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Graphical Interpretation of Variance Inflation Factors 
Robert A. STINE 

A dynamic graphical display is proposed for uniting par- 
tial regression and partial residual plots. This animated 
display helps students understand multicollinearity and in- 
terpret the variance inflation factor. The variance inflation 
factor is presented as the square of the ratio of t-statistics 
associated with the partial regression and partial residual 
plots. Examples using two small data sets illustrate this 
approach. 

KEY WORDS: Collinearity; Interactive plots; Regression 
diagnostics 

1. INTRODUCTION 
This article focuses on the connection between the vari- 

ance inflation factor (VIF) and two diagnostic plots for 
least squares regression, partial regression plots, and par- 
tial residual plots (added-variable plots and component- 
plus-residual plots). To help students master regression 
diagnostics, I have found it useful to point out explicitly 
the connections among them. Introductions to regression 
diagnostics at the level of Chatterjee and Price (1991) or 
Fox (1991) offer the student a variety of numerical and 
graphical diagnostics for judging the adequacy of a regres- 
sion model. There are diagnostics for specification error, 
outliers, multicollinearity, nonlinearity, heteroscedastic- 
ity, and other faults. Rather than present each diagnostic 
individually, I find it useful to describe the connections 

among them, much as one needs to do in presenting the var- 
ious types of random variables in an introductory course. 

The presentation offered here is relatively elementary. 
The level is appropriate for students who do not know lin- 
ear algebra, and I have found it useful in more advanced 
courses as well. The presentation relies upon imbedding 
the three diagnostics in a single dynamic plot. At one 
extreme of a slider control, this plot is the partial resid- 
ual plot, which shows none of the effects of collinearity. 
As the control moves to the other extreme, it becomes 
the partial regression plot, which conveys the effects of 
multicollinearity. The plot dynamically updates its co- 
ordinates to suggest the effects of intermediate levels of 
multicollinearity. 

2. THE DIAGNOSTICS 

The VIF measures how much multicollinearity has in- 
creased the variance of a slope estimate. Suppose that we 
write the full-rank regression model for n independent ob- 
servations as 

Yi = /o + /lxil + + /3kXik + Ei, i=,...,n, 

where var(c1) = o2. In vector form, the model is Y = 

Xf + e where X is the n x (k + 1) matrix with columns 
X0, X1,. . ., Xk and X0 is a column vector of Is. The name 
of this diagnostic arises from writing the variance of the 
least squares estimator /3 (j = 1, ... . k) as (e.g., Belsley 
1991, sec. 2.3) 

var(/3) =7 

- VIF ssj 
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where SSj = Ei(x-j)2 and 

VIF= 1( 

R2 is the R2 statistic from the regression of X1 on the other 
covariates. Unfortunately, there is no well-defined critical 
value for what is needed to have a "large" VIF. Some 
authors, such as Chatterjee and Price (1991), suggest 10 
as being large enough to indicate a problem. 

The variance inflation factor is closely tied to the dif- 
ference between two added variable plots for a regression. 
The partial regression plot for the jth variable shows two 
sets of residuals, those from regressing Y and Xj on the 
other covariates. The associated simple regression has 
slope f and the same residuals e = Y - X: as the mul- 
tiple regression. Indeed, with an adjustment for degrees 
of freedom, the variance of the slope estimate based on 
the partial regression plot is the same as that for f3 in the 
multiple regression, 

regr n- k- 1-2 

n-k-i (2 

n-2 SS1(1-R2)' (2) 

where 72 = Li^2/(n - k - 1). While seldom useful for 
detecting nonlinearity (neither axis shows an observed 
variable), these plots identify influential observations, re- 
veal multiple outliers (masking), and show the effects of 
multicollinearity. 

In contrast, partial residual plots offer a means for iden- 
tifying nonlinearity. The partial residual plot correspond- 
ing to Xj shows e + fj3Xj versus Xj. These plots ignore the 
effects of multicollinearity and convey a misleading im- 
pression of the significance of the fit, as noted by various 
authors including Atkinson (1985), Chatterjee and Hadi 
(1988), and Cook and Weisberg (1982). Although the as- 
sociated simple regression again has slope f3 and residuals 
% the estimated variance of the fitted slope is 

es~~~s in -2 SS/ 

The variance equations (2) and (3) are well known (e.g., 
Cook and Weisberg 1982, eq. 2.3.12 and 2.3.13). Noting 
the form of the VIF in (1), it is immediate (although not ex- 
plicitly in this reference or elsewhere in the literature) that 

var regr 

VIFj= i (4) 
va rres 

In other words, VIF1 is the square of the ratio of the t- 
statistics from fits in the partial residual plot and partial 
regression plot. 

3. THE DYNAMIC PLOT 

A single dynamic plot ties these diagnostics together. 
Let P(Jy) denote the projection matrix associated with all 
of the covariates but X,. Following Cooki and Weisberg 
(1982) or Chatterjee and Hadi (1988), define 

ej(A) = (I - P_ X- X1) 

and 

EY(A) = (I - AP(_j))(Y-Y) 

- e + (I - AP(_J))f3(X - Xd) 
=e+f3,(A) 

The dynamic plot of EY(A) on E(A) allows the viewer to 
manipulate 0 < A < 1 using slider tools like those in 
Lisp-Stat (Tiemey 1990). 

The animation opens with A = 0, which offers the great- 
est variation in the x axis and is the (centered) partial 
residual plot. Intuitively, this is the relationship between 
Y and Xj were Xj uncorrelated with the other covariates. 
As A varies from zero to one, the animation shows how 
the points move in response to the changing amounts of 
collinearity. As A approaches one, the plot approaches 
the partial regression plot and shows the full impact of 
the multicollinearity present in the data. The simplicity 
of the calculations makes real-time animation possible on 
personal computers. The display also gives the effective 
variance inflation factor associated with the plotted data, 

.1 VIF1(A) = 1 R 

The following examples using two small data sets il- 
lustrate the use of this plot. Cook and Weisberg (1989) 
present other dynamic regression diagnostics. As in their 
examples, I give a sequence of several frames which at- 
tempt to represent the animated display. 

An implementation of this dynamic graphic is available 
from the author via e-mail. It requires that the user have 
Lisp-Stat. The code consists of several methods that en- 
hance the standard regression model object in this package. 

4. TWO EXAMPLES 

The first example considers a time-series regression that 
has substantial collinearity. The regression considers the 
dependence of domestic U.S. crude oil production (OUT- 
PUT) upon gross national product (GNP), price, a time 
trend (YEAR), and level of wildcat drilling activity dur- 
ing the 31 years 1948-1978. The data appear in problem 
7.17 of Gujarati (1988). The OLS fit including the VIF's 
for this model appear in Table 1. The VIF for GNP is 
62.1-clearly a "large" VIF. 

The sequence of six frames shown in Figure 1 conveys 
a sense of how the plot changes as the value of A ranges 
over the interval [0, 1]. The year 1973, the year of the first 
oil embargo, is an influential outlier and is highlighted 
throughout. Initially, with A = 0, the fit looks quite good 

Table 1. Summary of the Least Squares Regression Model Fitted 
to the Oil Production Data for 31 Observations 1948-1978. The 

Square of the Multiple Correlation is R2 - .94 and a = .29. 

Variable Estimate Standard Error t-Statistic VIE 

Constant 2.62 1.52 1.7 n.a. 
GNP .0011 .0015 .7 62.1 
YEAR .0960 .044 2.2 58.1 
PRICE -.699 .070 -9.9 1.2 
WILDCATS .094 .029 3.2 1.7 
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Figure 1. Frames From the Dynamic Plot for GNP in the Model for Oil Production. 

in Figure la, the partial residual plot. As A increases, 
collinearity compacts the variation on the x axis and the 
fit grows weaker. With A = .5 in Figure Ic, the points 
are halfway to the partial regression plot, but VIF(.5) = 2 
remains small. As A nears one, the apparent VIF rapidly 
grows, reflecting the nonlinear definition of VIF(A). The 
sequence of plots shows that most of the "damage" is done 
by the time VIF(A) reaches the range 5-10, supporting the 
intuitive cutoff but allowing students to form their own 
opinions. Because the points move parallel to the fitted 
line, the plot also reinforces the notion that multicollinear- 
ity does not directly affect the residuals. The outlier year 
1973 is just as far from the fitted line in Figure la as in 
Figure le. Figure If repeats Figure le, but with the x axis 
expanded to reveal the structure of the partial regression 
plot. 

The second example demonstrates how collinearity af- 
fects a model with much less correlation among covariates. 
This example uses the data for 22 jet fighters reported in 

Cook and Weisberg (1982, p. 47). The dependent vari- 
able is the log of the number of months after January 1940 
of the first flight of the particular model of aircraft. The 
covariates are SPR (power per unit weight), RGF (range), 
PLF (payload as fraction of total weight), SLF (sustained 
load factor), and CAR (a dummy that is 1 if the plane can 

Table 2. Summary of the Least Squares Regression for the Jet 
Fighter Data. The Response is LOG(FFD), the Log of the First 

Flight Date in Months after January 1940. R2 = .83 and a=.16. 

Variable Estimate Standard Error t-Statistic VIF 

Constant 3.72 .27 14 n.a. 

SPR .085 0.022 3.9 1.45 

RGF .22 0.062 3.6 1.32 

PLF -.48 0.47 -1.0 1.15 

SLF .084 0.046 1.8 1.31 
CAR -.23 0.088 -2.7 1.27 
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Figure 2. Frames From the Dynamic Plot for SLF in the Model for the log of the First Flight Date of Jet Fighters. 

land on an aircraft carrier). Table 2 summarizes the fitted 
model. In contrast to the first example, all of the VIF's are 
less than 1.5. 

While less dramatic than the first example, the dynamic 
plot for SLF is still interesting. In their analysis of these 
data, Cook and Weisberg note that two aircraft are outliers 
whose effects are disguised in the partial residual plot, but 
evident in the partial regression plot. The sequence of 
four frames of the dynamic VIF plot in Figure 2 shows 
how collinearity moves these two from being relatively 
innocent in Figure 2a to being quite influential (attenuating 
the slope) in Figure 2d. 

[Februaiy 1993. Janiuaty 1994.] 
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The Role of Geometry in Pairwise and Mutual Independence 
Neil C. SCHWERTMAN and Terry L. KISER 

The concepts of pairwise and mutual independence, while 
fundamental to probability theory, are sometimes difficult 
for students to differentiate. For pairwise independent 
random variables uniformly distributed over their region of 
support, a "rectangular support"-a Cartesian product of 
intervals-for thejoint density is a necessary and sufficient 
condition for mutual independence. The use of geometric 

illustrations will help students visualize this result and 
provide new insight into the difference between these two 
concepts. 

KEY WORDS: Cartesian product space; Joint density; 
Marginal density; Support. 

1. INTRODUCTION 

The concepts of independence and marginal probabil- 
ity are fundamental to understanding probability theory 

Neil C. Schwertman is Professor of Statistics and Terry L. Kiser is 
Associate Professor of Mathematics, Department of Mathematics and 
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