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his paper develops a model of conversion behavior (i.e., converting store visits into purchases) that predicts

each customer’s probability of purchasing based on an observed history of visits and purchases. We offer an
individual-level probability model that allows for different forms of customer heterogeneity in a very flexible
manner. Specifically, we decompose an individual’s conversion behavior into two components: one for accu-
mulating visit effects and another for purchasing threshold effects. Each component is allowed to vary across
households as well as over time. Visit effects capture the notion that store visits can play different roles in the
purchasing process. For example, some visits are motivated by planned purchases, while others are associated
with hedonic browsing (akin to window shopping); our model is able to accommodate these (and several other)
types of visit-purchase relationships in a logical, parsimonious manner. The purchasing threshold captures the
psychological resistance to online purchasing that may grow or shrink as a customer gains more experience with
the purchasing process at a given website. We test different versions of the model that vary in the complexity of
these two key components and also compare our general framework with popular alternatives such as logistic
regression. We find that the proposed model offers excellent statistical properties, including its performance in
a holdout validation sample, and also provides useful managerial diagnostics about the patterns underlying

online buyer behavior.
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1. Introduction

Purchasing conversion rates, defined as the percent-
age of visits that result in purchases, are a primary
focus of attention for many online retailers. With typi-
cal conversion rates rarely exceeding 5%, e-commerce
managers are struggling to understand conversion
behavior at their sites. Despite the vast amounts of
data available online, few efforts have been made
to explore conversion behavior beyond just reporting
overall, store-level conversion rates and looking for
improvements over time. This paper aims to more
closely examine online purchasing conversion rates
by developing a model that explicitly addresses the
differences across shoppers as well as dynamics over
time.

Before we develop our model, it is important to
highlight some of the unique characteristics of online
conversion that may impact any modeling and analy-
sis efforts. First, customer behavior online is, in some
important respects, different from that in other envi-
ronments. Second, the data available online are also
unique and necessitate special considerations in any
in-depth empirical study. We discuss some of the key
differences that highlight the need for a unique online
conversion model.
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Online Customer Behavior

One of the most salient characteristics that differ-
entiates online and offline shopping behavior is the
low “transportation costs” required to visit a vir-
tual store. In studies of offline shopping behavior,
one key component of modeling a customer’s store
choice and purchasing decision is the costs—both tan-
gible and psychological—associated with traveling to
one or more stores (Dellaert et al. 1998). In contrast,
it is essentially costless for a customer to visit an
online store site. This has several effects on observed
behavior. First, because the costs are much lower,
online shoppers may be more likely to visit a store
without any intention of buying. In the offline world,
where the shopper incurs costs just by taking the time
and effort to visit a store, it is less likely that he will
“waste a trip” and not buy. As a result, we observe
lower conversion rates online. Second, the low cost of
visiting a website also makes the shopper more likely
to delay a purchasing decision and return later to buy.
In the offline world, by contrast, there are very limited
economies of scale for follow-up trips, so shoppers
may rush to closure to avoid incurring more travel
costs. For these reasons, we are more likely to see
online shoppers making multiple trips to the same
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store for a single purchasing decision, even for lower-
involvement purchasing decisions.

In general, there may be a wide spectrum of shop-
ping behaviors observed at a given online store.
Janiszewski (1998) dichotomizes offline shopping
behavior into exploratory or directed search. Moe (2003)
extends this dichotomy and presents a taxonomy of
behaviors for online shoppers at a retail site. Specif-
ically, store visits can be sorted into four groups
based on the shopper’s motivations for entering the
store and the purchasing horizon. One group, directed
buyers, exhibits goal-directed search behavior: They
have a specific product purchase in mind when
entering the store and, as a result, are unlikely to
exit the store without a purchase. A second group,
search/deliberation visitors, also exhibits goal-directed
search behavior, but unlike the directed buyers, they
only have a general product category in mind when
entering the store. For these shoppers, purchasing
may occur after a series of store visits as they gather
more information during each store visit. In stark con-
trast, hedonic browsers tend to enter a retailer with no
product or even product category in mind. Instead,
any purchase that may or may not occur is a result of
the in-store experience and the stimuli encountered—
seemingly a random or “impulse” occurrence to
an outside observer. The final group consists of
knowledge-building visitors, who have no intention of
buying and are simply in the store to gather infor-
mation about the products available. In other words,
there may be a group of visitors who are inher-
ently nonbuyers, no matter how stimulating the shop-
ping environment may be. The implication of this
taxonomy for any modeling effort is that we must
develop a flexible model that can accommodate each
of these behaviors accordingly. The conversion model
proposed in this paper will do just that.

Because our model features such a general (but
well-grounded) structure, it can be applied to many
different types of products. For instance, the nature
of grocery purchasing is such that it is very unlikely
for a customer to enter the store and exit without any
purchases. On the other hand, it is very likely for a

shopper to enter a car dealership and exit without
buying. One objective of this paper is to develop a
model that can be applied across a broad array of
purchasing contexts.

Using Online Click-Stream Data

Typical offline field data tend to capture only pur-
chasing events. Nonpurchase data, e.g., visit char-
acteristics, are either completely ignored or need to
be gathered through self-report or controlled exper-
iments, which tend to be inaccurate and not easily
generalizable. Online click-stream data, however, cap-
ture both types of information in a complete, timely,
and accurate manner.

Furthermore, because click-stream data encapsulate
so much detail about each individual’s behavioral
history, the datasets are often large and cumber-
some. The size of these datasets—and the difficulty in
manipulating them—is frequently underestimated by
many marketing researchers. When dealing with such
large datasets, parsimony and efficiency are important
characteristics when constructing statistical models
for this environment. Our stochastic model of conver-
sion behavior can be estimated relatively easily and
quickly with a closed-form likelihood function, while
still allowing for multiple sources of heterogeneity
and nonstationarity. One limitation of click-stream
data is the difficulty in obtaining user-identifying
characteristics, such as demographics. Though sev-
eral research firms collect such information from their
panel of participants, most online retailers are reti-
cent to collect or utilize such data because of privacy
concerns. Therefore, we incorporate heterogeneity
into our model only through stochastic distributions
around the key behavioral parameters, although cus-
tomer characteristics (and other covariates) can easily
be introduced in the future.

Illustration of Conversion Behavior Dynamics

To illustrate the research problem, consider three indi-
viduals (see below) with the following behavioral his-
tories, where t; denotes the time of individual i’s
jth visit and P indicates visits during which a pur-
chase took place.
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Individual A visited this particular store five times
prior to t,, and purchased twice, once at t,; and again
at t,5. If this customer comes back to the store again
at f,e, what is her probability of purchasing during
that visit? Two nonpurchase visits have occurred since
the last purchase at t,3, compared to only one prior to
that. What effect, if any, do these visits have on influ-
encing purchase, and has that effect changed since the
last purchase? The visits at ¢4, and t,5; may have pos-
itive effects that accumulate toward a purchase (e.g.,
learning more about a certain product that the shop-
per intends to buy), and thus may increase the likeli-
hood of buying at t,,. On the other hand, past visits
may have no relation to future purchasing behavior—
purchasing may be a stochastic result of the current
visit alone.

Now examine individual B—his purchasing history
is identical to that of A, but his visiting behavior is
different. At tz,, is person B more or less likely to
purchase than A at her t,,? There may be a trade-off
between the higher baseline probability of purchasing
that B appears to have (two purchases over three vis-
its, compared to two purchases over five visits for A)
versus the positive visit effects (as noted in the pre-
vious paragraph) from which A may have benefitted.
Therefore, when modeling conversion probabilities
we must consider the potential effect of visits in con-
junction with any Bayesian updating of a customer’s
latent purchasing tendencies as we observe a series of
visits and purchases (or lack thereof) over time.

In addition to the role that past visits have on pur-
chasing, past purchase patterns may also affect future
conversion behavior. Consider individual C, with a
visiting history identical to that of A. The only dif-
ference is the timing of past purchases. How will this
affect C’s purchasing probability at t-,? One could
argue that because a purchase just occurred at fcs,
person C is less likely to purchase at tq, implying
the existence of a hiatus between purchase events.
However, individual C might be more likely to pur-
chase again soon if a recent purchase experience is
very salient, and therefore influential in reducing
purchasing-related anxiety. To go one step further,
what would be the effect of a third purchase (at,
say, tc3) on future behavior? Would it help or hurt the
probability of a purchase at ¢q4?

2. Model Development

These stylized illustrations and our broader discus-
sion of online shopping point out the need for six key
components in a model of conversion behavior:

1. Baseline probability of purchasing. For each indi-
vidual, there is a baseline probability of purchase at
each visit, independent of his recent purchase/visit
patterns. This baseline reflects the overall extent

to which visits are purchase directed for each
customer.

2. Positive visit effect on purchasing. Each visit has its
own stochastic impact (assumed to be nonnegative),
and as the effects of these visits accumulate, the
probability of purchase increases over time. In other
words, as a shopper makes more visits, she will be
increasingly likely to purchase in subsequent visits,
depending on the magnitude of these visit effects on
purchasing.

3. Negative purchasing-threshold effect on purchasing.
Purchasing propensity can be negatively affected
by an individual’s level of purchase-related anxiety
toward a given retailer. For example, shoppers new
to a site may be risk averse and reluctant to pro-
vide personal information, such as credit card num-
bers, home addresses, etc., to an unknown vendor as
part of the transaction process. Putsis and Srinivasan
(1994) also conceptualize a framework in which buy-
ing probabilities are a result of visit effects and
purchasing-threshold levels, but they focus their
attention primarily on a descriptive analysis of the
factors that affect prepurchase deliberation time.

4. Heterogeneity in visit effects and purchase thresholds.
Any well-specified model of choice behavior must
accommodate differences across customers. In this
case, we expect that the two components just
described (visit effects and purchasing thresholds)
will vary in magnitude across households.

5. Evolving effects over time. The magnitudes of the
visit effects and purchasing threshold may evolve
over time as the customer gains experience with the
shopping environment. For example, repeated visits
to a website may have smaller effects on purchasing
as the shopper gets used to the environmental stimuli
and becomes less persuaded by content that has been
seen often in the past (Park et al. 1989). Purchasing
thresholds may shrink as shoppers gain familiarity
through repeated purchases, thereby making future
purchasing more likely (Beatty and Ferrell 1998). On
the other hand, someone may be likely to buy at
an early visit (to see what the process is like), but
as the novelty wears off with repeated purchases,
he may feel increasing resistance against making a
purchase.

6. Hard-core never-buyers. Finally, there may be a
segment of shoppers who use the retail site more
as an informational reference than as a retailer, and
therefore have no intention of ever buying at the web-
site. Therefore, our model will incorporate a compo-
nent that can separate these individuals out from the
conversion process that applies to everyone else.

We first develop the static conversion model, which
ignores the evolutionary effects and the hard-core
never-buyers noted in Steps 5 and 6 above. We com-
bine the behavioral elements from Steps 1-4 in the
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following manner. Let p; be the probability of indi-
vidual i purchasing at visit j:

p; = (net effect of visits since last purchase (V;))/
(net effect of visits since last purchase (Vi)
+ purchasing threshold (7;)). (1)

This basic structure is identical to a framework first
proposed by Schmittlein and Morrison (2003), who
analyzed the dynamics in the success rate of in vitro
fertilization (IVF) as patients go from one IVF attempt
to another. Like their model, we will separate out
Bayesian updating from previous nonpurchase vis-
its (or IVF failures, in their case) from “learning
effects” that may arise from one visit to the next.
However, unlike the Schmittlein and Morrison model,
our proposed conversion model will also allow for
nonstationarity resulting from previous purchases
(successes) in addition to any nonstationarity from
any previous nonpurchases (failures). Also, unlike
Schmittlein and Morrison, we will model multiple
purchasing cycles and allow learning effects to carry
over from one purchasing cycle to the next. These
differences will allow us to accommodate aspects of
online shopping that do not arise in the IVF setting.
Nevertheless, the fact that the same basic framework
can be successfully applied for contexts as different
as IVF trials and online purchasing says a great deal
about its robustness and versatility.

Like Schmittlein and Morrison (2003), we assume
that the net visit effect, V;;, consists of two compo-
nents: a baseline propensity to buy (v;,) that applies at
every visit, and the incremental effects (m;;) that accu-
mulate across all visits that have occurred since the
last purchase. In a customer’s first purchasing cycle,
for example,

Vi

=Ujp+ My +Mp+--+ My 2)
for household i who has made j (nonpurchase) visits.
A large baseline effect (v;)) relative to the magni-
tude of visit impacts (m;) allows for the existence
of directed buyers, whereas larger visit effects allow
for more of a search/deliberation process. Purchases
resulting from hedonic browsing visits would be asso-
ciated with a low baseline (v;,) and incremental visit
effects (m;;) with a low mean but high variance. This
would allow for impulse buying with relatively little
visit-to-visit accumulation.

To accommodate these different forms of hetero-
geneity, we assume that the baseline purchasing
propensity v;, is gamma distributed across the cus-
tomer population with shape parameter r, and
scale parameter y. We acknowledge that there are
many different sources of heterogeneity that can
affect these baseline purchasing propensities, such as

demographic characteristics. However, because many
click-stream datasets do not include adequate covari-
ate information, we incorporate heterogeneity strictly
as unobserved random effects that follow a flexible
probability distribution. Specifically, we assume that
the visit impacts, as well as the purchasing thresholds,
vary across customers in accordance with a gamma
distribution, such that m; ~ gamma(u, y) and 7; ~
gamma(r,, y).! The resulting purchasing probability
is therefore a ratio of two gamma random variables,
or a beta-distributed random variable:

Ui0+mi1+ml‘2+"'+mij
Vi + My + Mg+ + 1My + 7y
_ _ gamma(r, +ju, y)
gamma(r, + ju+7,,y)
= beta(r, + ju, 1,). @)

flpy) =

Using Bayes Theorem, we can update this prob-
ability from visit to visit at the individual level,
using the information we have about each customer’s
visit/purchase history. If individual i has made x;
prior visits which include n;; purchases (up to but not
including visit j), it is easy to show that

Pr(purchasel.j | x;:, ;) = Elpy | x5, n;]

rytjm+x;

=—— 4
Totjm+ 1+ 1y

A special case of this static conversion model
deserves explicit mention. If we allow for no accumu-
lation of visit effects (i.e., u = 0), then this specification
collapses down into the well-known beta-binomial
choice model. This will be a natural benchmark for us
to compare all of our models against.

Evolving Visiting Effects. Thus far, we have
assumed that the gamma distribution governing the
impact of visits remains stationary over time with
parameters w and y. While the impact of successive
visits may accumulate over time, we have not allowed
for any trends in this stochastic process. We therefore
extend the model to allow for the possibility that the
influence of store visits (m;;) will increase, decrease,
or stay the same depending on the shopper’s history
with the site.

Several studies have proposed that customers pro-
cess information more efficiently as they learn about
a new environment (Alba and Hutchinson 1987,
Johnson and Russo 1984), thereby decreasing the

! Because the sum of the baseline effect and the visit impacts are
compared against the threshold to determine purchasing propen-
sity, it is reasonable to assume that they are measured on the same
scale, and thus the distributions governing these three effects share
the same scale parameter .
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number of visits required to accumulate a sufficient
amount of information to purchase. However, it can
also be argued that shoppers are less affected by the
store environment as they become more acclimated
to it (Park et al. 1989), thereby increasing the number
of visits needed to persuade them to buy. The model
proposed in this paper will not predetermine the
direction of these learning effects; instead, we will
allow for dynamics that can increase or decrease the
magnitude of visit effects over time. In doing so, the
model will provide a measure for the evolutionary
process that may (or may not) be occurring.

We approximate the customer’s experience with the
site with the number of times she has previously
visited the site and implement the evolutionary trend
through the shape parameter governing the incremen-
tal visit effects, m;; (Schmittlein and Morrison 2003).
Therefore, we assume m; ~ gamma(u;, y), where
W; = pok’, and thus the net effect of visits for the first
purchase cycle then becomes

V, ~ gamma(r,, y) + gamma(u,k', )
+ gamma(pok?, ) + - - + gamma(uek’, ). (5)

The parameter k ranges from zero to infinity and
characterizes how visit impacts evolve as customer
familiarity increases. If k equals one, there is no evo-
lutionary effect; the stochastic process governing m;
is a simple stationary one. If k is less than one, vis-
its tend to become less influential over time, while
if k is greater than one, visits tend to become more
influential as customers evolve. However, despite the
upward or downward trend on the shape parameter,
each successive draw of m; is still a random vari-
able, thereby allowing any particular visit to have an
unusually high or low impact. This allows for the
possibility of impulse purchases, albeit with different
probabilities, at any given visit.
Across multiple purchases, (8) generalizes to

j
V; ~ gamma (rv + Y mek", 7) , (6)

u=Ip+1

where Ip indicates the visit during which the last
purchase occurred. If customer i has not yet been
observed making a purchase, then all past visits
would contribute to V;, or Ip=0.

Figures la and 1b illustrate how the net effect
of visits can accumulate over a customer’s history.
Assuming that visit effects evolve such that k > 0,
incremental visit effects will stochastically vary about
a mean, which itself is evolving (see Figure 1a). From
visit to visit, these incremental effects accumulate
until a purchase is made, at which time the net effect
is reset to zero (see Figure 1b).

Evolving Purchasing Thresholds. Under the static
model, the purchasing threshold for household i, 7,

Figure 1 (a) Incremental Visit Effects; (b) Net Effect of Visits
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was specified as a gamma-distributed random vari-
able with shape parameter 7, and scale parameter y
to account for customer heterogeneity. It did not vary
over time. However, a customer’s purchasing thresh-
old may evolve depending on his or her past behav-
ior, or more specifically, past purchasing experiences
(Beatty and Ferrell 1998).

In much the same way that visit impacts are
allowed to evolve over time, we implement the evo-
lution of purchasing thresholds through the shape
parameter:

7 ~ gamma(r, exp{yx;}, v), ?)

where r. captures the initial purchasing threshold,
Y is a parameter that governs the magnitude and
direction of the dynamic process, and x;; is the num-
ber of purchases that customer i has made, up to (but
not including) visit j. This specification for the shape
parameter allows the threshold to either increase,
decrease, or remain constant, depending on the sign
of the evolutionary parameter, . If ¢ equals zero, the
purchasing-threshold distribution remains stationary
with a shape parameter of r, regardless of past pur-
chasing experiences. If, however, ¢ is less than zero,
thresholds decline as the customer gains purchasing
experience with the retailer, and she becomes more
likely to buy at future visits.?

2For both the evolving visit effects and the evolving purchas-
ing thresholds, we experimented with discount factors that would
allow these effects to diminish based on the amount of actual
time between successive visits/purchases. However, this addition
did not significantly improve the fit or predictive accuracy of the
model.
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Figure 2 (a) Threshold Dynamics; (b) Evolving Purchasing Threshold
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Figures 2a and 2b illustrate how the purchasing
threshold can evolve as a function of past purchasing
events. Notice that, depending on ¢, this threshold
can increase or decrease (Figure 2a). Assuming iy <0
such that purchasing increases future conversion
probabilities, the threshold changes after each pur-
chase as seen in Figure 2b. Whether or not a purchase
occurs is the stochastic result of a conversion prob-
ability derived from the combination of visit effects
(Figure 1b) and the purchasing threshold (Figure 2b).

Hard-Core Never-Buyers. The final component
of the model is an element that Schmittlein and
Morrison (2003) do not consider. In many situations,
there may be a set of shoppers who visit a store to
look around but have absolutely no intention of ever
buying anything there. We assume that these “hard-
core never-buyers” comprise a fraction, (1 — ), of the
population. This parameter will affect our specifica-
tion of p; such that if a customer’s history contains
no purchases (x; =0),

V.

— . @®)
Vig+ 7+

fpilx;=0)=Q1—m)+
If, however, customer i had purchased in the past and
therefore proven herself not to be a never-buyer, then
the probability of buying at all subsequent visits is
simply
Vij + X

T ©)
Vi + 7 £ 1

f(pij1x;>0)=

The resulting likelihood function can be written as

N Ji _
L = [[[1[Pr(purchase;)]" - [1 — Pr(purchase,)]"
i=1j=1
N Ji _
=[II1 E[pij][ij -(1- E[pij])lij/ (10)

i=1j=1

where [; is a 0/1 variable indicating whether or
not customer i actually makes a purchase at visit j.
Parameter estimation is performed using ordinary
maximum likelihood procedures. We utilize the
MATLAB programming language on a standard desk-
top PC. In this setting, the complete model requires
a few minutes to obtain optimal estimates for its
parameters. This estimation procedure is quite robust;
we have seen no evidence of local optima or other
irregularities.

3. Data

We use click-stream panel data collected by Media
Metrix, Inc., covering the browsing habits of approx-
imately 10,000 households whose Internet behavior
was recorded over time. This firm recorded the
sequence and timing of all URLs viewed by each
panel member. We examine the panel’s shopping
behavior at a leading online bookstore, Amazon.com,
from March 1, 1998, through October 31, 1998. We
observe 4,379 panelists who made at least one visit,
collectively covering a total of 11,301 visits.

Purchase is defined as any visit during which a pur-
chase occurred. Many online stores utilize a specific
Web page that acts as a purchase confirmation after an
order has been submitted. Those visits in which the
panelist saw the “confirm-order” page of the store’s
website were identified as purchase visits. The num-
ber of units purchased and the total amount spent
were not considered in this analysis.

Table 1 summarizes the visiting and purchasing
dynamics at Amazon.com. All measures seem to indi-
cate that site performance is improving from the first
four-month period to the next. The conversion rate
is increasing, the numbers of visitors and buyers are
increasing, and so on; however, these aggregate mea-
sures do not account for the inflow of new shoppers
and the dropout of existing shoppers, so they may
mask the true underlying dynamics that are occurring
at the individual level (Moe and Fader 2003). When
we examine the same statistics while accounting for
the entering and exiting of shoppers, a very different
pattern emerges. Table 2 shows the conversion rate
statistics only for those shoppers who seemed to be
active throughout the entire data period, i.e., those
who made one or more visits to the store in both
the first two months and the last two months of the
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Table 1 Summary of Visiting and Purchasing at Amazon.com

All 8 months Months 1-4 Months 5-8
Number of visitors 4,379 2,645 2,756
Number of buyers 851 459 544
Number of visits 11,301 5,238 6,025
Number of purchases 1,573 689 885
Conversion rate (%) 13.9 13.2 14.7
Visits/visitor 2.58 1.98 2.19
Purchases/buyer 1.85 1.50 1.63
Purchases/visitor 0.36 0.26 0.32

data period. This illustrative subsample avoids any
problems due to censoring, and thus provides a bet-
ter view of individual-level dynamics. Contradicting
the (apparently) increasing conversion rates for the
entire sample as seen in Table 1, this group’s conver-
sion rates are actually decreasing over time. There-
fore, without modeling behavior at the individual
level, e-commerce managers can easily draw incorrect
conclusions. Our model accounts for these individual-
level patterns, and therefore provides a better indica-
tion of differences across households as well as the
dynamics over time.

4. Results

As a start, the full (six-parameter) conversion model
was estimated across the entire eight months of
Amazon.com data (see Table 3, Row 1). From the
model results, there are three main dynamics we are
looking to identify. First is the influence of visits. The
model indicates that visits do have effects, above and
beyond the baseline, which accumulate and increase
purchasing probabilities as indicated by a relatively
large wm, = 0.276 when compared to the baseline,
r,=0.062. Second is the evolving effect over time.
That is, does the incremental effect of each visit sys-
tematically evolve as the shopper gains experience?
In this case, k is less than one, suggesting that sub-
sequent visits have a diminishing (but still positive)
impact on purchasing behavior as the shopper makes
more visits to the site. Third, how do past purchases
affect the purchasing threshold? According to the full
model, it seems that purchasing thresholds increase
as a function of previous purchasing experiences

Table 2 Conversion Rate Summary for Active Amazon.com Shoppers
Only
Months 3-4 Months 5-6
Conversion rate (%) 26.0 20.8
Number of visits 757 472
Number of purchases 197 98

(¥ =0.117), perhaps due to the decreasing novelty of
buying online.

Taken together, the two latter dynamics suggest
that conversion probabilities are decreasing over time,
at least for this particular site during this particular
time period. Once again, this contradicts the aggre-
gate trends (Table 1), but is supported by the pattern
seen in Table 2.

Table 3 also shows the parameter estimates and fit
statistics for several nested models, all the way down
to the simple two-parameter beta-binomial. There
is little distinction, from a statistical perspective,
between the full model and one with no threshold
dynamics (¢ =0, in Row 2). Both models offer similar
in-sample fit statistics as well as out-of-sample valida-
tion results (to be discussed in the next section). For
consistency, we will stick with the full model for the
subsequent discussion.

5. Alternative Models

and Benchmarks

We compare the performance of our proposed con-
version model to a wide range of established
benchmarks along several dimensions: (1) in-sample
log-likelihood, (2) holdout log-likelihood, and (3) pre-
dictive accuracy for an individual’s next visit. When
we estimate the proposed model using only the first
half of the dataset, we obtain a log-likelihood for the
holdout sample of —2,330.0. Additionally, the pro-
posed conversion model predicts a 14.7% conversion
rate for a set of holdout visits (described in greater
detail at the end of this section), compared to the
actual conversion rate of 15.7—a relative error of
only 6.3%.

Benchmark 1—Logistic Regression. We use a log-
istic regression model that incorporates recency and
frequency measures as explanatory variables. The
dataset used for the logistic regression model is
identical to that used by the conversion model. We
model the probability of purchasing in each session
as a function of: (1) the number of past visits, (2) the
number of past purchases, (3) the number of visits
since the last purchase, (4) time elapsed (in days) since
the last visit, and (5) time elapsed (in days) since the
last purchase. The fit of the model (LL = —4,367.79,
BIC = 8,791.55) is vastly inferior to that of the conver-
sion model—even the beta-binomial achieves a supe-
rior log-likelihood (LL = —4,308.03, BIC = 8,632.83).
We also estimated a latent-segment logistic regression
to better accommodate customer heterogeneity. When
we expand the model to include multiple segments,
we find only two distinct segments: one large seg-
ment (72%) that responds very little to past purchases
and one (28%) that is very sensitive to past pur-
chase behavior (i.e., if you have purchased in the
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Table 3 ~ Parameter Estimates for Conversion and Nested Models at Amazon.com
r, o k r i T LL BIC
1. Full model 0.062 (0.021)  0.276(0.026) 0.932(0.014) 2.314(0.086) 0.117(0.016) 0.790(0.024) —4,264.25 8,578.81
2. Visit effect: evolving 0.155(0.037)  0.317(0.035) 0.918(0.016) 3.159(0.177) O 0.777 (0.025) —4,266.17  8,574.26
accumulation (no
threshold dynamics)
3. Visit effect: static 0.099(0.038) 0.436(0.205) 1 4,047 (0.018) 0 0.904 (0.029) —4,279.06  8,600.04
accumulation (no
threshold dynamics)
4. Threshold dynamics only ~ 1.348(0.072) 0 1 8.782(0.120) 0.234(0.032) 0.868 (0.040) —4,299.44  8,632.42
5. Beta-binomial 0.613(0.015) 0 1 4.436(0.040) 0 1 —4,308.03  8,632.83

Note. The numbers in bold indicate the values at which the parameters were fixed, and standard errors for the parameter estimates are presented in parentheses.

past, you are more likely to purchase again in the
future). Adding a third segment does not add appre-
ciably to the fit of the model. Although the latent-
segment model improves upon the single-segment
logistic regression (LL = —4,285.50, BIC = 8,692.30),
it still provides a far poorer fit than the conversion
model.

Benchmark 2—Duration Models. The basic idea
here is to reframe the modeling situation from a
repeated choice question (“will you buy at the next
visit?”) into a timing problem (“how many visits need
to occur before you make your next purchase?”). Dura-
tion models have been commonly used in market-
ing to examine offline grocery store purchasing and
can easily be extended to the online purchasing
conversion problem. Seetharaman and Chintagunta
(2003) provide an excellent review of these mod-
els and the many methodological options that exist
when implementing them. Specifically, they discuss
the application of a discrete-time model to examine
purchasing conversion by assuming that store visits
occur at regular weekly intervals. In our case, how-
ever, we know the times of the actual visits, so we
do not need to make any assumptions about them.
Additionally, Seetharaman and Chintagunta recom-
mend the use of cause-specific competing risks models
to incorporate a shopper’s recent history of visits
and purchases. Specifically, a different timing process
is employed based on the customer’s recent visiting
(and purchasing) history. Based on the findings of
Seetharaman and Chintagunta, we applied a discrete-
time, cause-specific duration model to our online con-
version dataset. We primarily used the log-logistic
specification.® Estimated as a cause-specific model, it

% Seetharaman and Chintagunta (2003) tested a number of different
baseline specifications and found that log-logistic and expo-power
outperformed all others and were comparable to each other, with
the log-logistic model fitting better for some product categories and
the expo-power model fitting better for others. We estimated the
cause-specific competing-risks expo-power model, which requires
six parameters. Although its LL of —4,418.55 is slightly better than

requires four parameters—one (y, @) pair to be used
for intervisit times that follow a nonpurchase visit,
and a separate pair for spells that follow purchase
visits. When estimated on the entire data period, the
model provides a log-likelihood of —4,419.47 and a
BIC of 8,872.47.4 Compared to the other benchmarks
we examined, this model fares the worst in terms of
in-sample fit.®

Although the log-logistic timing model provides
an appropriate benchmark for our proposed conver-
sion model, it falls short in several significant ways.
First, as mentioned earlier, most timing models (when
applied in the purchase incidence context) assume
that visits occur at regular weekly intervals. This may
be a reasonable assumption for offline grocery shop-
ping, but is unlikely to extend to other environments.
The proposed conversion model, on the other hand,
deals with conversion on a visit-by-visit basis rather
than assuming a fixed time interval for store visits.
This is possible in the online environment because
visits, in addition to purchases, are fully observable
(a significant benefit of click-stream data over store
scanner data). Additionally, our proposed conversion
model incorporates an individual’s entire observed
history of purchases and nonpurchases, whereas the
cause-specific timing model only accounts for the out-
come of the visit immediately preceding the current
visit. Finally, our proposed conversion model also
explicitly captures learning effects that accumulate
across visits and purchase cycles. The aforementioned
differences enable the proposed conversion model to
allow for different types of shopping behaviors (e.g.,

that of the log-logistic, its BIC of 8,886.55 is worse, so we did not
pursue this model any further.

*The parameter estimates for the log-logistic duration model are
as follows: Vpuchase = 0517, a, = 1191, Yoonpurchase = 0-255,
a =1.693.

®We also estimated a log-logistic model with multiple support
points to better accommodate heterogeneity. This provided a slight
improvement in the log-likelihood (—4,411.47), but after account-
ing for the nine parameters it requires, its BIC value (8,898.41) does
not justify the need for the additional latent segment.

urchase

nonpurchase
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searching, browsing, etc.)—a unique contribution of
the conversion model over any of the benchmark
models proposed in this paper.

Benchmark 3—Beta-Binomial. We also considered
the beta-binomial, a special case of the proposed con-
version model, as another benchmark. Like the pro-
posed model, it incorporates a Bayesian shrinkage
estimate that combines the parameters of the pop-
ulation’s beta heterogeneity distribution with each
household’s own distinct visiting and purchasing his-
tory, but it is a purely stationary model: It does not
accommodate any of the dynamic aspects (e.g., learn-
ing) that are central to the full conversion model.

Benchmark 4—Historical Conversion Rates. Fin-
ally, we use a simple projection of historical (ob-
served) conversion rates, a common measure used
in practice. Each panelist’s predicted buying proba-
bility for future visits is simply the number of pur-
chases divided by the number of visits in the cali-
bration period. Though this method is very easy to
implement, it is severely limited in its ability to accu-
rately predict behavior for relatively inactive individ-
uals. For example, an individual who made one pur-
chase in one visit in the estimation period would be
said to have a predicted conversion rate of 100% for
future visits, an unlikely outcome.

Results of Benchmark Comparisons. Table 4 com-
pares each of the benchmark models with the
conversion model. Column 3 provides the holdout
likelihoods generated by applying the parameter
estimates resulting from the first half of the data to
the holdout sample. Based on these measures, we find
that the dynamic conversion model outperforms each
of the benchmark models offered.

We also examine predictive validity by estimating
each model on the first half of the data and predicting
purchasing probabilities for every household’s first
visit in the holdout period. Of the 1,022 panelists who
made visits in both the model estimation period and
the forecasting period, 759 of them did not buy at

Table 4 Benchmark Comparisons
Predicted
In-sample In-sample Holdout conversion rate (%)
LL BIC LL (Actual = 15.7%)
Conversion model —4,264.25 8,578.8 —2,330.0 14.7
Logistic regression —4,367.8 8,791.6 —2,474.7 19.2
(one segment)
Logistic regression —4,285.5 8,692.3 —2,360.5 14.2
(two segments)
Proportional —4,4195 8,8725 —2,4426 18.2
hazards model
Beta-binomial —4,308.0 8,632.83 —2,343.4 13.0
Historical NA NA NA 13.8

conversion rate

all in the first four months. Of these 759 shoppers,
10.7%, or 81 individuals, actually made a purchase in
their next visit. Using historical conversion rates, all
of these 759 shoppers would have been dismissed as
having 0% conversion probabilities in the future. The
beta-binomial model, with its more lenient shrink-
age estimates, predicts that 9.1% of the observed
nonbuyers would buy in their next visit.

By allowing for the accumulation of visit effects,
the conversion model mirrors the actual future con-
version far more closely, estimating that 11.1% of the
historical nonbuyers would buy in their next visit. As
a result, those shoppers who may be “written off”
by the competing benchmark models because of low
observed conversion probabilities in the past would
not be so easily dismissed by the conversion model.
Some of these shoppers were apparently building up
towards a future purchase, and the proposed model
seems to capture these shopping dynamics fairly
well.

Overall, of the 1,022 next visits for which we predict
purchasing, 160 visits actually resulted in a purchase,
leading to a 15.7% conversion rate for this select
group of panelists. The average predicted purchas-
ing probability across these 1,022 visits as calculated
by the conversion model is 14.7%, a relative error of
only 6.3%. Compared to the average purchasing prob-
abilities according to the historical conversion rates
(13.8%), the beta-binomial (13.0%), the single-segment
logistic regression (19.2%), the two-segment logistic
regression (14.2%), and the log-logistic model (18.2%),
the conversion model provides the most accurate
overall conversion predictions.

6. Conclusions

The Internet has provided e-commerce managers with
an abundance of data that can be used for analyses
of online buying behavior. The objective of this paper
was to carefully investigate one of these metrics—
conversion rates. Our model allows for a more valid
and useful examination of conversion behavior than
can be provided by a simple aggregation of the
number of visits and purchases. We illustrated that
aggregate measures can offer highly misleading con-
clusions. Our model avoids these errors by directly
addressing heterogeneity across customers as well as
dynamics over time. Because customers have different
reasons for visiting a retail site, it is important to
understand and account for various patterns in the
relationship between visiting and purchasing. These
patterns are often overlooked but are addressed
explicitly in our conversion model. We highlighted
the role of two model components in particular (accu-
mulating visit effects and purchase thresholds) and



Moe and Fader: Dynamic Conversion Behavior at E-Commerce Sites
Management Science 50(3), pp. 326-335, © 2004 INFORMS

335

showed how these elements (taken together and sep-
arately) contribute to the model’s logical basis and
strong empirical performance.

The research problem of examining conversion
probabilities is very complex, and several issues are
still unexplored. For example, we have ignored the
different activities that take place within each visit.
The sequence of pageviews (e.g., duration, type of
pages examined, etc.) could have a great influence
on the likelihood that a customer will buy in any
given visit. Likewise, we have ignored other possible
covariates such as demographics, panelist behavior at
other sites, and site design characteristics. However,
our model provides a fairly general platform to build
in some of these measures in future research. It will
be interesting to hypothesize (and empirically test)
how these explanatory factors will impact the various
components of the model. For instance, demographics
may be expected to exert their influence on the base-
line propensity to buy (v,,), within-session measures
may drive the incremental effect of each visit (m;),
and site design characteristics may show up through
the purchase threshold (7;). The important point is
that our model captures the key behavioral elements
underlying the conversion process and can be readily
adapted for theory testing using richer datasets as
they become available.

In addition, we have defined our modeling prob-
lem by taking as given the pattern of customer visits
to the focal website. However, as other papers have
shown (e.g., Moe and Fader 2003, Roy 1994), purchas-
ing behavior may differ depending on the visiting
patterns of the individual in question. Therefore, fur-
ther extensions of this model could also develop a
fully integrated model that captures both behavioral
phenomena (visits and conversion) and the two-way
interplay between them. However, in the same way
that scanner-data researchers first chose to under-
stand (and build separate models for) brand choice,
category incidence, and purchase quantity (Gupta
1988) before creating fully integrated models (Bell
et al. 1999, Chiang 1991, Chintagunta 1993), we feel
that the same type of modular approach is warranted
here. We believe that our conversion model is a
useful first step in this direction and encourage future
researchers to build upon it.
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