessed
and achieved profitabilities from adopting the innova-
tion would tend to be the same. Therefore, in the
simulation, both assessed and achieved profitabilities
(positive or negative) were drawn randomly and inde-
pendently from a normal distribution with the same
mean and variance (for a similar modeling approach,
see Burgelman and Mittman 1994). Since we assumed
that the distribution of assessed experiences had mean
— 1.0 and standard deviation 1.0, then on average, the
likelihood of a positive experience was 0.16.

Rather than simply counting all potential adopters
that had communicated adoptions, our learning model
had each potential adopter sum the number of positive
outcomes it learned about while subtracting the num-
ber of negative outcomes it learned about. This total
was divided by the number of potential adopters in the
network. In this way, information about one negative
experience offsets information about one positive expe-
rience.

Results of the regressions for the trickle-down and
trickle-up cases are displayed in Table 4. Note that the
learning effect reduces the extent of diffusion dramati-
cally in learning scenarios (Table 4) as compared to fad
scenarios (Table 1): mean diffusion in the trickle-down
case is reduced to 1.5 as compared to 4.9, and mean
diffusion in the trickle-up case is reduced to 0.79 from
2.4. Learning of an unprofitable experience with an
innovation lessens the bandwagon pressure to adopt it,
thereby retarding diffusion. Similarly, diffusion never
spreads to all potential adopters in a group in this
scenario: maximal diffusion in the periphery is 10 of 14,
and maximal diffusion in the core is 6 of 7. Potential
adopters with a higher adoption threshold are no longer
enticed to adopt, since negative information offsets
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Table 4 Incorporating Learning
(Standardized Betas)

TRICKLE-DOWN TRICKLE-WP
Ambiguity —-0.01 =11 0.57 0.50
Focal Diffusion 0.05 0.06 0.11 0.10
Density 0.43 007 033 014
Nonfocal Weaknesses 0.70 0.69
Nenfocal Pressure Points 0.09 0.07
HE
Change In 0.184 0588 0154 059

0.404 0,442

df 18996 18994 18996 18994
Mean 1.5 0.79
Std Dev 1.4 097
Min 10 6
Max 0 0

news of adoptions. Note also that ambiguity now has a
negative effect on diffusion, as this factor is magnifying
a generally negative outcome set.

What was most striking about these results, how-
ever, is how the relative magnitudes of the network-
idiosyncracy variable differ from the non-learning
scenarios. Whereas in the fad scenario, the network-
idiosyncracy variable explained roughly 5% of the vari-
ance in both trickle-up and -down diffusion extent, this
variable explains over 40% of this variance in the
learning scenario. This occurs because, since learning
effects minimize bandwagon pressures, diffusion de-
pends to a greater extent on whether information flows
through social networks to the few potential adopters
whose assessed returns predispose them to adopt.

Note also that in learning scenarios, the bulk of
diffusion is predicted by the number of boundary
weaknesses, and not by pressure points. This occurs
because the mean of returns experienced by adopters
is negative, so that most information that is learned is
negative. It follows that at pressure points, non-
adopters tend to find out mostly negative information,
and they do not adopt. An innovation can diffuse
across a boundary at a boundary weakness, however.
This happens when an adopter on one side of the
boundary has a positive experience with the innovation
and it is connected to a low threshold non-adopter on
the other side of the boundary that adopts in response
to this information. More generally, our results indi-
cate that Propositions 2 and 3 are reasonable in both
fad and learning scenarios.

When Do Social Networks Influence

Diffusion Extent?

In this section, we consider the generalizability of our
thesis and of the propositions we derived. First, we
examine when a focus on social networks can enrich
theories of the diffusion of innovations with ambiguous
profitability—administrative, technological, product in-
novations or ideas. We consider diffusion across a
variety of potential adopters (both individuals and or-
ganizations), network structures (not only core-periph-
ery networks, but island networks as well), and with
different types of diffusion processes (both diffusion by
cohesion and by structural equivalence). We also con-
sider the effect of social networks on the extent of
diffusion when the mean of initial assessed returns is
not only negative, but positive as well. Second, we
consider when a focus on social networks can enrich
innovation diffusion theories, such as Increasing Re-
turns theories, which assume that the profitability of
innovations is unambiguous.

Ambiguous Profitability

Mixed-influence Theories. Mixed-influence theories
attribute innovation diffusion both to influences inter-
nal to networks of potential adopters, as well as to
influences exerted by actors located outside these net-
works, such as mass-media organizations or govern-
mental agencies. In our simulations, we examined
mixed influences in the diffusion of innovations across
social networks with a core-periphery structure. Such
mixed influences have been found in a broad variety of
contexts (Rogers and Shoemaker 1971). They have
been found not only with the diffusion of administra-
tive innovations, but with the diffusion of technological
innovations as well (e.g.. Czepiel 1974). They have
been found not only with the diffusion of technologies
and techniques, but also with the diffusion of innova-
tive ideas and information (Rogers 1995). Finally, they
have been found not only with the diffusion of innova-
tions across organizations, but also with the diffusion
of innovations across individuals (Coleman et al. 1966).
Though these studies pertain to the diffusion of many
different types of innovations across both individuals
and organizations they find similar network structures
(core-periphery) and assume similar models of diffu-
sion (Fad and Learning). It is our belief, therefore, that
the propositions we developed in this article may gen-
eralize across a broad variety of contexts involving
different types of innovations and adopters.
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We focused on networks with a core-periphery struc-
ture because they have been found so frequently in
studies of innovation diffusion (Walker 1969, Galask-
iewicz and Wasserman 1989, Davis 1991, Mizruchi
1992, Burns and Wholey 1993, Haunschild 1993, Have-
man 1993, Palmer et al. 1993). This focus, however, led
us to de-emphasize diffusion through other types of
network structures. In a classic article, Granovetter
(1973) pointed to what Boorman and Levitt (1980)
called “islands” in networks, areas of a network in
which there are many links between actors on the
island and few “weak ties™—links to actors on other
islands (see also Burt 1992). He argues that in such
“island models,” weak ties affect innovation diffusion
because they determine whether diffusion is confined
to the island where the first adoption occurs, or spreads
across weak ties to other islands. Using computer simu-
lation, we found that our propositions in this article
generalized to island models. Both the number of weak
ties between islands, as well as network idiosyncracies
occurring at island boundaries, had a major effect on
the extent of diffusion in networks with island structure
(Abrahamson and Rosenkopf 1993b, paper available
from the first author upon request).

We also focused on diffusion by cohesion, where
innovations spread across communication networks,
rather than diffusion by structural equivalence, where
innovations spread across actors who, by virtue of the
fact that they are in similar positions in social net-
works, tend to compete with each other and to imitate
each other (Abrahamson and Fombrun 1994, Burt 1987,
Friedkin 1984, Lorraine and White 1971). Nonetheless,
the argument’s logic extends to diffusion by structural
equivalence.

A group of structurally equivalent members is called
a position. First, imagine positions « and B in a
network. Imagine one actor, A, that is somewhat struc-
turally equivalent to members of positions « and . If
A has a low adoption threshold, then it constitutes a
boundary weakness between positions « and S that
could allow an innovation to diffuse from members of
a to members of B. Second, even if A has a high
threshold against adopting an innovation, members, B,
C, D, and E of position « could, nonetheless, cause a
pressure point on A that would cause it to adopt and
the innovation to flow from position « to B. In sum,
boundary pressure points and weaknesses, by allowing
innovations to diffuse from one structurally equivalent
position to another, should have a major influence on
the extent of innovation diffusion by structural equiva-
lence.
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Finally, in this article’s simulation section, we fo-
cused on negative-mean scenarios: scenarios in which
the majority of potential adopters assessed initially that
they would obtain negative returns from adopting an
innovation. Qur argument and findings do, nonethe-
less, generalize to positive-mean scenarios, when most
potential adopters assess positive returns from adopt-
ing. In such scenarios, it is the absence of boundary
weaknesses or pressure points, rather than their pres-
ence. which greatly influences diffusion extent. It suf-
fices, for example, that one actor bridging a social
network boundary be negatively predisposed to adopt-
ing an innovation for the innovation not to diffuse
widely on the other side of the boundary, even if most
potential adopters on that side would have been
strongly predisposed to adopting the innovation. Thus,
in positive-mean scenarios, network idiosyncracies can
greatly limit the extent of innovation diffusion.

External-influence Theories. Mixed-influence theo-
ries are not the only type of theories that explain the
diffusion of innovations for which profitability is am-
biguous. A second type of external-influence theories
attributes the diffusion of innovations primarily to in-
fluences originating from outside the set of potential
adopters. A review of the diffusion of administrative
innovations across organizations revealed, for example,
that external-influence theories have been found to
explain the diffusion of administrative innovations when
government agencies were actively involved in mandat-
ing the use of certain administrative techniques
(Abrahamson 1991, Abrahamson 1996b). War Labor
Boards forced the diffusion of personnel administra-
tion innovations both during World War 1 (Jacoby
1985) and World War II (Barron et al. 1986). These
external influences left very distinctive cumulative-
number-of-adopters curves that differ substantially
from the S-curves left by mixed-influence processes.
The external influencer forces adoption by many orga-
nizations quasi-simultaneously, and consequently, the
cumulative adoption curve shoots up suddenly and
rapidly, slowing only when most potential adopters
have adopted (Mahajan and Peterson 1985, Valente
and Rogers 1993).

External-influence diffusion patterns have been
found in a number of studies involving various types of
innovations and adopters (see Rogers and Shoemaker
1971; Rogers 1995; Mahajan and Peterson 1985, for
reviews). It is unlikely that social networks could have
had much influence on the extent of diffusion in such
contexts. This is because if external influencers are
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influential, all potential adopters find out about the
innovation and adopt it quasi-simultaneously. Under
these circumstances networks can only play a minor
role in shaping the spread of information about an
innovation and thus the pattern and extent of its diffu-
sion.

Non-ambiguous Profitability

Increasing Returns theories generally assume a context
in which an innovation’s costs decline or its returns
increase with the number of its adopters. It is generally
assumed that information about the innovation’s lower
cost is apparent from its price, whereas information
about its greater returns is either apparent from the
innovation itself or easily obtainable from an accurate
and credible external source. Thus, information is as-
sumed to be available and unambiguous, and it need
not be communicated through a social network before
it can prompt more adoptions. It would appear, there-
fore, that Increasing Returns theories cannot be en-
riched by a focus on social networks. Or, put differ-
ently, it would appear that a focus on social networks
would enrich Increasing Returns theories only if they
relaxed the assumption that information about an in-
novation is unambiguous and easily available.

We find only one exception to the general claim that
social networks cannot enrich Increasing Returns theo-
ries as they are currently formulated. This exception
occurs when increasing returns are generated by com-
munication networks; the more potential adopters
adopt a communication standard or device, such as an
electronic-mail facility, the greater the returns to
adopters because they can communicate with more
adopters (Katz and Shapiro 1985, 1994; Farrell and
Saloner 1985). Why would a focus on social networks
help explain the diffusion of a communication device,
even when information about this communication de-
vice was unambiguous and easily available? The answer
is that the sheer number of adopters of the device may
not be a good proxy of its utility for cach adopter. This
is because when a communication device has not fully
diffused, it may be more useful to individuals with
social ties to many adopters than to individuals with
social ties to many non-adopters. For example, it makes
little difference to me whether 100 million Americans
use an e-mail facility if my social acquaintances are not
connected to it. Alternatively, if they adopt this facility,
I will benefit greatly from it, even if very few Ameri-
cans have adopted it. Of course, if my social acquain-
tances adopt, this may prompt my acquaintances’ ac-
quaintances to adopt and the communication device
may diffuse via such social ties. Thus the diffusion of
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certain communication devices and standards may be
both channeled and limited by the structure of social
networks. Social structures with more channels would
lead to greater diffusion, as would network pressure
points and weaknesses that allowed the communication
innovation to diffuse across internal boundaries of the
social network.

Conclusion

This article’s central thesis was that theories explaining
the timing and extent of innovations diffusions could
be enriched by a focus on social networks. We sup-
ported our thesis by reviewing theory and research
indicating that social networks channel information
about innovations to some potential adopters who might
adopt these innovations and not others who could not
adopt them. We reasoned therefore that networks could
influence the extent of innovation diffusion. We then
examined, using computer simulations of threshold
models, how the extent of innovation diffusion might
depend not only on threshold distributions, but also on
variations in social network structures. In particular,
we noted a variety of structural features that might
influence diffusion extent. Not only the density of
network ties, but also two types of network idiosyncra-
cies—network pressure points and weaknesses at the
internal boundaries of these networks.

In the final section, we argued that our social net-
work effects thesis, as well as the propositions derived
from it, may have broad generalizability. We argued
that they might enrich theories of the diffusion of
various types of innovations with ambiguous profitabil-
ity (administrative, technological and product innova-
tions or ideas) across a variety of potential adopters
(organizations and individuals), across different types
of network structures (core-periphery and island net-
works), and with different types of diffusion processes
(both diffusion by cohesion and by structural equiva-
lence). We also argued they might enrich Increasing
Returns theories bearing on the extent of diffusion of
communication innovation and the emergence of com-
munication standards, even when the information about
these standards was unambiguous and readily avail-
able.

We believe that our model is generalizable across a
broad variety of contexts. This does not mean, how-
ever, that it need not be modified to fit these contexts.
A number of examples illustrate this point. We as-
sumed in our learning model that returns from adopt-
ing would remain constant as the number of adopters
increased. This assumption would have to be relaxed in
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the context where there are first-mover advantages and
the returns that potential adopters learn about decline
with increases in the number of adopters. Likewise, we
assumed that adopters’ assessed returns might be influ-
enced, in part, by their forecasts of how many potential
adopters would adopt the innovation. We did not,
however, consider the possibility that potential adopters
might update these forecasts based on the number of
adoptions they learned about through their networks.
In contexts where this happens, our model would have
to be modified accordingly.

We also examined only the diffusion of single inno-
vations, rather than of competing variants of an inno-
vation, and we focused on the adoption of innovations
rather than their rejections. This focus leaves open
several additional directions for future theorizing about
social network effects on the extent of innovation diffu-
sion. Future research could explore, via computer sim-
ulation, the simultancous diffusion of competing vari-
ants of an innovation across networks with varying
structures. Extrapolating from our results, it seems
likely that small differences in the network location at
which one variant was introduced could cause it to
prevail over a competing, possibly technologically supe-
rior, variant. This could occur, for instance, if one
variant was first adopted near a boundary weakness or
pressure point, allowing it to spread across that bound-
ary and to “lock out” the competing variant.

Likewise, multiple adopters of one variant might
create a social pressure causing adopters of the other
variants to reject it. Consequently, it would be interest-
ing to explore innovation diffusion through social net-
works where bandwagon pressures to not only adopt
innovations but also to reject them are operating. Such
research might build upon previous research that has
examined simultaneously the dynamics of bandwagon
diffusion and rejections (Granovetter and Soong 1986,
Abrahamson and Rosenkopf 1993a).

Our study may generate general interest across disci-
plines. We illustrated how sociologists’ focus on social
networks can enrich economists’ theories of innovation
diffusion (Granovetter 1985, 1992; Barron and Hannan
1994). These models, with their assumption that infor-
mation is an easily available or purchasable commod-
ity, may be less useful in contexts where social net-
works both channel such information and influence
decision makers’ interpretation of this information as
well. It is our contention that in such contexts,
economists’ theorizing and research can be enriched by
network analysis concepts and methods.

Our article also illustrates how focusing on economic
variables, such as assessed profits from adopting, can
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complement sociological explanations stressing net-
works. We suggest, for instance, that purely structural
features, such as the number of links between potential
adopters in a network, affect the extent of bandwagon
diffusions. However, whether or not these links have
such an effect may also depend on whether or not they
transfer information from an adopter to a potential
adopter who expect profits from adopting.

In closing, this research highlights complementarities
between two bodies of theorizing in the innovation
diffusion literature that traditionally have had little to
say to each other (Barron and Hannan 1994). Indeed,
work that explores the distribution of assessed profits
from adopting an innovation falls primarily in the do-
main of economists or of scholars in applied disciplines
who wuse their theories (Schelling 1978, Katz and
Shapiro 1985). Work that explores the embeddedness
of actors in networks of social relations resides primar-
ily in the domain of sociologists and applied scientists
using their theories (Granovetter 1985, 1992; Burt
1987). This article highlights complementarities be-
tween these two domains in the hope of enriching
both.
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