
MANAGEMENT SCIENCE
Vol. 50, No. 10, October 2004, pp. 1366–1378
issn 0025-1909 �eissn 1526-5501 �04 �5010 �1366

informs ®

doi 10.1287/mnsc.1040.0271
©2004 INFORMS

From T-Mazes to Labyrinths:
Learning from Model-Based Feedback

Jerker Denrell
Graduate School of Business, Stanford University, Stanford, California 94305, denrell@gsb.stanford.edu

Christina Fang
Stern School of Business, New York University, New York, New York 10012,

and National University of Singapore, Singapore, cfang@stern.nyu.edu

Daniel A. Levinthal
Department of Management and Economics, The Wharton School, University of Pennsylvania,

Philadelphia, Pennsylvania 19104, levinthal@wharton.upenn.edu

Many organizational actions need not have any immediate or direct payoff consequence but set the stage
for subsequent actions that bring the organization toward some actual payoff. Learning in such settings

poses the challenge of credit assignment (Minsky 1961), that is, how to assign credit for the overall outcome
of a sequence of actions to each of the antecedent actions. To explore the process of learning in such contexts,
we create a formal model in which the actors develop a mental model of the value of stage-setting actions as a
complex problem-solving task is repeated. Partial knowledge, either of particular states in the problem space or
inefficient and circuitous routines through the space, is shown to be quite valuable. Because of the interdepen-
dence of intelligent action when a sequence of actions must be identified, however, organizational knowledge is
relatively fragile. As a consequence, while turnover may stimulate search and have largely benign implications
in less interdependent task settings, it is very destructive of the organization’s near-term performance when the
learning problem requires a complementarity among the actors’ knowledge.
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1. Introduction
Organization literature has explored both the power
and the limits of experiential learning. Although
learning stemming from prior experience can be asso-
ciated with performance improvement (Yelle 1979,
Argote 1999), it can also pose difficult challenges
of inference. The link between current actions and
observed outcomes may be conflated by noise (Lant
1994) and interaction with other learners (Lounamaa
and March 1987, Levinthal 1997). The link between
actions and outcomes can also be obscured by tem-
poral interdependencies, such as competency traps
(Levinthal and March 1981, Levitt and March 1988)
and delays in feedback (Sterman 1989a, Sastry 1997).
Less explored is the challenge of learning in set-

tings in which outcomes can only be observed after
a series of actions have been performed. Many orga-
nizational actions do not result in any immediate or
direct payoff consequence but set the stage for sub-
sequent actions that bring the organization toward
some actual payoff. Consider, for instance, most of the

activities in organizational routines. As emphasized
by Nelson and Winter (1982) and Cohen and Bac-
dayan (1994), routines consist of patterned sequences
of activities involving multiple individuals. Most of
the activities do not have any immediate payoff con-
sequences but only trigger the activities of other indi-
viduals.
This delay in realizing feedback complicates search

behavior because only at the end of a long sequence of
actions is there some discernable payoff. More gener-
ally, this challenge is known as the credit assignment
problem (Samuel 1959, Holland et al. 1986, Axelrod
and Cohen 1999, Levinthal 2000)—how should one
assign the credit arising from the overall sequence of
actions to each of the antecedent actions?
Existing models of organizational learning typically

model learning as a behavioral change in response
to immediate performance feedback. In settings in
which outcome feedback is not immediately available,
these models suggest that learning about the value
of alternative actions in such contexts would be very
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difficult as the basis for reinforcement learning would
be absent. Nevertheless, organizations do seem to be
able to develop mental maps that make it possible
to impute the value of intermediary actions. Several
authors (Sterman 1989b, Brehmer 1995, Gibson et al.
1997) have argued that an understanding of how such
mental models develop is essential for understand-
ing dynamic decision-making tasks. Capturing such
effects, however, requires a greater emphasis on the
cognitive aspects of learning (Glynn et al. 1994, Walsh
1995).
We approach this modeling challenge by extend-

ing the standard model of reinforcement learning
featured in the organizational learning literature (cf.
Lave and March 1975) to let actors’ existing mental
model of the world be a basis for reinforcement. As
a result, actions are reinforced not only when they
result in payoff immediately but also when they lead
to states that are “believed” to be valuable as step-
ping stones toward some ultimate goal. In particular,
we model the challenge of credit assignment by build-
ing on an analytical structure known as temporal dif-
ferencing, which has existed for some time in the
computer science literature (Samuel 1959) and has
received recent renewed interest (Holland et al. 1986,
Bertsekas and Tsitsiklis 1996, Sutton and Barto 1998).
We examine a task structure in which the outcome

payoff requires that a sequence of actions be com-
pleted. Agents develop a mental model of the value
of intermediate or stage-setting actions by gradually
incorporating their experience both across and within
problem-solving efforts. We show that the use of
credit assignment results in the actors’ mental maps
quickly assigning positive value to states close to the
solution. We also find that organizations can enhance
their rate of performance improvement by assigning
credit more aggressively to a longer sequence of
antecedent actions. However, by doing so, organi-
zations risk making spurious associations between
the ultimate outcome and prior actions. As a result,
a variant of the exploration/exploitation trade-off
(March 1991) emerges.
Our analysis highlights several features of organi-

zational learning that have not been emphasized in
previous research. In particular, it illustrates the per-
formance benefits of even partial knowledge as well
as the high costs of disrupting such partial knowledge
in order to search for further performance improve-
ments. Partial information, whether of an isolated
node of knowledge in the problem space or a cir-
cuitous and relatively inefficient routine, may be of
tremendous value in guiding searches and avoiding
long, unproductive, random walks. Thus, the exis-
tence of some routine, even limited and inefficient, can
greatly enhance the speed of discovery and perfor-
mance improvements.

The opposite side of the same coin is the high
immediate cost of ignoring such knowledge to search
for further improvement. In context with sequen-
tial interdependency (Thompson 1967), the value of
knowledge of some intermediate stage-setting action
on the part of one individual is highly contingent on
the knowledge and beliefs of others with whom that
individual interacts. The expertise of one actor with
respect to what constitutes appropriate action is more
or less useful if it triggers behavior of an adjacent
actor who, in turn, also has a useful point of view
as to what constitutes appropriate action. This fea-
ture of organizational learning casts a very different
light on the role of turnover in organizational search
processes. Contrary to the benign role of turnover in
March’s (1991) model, we demonstrate that turnover
of personnel is likely to result in performance decline
because it disrupts the knowledge of organizational
actors. We also find that the turnover of personnel
more proximate to the solution is particularly prob-
lematic.

2. Complications of Experiential
Learning and the Credit
Assignment Problem

While learning processes can lead to improvement
over time (Yelle 1979, Argote 1999), explicit models
of learning have revealed several important limita-
tions of organizational learning (Huber 1991, Lant
1994, Miner and Mezias 1996). Based on the problem
contexts explored and the complications of learning
investigated, three strands of work can be distin-
guished.
First, there is a set of models that investigates

the complications of experiential learning in noisy,
ambiguous, and changing environments (Lant 1994).
In this tradition, organizational learning is conceptu-
alized as an incremental, myopic process in which
actions that appear successful relative to an adap-
tive aspiration level for performance are repeated,
and actions that appear unsuccessful are changed
(or the propensity to engage in them is reduced)
(Cyert and March 1963, Levinthal and March 1981,
Lant 1992, Greve 1998). As a result of noisy signals
of performance and path dependency introduced
by competence multipliers, experiential learning can
produce superstitious learning (Lave and March 1975,
Levinthal and March 1981, Levitt and March 1988)
and converge to inferior alternatives (Levinthal and
March 1981; Herriott et al. 1985; Lant and Mezias 1990,
1992; Mezias and Glynn 1993; Sastry 1997; Denrell and
March 2001; Repenning and Sterman 2002).
A second strand of work examines the complications

of experiential learning introduced by interdepen-
dency and complexity as well as mutual adaptation
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within organizations. Organizational learning typi-
cally has been conceived of as a process of local search,
modeled using hill-climbing algorithms. Studies have
examined the properties of such organizational search
processes in rugged landscapes (Levinthal 1997,
McKelvey 1999, Rivkin 2000) as well as in situations
of mutual learning by several interacting subunits
(Lounamaa and March 1987, Carley 1992, Lin and
Carley 1997, Chang and Harrington 1998, Rivkin and
Siggelkow 2003). Due to the multiplicity of local
optima in such contexts, experiential learning is not
guaranteed to converge to a global optimum. Rather,
learning in such contexts is a path-dependent process
in which organizations facing a common environ-
ment are likely to end up at different local optima
(Levinthal 1997, Gavetti and Levinthal 2000, Rivkin
2000).
Finally, there is a strand of work examining the

complications of experiential learning processes in
situations with temporal delays and nonlinearities
(Sterman 1989a, Lomi et al. 1997, Sastry 1997, Sterman
2000). The prototypical problem investigated in this
literature can be illustrated by the classic “beer game”
(Forrester 1961, Sterman 1989a),1 in which actions
have immediate as well as complicated delayed
effects. Due to the potentially misleading character
of immediate performance feedback in such contexts
(Sterman 1989a, b; Sastry 1997), myopic learning pro-
cesses based on immediate performance feedback
typically lead to suboptimal behavior (Sastry 1997)
and costly oscillations (Sterman 1989a, b; Lomi et al.
1997).
This prior work, however, has generally examined

contexts in which immediate outcome feedback is
available, although possibly misleading. In this sense,
these settings are analogous to that of the classical T-
maze choice problem in which an actor chooses which
of two branches to go down and receives, with some
probability, the reward associated with that choice.
However, in many situations, actions are not followed
by immediate feedback. Rather, outcome feedback
may only be available after a sequence of actions has
been performed. The problem of choosing a sequence
of actions is more like navigating in a labyrinth in
which an action takes one to another decision context
rather than to some ultimate end state.
To illustrate the difficulties of learning in the

absence of information about immediate outcomes,
consider the task featured in the experiments by
Cohen and Bacdayan (1994) on the development of

1 In the “beer game,” participants are faced with the task of max-
imizing profits in a multistage supply chain. Feedback is avail-
able, although possibly misleading, because exogenous changes in
demand are confounded by delays caused by inventory buildup
and depletion.

routines. The goal in the experiment was to move a
specific card into a target area through an exchange
of cards between two players. Not all exchanges were
permitted, however. As a result, to achieve the goal,
subjects sometimes had to take actions that would
move the card away from the target area. Learn-
ing from experience in such situations is challenging,
because even when the goal has been achieved, it is
seldom obvious whether specific moves were good or
bad. In particular, evaluating individual moves often
requires recognition of their long-term implications.
The long-term implications depend on subsequent
moves, however. Thus, developing a sophisticated
understanding of the values of different moves is dif-
ficult even with repeated experience.
Such learning challenges are known in the artificial

intelligence literature as the credit assignment prob-
lem (Minsky 1961, Axelrod and Cohen 1999). How do
we assign credit for the overall outcome of a learn-
ing system to each of its individual actions, possi-
bly taken several steps before the outcomes could
be observed? Intuitively, the credit assignment prob-
lem seems highly complex. In the context of the
above experiment, for example, it would seem that we
would have to examine numerous paths to the solu-
tion and keep track of all moves to evaluate just a sin-
gle move. Given the vast combinatorial possibilities
of moves, such a process would require an enormous
number of trials.
Despite this apparent difficulty, Samuel (1959,

1967), in his pioneering work on credit assignment,
demonstrated in an important early application to
the game of checkers: Credit assignment can be done
incrementally, on the basis of immediate experience
(see also Holland 1998, Ch. 4). The intuition behind
Samuel’s model is that interim predictions based on
a player’s own estimates can inform action as well
as direct feedback from the environment. A player
is modeled as making predictions along the way
and constantly adjusting them based on the available
information he or she collects en route. In time, the
player’s estimates may become a closer approxima-
tion to the true mapping from actions to eventual
outcomes.
This important contribution of Samuel, developed

further by Sutton and Barto (1981, 1998), Holland
et al. (1986), and Bertsekas and Tsitsiklis (1996), poses
the idea that the actor’s own mental model of the
environment can be used to provide interim feedback
regarding the value of actions in lieu of feedback from
the environment. In particular, actions that do not
result in immediate payoff are nonetheless reinforced
if they lead to states that, according to the actor’s
current mental model, are believed to be valuable. In
this sense, the agent’s mental model can provide feed-
back to guide behavior even though immediate out-
come feedback is absent. Below we outline a model
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based on this structure and examine its implications
for organizational learning.

3. Modeling Credit Assignment
Learning Algorithm
Learning in the absence of immediate feedback
requires that actors in the organization develop beliefs
not only about the immediate payoffs of actions but
also about the value of actions as potential stepping
stones for reaching valuable states. We represent these
beliefs in a very simple, stylized manner by an action-
value function Q�s�a� (Watkins 1989). Such a function
represents the beliefs of actors in the organization
about the immediate reward for the organization of
taking action a in state s, as well as its stage-setting
implications for the organization—does it lead to
a more or less promising state from which greater
reward can be earned in the future?2 Abstracting from
any incentive problems, we model each actor as tak-
ing actions that are perceived to have the highest
value for the organization (i.e., that yield the maxi-
mum value of Q�s�a� for a given state s). However,
this optimization covers the actor’s mental model of
the world, not the true payoff structure. As Camerer
(1997) has noted, the behavioral inaccuracy of ratio-
nal choice models may have less to do with the inap-
propriateness of the algorithm—that is, choose the
best alternative—than with the assumption that actors
apply that algorithm to the actual representation. In
that spirit, we assume that based on their Q func-
tion, actors choose their best action, but we make no
presumption that their Q function corresponds to the
actual payoffs.
Indeed, the critical question for our analysis is how

these belief structures emerge over time. Following
Samuel (1959), we assume that actors update their
Q function incrementally, making use of information
provided by deviations from predictions based on the
actor’s current belief structure. The particular struc-
ture that we explore is that of temporal differencing
(Kaelbling 1993, Sutton and Barto 1998). To illustrate
the algorithm, suppose that an actor in the organiza-
tion has carried out action a in state s. Taking this
action, the organization arrives at a new state s′. This
new state may or may not provide some immediate
reward, which we will term R. Independent of the
presence of any immediate reward, this new state s′

2 This is analogous to the logic of dynamic programming (Bellman
1957), in which the value of an action is the immediate payoff plus
the maximum payoff from subsequent actions given that result-
ing state. A critical difference between the two processes is that
dynamic programming pushes through the whole “tree” of possi-
ble action to the end states. In many applications, such a process
is not computationally feasible, given the enormous branching of
possible actions and states, let alone behaviorally realistic.

is now a launching point for subsequent action taken
by the same or possibly a new actor. After landing
in state s′, the actor then examines what is known
about the best state-action pair Q�s′� a′� available in
that state. This estimate of the best state-action pair
Q�s′� a′�, together with any possible instantaneous
payoff, constitutes the input to the agent’s revised
prediction of the value of the state-action pair that he
or she just carried out.
The exact updating of the old value function is

based on the difference between the belief about the
value of the new state to which the prior state-action
pair led and the prior beliefs about that state-action
pair, subject to a learning-rate parameter � and a dis-
count factor 	. This specification is drawn directly
from Sutton and Barto (1998):

Q�s�a�← �1−��Q�s� a�+�
R+	Q�s′� a′��� (1)

The parameter 	 weights the importance of the
value of future returns from actions taken starting
from s′ and in that sense acts like a discount rate. How-
ever, it is important to note that 	 is not discounting
some tangible payoff but is influencing the degree to
which the prior state-action pair, Q�s�a�, gets “credit”
for the position (i.e., state s′) that it has identified.
As long as 	 is positive, the interim prediction

Q�s′� a′� serves as a substitute for, or at least a sup-
plement to, the immediate payoff R in the updating
algorithm above. Even if the immediate payoff is zero,
the value of the prior state-action pair Q�s�a� can still
be augmented so long as Q�s′� a′� is nonzero. How-
ever, if 	 is set to zero, there is no updating based on
the interim feedback provided by the mental model;
rather, in such cases, updating only occurs when out-
come performance feedback is obtained. Therefore,
with 	 = 0, the updating algorithm in (1) reduces
to a standard model of reinforcement learning, with
updating based only on immediate outcome feedback.
In this sense, our model is a natural extension of

standard reinforcement learning models. The rein-
forcement becomes the actors’ mental model of value
rather than an actual payoff. Following this approach,
an agent positively updates his or her belief about the
value of performing an action that led to a state from
which the agent or colleague believes that it is easier
for the organization to solve the problem. As a result,
even in the absence of immediate performance feed-
back, it is possible to develop beliefs about antecedent
actions. The basic structure of reinforcement learn-
ing is preserved, while the basis of reinforcement
is extended from immediate outcome feedback to
include feedback about the value of realized states
based on the actors’ mental models of the value of
these states.
To illustrate how such model-based feedback learn-

ing would operate in an organization, consider how
an organization would learn an effective sequence of
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actions for producing a complex product consisting
of several parts. An important determinant of pro-
ductivity in such production processes is the order in
which different parts are produced and their timing.
Unfortunate choices of order and timing will cause
delays and large inventories and thereby reduce per-
formance. Initially, the actors involved in this pro-
duction process may have little information about the
value of alternative actions at different stages. Thus,
initial efforts have to be based on guesswork.
Due to the large number of possible permutations,

however, it will be difficult to try out even a small
fraction of all possible sequences to learn how they
work. Nevertheless, actors can learn to improve their
predictions about how valuable different actions are
at different stages. For example, the actor responsi-
ble for the last stage of production may notice that
the end result is superior if the product arrives with
some parts still to be assembled and may communi-
cate this information to the actor responsible for the
previous stage. Based on this information, the actor
responsible for this stage may be better able to iden-
tify how various designs that are presented to him or
her will contribute to the end result. Such informa-
tion, in turn, provides the basis for the next individ-
ual to evaluate the products presented to him or her.
Through this process, the actors may gradually build
up a more complete understanding of the value of
alternative actions, without the need for communica-
tion among all individuals or for an exhaustive search
of all permutations.

Task Structure
To focus on the essentials of the credit assignment
problem, we model a task structure in which there
is a positive reward in only a single state and the
reward is zero for all other states. Such a task envi-
ronment represents a demanding case for learning
because it provides only one instance of immediate
performance outcome feedback to guide the search
process, with no rewards for all state-action pairs
except the solution state. A visual representation of
the payoff surface is a flat landscape with a single
spike, corresponding to a unique combination of
policy choices (Bruderer and Singh 1996). However,
state-action pairs with no immediate payoff are not
valueless, as there exists a sequence of actions starting
from every state that eventually leads to the solution.
Hence, the key to intelligence is learning the value of
states as stepping stones to the eventual goal. Learn-
ing to recognize such positional value poses a signif-
icant challenge in a world of no immediate feedback;
yet it is precisely this type of task environment that
highlights the importance of credit assignment.3

3 In future work, it would be interesting to explore problem set-
tings in which all states offer both real payoffs and positional value.

We represent a state s as an N -element binary
string, in which each element can take on the value
of 0 or 1. In subsequent analysis, we set N equal to
10 elements. As a result, there are 210 possible config-
urations, or 1,024 possible states. Furthermore, there
are N + 1 possible actions that can be taken from
any given state, because an agent can choose to stay
where he or she is by keeping the original configu-
ration intact, as well as shifting one of the N param-
eter values. Each element of the 10-element string
can be seen as corresponding to one possible action.
The agent can change, for instance, the fifth element
from 0 to 1 or vice versa. As such, the state-action
space in our problem context can be described as a
table with 1,024 rows and 11 columns, resulting in
11,264 cells. Only when all the elements in a state
match those of the solution state can a solution be
found and a positive reward earned. In subsequent
analysis, we set the solution to be in the location in
which all elements take on the value 1. Given the ran-
dom starting position of the agents, the location of the
solution is arbitrary.
In this setting, the only real payoff occurs when the

organization reaches the goal state. All other states
only have an imputed value; that is, their value is
based on beliefs about whether reaching these states
facilitates the realization of the desired goal state. It
is possible, however, to distinguish between the per-
ceived value of states and their “objective” value if
the agent were to follow an optimal policy. In par-
ticular, if the discount factor is 0.9, a state two steps
from the goal state has an “objective” value, in this
sense, of �0�9�2 times the payoff associated with the
goal state.
The organization’s task is to identify a path from its

random starting position in the landscape to the solu-
tion state. In each time period, the agent may move
from one state-action pair to one of its N possible
one-step neighbors, or the agent may remain at the
current location. However, in contrast to other models
of local search (cf. Levinthal 1997), the value the agent
places on these neighboring points may also reflect
their value as stepping stones to the ultimate solu-
tion. Thus, while the examination of possible actions
is local, the value the agent places on these actions
may reflect their global properties.
While for our analysis it is useful to label the

points in this N -dimensional space in a manner such
that there is a well-defined ordering among points
as to their proximity to the solution, decision-making
agents do not have access to a labeling scheme

Search in a rugged landscape (Kauffman 1993, Levinthal 1997)
would provide such a setting. Among the complications such an
analysis presents are issues of discounting payoffs and stopping
rules for the search process.
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or problem representation with such a structure. In
particular, actors cannot know if a choice that shifts a
value from a 0 for a given dimension of the problem
to a 1 moves the organization closer to the solution.

4. Analysis and Results
Consider an organization trying to find a sequence
of moves that leads to a solution in the above task
structure. First, the agents have some initial guess of
what the state-action space looks like. In our analysis,
we assume that the actors have a flat initial belief of
zero for all state-action pairs (i.e., Q�s�a�= 0 for all a
and s). The search process is then started at a ran-
domly assigned state s. The actor responsible for this
state evaluates the values of all available actions from
this state and identifies the action corresponding to
the highest value of Q�s�a�. If there is more than one
action that has this value, then the agent chooses ran-
domly among them. As a result, in the initial period,
with all actions valued at zero, the action will be ran-
domly chosen.
Once the solution is found, the organization is

restarted in a new, randomly assigned state in a sec-
ond round of search. However, the actors do not begin
fully anew but maintain their updated Q�s�a� func-
tions as a guide for action. As a result, in this sub-
sequent round of search, positive updating of beliefs
will occur not only when the solution is found but
also whenever an actor reaches a positively valued
Q�s′� a′� identified in an earlier search effort. In this
way, with each successive round of searches, more
and more valuable state-action pairs are discovered
and positively updated. Gradually, the Q�s�a� func-
tion better approximates the positional values of the
vast set of state-action pairs.
The results in the following analysis are based on

the average behavior over 1,000 independent histories
of search, where each “history” commences with a
new set of beliefs and comprises 100 episodes of prob-
lem solving. The learning rate � is set at 0.2, while
the value of 	 is varied to illustrate the role of credit
assignment.4

4 The magnitude of either � or 	 does not affect the results as long
as those values are positive. Given the specification of priors that
all values of Q�s�a� are initially set at zero, any positive updating
of the value of a given action in a particular state will result in
that action being chosen upon subsequent visits to that same state.
Thus, the magnitude of � or 	 would matter only if choice were
not based on the maximum Q�s�a� but on some other, perhaps
less “greedy,” choice algorithm. Such modifications could provide
an interesting extension, but the current structure focuses on the
core issue of the contrast of reinforcement learning based solely
on external reward versus reinforcement learning supplemented by
reinforcement based on perceived valuation of states.

Figure 1 Staircase-Like Mental Models (as of the End of Episode 100)
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Emergence of Mental Models
In our analysis, beliefs—instead of being assumed
intelligent from the start—are seen as emerging grad-
ually out of a sea of ignorance. Initial beliefs are
set to zero across all possible actions for any given
state. Over time, however, actors increasingly learn
to discriminate among state-action pairs of different
positional values. In particular, agents learn to dis-
criminate between the values of states more or less
proximate to the solution. States closer to the solution
are likely to lead to the solution quickly, thus they are
more valuable than states farther away. In Figure 1,
we plot the average of the maximum Q�s�a� value of
states at various hamming distances away from the
solution.5 The objective ordering of states is indeed
reflected in the value placed by actors on the actions
in these states.
However, in the absence of credit assignment (when

	 = 0), as seen in Figure 1, the resulting mental model
does not resemble a staircase at all. Only states with
hamming distance of 1 have positive Q�s�a� values,
while the valuation of every other state remains at 0.
In this sense, a standard reinforcement model in this
problem context is only capable of providing guid-
ance for states in the immediate neighborhood of the
goal state. That is because in the absence of credit
assignment, updating will only be based on the imme-
diate reward, which is zero for any action-state pair
two steps or more from the solution. However, in
cases where 	 > 0, even if the immediate payoff is 0,
the value of the prior state-action pair Q�s�a� can still
be augmented as long as the positional value of the
new state, Q�s′� a′�, is positive.

5 Hamming distance is a measure of distance in an N -dimensional
space. It is simply the number of elements in a string that are
different from one another. For instance, the state 0110001111 is a
hamming distance of 3 from 1000001111.
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Figure 2 Learning Curves

0

200

400

600

800

1,000

1,200

1,400

1 10 19 28 37 46 55 64 73 82 91 100

Episode

T
im

e 
to

 S
ol

ut
io

n

γ = 0.9

γ = 0

To investigate the performance implication of the
different learning strategies, we compute the average
number of periods needed to reach the solution for
1,000 agents. Time to solution is a good measure of
performance given the task structure, as it captures
the idea that more intelligent beliefs should result in
a more efficient search, thereby reducing the amount
of time needed to find the solution. We examine the
problem-solving task 100 times, where there is a ran-
dom starting point for each iteration, or episode, of
the search process. In Figure 2, we plot time to solu-
tion as a function of episode, when the number of
episodes approximates the amount of experience an
organization has with the problem context.
As illustrated in Figure 2, for both 	 values of 0

and 0.9, performance, as measured by time to solu-
tion, is an exponential function of cumulative expe-
rience. As agents get to perform more of the same
repetitive task, they can find the solution more and
more quickly. However, Figure 2 also demonstrates
that the performance implications of simple reinforce-
ment learning and credit assignment are very differ-
ent. At the end of 100 episodes, the time to solution
for agents using credit assignment �	 = 0�9� is down
to around 22 periods, whereas the time to solution
associated with agents engaged in simple reinforce-
ment learning �	 = 0� hovers around 192—a differ-
ence in performance of nearly a factor of 10. Thus, the
better mental model produced by credit assignment
indeed translates into better performance.
Furthermore, the value of credit assignment is

not limited to situations in which a single problem-
solving task is repeated numerous times. In fact, only
a few repetitions are needed to produce substan-
tial benefits in terms of improved performance. To
illustrate this, consider the contrast in the decline in
time to solution during Episodes 5–20 for the case
with and without credit assignment. As demonstrated
in Figure 2, credit assignment leads to a substantial
decline in the time to solution during this interval.

However, without credit assignment, there is only
moderate improvement.
To further illustrate the power of credit assignment,

we carry out another experiment, where, as before,
the search process is initiated randomly in the first
99 episodes. However, in the last episode, we start
the search at a fixed hamming distance from the solu-
tion. This eliminates one source of differential perfor-
mance: Some search efforts may require few periods
not because of better mental models but purely as a
result of a more favorable starting point closer to the
solution. In Figure 3, we plot the average time to solu-
tion as a function of the hamming distance at which
we start the search in the last episode.
The link between the mental model and perfor-

mance is immediately clear. In the case in which 	 = 0,
which corresponds to a standard reinforcement learn-
ing model, if we start the search at a hamming dis-
tance of 2, a region just outside the organization’s
region of information, the average time to solution
shoots up dramatically. Only states located one ham-
ming distance away are updated positively, thus the
region of information is quite limited. In the vast
majority of states, the Q�s�a� values remain what they
were initially, and any resulting action can only be
uninformed and therefore random.
Contrast this with the case of a positive 	, in

which credit assignment is at work. Here, a staircase-
like mental model quickly emerges and serves as a
guide for intelligent action over a much broader por-
tion of the problem space. The presence of nonzero
Q�s�a� provides information as to the value of dif-
ferent state-action pairs. In particular, higher Q�s�a�
effectively provides a gradient in the search process.
As such, even if the search starts at the maximum
hamming distance, actors need not be completely lost.
The search is quickly made purposive and takes an
average of 32 periods, whereas in the case of no credit

Figure 3 Performance as a Function of Starting Hamming Distance
(Based on Mental Models as of the End of Episode 100)
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assignment the time to solution is nearly 200 periods.
With credit assignment, as the hamming distance at
which the search is started increases, there is only a
linear increase in the amount of time to solution.
Finally, it should be noted that these plots of aver-

age performance mask considerable variation in per-
formance across “histories,” or runs of the model. Our
analysis shows that most of this variation is due to
initial unguided random search. Once an organiza-
tion finds a routine, however, the routine tends to be
efficient, in the sense that each step brings the orga-
nization closer to the solution state. In particular, we
find that 92% of all informed moves reduce hamming
distance. The performance improvement we observed
above is the result of gradually extending such rou-
tines to states farther away from the solution. Even
after 100 episodes, however, some initial periods of
random search cannot be avoided. Thus, in the task
structure we examine, learning results in a few clues
rather than comprehensive causal knowledge. Such
clues, however, dramatically improve average perfor-
mance.

Varying Extensiveness of Credit Assignment
The analysis to this point would seem to suggest that
a more aggressive use of prior experience could fur-
ther enhance learning. After all, after a solution path
is identified, why wouldn’t one want to replicate that
path and codify that pattern action sequence as a rou-
tine? However, the average time to solution for the
first episode is more than 1,000 periods. This is not
a journey that one would want to replicate, because
most of the actions taken did not direct the agent
toward the solution. Consistent with the notion of
superstitious learning (Levitt and March 1988), there
is an association between certain actions and the ulti-
mate successful outcome—but an association that in
most cases is by chance and need not be causal. In
contrast, a structure of one-step credit assignment will
tend to give credit only in cases where the action is
in fact helpful to the identification of the solution, as
only states next to the solution state and states next
to these states are given credit.
Nevertheless, the modest degree of backward credit

assignment in the case of one-step temporal differ-
encing may underutilize experience. It is probably the
case that the action that was two steps away from
the reward-generating action is also a useful step and
should be rewarded. More generally, we observe a
tension between over- and underutilization of expe-
rience. Extensive utilization of experience leads to
superstitious beliefs; at the same time, underutiliza-
tion of experience reduces the speed with which intel-
ligence evolves.
The effects of more extensive credit assignment can

be investigated using a more general version of our

Figure 4 Learning Curves for Different � Values
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basic model structure. Consider a parameter � that
specifies the number of preceding state-action pairs
to which credit is assigned. The basic updating mech-
anism specified in Expression (1) is maintained, but
the updating process is applied to the proceeding �
state-action pairs. As such, values are cascaded back
not just to the antecedent action, but to a connected
path of length �. Figure 4 contrasts performance with
varying � values of 1 (the setting in the prior analy-
ses), 5, and 30.
As Figure 4 shows, if credit is assigned 30 steps

back, the average time to the solution quickly falls
after a few episodes of search. However, the time to
solution then levels out. More modest credit assign-
ment, where credit is only assigned one step back,
eventually produces a lower average time to solution.
Thus, if the learner is patient, less extensive credit
assignment is to be preferred. On the other hand, if
the learner is impatient and quickly wants to learn
some way to the solution, it is preferable to assign
credit to many preceding actions. Such learning, how-
ever, will be mostly superstitious. In fact, if credit is
assigned 30 actions back, the organization is making
a routine of what was largely a random walk to the
solution.
This result provides another illustration of the

classical trade-off between fast and slow learning
(Levinthal and March 1981, Lant 1994). More specifi-
cally, in the context of our model, the results illustrate
the trade-off between the efficiency of learned rou-
tines and the extensiveness of routines. By assigning
credit many moves back, the organization is develop-
ing a point of view regarding appropriate actions at
many states, including states distant from the solution
state. As a result, it is more likely that such an orga-
nization will encounter a state that is part of some
routine. However, the routines will be less efficient,
in the sense that a larger proportion of moves will be
hamming distance increasing. While the above results
show that less extensive credit assignment, i.e., slower
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learning, will eventually result in higher performance,
they also illustrate the early advantages of developing
extensive routines, even if they are inefficient and to
some degree superstitious.
In short, when organizations face the challenge of

learning an effective sequence of actions, i.e., a rou-
tine, recognition of the positional value of some states
without immediate reward is crucial for high perfor-
mance. Once an actor finds him- or herself at such
a state, an established routine exists for traveling to
the solution state. As demonstrated above, even a
small amount of knowledge or an inefficient routine
may provide large performance advantages by cut-
ting down the search space and thus reduce an oth-
erwise lengthy random search process.

Effect of Turnover
The above analysis of credit assignment in learning
and the benefits of following some routine suggests
an important but underemphasized characteristic of
learning in an organizational context. Whenever mul-
tiple actors in organizations face the challenge of
learning a sequence of actions—a routine—then the
value of information is embedded in the organiza-
tional context. An action that takes one closer to the
solution may not be helpful if the action leads to a
node in the problem space for which the organiza-
tion has no knowledge. As a result, there is a com-
plementarity to knowledge. The expertise of one actor
of what constitutes appropriate action is more or less
useful if it triggers behavior of an adjacent actor who,
in turn, also has a useful point of view as to what
constitutes appropriate action. This social quality of
knowledge has important implications for ideas about
the benefits of combining new and old knowledge.
In particular, consider the value of turnover as a

mechanism to sustain search in an adaptive orga-
nization. Empirical work on the impact of turnover
on learning processes has provided mixed results.
Some work, such as Argote et al. (1995), suggests
that turnover is disruptive to learning processes; in
contrast, other work, particularly work on innovation
processes (Katz 1982), finds that a moderate level
of turnover can enhance organizational performance.
March’s (1991) model of exploration and exploitation
finds an important role for turnover as a sustained
source of variety that leads to a persistent level of
search and avoids the liability of premature lock-in to
a particular belief.
A careful examination of the task environment

studied in these different research efforts may help
explain their divergent findings. In March’s (1991)
model of the development of an organizational code
that is a result of learning from actors in the organiza-
tion, performance is specified as an additive function
of the distance between the code and reality for each

Figure 5 Effect of Turnover as a Function of the Probability of Turnover
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dimension of the code. As a result, insight on the part
of one actor may, in part, be compensatory for igno-
rance of another actor. Thus, the task environment
is what Thompson (1967) terms pooled interdepen-
dence. In contrast, as emphasized above, where orga-
nizations must learn a sequence of actions, there will
be sequential interdependence. The intelligence of an
action then depends not only on whether the action
represents movement towards the solution, but also
on whether the individual who now bears responsibil-
ity for subsequent action is informed as to what might
constitute useful behavior. As a result, bringing in
uninformed individuals is more likely to be detrimen-
tal. The detrimental effects of turnover in our model
are illustrated in Figure 5, which plots the perfor-
mance consequences of different degrees of turnover.6

Turnover is here defined as setting Q�s�a� to zero for
those actors who are replaced. Thus, the new individ-
uals are assumed to have no beliefs as to what con-
stitutes appropriate action. As in March (1991), there
is a fixed probability of turnover in each episode. The
results regarding the impact on turnover on learning,
however, contrast with March (1991, Figure 4), with
zero turnover dominating a positive level of turnover.
This result also holds if we assume that turnover
brings in new individuals with different knowledge,
that is, if Q�s�a� is set to some new random value
rather than to zero.7

6 Carley (1992) also examines the effect of turnover on organiza-
tional learning. While the primary focus of Carley (1992) is on
the effect of hierarchical versus team structures, her results on the
impact of turnover are consistent with our own. Turnover is shown
to have little impact on organizational effectiveness in the setting
of a decomposable task structure; however, in a nondecomposable
task environment, turnover is shown to be disruptive to organiza-
tional learning.
7 In this case, the turnover beliefs are determined the follow-
ing way: Draw a random number to see which action gets the
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Again, what explains the dramatic difference be-
tween our results and March’s (1991) results about the
effects of turnover is the sequential character of the
task we examine. Knowledge about how to execute a
given routine will only be useful if all actors follow
the routine. In this sense, a routine is only as strong as
its weakest link. Because of this interdependency of
the actors executing a routine, the immediate costs of
deviating in one element of the organizational routine
will be very high. Once outside the familiar territory
of a routine, actors may have to engage in random
search. Organizational processes such as Intel’s “copy
exact” program (Winter and Szulanski 2000) reflect
this potential fragility of organizational routines.
Contrast this with the effects of turnover in the

task structure of March’s (1991) model. In that setting,
organizational performance is an additive function of
the accuracy of each element of the organizational
code. As a result, changes in one element of the
organizational code, caused by turnover of a mem-
ber of the organization, will only have incremental
consequences for organizational performance. Thus,
the immediate costs of deviating in one element from
the established code because of turnover are not
substantial.
Consistent with our study, the Argote et al. (1995)

experimental work on group problem solving shows
that where groups need to solve a sequential task,
turnover proves dysfunctional. In contrast, in settings
where the task is to identify innovative or creative
solutions to a problem, as a group, turnover may pro-
vide a useful source of variety. This later finding is
observed in the innovation literature (cf. Katz 1982)
and reflects the nature of March’s (1991) simulation
findings as well.8

The immediate effect of turnover in our model is
that the time to solution increases substantially. How-
ever, in line with the results of March (1991; Fig-
ure 4), turnover can also eventually increase perfor-
mance, even in our problem structure. Turnover can
increase the rate of exploration and thereby improve
performance in settings in which exploration is par-
ticularly valuable. In March’s (1991) model, such a
setting occurs when the organization is likely to get
prematurely stuck at a suboptimal solution because
of a high socialization rate. In an analogous fashion,
the positive effects of turnover in our model occur

maximum value; then draw another random number between 0
and 10 to decide the magnitude of the assigned value. In this way,
only one of the N +1 possible actions for any given state is assigned
a belief. However, given the “greedy” choice algorithm, it is neces-
sary to specify only the action with the highest value.
8 It is also consistent with a secondary finding of Argote et al.
(1995), who find that the negative effect of turnover is mitigated
in complex task environments where there are opportunities for
innovation with respect to production processes and not merely the
refinement of an operating routine.

Figure 6 Effect of Turnover as a Function of the Probability of Turnover
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when an organization can get prematurely stuck at an
inefficient routine because of extensive credit assign-
ment (i.e., a high value of �) and, as a result, generate
superstitious learning. In this situation, turnover can
ultimately lead to improved performance, because it
allows the organization to deviate from its routine
and explore alternatives. This effect is illustrated in
Figure 6, which shows the effect of turnover when
�= 50 and turnover only occurs in Episode 50.9 As
illustrated, a positive level of turnover eventually
leads to a lower time to the solution than with zero
turnover. Recall from Figure 5, however, that this is
not the case when � = 1, corresponding to the case
of slow learning or a low socialization rate in March
(1991) model. In this case, zero turnover always dom-
inates a positive level of turnover.
However, as seen in Figure 6, the immediate costs

of turnover are quite high while the eventual benefits
are relatively modest, even when � is as high as 50.
In fact, in the case of turnover probability of 0.1, time
to solution in several episodes after turnover reaches
more than 300 periods. This represents an immediate
10-fold increase in time to solution as compared to the
case with no turnover. In the long run, however, this
modest degree of turnover of 0.1 produces slightly
better performance, with the difference amounting to
only a few periods. As a result, in this task setting
an organization has to be very patient and have large
reserves to be able to survive and eventually benefit
from turnover.
Our analysis also suggests that the costs of turnover

will depend crucially on where turnover occurs. In
contrast to models where organizational performance
is an additive function of individual actions and

9 Turnover is here defined as setting Q�s�a� to zero for those actors
who are replaced.
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Figure 7 Effect of Turnover at Different Hamming Distances
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turnover is equally damaging wherever it occurs
(March 1991), the effect of turnover in our task struc-
ture depends on how close to the solution it occurs.
In particular, as seen in Figure 7, the immediate costs
of turnover will be greater if it occurs at a state close
to the solution.
In this task structure, knowledge about appropriate

moves at states close to the solution is much more
valuable than knowledge about appropriate moves
at states far away from the solution. Consider what
would happen if individuals responsible for the states
one step away from the solution were replaced with
individuals lacking any knowledge about the loca-
tion of the solution state. Initially, the behavior of
such new members would be random. Such random
action raises the possibility that the organization will
be thrown into unfamiliar territory, where search-
ing will continue to be random until some prior
routine is identified, thereby substantially increasing
the time to the solution. While loss of knowledge
at states farther away from the solution state will
also increase the time to the solution, the loss will
not be as significant. This is, in part, because such
states are less likely to be informed, but more impor-
tantly because such states are less likely to be visited
on the way to the solution. The argument suggests
that an organization’s ability to recognize when it is
close to a solution is quite valuable. For example,
an organization that understands the preferences of
consumers can better evaluate suggestions for new
products at the point of commercialization and can
in turn be expected to have much better performance
in product development than a firm with insight
about what basic technical approaches might be use-
ful but little understanding of the subsequent path to
commercialization.
Overall, these results suggest that the effect of

turnover will differ depending upon the task structure
facing the organization. In settings in which devia-
tions by one individual will not have a large influence
on organizational performance, such as when deci-

sions are made by a group of individuals, the imme-
diate costs of turnover may be small but the eventual
benefits large. In other settings, such as that mod-
eled here, when effective organizational performance
requires adherence to a routine, the immediate costs
of turnover will be substantial. In addition, when
organizations need to learn an effective sequence
of actions, knowledge about the positional value of
some states close to the solution is critical, and as a
result, turnover of actors in these states is particularly
damaging.

5. Conclusion
Many organizational actions are characterized by
sequential interdependency (Thompson 1967). As a
result, many such actions do not have any immedi-
ate or direct payoff consequence but set the stage for
subsequent actions that bring the organization toward
some actual payoff. This paper has examined the pos-
sibilities and limitations of organizational learning in
such contexts. In particular, we have modeled organi-
zational learning in the absence of immediate payoff
feedback; we have done this as successive attempts at
credit assignment in which the process of reinforce-
ment learning is extended to include actors’ men-
tal model as a basis for reinforcement. The standard
model of reinforcement learning in the literature, in
which only outcome feedback is viewed as a basis
for reinforcement, emerges as a special case of this
more general model. Credit assignment makes pos-
sible the development of a more intelligent belief
structure over time. A valid mental map tends to
emerge quickly for states close to the solution; how-
ever, assigning credit to more distant states requires
many more trials and is likely to provide a less accu-
rate sense of value. Nevertheless, even a fragmentary
mental model may provide substantial performance
improvements.
Our analysis highlights several features of organi-

zational learning that have not been emphasized in
previous research. First, it illustrates the performance
improvement of even partial knowledge as well as
the high costs of ignoring such partial knowledge
to search for improvements. Knowledge may be par-
tial in the sense that a path, or routine, has been
identified, even if this routine is far from the most
efficient patterned action sequence possible. Knowl-
edge may also be partial in that the organization may
have information about appropriate action at an iso-
lated node in the problem space, even though it may
have little knowledge outside of that particular node.
Partial information, whether of an isolated node of
knowledge in the problem space or a circuitous and
relatively inefficient routine, is of tremendous value
in guiding search and avoiding long random walks.



Denrell, Fang, and Levinthal: Learning from Model-Based Feedback
Management Science 50(10), pp. 1366–1378, © 2004 INFORMS 1377

Simon’s (1969) example of partial clues in the con-
text of cracking a defective safe is illustrative. Search-
ing for the code of a safe that has 10 dials each with
100 possible settings is virtually impossible, as there
are 10010 possible configurations. However, if the safe
is defective, such that a click can be heard whenever
any one dial happens to correspond to the correct
setting, then the total number of settings is greatly
reduced to only 500. In a similar way, the existence
of some routine, although limited and even inefficient,
can greatly reduce the time spent in unproductive
random searching.
Second, the fragility of learning in the context of a

highly interdependent task environment casts a very
different light on the role of turnover on organiza-
tional search processes. The benign role of turnover in
March’s (1991) analysis of search can be understood
as a result of the task structure with only pooled inter-
dependence in which actors’ judgments are aggre-
gated to form an “organizational” point of view. This
sort of process of pooling of opinions seems reflec-
tive of problems of innovation and creativity and is
consistent with empirical research in this domain that
suggests a positive value of turnover (Katz 1982).
However, in empirical work examining the develop-
ment of routine behavior (Argote et al. 1995), turnover
is shown to have a dysfunctional implication, as sug-
gested by our simulation analysis. Socially interde-
pendent knowledge is much more fragile and likely
to be disrupted by turnover of personnel. We also find
that turnover more proximate to the solution is par-
ticularly problematic.
There are, however, at least three important caveats

to our work. First, we have restricted our attention to
a stationary environment. A full analysis of shifting
problem landscapes would require an examination of
the generalization of the imputed value of state-action
pairs in one environmental setting to another. Sec-
ond, the learning problem we have studied involves
a game against nature, not a game against other like-
minded opponents. As such, we leave out potentially
interesting strategic interactions as well.
Last, with respect to the task structure, we have cre-

ated a world in which only positional advantage mat-
ters, not any immediate payoffs. Thus, our analyses
have not been able to address how organizations
could learn in problem contexts when immediate
feedback is available but possibly misleading, such
as when competency traps are present (Lave and
March 1975, Levinthal and March 1981). Such a prob-
lem context is different in important ways that make
direct application of our model to this context non-
trivial. One way to think about such a problem
context would be to examine a problem structure that
contains immediate payoffs throughout the surface
but that has an imperfect correlation among these

payoffs. As a result, moving in the direction of a
higher immediate payoff need not take one to even
higher payoffs; the surface might have multiple peaks
and, in Kauffman’s (1993) terms, may be a rugged
landscape.
It is possible that credit assignment in such a con-

text, if the same task were repeated, might allow
agents to develop cognitive representations of the
value surface that effectively allows them to “bridge
valleys” in such rugged landscapes and thus avoid
local optima. As a result, the mental model could
potentially free the search process from the topogra-
phy of the multipeak surface and reduce the tendency
of local search in such settings to result in compe-
tency traps of modest local peaks. However, given the
scope of the current modeling effort and the complica-
tions that such analysis poses regarding the discount-
ing of payoffs and appropriate stopping rules for the
search process, we have not tried to incorporate such
an analysis into the present paper.
Despite these limitations, the current effort begins

to engage a largely neglected topic in models of orga-
nizational learning. Organizations’ beliefs and predic-
tions about the world can be an important basis for
reinforcement learning, as well as actual outcomes.
Indeed, in complex learning tasks with few and infre-
quent external cues of performance, such internal (or
model-based) bases of reinforcement are critical. In
this manner, models of behavioral learning and mod-
els of cognition can be effectively joined to provide us
with a fuller conception of learning processes.
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